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Summary: Generalized linear mixed models (GLMMs) are commonly used to describe relationships between cor-

related responses and covariates. In this paper, we propose a regularized method to select both fixed and random

effects in GLMMs. In contrast to using the observed data likelihood functions, we propose to construct the objective

functions using the confidence distribution of model parameters based on the joint and separate marginal asymptotic

distributions of the fixed effect and random effect parameter estimators to perform effect selections. With a proper

choice of regularization parameters in the adaptive LASSO framework, we show the consistency and oracle properties

of the proposed regularized estimators. Simulation studies have been conducted to assess the performance of the

proposed estimators and demonstrate computational efficiency. Our method has also been applied to two longitudinal

cancer studies to identify demographic and clinical factors associated with health outcomes after cancer therapies.
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1. Introduction

Generalized linear mixed models (GLMMs) are a commonly used class of models to describe

the relationship between correlated responses and covariates. Researchers often want to

determine fixed effects and (or) random effects of the outcome variables from a pool of

covariates using the variable selection approach. Our study is motivated by two longitudinal

cancer studies. The first study wanted to identify demographic and clinical covariates that

may be associated with tumor size in lung cancer patients. The second study aimed to relate a

set of covariates to the incidence of common mammographic sequelae after breast conserving

surgery and radiation therapy (tian2016comparison). For both studies, the investigators

wanted to identify important covariates that may predict the outcomes as fixed effects. They

also wanted to include random effects to assess if some covariates exhibit heterogeneous

effect.

In the statistical literature, several approaches have been proposed for variable selection.

For instance, the selection using the information criterion (e.g., Akaike information criterion

(AIC) or Bayesian information criterion (BIC), etc) has been commonly used to determine

the final model after fitting a number of candidate models (Keselman et al. (1998); Gurka

(2006); Claeskens and Consentino (2008); Ibrahim, Zhu, and Tang (2008); Liang, Wu and

Zou (2008), among others). For the popular regularized estimation method, some proposed

methods to select both fixed and random effects (e.g., Bondell, Krishna, and Ghosh (2010),

Peng and Lu (2012), and Lin, Pang and Jiang (2013) for linear mixed models (LMMs),

and Ibrahim et al. (2011), and Hui, Mueller and Welsh (2017) for generalized linear mixed

models (GLMMs), among others), some focused on the computational algorithms for fixed

effects selection only (e.g., Schelldorfer, Meier, and Bühlmann (2014)), and some focused

on random effects selection only (Pan and Huang (2014)), etc. In general, the computa-
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tion of these methods are extensive. For some methods, the statistical properties of the

estimators remain to be determined. Recently, Hui, Mueller and Welsh (2017) proposed a

penalized quasi-likelihood (PQL) estimation with sparsity inducing penalties on both fixed

and random coefficients and demonstrated improved computational efficiency. In spite of

these recent advancements, variable selection in GLMMs remains challenging, primarily due

to the computational difficulty and complexity associated with the integral related to the

random effects in the likelihood functions. It may also affect the performance of the statistical

inference. In this paper, we propose a regularized estimation method using the confidence

distribution approach.

The seed idea of a confidence distribution could be traced back to Bayes (1763) and

Fisher (1922). However, the concept and its applications have been developed extensively

in recent years (e.g., Xie, Singh, and Strawderman (2011), Tian et al. (2011), Liu, Liu and

Xie (2015), Wang et al. (2021); also see Xie and Singh (2013) and the references therein

for more detailed review). The confidence distribution can be viewed as a sample dependent

distribution function, and used to estimate and provide statistical inference for a parameter

of interest (Cox (2013) and Wang et al. (2021)). Typically, the regularized estimation is

performed based on the likelihood function constructed from the observed data. In this

paper, we propose to perform regularized estimation by optimizing the objective functions

constructed from the confidence distributions of model parameters. Specifically, we show

that the conventional objective functions using the observed data likelihood function can be

approximated by the objective function constructed based on the confidence distributions of

the model parameters. With proper choices for the regularization parameters, it can be shown

that the proposed estimators possess the estimation consistency, selection consistency and

the oracle property. Moreover, we demonstrate that the proposed method is computationally

efficient and can be easily implemented using existing standard software packages.
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The rest of this paper is organized as follows. In Section 2, we provide a brief review of

the statistical inference in the generalized linear mixed models. In Section 3, we provide

the rationale of the proposed regularized estimation approach using confidence distribution

and establish the statistical properties of the proposed regularized estimators. In Section 4,

we discuss the implementation of the optimization method and the determination of tuning

parameters. In Sections 5 and 6, we present simulation results and conduct the real data

analysis to illustrate our methods. We conclude this paper with a discussion in Section 7.

2. Generalized Linear Models and Proposed Regularized Estimation

Consider a sample of n independent clusters. Let yi = (yi1, yi2, · · · , yimi)T and yij denote the

jth measurement of the ith cluster, where i = 1, 2, · · · , n, and j = 1, 2, · · · ,mi. Let xij be

a vector of pf covariates correpsonding to fixed effects, and zij be a vector of pr covariates

corresponding to random effects. Both xij and zij include 1 for intercepts. Typically, zij is a

subset of xij. Conditional on the random effects bi, we assume that the responses y′ijs follow

a distribution of the exponential family with conditional mean µij depending on bi through

the link function g(·) given by

g(µi) = ηi = X iβ +ZiΓbi, (1)

where β is the fixed effect regression coefficients, bi is the random effects assumed to follow

a multivariate normal distribution N pr(0, Ipr) with Ipr being a pr× pr identity matrix, and

Γ is a pr × pr Cholesky decomposition lower triangular matrix depending on parameter γ

such that Γbi follows N pr(0,D) and D = ΓΓT . For simplicity, we assume the canonical link

such that g(µ) = ηi. Consider finite dimensions of β and γ, i.e., pf <∞ and pr <∞. The

model parameters θ = (βT ,γT , φ)T can be estimated by maximizing the marginal likelihood

of y through integrating out bi,

L(θ;y) =
n∏
i=1

∫
fy|b(yi|bi;θ)f(bi|θ)dbi, (2)



4 Biometrics, 000 0000

where φ is the dispersion parameter, fy|b(yi|bi;θ) denotes the conditional density function

of Y i|bi, and f(bi|θ) denotes the marginal density of bi. Note that the parameters of interest

are β and γ. Define the maximum likelihood estimator (MLE) of θ by

θ̂ = arg max
θ

logL(θ;y),

Let θ0 denote the true value of θ. Under mild regularity conditions, θ̂ is consistent and

√
n(θ̂−θ0)→D N (0,Σ(θ)), where Σ−1(θ) = limn→∞ I(θ), I(θ) = −n−1∂2 logL(θ;y)/∂θ∂θT ,

and Σ(θ) is consistently estimated by Σ̂ = I−1(θ̂) (e.g., Pan and Lin (2005)).

3. Proposed Regularized Estimations

3.1 Construction of Objective Function

Variable selection using regularized approach has achieved much success in recent decades.

