Experimental Investigation of PHY Layer Rate Control and Frequency Selection in 802.11-based Ad-Hoc Networks

> Zhibin Wu, Sachin Ganu, Ivan Seskar Dipankar Raychaudhuri

WINLAB, Rutgers University

Contents

Motivation

- Test Methodology in ORBIT Testbed
- Experimental Results
- Conclusion and Future Work

Motivation

- 802.11-based Ad-hoc Network
 - Wireless Mesh network
 - Multi-hop flow for individual transfer
 - Performance
 - Network capacity
 - End-to-end throughput

Courtesy: Microsoft

Cross-layer Design

- Tight coupling effects among PHY,MAC and Routing
- Two-tier approach
 - Incorporate PHY/MAC parameters into routing metric
 - Adaptive control of PHY/MAC components to meet the end-toend performance demands
- Investigate the PHY Design Potentials of 2nd tier

PHY Design Components

Frequency/Band

- Orthogonal 802.11b/g (2.4GHz) channels: 3
 - Channel number: 1, 6, 11
- Orthogonal 802.11a (5GHz) channels: 12
 - Channel number: 36 40 44 48 52 56 60 64 149 153 157 161
- Rate Settings (raw channel rate)
 - □ 802.11b/g rates: 1, 2, 5.5, 11Mbps
 - □ 802.11a/g rates: 6, 9, 12, 18, 24, 36, 48, 54Mbps
- Existing a large design space

ORBIT Testbed

- 8 X 8 grid (64 radio nodes)
 - Each node has two 802.11 radios
 - Space between neighboring nodes: 3 feet
- Four AWGN noise injection antennas

Emulating Different Link Quality

Packet Error Rate

- Varying link quality by adjusting the AWGN noise power
- PER measurement experiment
 - a 2 minute test duration
 - Fixed 24Mbps channel rate.
 - Packet size is 512 Bytes

Experiment 1: Baseline Scenario

- Four-node, three-hop CBR flow.
- All radios working in the same channel
- Inject noise at channel 48 to vary link quality
- Measure end-to-end throughput
- Use default auto-rate adaptation algorithm

Maximum throughput achieved

Sigcomm-EWIND

Experiment 2: Frequency Selection

- Place three links in orthogonal channels
- Injected noise affecting only 2nd Hop

IEEE 802.11 Rate Adaptation

- Unspecified by IEEE 802.11
- Simple Rate Adaptation schemes are used by chip manufacturers
- Test
 - □ Simple 1-to-1 topology.
 - Show channel rate variation in time
 - Long-term rate stability?

Test 1: -16dBm noise

Test 2: -12dBm noise

Experiment 3: Rate Control

- Noise level is fixed at -6dBm in Channel 48
- Auto Rate .vs. Fix Rate
- Auto-rate schemes performs worse than some fixed-rate settings

Sigcomm-EWIND

Cross-layer PHY Control Framework

- Control Overlay
 - Configurable PHY components
 - Optimization algorithm
 - Control signaling
- How to optimize
 - Determine optimization goal
 - High rate with 10% loss or low rate with 1% loss?
 - Collect measurements
 - From neighbors and itself
 - From PHY, MAC and application-level statistics
 - Probe
 - Choose Best Setting

Conclusion & Future Work

Experiments show promising performance gain

- 4x improvement with orthogonal channel configuration
- 3x Improvement with explicit rate control

Cross-layer design proposal

General framework for dynamic channel assignment and rate control

Future work

- A more comprehensive and detail solution
 - Control algorithm to combine rate control & channel allocation
 - System-level evaluation
- Another PHY design component: transmit power

Related Work

Cross-layer Design

- R. Draves, J. Padhye, and B. Zill, "Routing in multi-radio, Multihop Wireless Mesh Networks", ACM MobiCom 2004
- S. Zhao, et al. "PARMA: A PHY/MAC Aware Routing Metric for Ad-Hoc Wireless Networks with Multi-Rate Radios", WoWMoM'05
- A. Raniwala and T. Chiueh, "Architecture and Algorithms for an IEEE 802.11-based Multi-channel Wireless Mesh Network", IEEE Infocom,2005

IEEE 802.11 Rate Adaptation

- M. Lacage, M. H. Manshaei, and T. Turletti, "IEEE 802.11 Rate Adaptation: A Practical Approach," MSWiM'2004
- Emulate Ad-hoc Network in ORBIT Testbed
 - J. Lei, R. Yates, L. Greenstein, H. Liu, "Wireless Link SNR Mapping Onto An Indoor Testbed", *IEEE Tridentcom 2005*

