D-LSMA: Distributed Link Scheduling Multiple Access for Wireless Multi-hop Network

> Zhibin Wu & Dipankar Raychaudhuri

Contents

- Motivation
- Principle of Distributed Link Scheduling Multiple Access (D-LSMA)
- Simulation Results
- Conclusion and Future Work

Challenges: MAC for multi-hop flow

- Collision hurts Packet delivery reliability
 - Avoidance: Carrier-sense & RTS/CTS
 - No complete solution for multi-hop scenario
 - Precaution measure hurts throughput
 - Exposed Terminals
- Contention-based Random Access
 - Head-of-Line Problem
 - Scheduling (Local .vs. End-to-End)

Exposed Terminal

Nodes within RTS/CTS range lose chances of

- Parallel transmission
- Parallel reception

Link Scheduling Rule for parallel events:

Two Links can scheduled at the same time when there is no direct cross-link between the transmitter and receiver in those two pairs of Tx-Rx nodes.

Apply Link Scheduling: Example

Packets: $A \rightarrow B$; $C \rightarrow B$; $D \rightarrow C$; $D \rightarrow E$

- With periodic traffic pattern, better efficiency to serve CBR flows
- How to realize?
 - Centralized TDMA Scheduling
 - Motivation to design practical distributed algorithm

Design D-LSMA

- Knowledge of neighborhood connectivity
 - Easy with simple discovery protocol.
- DATA+ACK: Impact on Link Scheduling.
 - Disable ACK frame and MAC retransmissions
- Nodes have to discover the chances of link scheduling.
 - Reserve with RTS/CTS, other nodes overhear control frames.
 - Build a schedule table by processing overheard RTS/CTS.
- Make nodes able to utilize this chance, not blocked by HOL (head of Line) problem.
 - Use Multiple Queues instead of one FIFO queue

Old

Same MAC scheme for all kinds of traffic in a single FIFO queue

- New
 - Classify packets based on different destination or traffic demands.
 - Scheduler: Choose a "good" schedule for buffered packets or flows and make reservation decisions.

 Note: Scheduler does not make decisions to align transmissions like MACA-P scheme, just simply "Yes/No" the request.

- Time Synchronization
 - Use global synchronization in design prototype
 - Could be synchronized by local channel events

Implementation of Lower MAC

- Extended from 802.11, Keep
 - Carrier Sense & Backoff scheme
 - SIFS, DIFS timings
- Modifications
 - Suppress ACK and disable retransmission
 - Changed RTS/CTS format, reserve multiple packets
 - Handling of overheard RTS/CTS frames
 - Sending RTS based on the command from Scheduler.

Features of D-LSMA

- Use link scheduling rules to avoid conflicts and exploit parallel transmission and reception opportunities.
- Reservation is separated with transmission, scheduler has latitude to select scheduling disciplines.
- A distributed algorithm without using slot structure
- Trying to derive schedule information of neighborhood by sniffing
- Packet errors has to be handled by end-to-end solutions, applicable for scheduling real-time flows

Simulation Experiment

- Performance Evaluation when multiple flows are present over a wireless mesh network
- NS-2 Simulation Parameters

Transmission Range	250m
Channel rate	1Mbps
Packet Size of CBR traffic	512B, 1024B
Simulation Time	200 seconds

- Scheduler used in simulation
 - Reservation Gap: 1.5 ms
 - Round-Robin serving of each flow to different destinations
 - Make simple Yes/No decisions with incoming request

- Throughput and delay measured when offered load is 110 Kbps for each flow
- Flow C has degraded performance due to heavy contention
- D-LSMA provide relief for this contention by enable parallel transmission opportunities

Compare with MACA-P and 802.11

- Better throughput than MACA-P and 802.11
 - MACA-P align both DATA and ACK frames, complex control compromise performance
- Fairness is good even after congestion.

By varying the share of two groups in traffic, D-LSMA show improved performances in serving the contending flows.

Conclusion & Future work

- D-LSMA is a feasible method to improve performance in a multi-hop environment
 - Throughput increases ~20%
 - Better Performance due to scheduling multiple flows
- Future Work
 - Optimize some key design parameters
 - choose reservation gap based on traffic in neighborhood.
 - Investigate the accuracy of schedule table
 - Integrate D-LSMA with default 802.11