Typically, the objective function is constructed from the observed data likelihood function

plus penalty functions. Let

Qo(θ) = − logL(θ;y) + nκoρ(β) + nκoτ (γ),

and define the regularized estimator θ̂
o

ρτ=arg minθQ
o(θ), where κoρ(β) and κoτ (γ) are penalty

terms that control the sparsity for the estimates of β and γ to select appropriate fixed

effects and random effects, respectively. Because the integral in L(θ;y) generally does not

have a closed-form solution, various approaches have been proposed to tackle this computa-

tional challenge to obtain the MLE, score functions and the information matrix for making

statistical inference (e.g., Wolfinger (1993), Pinheiro and Bates (1995), Westfall (1997),

Lange (1999), Pinheiro and Chao (2006), among others). With the addition of penalty

terms, obtaining θ̂
o

ρτ can be even more computationally challenging. Many studies have

been proposed to derive the regularized estimators for β and γ (e.g., Bondell, Krishna,

and Ghosh (2010), Peng and Lu (2012), Lin, Pang and Jiang (2013), Ibrahim et al. (2011),

Schelldorfer, Meier, and Bühlmann (2014), and Pan and Huang (2014), etc), but they are
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generally computationally complicated and extensive. To ease the complexity in deriving the

regularized estimators for β and γ, we propose to construct the objective function based on

the confidence distribution of the MLE.

Inference based on confidence distribution has been discussed in the statistical literature

(e.g., Efron (1993), Efron (1998), Singh, Xie and Strawderman (2007), Xie, Singh, and

Strawderman (2011), Xie and Singh (2013)). A confidence density is the density function

representation of a confidence distribution. Based on the asymptotic distribution of θ̂ and

Singh, Xie and Strawderman (2007), we write the confidence density of the parameter θ as

h(θ) =
1

(2π)p/2
{

det
(
n−1Σ̂

)}1/2
exp

{
−1

2
(θ̂ − θ)T

(
n−1Σ̂

)−1

(θ̂ − θ)

}
, (3)

where p denotes the length of θ and det(C) is the determinant of a matrix C. Take the

logarithm of h(θ) such that log[h(θ)] = −(1/2)(θ̂ − θ)T
(
n−1Σ̂

)−1

(θ̂ − θ) + c, where c is

some constant free of θ. Consider the following approximation. It can be seen that

n−1 logL(θ;y) ≈ n−1 logL(θ̂;y) + n−1(θ − θ̂)T
{

∂

∂θT
logL(θ)

}
|θ=θ̂

+1/2(θ − θ̂)T
{
n−1 ∂2

∂θT∂ θ
logL(θ)

}
|θ=θ̂(θ − θ̂)

= n−1L(θ̂) + 1/2(θ − θ̂)T Σ̂
−1

(θ − θ̂)

= − n−1 log[h(θ)] + c′ (4)

since ∂ logL(θ;y)/∂θT |θ=θ̂ = 0 and constant c′ = n−1 logL(θ̂;y) + c is free of θ. This

motivates us to propose using the confidence density -log[h(θ)] to approximate logL(θ;y)

to perform the regularized estimation. Specifically, we construct the following objective

function, after adding the penalty terms κρ(β) and κτ (Dγ) and dropping constant terms:

Q(θ) = (θ̂ − θ)T
(
n−1Σ̂

)−1

(θ̂ − θ) + nκρ(β) + nκτ (γ). (5)

Define the regularized estimator θ̂ρτ=arg minθQ(θ). It is easy to see the relationship between

Q(θ) and Qo(θ) satisfying Q(θ) = 2Qo(θ) + op(1), provided that κρ(β) = 2κoρ(β), and
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κτ (γ) = 2κoτ (γ). Due to the asymptotic normality property of the MLE, we notice that the

objective function Q(θ) takes the similar form as the objective function based on the least

squares approximation proposed by Wang and Leng (2007) for the generalized linear models.

In optimizing Q(θ), the computational burden in numerically approximating the integration

in logL(θ;y) only occurs in deriving θ̂ and Σ̂, which can be achieved by using existing

software packages. Once θ̂ and Σ̂ are obtained, optimizing Q(θ) to obtain θ̂ρτ no longer

involves the numerical integration of logL(θ;y), thus greatly improves the computational

efficiency. In Sections 4 and 5, we discuss how to perform the optimization of Q(θ) using

existing software packages and demonstrate the computational efficiency of our method and

assess the performance of θ̂ρτ using simulation studies. Note that, the construction of Q(θ))

is based on the asymptotic normality of the MLE. Based on the

3.2 Statistical Properties of the Proposed Estimator

To facilitate statistical inference, the penalty functions κρ(·) and κτ (·) could be the adaptive

LASSO (Zou, 2006), or the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001).

In this paper, we focus on the adaptive LASSO framework. Specifically, for the fixed effects

selection, we use the adaptive LASSO choosing κρ(β) =
pf∑
f=1

ρf |βf |, where ρ′fs are the tuning

parameters that control the penalty with respect to |βf |, for f = 1, 2, ..., pf . For the random-

effect selection, we propose to use the adaptive group LASSO, following the rationale outlined

in He, Tu and Wang et al. (2015): Let γm denote the mth row of Γ, then γmγ
T
m = Dmm which

is the mth variance component of the random effects Γbi. Note that γm = 0 ⇔ Dmm =

Dmh = Dhm = 0 for all h; that is, if γm = 0, then the variance and covariance elements of

Γbi involving (Γbi)m are also 0. As a result, if a row vector γm is not selected, the random

effect (Γbi)m and the corresponding component in z are excluded from the model and the

positive-definitiveness ofD is preserved. Thus, we choose the adaptive group LASSO penalty

κτ (γ) =
pr∑
m=2

τm||γm|| and τ ′ms are the tuning parameters corresponding to ||γm|| , where || · ||
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denotes the L2 norm of a vector. Note that the summation starts from m = 2 to keep the

random intercept and preserve the within-subject correlation.

Denote the true value of θ by θ0, and the true non-zeros and true zeros in θ by θ0a and

θ0b, respectively. Obviously, Q(θ) is strickly convex in θ. We establish the consistency and

oracle properties of θ̂ρτ in Theorem 1.

Theorem 1: Let af,n = max {ρj, j 6 f0}, bf,n = min {ρj, j > f0}, ar,n = max {τj, j 6 r0},

and br,n = min {τj, j > r0}. Then the regularized estimator θ̂ρτ satisfies the following as

n→∞:

(1) (Estimation Consistency) If n1/2af,n
P−→ 0 and n1/2ar,n

P−→ 0, θ̂ρτ
P−→ θ0;

(2) (Selection Consistency) If n1/2af,n
P−→ 0, n1/2ar,n

P−→ 0, n1/2bf,n
P−→∞, and n1/2br,n

P−→∞,

Pr(θ̂ρτ,b = 0)→ 1, where θ̂ρτ,b denotes the components in θ̂ρτ corresponding to θ0b.

(3) (Oracle Property) If n1/2af,n
P−→ 0, n1/2ar,n

P−→ 0, n1/2bf,n
P−→ ∞, and n1/2br,n

P−→ ∞,

n1/2(θ̂ρτa − θ0a)
D−→ N (0,

[
(Σ−1)θ0a

]−1
), where (Σ−1)θ0a is the submatrix of Σ(θ)−1

corresponding to true non-zero θ0a.

