Voluntary Forwarding in Wireless ad-hoc networks

Zhibin Wu Hang Liu Dipankar Raychaudhuri

Motivation

- Unreliable links in Wireless Networks
 - Nodal Mobility and Failure; Fading channel; Interference and Collision etc.
 - Unreliable Routes : Packet Loss
- Spatial Diversity: Using Multiple routes
 - Redundancy increases reliability
 - Utilize inherent redundancy

Redundancy in Wireless Broadcast

- Link Reliability of each link is *p*
- Stop-and-Wait ARQ in each hop
- Acknowledgements always be received

$$E(N) = \frac{2}{p}$$

- Redundancy already exists
 - Unicast to B is a broadcast
 - A stops retry if either B or D ACKs

$$E(N') = \frac{1}{2p - p^2} + \frac{1}{p}$$

- Exploit wireless broadcast \rightarrow Fewer transmissions
- To utilize the redundancy, more nodes involved

Problems

- Is it good to involve more nodes?
 - End-to-end disjoint path (> 2 hops) might have worse efficiency.
 - Link reliability distribution is the key
- How to discover good forwarders?
 - Some to forward, some to drop
- How to coordinate in a distributed manner?
 - Who send to whom? Who sends first?
 - When to start and how to stop?

Related Work

- Cross-layer MAC routing design
 - Multipath-Routing + Packet Cache A. Valera et. al. '03
 - Opportunistic Routing *S. Biswas et. al. '04*
 - Hop by Hop Broadcast *B. Deb et. al. '03*
 - Need some modifications on MAC or routing
- Our approach ---- Voluntary Forwarding
 - No change to MAC and Routing protocols
 - Modified header format without new control messages

Voluntary Forwarding Design

Helper

- Self-identify its own role as "helper"
 - Overhears two forwarder's transmissions
 - Use flow state information
- Does "voluntary forwarding"

* Flag: A 1-bit to indicate "voluntary forwarding".

Voluntary Forwarding

- With perfect knowledge of link reliability.
 - Trigger: helper's route reliability is better than primary route
- Observation of reliability (Partial info)
 - Monitoring Delay in primary route
 - Trigger: Large delay indicates a bad link reliability
 - RSSI (Receive Signal Strength) estimate of Helper
 - Trigger: Strong signal shows a good helper's route
- Control Rules:
 - "Voluntary forwarding" not cached by any helpers
 - At most cache one packet for each flow
 - Acknowledgements also be sniffed

Delay-Triggered Forwarding

H monitors A and B for Packet 1

- H records T_d of Packet 1
- H set $T_{thr} = T_d + \Delta$
- H cache A's Packet 2
 - If ACK or DATA from B heard, stop
 - If beyond T_{thr}, forward
- Set new T_d

Fading Model

Varying Link Reliability Ricean Fading Model [Punoose in VTC'00] 0.9 0.8 Link Reliability 0.7 0.6 0.5 0.4 0.3 0.2 original ns-2 0.1 **Fading Model** 150 200 250 300 Distance between two nodes

A Proof-of-Concept Exp.

С

○ ○ ○ ○ ● H

0.6

В

Α

Varying Load

Conclusions & Future Work

Conclusion

- A simple design to exploit wireless broadcast for cooperative forwarding
 - Packet delivery ratio increase 5%-35% in Light and Medium Load
- Evaluate "delay-trigger" scheme
 - Good with a certain density of helpers
 - Robust with increased load and imperfect estimation
- Future work
 - Other methods: RSSI-trigger or a "combo" mechanism
 - Methods to handle best-effort traffic and realtime traffic differently.