next up previous
Next: Random Variables Up: Random Processes I Previous: Random Processes I

Probability space

$\Omega$ sample space

Machinery
$\beta\equiv \sigma$ - field on $\Omega$
($\beta$ is a subset of $\Omega$ and has special properties)
Set Defs

Measure Defs
Probability measure P

1.
$0\le P(E) \le 1 \qquad \forall E\in\beta$
2.
$P(\Omega)=1$
3.
With $E_i\bigcap E_j=\phi \;\forall i\ne j \rightarrow P(\bigcup_{i=1}^{\infty})=\sum_{i=1}^{\infty} P(E_i)$
ie. probs. of disjoint events add

Fallout

1.
$P(\bar{E})=1-P(E)$
2.
$P(\phi)=0$
3.
$P(E_1\bigcup E_2)=P(E_1)+P(E_2)-P(E_1\bigcap E_2)$
growup notation
P(E1 + E2)=P(E1)+P(E2)-P(E1E2)
4.
if $E_1 \subset E_2$ then $P(E_2)\ge P (E_1)$

conditional prob
$P(E_1\vert E_2)=
\left\{\begin{array}{ll}
\displaystyle {\frac{P(E_1 E_2)}{P(...
...mbox{provided} E_2 \ne 0 } \\
\displaystyle {0} & {E_2=0}
\end{array}\right.$
If E1 and E2 indept. above implies P(E1 E2)=P(E1)P(E2)

Partition
$\{E_i\}^n_{i=1}$ is a finite partition of sample space

\begin{displaymath}\sum_{i=1}^n E_i=\Omega \qquad E_i E_j=\phi\;\;i\ne j \;\; i,j=1,2,...,n\end{displaymath}

can project on outcome A onto Ei!

\begin{displaymath}P(A)=\sum_{i=1}^n P(E_i)P(A\vert E_i)\end{displaymath}

known as total probability theorem, which leads to

\begin{eqnarray*}P(E_i\vert A)&=&\frac{P(E_i)P(A\vert E_i)}{P(A)}\\
&=&\frac{P(E_i)P(A\vert E_i)}{\sum_{i=1}^n P(E_i)P(A\vert E_i)}
\end{eqnarray*}


which is known as Bayes Thm.




1999-02-06