The variance
[
(Σ−1)θ0a

]−1
can be consistently estimated by

[
ˆ(Σ
−1

)θ0a

]−1

, where ˆ(Σ
−1

)θ0a

is the submatrix of Σ̂
−1

corresponding to θ0a.

Sketch of the proof is provided in the supplementary material. Recall that the objective

function Q(θ) is built by the confidence density h(θ), according to the joint asymptotic

distribution of θ̂. Notice that h(θ) is multivariate normal density. The true values of the

means in the joint distribution are the same as those in the marginal distributions. Therefore,

we propose an alternative estimation based on the marginal density of β̂ and γ̂, with respect

to h(θ), to separately estimate β and γ. These marginal confidence densities also correspond

to the marginal asymptotic distributions of the MLEs β̂ and γ̂, respectively. We refer the

previous estimation as the CD-joint estimation, and the following estimation as the CD-
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separate estimation. To proceed, we propose the separate objective functions as follows:

Qf (β) = (β̂ − β)T [n−1Σ̂ββ]−1(β̂ − β) + nκρ(β),

Qr(γ) = (γ̂ − γ)T [n−1Σ̂γγ]
−1 (γ̂ − γ) + nκτ (γ),

where Σ̂ββ and Σ̂γγ are submatrices of Σ̂ corresponding to the marginal variance-covariance

of β̂ and γ̂, respectively; the penalty terms κρ(β) and κτ (γ) remain the same as those inQ(θ).

Define the regularized estimators as β̂
s

ρ=arg minβQf (β) and γ̂sτ=arg minγ Qr(γ). As noted

previously, the true values of the underlying parameters β and γ in the joint distribution of

β̂ and γ̂ in h(θ) are the same as those in the individual marginal distributions of β̂ and γ̂,

respectively. Therefore, the true values of β and γ for the estimators based on the CD-joint

estimation and CD-separate estimation are the same.

Denote the true values of β by β0, and γ by γ0. Let β0a and β0b denote the true non-zeros

and true zeros of β, respectively, and γ0a and γ0b denote true non-zeros and true zeros of γ,

respectively. We establish the consistency and oracle properties for β̂
s

ρ and γ̂sτ as follows.

Theorem 2: Let af,n = max {ρj, j 6 f0}, and bf,n = min {ρj, j > f0}. Then the regu-

larized estimator β̂
s

ρ satisfies the following as n→∞:

(1) (Estimation Consistency) If n1/2af,n
P−→ 0, β̂

s

ρ
P−→ β0;

(2) (Selection Consistency) If n1/2af,n
P−→ 0, and n1/2bf,n

P−→ ∞, Pr(β̂
s

ρ,b = 0 ) → 1; where

β̂
s

ρ,b denotes the components in β̂
s

ρ corresponding to β0b.

(3) (Oracle Property) If n1/2af,n
P−→ 0, and n1/2bf,n

P−→∞, n1/2
(
β̂
s

ρ,a − β0a

)
D−→ N (0,

[
(Σ−1

ββ )β0a
]−1

),

where (Σ−1
ββ )β0a is the submatrix of Σ−1

ββ composed of elements (variance and covariance)

corresponding to true non-zero β0a.

Theorem 3: Let ar,n = max {τj, j 6 r0}, and br,n = min {τj, j > r0}. Then the regular-

ized estimator γ̂sτ satisfies the following as n→∞:

(1) (Estimation Consistency) If n1/2ar,n
P−→ 0, γ̂sτ

P−→ γ0;
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(2) (Selection Consistency) If n1/2ar,n
P−→ 0, and n1/2br,n

P−→ ∞, Pr(γ̂sτ,b = 0 ) → 1; where

γ̂sτ,b denotes the components in γ̂sτ corresponding to γ0b.

(3) (Oracle Property) If n1/2ar,n
P−→ 0, and n1/2br,n

P−→∞, n1/2
(
γ̂sτ,a − γ0a

) D−→ N (0,
[
(Σ−1

γγ )γ0a
]−1

),

where (Σ−1
γγ )γ0a

is the submatrix of Σ−1
γγ composed of elements (variance and covariance)

corresponding to true non-zero γ0a.

The proof for Theorem 2 and Theorem 3 are similar to that for Theorem 1, thus are omitted.

Although the dispersion parameter φ is often treated as a nuisance parameter, it can also

be included in the separate estimation approach. Combining φ and γ, we modify Qr(γ) by

Q∗r(γ,ϕ) given below, based on the (marginal) joint distribution of γ̂ and φ̂ by (3):

Q∗r(γ,ϕ) =

 γ̂ − γ

φ̂− φ


T

[n−1Σ̂γφ]−1

 γ̂ − γ

φ̂− φ

+ nκτ (γ),

where Σ̂γφ is the variance-covariance of γ̂ and φ̂.

For linear mixed models, β̂ is uncorrelated with γ̂ and φ̂ (e.g., Wang and Merkle (2018)).

Thus Q(θ) = Qf (β) +Q∗r(γ, φ), implying that

arg min
θ
Q(θ) = arg min

θ
{Qf (β) +Q∗r(γ, φ)}

= arg min
β
Qf (β) + arg min

γ,φ
Q∗r(γ, φ),

the CD-joint estimation and CD-separate estimation are identical.

4. Optimization and determination of tuning parameters.

For joint estimation of β and γ, we follow the method of Zhang and Lu (2007) and rewrite

the objective function Q(θ) as

Q(θ) = (Λθ −Ψ)T (Λθ −Ψ) + nκρ(β) + nκτ (γ), (6)

where Ψ = Λθ̂ , and Λ can be obtained using the singular value decomposition such that(
n−1Σ̂

)−1

= ΛTΛ. Then the function in (6) is a typical convex optimization problem and
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can be solved by standard software packages, for instance, the R packages glmnet (Friedman

et al., 2010) and gglasso (Yang and Zou, 2015). Same approach can also be applies to

optimize Qf (β), Qr(γ) and Q∗r(γ,ϕ). Let Ψβ = Λββ̂ and Ψγ = Λγγ̂, where Λβ and Λγ

can be obtained using the singular value decomposition such that [n−1Σ̂ββ]−1 = ΛT
βΛβ

and [n−1Σ̂γγ ]−1 = ΛT
γΛγ . As a result, Qf (β) = (Λββ −Ψβ)T (Λββ − Ψβ) + nκρ(β) and

Qγ(γ) = (Λγγ −Ψγ)T (Λγγ −Ψγ), respectively.

Typically, the tuning parameters can be chosen using the approaches of cross validation

(CV) or generalized cross validation (GCV). But these methods can be computationally

extensive. With the simple solution suggested by Zou (2006), we consider ρf = ρ|β̂f |−ϕf and

τm = τ ||γ̂m||−ϕr , for f = 1, 2, ..., pf and m = 2, 3, ..., pr, where β̂f and γ̂m are the maximum

likelihood estimates for βf and γm, and ϕf and ϕr are pre-specified positive number. In our

simulations and data analysis, we chose ϕf = ϕr = 1 for simplicity.

To determine the tuning parameters ρ and τ , we consider to minimize BIC, per recommen-

dations by prior research (e.g., Wang and Leng (2007) and Wang and Leng (2008)). For CD-

joint estimation, define the BIC as: BICρ,τ = n(θ̂ρτ − θ̂)T Σ̂
−1

(θ̂ρτ − θ̂) + (log n)(dfρ + dfτ ),

where dfρ is the number of nonzero coefficients in β̂ρ, and dfτ is the number of groups

with non-zero within-group coefficients. For CD-separate estimation, we define BICf,ρ =

n(β̂sρ− β̂)T Σ̂
−1

ββ(β̂sρ− β̂)+(log n)dfρ for Qf (β), BICr,τ = n(γ̂sτ − γ̂)T Σ̂
−1

γγ(γ̂sτ − γ̂)+(log n)dfτ

for Qr(γ) and BIC∗r,τ =

 γ̂ − γ

φ̂− φ


T

[n−1Σ̂γφ]−1

 γ̂ − γ

φ̂− φ

 + (log n)dfτ for Q∗r(γ,ϕ). For

linear mixed models, BICρ,τ = BICr,ρ +BIC∗r,τ . The ρ and τ that minimize BICρ,τ should

also minimize BICr,ρ and BIC∗r,τ , respectively, and vice versa.

Simulation Studies

We conducted simulation studies to examine the performance of the proposed method and

compared it with the method of Hui, Mueller and Welsh (2017) for its better performance
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in variable selection and computation efficiency than some existing methods. Data were

simulated under 3 scenarios according to model (1) with pf = 16 fixed effects and pr = 4

random effects, both including intercepts. In Scenario 1, y′ijs were simulated from the linear

mixed model such that yij|bi is following N(xTijβ+zTijΓbi, σ
2) with φ = σ2 = 1. In Scenario 2,

we simulated binary data from the random effects logistic regression model. In Scenario 3, we

simulated count data from the random effects Poisson model using a log link. The true value

for β was β0 = (16,010) for Scenarios 1 and 2, and β0 = (−1,15,010) for Scenario 3. The true

4×4 random effect covariance matrix D is given by vech(D) = (9, 4.8, 0.6, 0; 4, 0.9, 0; 1, 0; 0)

for Scenario 1, vech(D) = (3, 1.2, 0.8, 0; 2, 0.5, 0; 1, 0; 0) for Scenarios 2 and 3, i.e., only the

first three components of zij, including the random intercept, are true predictors. As a

result, we express the corresponding Cholesky decomposition lower triangular matrix as Γ =

(3; 1.60, 0.20; 1.20, 0.57, 0.80; 04) for Scenario 1 and Γ = (1.73; 0.69, 1.23; 0.46, 0.15, 0.88; 04)

for Scenarios 2 and 3. In each scenario, we considered varying number of clusters n and cluster

size m. All elements of xij were generated from the standard normal distribution. The first

3 elements of zij equal the first 3 elements of xij, including intercepts. For the proposed

methods, we refer CD-joint and CD-separate estimations as CD-J and CD-S, respectively.

We refer the method of Hui et al. by rPQL. We assessed the performance of the biasedness,

empirical standard error (ESE), coverage probability of 95% confidence intervals (CovP),

percentage of selection (% Sel) and the average computation time (Time (mins)). When

we calculated computation time, we excluded the time fitting GLMM models to derive the

MLEs, and only calculated the time of the regularization process, including the determination

of tuning parameters, when we applied either the proposed approaches or the rPQL approach.

Results were summarized in Tables 1 to 3, based on 1000 simulation runs.

For the linear mixed models (Scenario 1), the first 3 fixed effect estimates in β̂sρ showed

some bias from the true values when the number of clusters n is moderately small (e.g.,
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n = 60). Note that the corresponding covariates are also associated with random effects.

Similar situation also happened to the rPQL estimates. These CD estimates associated with

larger values in the random effectD elements (e.g., 9, 4.8, 4 inD) tended to have larger bias.

The bias diminished as n increased. When n = 500, the bias is nearly minimal. For the fixed

effect estimates whose corresponding covariates are not associated with random effects, the

bias is minimal even for small n. The empirical variance, as expected, decreased with n. The

coverage probability of 95% confidence interval (CI) is close but slightly under the nominal

95% level. The coverage probability improved when n was large. For the performance of

variable selection, the selection of true covariates was close to 100%. The noise covariates

were selected but at a very low rate, especially for large n. Compared to the rPQL method,

the proposed methods resulted in slightly smaller false positive selection rate. For random

effect selections, results were similar. In general, the random effect parameter estimates of

the proposed CD method were close to the ture values; the empirical variance decreases with

n, and the coverage probability of 95%CI is close to but slightly under the nominal 95%

level. The selection of true covariates was close to 100%. The noise covariates were selected

but at a very lower rate, compared to the rPQL method. In terms of computation time, the

proposed method generally took < 1 minute. Therefore, when the n is moderate to large,

the proposed CD method can be an attractive and competitive approach.

For the random effects logistic regression models (Scenario 2), results are similar in the

sense that the bias and ESE decreased with n, and the coverage probability improved as

n increased. The performance of the separate estimation (CD-S) outperformed the joint

estimation (CD-J) with respect to bias, coverage probability of 95% CI, and the percentage

of selection. This might be caused by the constraint of ρ = τ we set when we optimized

Q(θ) using the gglasso function in R. Some perturbations in the relationship of ρ and τ

(e.g., ρ = aτ, a > 0) that relax this condition might improve the performance of the joint
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estimation. We also noted that the proposed CD approaches also outperformed the rPQL

method, in terms of bias, percentage of selection and computation time.

Results for Scenario 3, the random effects Poisson regression models, are also similar.

However, we noted that the coverage probabilities based on CD-J and CD-S approaches

were not improved when n = 200 increased to n = 400, but were similar to the coverage

probabilities based on the inference of MLEs. To improve the coverage of confidence intervals,

one may consider to replace Σ̂ in the inference by the Huber-White sandwich estimator

(Freedman (2006) and Wang and Merkle (2018)).

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

5. Data Analysis

We applied the proposed CD approach to the two longitudinal cancer studies that motivated

our method. The first study wanted to identify demographic and clinical covariates that

may be associated with the tumor size in lung cancer patients. The second study aimed to

relate a set of covariates to the incidence of common mammographic sequelae after breast

conserving surgery and radiation therapy (tian2016comparison). For both studies, we wanted

to identify important covariates that may predict the outcomes as fixed effects. We also

wanted to include random effects to assess if some covariates exhibit heterogeneous effect.

Data Example 1. We fitted the linear mixed model and applied the proposed CD ap-

proach to identify covariates that may predict the tumor size using repeatedly measured

data from 101 lung cancer patients. The outcome variable was log-transformed tumor size

(unit?). Potential predictors for the fixed effect selection included Weeks (weeks since lung

cancer diagnosis or treatment?), Age (age at diagnosis?), gender (females yes/no), MLDGy
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(how much radiation normal lung tissues receives radiation?), LungV20 (portions of lung

volume receives 20 Gy of ? ), and smoking (yes/no). Potential predictors for the random

effect selection included Weeks, Age, MLDGy and LungV20. All continuous variables were

standardized to mean 0 and variance 1. In order to test the performance of variable selection

of our proposed method, we added 3 unrelated and randomly generated standard normal

noise variables into the fixed effects selection. Results were summarized in Table 4. For fixed

effect selection, Weeks, Gender, MLDGy and LungV20 were selected. Results suggested

that the mean tumor size decreased with weeks (β̂sρ = −0.117, 95%CI: 3.554, 4.197), and

was bigger in men than women (β̂sρ = 0.434, 95%CI: 0.016, 0.852). The mean tumor size

also increased with MLDGy (β̂sρ = 0.912, 95%CI: 0.299, 1.526) and decreased with LungV20

(β̂sρ = −0.789, 95%CI: −1.399,−0.180). For random effects, Weeks was selected (Γ̂21 = 0.001,

95%CI: 0.001, 0.002, and Γ̂22 = 0.062, 95%CI : 0.061, 0.063), in addition to the intercept

(Γ̂11 = 1.233, 95%CI: 1.231, 1.235), suggesting a positive within-person correlation and a

heterogeneous effect by Weeks. Adopting the commonly used refit approach (reference), we

refitted the model that only included the selected fixed and random effects using the proposed

CD approach. Results were similar.

Data Example 2. The second dataset included data from 89 breast cancer patients to

identify covariates associated with the incidence of common mammographic sequelae after

breast conserving surgery and radiation therapy. A total of 605 longitudianlly measured

observations were in the data analysis. We fitted a random effects logistic regression model

with calcification (yes/no) as the dependent vairable, and applied the proposed CD separate

estimation approach to select fixed effects from the following covariates: age, years from

radiation therapy, African Americans (yes/no), Her2/neu positive (yes/no), adjuvant chemo

and/or hormonal therapy (yes/no), smoking (yes/no), bilateral disease (yes/no) and 2 unre-

lated and randomly generated standard normal noise variables. Potential covariates for the
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random effect selection included the intercept, age, and 1 unrelated noise variable that was

also included in the fixed effect selection. All continuous variables were standardized to mean

0 and variance 1. Results were summarized in Table 5. For fixed effects, age , years from

radiation therapy, African Americans and Her2/neu positive were selected. Results suggested

the risk of calcification increased with age (β̂sρ = 4.298, 95%CI: 2.449, 6.148), Years since

radiation therapy (β̂sρ = 1.411, 95%CI: 1.048, 1.773) and was lower in African Americans

(β̂sρ = −5.878, 95%CI: −10.503,−1.253) and Her2/neu positive (β̂sρ = −1.617, 95%CI:

−2.899,−0.335). For random effects, Age (Γ̂21 = 7.292, 95%CI: 0.175, 14.410, and Γ̂22 =

6.318,95%CI: 2.912, 9.725) was selected, in addition to the random intercept (Γ̂11 = 4.372,

95%CI: 2.228, 6.518),suggesting a positive within-person correlation and a heterogeneous

effect by Age. After refitting the random effects logistic model that only included the selected

fixed and random effects selected using the proposed CD separate estimation approach,

results were similar.

[Table 4 about here.]

[Table 5 about here.]

6. Discussion

In this paper, we propose a regularized estimation approach to select both fixed and random

effects in GLMMs. Specifically, we show that the log marginal likelihood function, after

integrating out the random effects, can be approximated by the log confidence density of

the model parameters based on the asymptotic distribution of the MLE. As a result, we

proposed to construct the objective functions using the confidence density as opposed to

using the observed data likelihood function. Specifically, we proposed to estimation methods:

One is referred as the CD-joint estimation, based on the joint asymptotic distribution of the

MLE of the fixed effect and random effect parameters; the other is referred as the CD-
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separate estimation, based on the individual marginal distribution of the MLES of the fixed

effect and random effect parameters, respectively. Due to the asymptotic normality property

of the MLE, we notice that the CD-based objective functions takes a similar form to the

objective function based on the least squares approximation proposed by Wang and Leng

(2007) for the generalized linear models. With a proper choice of regularization parameters

in the format of adaptive LASSO framework, we show that the proposed estimators have

the consistency and oracle properties. For practical use, the construction of the objective

functions can take advantage of existing software packages that provide ready solutions

of θ̂ and Σ̂. Thus, optimizing the proposed objective functions to obtain the regularized

estimators can bypass the computational complexity in numerically approximating the in-

tegral in the log marginal likelihood function and escalates computational efficiency. In the

simulation studies, we demonstrated the performance of the proposed estimators, in terms of

bias, coverage probability of 95% confidence intervals, variable selection and computational

efficiency. Results showed that the separate estimation outperformed the joint estimation.

The key principle of our method is to approximate the log likelihood function by the

log confidence density of the model parameters based on the asymptotic distribution of

the maximum likelihood estimator. In this paper, our proposed method is designed for

GLMM. In many real life problems, some complicated modeling approaches, such as mixture

regression models and joint analysis of survival and longitudinal data analysis, may apply

and the statistical inference is largely based on the likelihood based approach. The variable

selection for these models might be challenging due to the complexity in these models and

computation. We plan to extend our approach and apply it to perform variable selection to

these models as future work.
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Web Appendix: Proof of Theorem 1

(1) Since the objective function Q(θ) is a strictly convex function for θ, a local consistent

minimizer is the global consistent min imizer. Therefore, it suffices to show the existence of

a local consistent minimizer, then the estimation consistency follows immediately. Following

? and letting u = (u1, u2, . . . , ud)
T , where d =length(θ), the existence of a local consistent

minimizer is implied by the fact that for any given ε > 0, there exists a large constant C

such that

lim
n→∞

P

{
inf

u∈Rd:||u||2=C
Q(θ0 + n−1/2u) > Q(θ0)

}
> 1− ε, (7)

where ||a||2 = (aTa)1/2 for a column vector a.

To show this, consider

Q(θ0 + n−1/2u)−Q(θ0)

= uT Σ̂
−1

u + 2uT Σ̂
−1
{
n1/2(θ0 − θ̂)

}
+ n

pf∑
f=1

ρf (|β0f + n−1/2uf | − |β0f |)

+n

pr∑
m=2

τm(||γ0m + n−1/2upf+m|| − ||γ0m||)

> uT Σ̂
−1

u + 2uT Σ̂
−1
{
n1/2(θ0 − θ̂)

}
+ n

∑
{f :β0f 6=0}

ρf (|β0f + n−1/2uf | − |β0f |)

+n
∑
m=2

{m:γ0m 6=0}

τm(||γ0m + n−1/2upf+m|| − ||γ0m||)

> uT Σ̂
−1

u + 2uT Σ̂
−1
{
n1/2(θ0 − θ̂)

}
− n

∑
{f :β0f 6=0}

ρj|n−1/2uj| − n
∑
m=2

{m:γ0m 6=0}

τm||n−1/2upf+m||(8)

> uT Σ̂
−1

u + 2uT Σ̂
−1
{
n1/2(θ0 − θ̂)

}
− (n1/2f0af,n + n1/2r0ar,n)||u||, (9)

followed by the triangle inequality, af,n = max{ρj, j 6 f0} and ar,n = max{τj, j 6 r0}.

According to the conditions n1/2af,n
P−→ 0 and n1/2ar,n

P−→ 0, the third term in (??) is op(1).

The first term in ?? converges in probability to uT Σ̂
−1

u. The second term in (??) is bounded

by 2C||Σ̂
−1
n1/2(θ0− θ̂)||, which is linear in C with a coefficient 2||Σ̂

−1
n1/2(θ0− θ̂)|| = Op(1).

As the variance Σ and its estimate Σ̂ are positive semidefinite, the first term in (??) is larger
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than µmin(Σ̂
−1

)C2 P−→ µmin(Σ̂
−1

)C2, where µmin(.) refers to the minimal eigenvalue. It follows

that, with probability going to 1, the first term in (??) is larger than µmin(Σ̂
−1

)C2 which is

quadratic in C. By choosing a sufficiently large C, the first term dominates the other two

terms with arbitrarily large probability. Hence, by choosing a sufficiently large C, (??) holds

and the proof of estimation consistency is completed.

(2) The selection consistency can be shown by contradiction. To show Pr(θ̂ρτ,b = 0 )→ 1,

we show that Pr(β̂ρτ.j = 0) → 1 for any f0 < j 6 pf and Pr(γ̂ρτ,m = 0) → 1 for any

r0 < m 6 pr. Suppose β̂ρτ.j 6= 0 for some f0 < j 6 pf , then by definition

n−1/2 ∂Q(θ)

∂βj

∣∣∣∣
θ=θ̂ρτ

= 2Σ̂
−1

(βj)
n1/2(θ̂ρτ − θ̂) + n1/2ρjsgn(β̂ρτ.j) = 0, (10)

where Σ̂
−1

(βj)
represents the row vector of Σ̂

−1
corresponding to the position of βj and sgn(.) is

the sign function. It can be shown that the first term on the right hand side of (10) is Op(1).

Based on the condition n1/2bf,n
P−→ ∞, we have n1/2ρj > n1/2bf,n

P−→ ∞. Then to satisfy

(10), with probability tending to 1, β̂ρτ.j = 0, which contradicts the assumed condition that

β̂ρτ.j 6= 0. As a result, with probability tending to 1, β̂ρτ.j = 0 for any f0 < j 6 pf . Similarly,

suppose γ̂ρτ,m 6= 0 for some r0 < m 6 pr, then by definition

n−1/2 ∂Q(θ)

∂γm

∣∣∣∣
θ=θ̂ρτ

= 2Σ̂
−1

(γm)n
1/2(θ̂ρτ − θ̂) + n1/2τm

γ̂ρτ,m∥∥γ̂ρτ,m∥∥ = 0, (11)

where Σ̂
−1

(γm) represents the submatrix consisting of of the row vectors of Σ̂
−1

corresponding

to the position of γm. It can be shown that the first term on the right hand side of (10) is

Op(1). Based on the condition n1/2br,n
P−→∞, we have n1/2τm > n1/2br,n

P−→∞. Then to satisfy

(10), with probability tending to 1, γ̂ρτ,m = 0, which contradicts the assumed condition that

γ̂ρτ,m 6= 0. As a result, with probability tending to 1, γ̂ρτ,m = 0 for any r0 < m 6 pr. This

completes the proof of selection consistency.

(3) To prove the oracle property, we first ease the notation: Without loss of generality, we

use θr to denote the re-arranged θ such that the first f0 + r0(r0 + 1)/2 + 1 elements of θr0

are the true non-zero parameters in the order of β0a,γ0a, and φ, and the remaining elements
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are β0b and γ0a. In the same order, we use θ̂
r
, θ̂

r

ρτ , and Σ̂r−1
to denote the re-arranged θ̂ ,

θ̂ρτ and Σ̂
−1
, resepctively. We also decompose (Σr) and (Σr)−1 into block matrices:

Σr =

Σr
aa Σr

ab

Σr
ba Σr

bb

 , (Σr)−1 = Ω =

Ωaa Ωab

Ωba Ωbb

 ,

where M aa is the leading a× a submatrix of M . Decomposing Q(θ), we have

Q(θr)

= (θ̂
r
− θr)T [n−1Ω̂

r
]−1(θ̂

r
− θr) + nκρ(β) + nκτ (γ)

= n


θra
θrb

−
θ̂ra
θ̂
r

b



T Ω̂aa Ω̂ab

Ω̂ba Ω̂bb



θra
θrb

−
θ̂ra
θ̂
r

b




+n

f0∑
j=1

ρj|βj|+ n

r0∑
m=2

τm
{
γ̂τm

}
+ n

pf∑
j=f0+1

ρj|βj|+ n

pr∑
m=r0+1

τm
{
γ̂τm

}
Taking partial derivative of Q(θr) and evaluating at the global minimizers, by definition,

we have

∂Q(θ)

∂θrTa

∣∣∣∣
θ=

θ̂
r

ρτ,a

0


= 2nΩ̂aa(θ̂

r

ρτ,a − θ̂
r

a) + 2nΩ̂ab(0− θ̂
r

b) + nD(θ̂
r

ρτ,a) = 0, (12)

whereD(θ̂
r

ρτ,a) = (ρ1sgn(β̂ρτ,1), ρ2sgn(β̂ρτ,2), . . . , ρf0sgn(β̂ρτ,f0), 0, τ2
γ̂Tρτ,2

‖γ̂ρτ,2‖ , . . . , τr0
γ̂Tρτ,r0

‖γ̂ρτ,r0‖
, 0)T .

Reorganize (12), we have θ̂
r

ρτ,a = θ̂
r

a + (Ωaa)
−1 Ωabθ̂

r

b − 1/2 (Ωaa)
−1D(θ̂

r

ρτ,a), which leads to

n1/2(θ̂
r

ρτ,a − θr0a) = n1/2(θ̂
r

a − θr0a) + (Ωaa)
−1 Ωabθ̂

r

b − 1/2 (Ωaa)
−1D(θ̂

r

ρτ,a). (13)

According to the condition n1/2af,n
P−→ 0 and n1/2ar,n

P−→ 0, we have n1/2ρj 6 n1/2af,n
P−→ 0

and n1/2τm 6 n1/2ar,n
P−→ 0. Thus the third term in (13) is op(1). Then, we can rewrite (13)

as

n1/2(θ̂
r

ρτ,a − θr0a) =
{

1, (Ωaa)
−1 Ωab

}
· n1/2

θ̂ra − θr0a
θ̂
r

b − 0

+ op(1). (14)

Given that

n1/2

θ̂ra − θr0a
θ̂
r

b − 0

 D−→ N

0,

Σr
aa Σr

ab

Σr
ba Σr

bb


 ,
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and that Ωaa
P−→ Ωaa, Ωab

P−→ Ωab, (14) can be derived into

n1/2(θ̂
r

a − θr0a)
D−→ N

0,
{

1, (Ωaa)
−1 Ωab

}Σr
aa Σr

ab

Σr
ba Σr

bb

{1, [Ωr]−1
aa [Ωr]−1

ab

}T .

Providing the fact that

Ω =

Ωaa Ωab

Ωba Ωbb

 =

 A −AΣr
ab(Σ

r
bb)
−1

−(Σr
bb)
−1Σr

baA (Σr
bb)
−1 + (Σr

bb)
−1Σr

baAΣr
ab(Σ

r
bb)
−1

 ,

where A = (Σr
aa −Σr

ab(Σ
r
bb)
−1Σr

ba)
−1

. It then follows that Ω−1
aa Ωab = −Σr

ab(Σ
r
bb)
−1. Then the

proof of the oracle property is completed by verifying that

{
1, (Ωaa)

−1 Ωab

}Σr
aa Σr

ab

Σr
ba Σr

bb

{1, (Ωaa)
−1 Ωab

}T

= {Σr
aa + (Ωaa)

−1 ΩabΣ
r
ba,Σ

r
ab + (Ωaa)

−1 ΩabΣ
r
bb)

 1

(Ωaa)
−1 Ωab


= Σr

aa −Σr
ab(Σ

r
bb)
−1Σr

ba −Σr
abΣ

r
ab(Σ

r
bb)
−1 + Σr

abΣ
r
ab(Σ

r
bb)
−1

= Σr
aa −Σr

ab(Σ
r
bb)
−1Σr

ba

=
([

(Σr)−1
]
aa

)−1
=
([

(Σ)−1
]

(β0a,γ0a,φ)

)−1
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Table 1: Linear Mixed Model: Performance of the proposed regularized estimators

e

Fixed Effects Method β0 1 1 1 1 1 1 010 Time

(n,m) (60,10) CD β̂
s
ρ 0.853 0.880 0.955 0.990 0.992 0.992 0.000 0.001±0.000

ESE 0.492 0.331 0.149 0.046 0.044 0.046 0.013
CovP(%) 87.8 85.7 89.3 91.8 92.1 91.5 -
% Sel 100.0 95.3 100.0 100.0 100.0 100.0 3.4

rPQL β̂
rPQL

0.867 0.717 0.812 0.991 0.989 0.990 0.000 0.219±0.035
ESE 0.458 0.527 0.352 0.046 0.046 0.044 0.013
% Sel 100.0 82.1 96.2 100.0 100.0 100.0 5.2

(120,6) CD β̂
s
ρ 0.926 0.933 0.966 0.993 0.992 0.994 0.000 0.001±0.000

ESE 0.320 0.216 0.110 0.046 0.045 0.045 0.012
CovP(%) 90.7 90.3 90.6 92.5 93.2 92.2 -
% Sel 100.0 99.7 100.0 100.0 100.0 100.0 2.5

rPQL β̂
rPQL

0.983 0.971 0.978 0.997 1.000 0.999 0.000 0.931±0.107
ESE 0.302 0.277 0.181 0.045 0.043 0.045 0.016
% Sel 100.0 96.1 99.30 100.0 100.0 100.0 11.4

(500,6) CD β̂
s
ρ 0.970 0.975 0.989 0.999 0.996 0.997 0.000 0.006± 0.001

ESE 0.149 0.101 0.051 0.022 0.023 0.022 0.004
CovP(%) 91.9 91.6 93.3 94.1 94.0 93.8 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.8

rPQL β̂
rPQL

0.995 0.995 0.998 1.000 1.000 0.999 0.000 81.162±12.143
ESE 0.144 0.095 0.049 0.021 0.021 0.021 0.004
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 3.5

Random Effects γ0 3 1.6 0.2 1.2 0.57 0.8 04

(60,10) CD γ̂sρ 2.962 1.562 0.183 1.170 0.544 0.772 0.001
ESE 0.318 0.236 0.136 0.131 0.128 0.096 0.015
CovP(%) 88.8 90.7 91.6 90.9 92.1 89.1 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 3.0

rPQL γ̂rPQL 2.996 1.620 0.215 1.164 0.642 0.558 0.012
ESE 0.280 0.235 0.149 0.330 0.226 0.114 0.062
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 19.5

(120,6) CD γ̂sρ 3.011 1.592 0.192 1.200 0.559 0.791 0.001
ESE 0.243 0.174 0.103 0.111 0.107 0.086 0.030
CovP(%) 88.1 90.2 92.7 88.4 91.9 87.9 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.8

rPQL γ̂rPQL 3.000 1.580 0.199 1.007 0.682 0.799 0.015
ESE 0.195 0.161 0.108 0.502 0.289 0.152 0.062
% Selection 100.0 100.0 100.0 100.0 100.0 100.0 19.5

(500,6) CD γ̂sρ 3.007 1.608 0.203 1.203 0.567 0.794 0.001
ESE 0.119 0.083 0.049 0.052 0.051 0.041 0.008
CovP(%) 88.2 93.4 92.1 94.3 94.2 91.0 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.4

rPQL γ̂rPQL 3.019 1.592 0.200 1.098 0.635 0.828 0.031
ESE 0.097 0.077 0.049 0.410 0.237 0.108 0.084
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.121
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Table 2: Random Effects Logistic Model: Performance of the proposed regularized estimators

Fixed Effects Method β0 1 1 1 1 1 1 010 Time

(n,m) (200,10) CD-J β̂ρτ 0.880 0.858 0.873 0.893 0.896 0.902 0.000 1.08±1.38
ESE 0.155 0.139 0.119 0.091 0.090 0.089 0.024
CovP 85.1 76.0 72.4 68.6 65.6 67.5 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 5.6

CD-S β̂
s
ρ 0.937 0.918 0.928 0.944 0.939 0.931 0.000 0.00±0.00

ESE 0.158 0.139 0.117 0.089 0.089 0.088 0.020
CovP 92.3 89.2 88.9 87.6 86.7 88.0 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.4

rPQL β̂
rPQL

0.646 0.641 0.659 0.705 0.705 0.706 0.000 2.95±0.39
ESE 0.103 0.103 0.103 0.058 0.057 0.056 0.039
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 40.7

(500,10) CD-J β̂ρτ 0.939 0.929 0.931 0.946 0.942 0.943 0.000 1.06±1.38
ESE 0.100 0.091 0.076 0.058 0.057 0.057 0.012
CovP 87.4 80.8 75.1 72.2 70.0 72.0 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.9

CD-S β̂
s
ρ 0.971 0.964 0.963 0.971 0.965 0.965 0.000 0.00±0.00

ESE 0.102 0.091 0.076 0.058 0.055 0.057 0.009
CovP 94.0 91.3 90.3 90.7 90.1 89.9 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.2

rPQL β̂
rPQL

0.647 0.646 0.658 0.702 0.701 0.706 0.071 63.00±10.69
ESE 0.066 0.055 0.046 0.036 0.034 0.035 0.027
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 54.0

Random effects γ0 1.73 0.69 1.23 0.46 0.15 0.87 04

(n,m) (200,10) CD-J γ̂ρτ 1.472 0.583 0.999 0.377 0.111 0.639 0.000
ESE 0.173 0.151 0.148 0.124 0.127 0.150 0.000
CovP 52.8 90.5 51.0 90.4 95.1 46.6 0.0
% Sel 100.0 100.0 100.0 99.9 99.9 99.9 0.0

CD-S γ̂sτ 1.666 0.670 1.147 0.445 0.136 0.772 0.000
ESE 0.191 0.170 0.161 0.143 0.144 0.159 0.009
CovP 90.3 94.8 86.5 93.1 94.1 84.5 -
% Sel 100.0 100.0 100.0 99.9 99.9 99.9 0.2

rPQL γ̂rPQL 1.077 0.411 0.271 0.203 0.528 0.188 0.093
ESE 0.102 0.108 0.091 0.319 0.307 0.307 0.105
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 69.7

(500,10) CD-J γ̂ρτ 1.562 0.626 1.094 0.409 0.123 0.731 0.000
ESE 0.112 0.100 0.097 0.081 0.084 0.086 0.000
CovP 49.6 88.2 53.0 91.4 95.2 49.7 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

CD-S γ̂sτ 1.657 0.670 1.168 0.414 0.122 0.739 0.000
ESE 0.117 0.106 0.102 0.086 0.089 0.089 0.000
CovP 88.7 93.7 84.8 94.2 94.3 82.3 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

rPQL γ̂rPQL 1.074 0.414 0.274 0.191 0.544 0.186 0.102
ESE 0.060 0.068 0.036 0.313 0.306 0.159 0.092
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 72.3
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Table 3: Random Effects Poisson Regression Model: Performance of the proposed regularized estimators

Fixed Effects Method β0 −1 1 1 1 1 1 010 Time

(n,m) (200,10) CD-J β̂ρτ -1.028 0.954 0.974 1.000 1.000 1.000 0.000 0.00±0.01
ESE 0.133 0.118 0.085 0.006 0.005 0.006 0.002
CovP 87.5 83.4 84.3 87.5 89.5 88.6 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 8.2

CD-S β̂
s
ρ -0.996 0.997 0.999 1.000 1.000 1.000 0.000 0.00±0.03

ESE 0.132 0.110 0.082 0.007 0.006 0.006 0.002
CovP 90.9 90.2 88.8 88.8 92.3 93.7 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 6.4

rPQL β̂
rPQL

-0.977 0.998 0.993 1.000 0.999 0.999 0.000 2.84±0.49
ESE 0.156 0.112 0.078 0.011 0.009 0.008 0.002
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 12.9

(400,10) CD-J β̂ρτ -1.008 0.976 0.978 1.000 1.000 1.000 0.000 0.01±0.08
ESE 0.095 0.082 0.056 0.003 0.003 0.003 0.001
CovP 86.4 83.5 84.6 87.5 87.0 88.6 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 7.8

CD-S β̂
s
ρ -0.995 0.998 0.991 1.000 1.000 1.000 0.000 0.00±0.01

ESE 0.097 0.081 0.051 0.005 0.003 0.003 0.001
CovP 86.2 87.5 88.3 87.8 87.0 89.1 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 7.0

rPQL β̂
rPQL

-0.990 0.999 0.094 0.999 0.999 0.999 0.000 27.84±4.67
ESE 0.094 0.074 0.053 0.006 0.004 0.004 0.002
% Sel 100.0 99.8 100.0 100.0 100.0 100.0 16.5

MLE β̂ -0.997 0.997 0.996 1.000 1.000 1.000 -
CovP 85.2 85.2 88.7 90.4 90.0 89.9 -

Random effects γ0 1.73 0.69 1.23 0.46 0.15 0.87 04

(n,m) (200,10) CD-J γ̂ρτ 1.669 0.666 1.200 0.447 0.134 0.849 0.000
ESE 0.091 0.093 0.069 0.080 0.070 0.057 0.000
CovP 84.6 91.6 86.0 89.5 91.6 84.6 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.1

CD-S γ̂sτ 1.701 0.689 1.215 0.465 0.139 0.862 0.000
ESE 0.091 0.098 0.069 0.083 0.072 0.057 0.001
CovP 90.9 90.9 87.4 90.9 90.9 86.0 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.4

rPQL γ̂rPQL 1.591 0.643 0.429 1.195 0.156 0.841 0.000
ESE 0.092 0.106 0.076 0.101 0.095 0.067 0.015
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.4

(400,10) CD-J γ̂ρτ -1.008 0.976 0.978 1.000 1.000 1.000 0.000
ESE 0.095 0.082 0.056 0.003 0.003 0.003 0.001
CovP 82.2 87.2 86.2 87.8 88.3 88.6 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.4

CD-S γ̂sτ 1.716 0.688 1.229 0.466 0.149 0.868 0.000
ESE 0.075 0.073 0.050 0.057 0.051 0.038 0.001
CovP 84.0 88.6 88.0 87.8 87.5 88.0 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.4

rPQL γ̂rPQL 1.596 0.642 0.426 1.210 0.157 0.854 0.000
ESE 0.066 0.074 0.054 0.046 0.047 0.039 0.000
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

MLE γ̂ 1.716 0.689 1.229 0.466 0.149 0.868 -
CovP 87.3 88.6 88.0 87.8 87.5 88.0 -
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Table 4: Linear Mixed Model Analysis of Lung Cancer Data

Variable Selection using CD approach Maximum Likelihood Estimates after Refit

Fixed Effects Fixed Effects

Intercept 3.875 (3.554, 4.197) Intercept 3.845 (3.490, 4.199)
Weeks -0.117 (-0.129, -0.105) Weeks -0.114 (-0.126, -0.101)
Age 0
Gender 0.434 (0.016, 0.852) Gender 0.548 (0.074, 0.852)
MLDGy 0.912 (0.299, 1.526) MLDGy 0.800 (0.095, 1.506)
LungV20 -0.789 (-1.399, -0.180) LungV20 -0.624 (-1.328,-0.079)
Smoking 0
Noise 1 0
Noise 2 0

0

Random Effects Random Effects

Intercept (Γ̂11) 1.233 (1.231, 1.235) Intercept (Γ̂11) 1.259 (1.258, 1.260)

Weeks (Γ̂21) 0.002 (0.001, 0.002) Weeks (Γ̂21) 0.001 (0.001, 0.001)

Weeks (Γ̂22) 0.062 (0.061, 0.063) Weeks (Γ̂22) 0.062 (0.062, 0.063)

Age (Γ̂31, Γ̂32, Γ̂33) 0

MLDGy (Γ̂41, Γ̂42, Γ̂43, Γ̂44) 0
Residual (σ̂2) 0.009 Residual (σ̂2) 0.009
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Table 5: Random Effects Logistic Regression Model Analysis of Calcification Data

Variable Selection using CD approach Maximum Likelihood Estimates after Refit

Fixed Effects Fixed Effects

Intercept 4.298 (2.449, 6.148) Intercept 4.451 (2.610, 6.292)
Age 3.945 (1.579, 6.312) Age 4.058 (1.670, 6.445)
Years from Radiation Therapy 1.411 (1.048, 1.773) Years from Radation Therapy 1.468 (1.107, 1.828)
African Americans -5.878 (-10.503, -1.253) African Americans -6.188 (-10.767, -1.609)
Her2/neu positive -1.617 (-2.899, -0.335) Her2/neu positive -1.738 (-3.007, -0.470)
Adjuvant Therapy 0
Smoking 0
Bilateral 0
Noise 1 0
Noise 2 0

Random Effects Random Effects

Intercept (Γ̂11) 4.372 (2.228, 6.518) Intercept (Γ̂11) 4.358 (1.255 5.390)

Age (Γ̂21) 7.292 (0.175,14.410) Age (Γ̂21) 6.825 (-3.554, 9.501)

Age (Γ̂22) 6.318 (2.912, 9.725) Age (Γ̂22) 6.310 (2.074, 8.679)

Noise 1 (Γ̂31,Γ̂32, Γ̂33) 0


