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Abstract—VibSense pushes the limits of vibration-based sens-
ing to determine the location of a touch on extended surface
areas as well as identify the object touching the surface
leveraging a single sensor. Unlike capacitive sensing, it does not
require conductive materials and compared to audio sensing it
is more robust to acoustic noise. It supports a broad array of
applications through either passive or active sensing using only
a single sensor. In VibSense’s passive sensing, the received vibra-
tion signals are determined by the location of the touch impact.
This allows location discrimination of touches precise enough
to enable emerging applications such as virtual keyboards on
ubiquitous surfaces for mobile devices. Moreover, in the active
mode, the received vibration signals carry richer information of
the touching object’s characteristics (e.g., weight, size, location
and material). This further enables VibSense to match the
signals to the trained profiles and allows it to differentiate
personal objects in contact with any surface. VibSense is
evaluated extensively in the use cases of localizing touches (i.e.,
virtual keyboards), object localization and identification. Our
experimental results demonstrate that VibSense can achieve
high accuracy, over 95%, in all these use cases.

I. INTRODUCTION

As the form factor of our mobile and wearable devices

shrinks, there exists an increasing need to support interaction

beyond the confines of the device itself. Particularly on wear-

able devices, small touchscreens and interfaces can render

complex input cumbersome. One approach to address this

challenge is to support convenient interaction through sensing

approaches that capture input from other surfaces, without

directly touching the device. Such input usually comes in the

form of touches, but we consider a broad interpretation that

goes beyond a human touch and includes objects touching

these surfaces.

Existing Solutions. Recently, several research teams [1–

4] have developed gesture and activity recognition tech-

niques that rely solely on measurable changes of the radio-

frequency environment. These radio-based systems could be

easily affected by surrounding changes that affect signal

propagation, such as different furniture placement or people

walking by. Another direction for extending interactions is

using acoustic signals. This technique has been used to

track phone movements [5], to tag and remember a phone’s

indoor locations [6], and recognize keystrokes on a nearby

paper keyboard [7]. The accuracy of acoustic user interaction

declines sharply in noisy environments. Additionally, several

researches [8, 9] utilize visible light to locate a user’s finger

or reconstruct 3D human postures, respectively. However,

visible light based interaction requires line-of-sight and is

susceptible to interference from light sources. Capacitive

and resistive touch sensing can also be implemented on

external surface or devices [10, 11], but these approaches

require electrically conductive surfaces and cannot be applied

to all objects of daily life. More related are two recent

studies: Toffee [12] uses acoustic time-of-arrival correlation

to determine the direction of touches on a surface with

respect to a device relying on multiple piezoelectric sensors.

Touch & Activate[13] actively generates acoustic signals and

records the sound patterns to identify how a user touches

a small object with the vibration speaker and piezo-electric

microphone directly attached to the object. These early

studies are limited to devices with four well-separated sensors

or support limited sensing distances.

Generalized Vibration-based Sensing over Extended

Surfaces through a Single Sensor. In the quest for a touch

sensing technique that is robust to environmental noise and

can operate on surfaces constructed from a broad range of

materials, we explore a different approach by pushing the

limits of sensing physical vibrations. The impact of a touch

on a surface such as a table or door causes a shockwave

to be transmitted through the material that can be passively

detected with accelerometers or more sensitive piezo vi-

bration sensors. Moreover, when a vibrator (such as those

built inside the mobile devices for unobtrusive notifications)

actively excites a surface resulting in the alteration of the

shockwave propagation, the presence of the object in contact

with the surface can thus be sensed. VibSense supports

generalized vibration sensing based on a low cost single

sensor prototype that can receive vibration signals in both

passive and active sensing scenarios. It can be attached to

non-conductive surfaces such as a table or a door and sense

touching objects or users. By relying on vibrating signals,

the system is less susceptible to environmental interferences

from acoustic or radio-frequency noise.

Consequently, we push the limits of vibration-based sens-

ing on ubiquitous surfaces through VibSense along multiple

dimensions. First, it provides an extended sensing area to

demonstrate the power of both passive and active vibration

sensing. Second, the system can passively localize the vi-
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bration source on a surface and enable localizing touches in

emerging applications, such as paper keyboards. Third, it can

also actively differentiate and localize objects when placing

on a surface to support personal object (e.g., smartphones or

keys) localization and identification. The main contributions

of this work are summarized as follows:
• Pushing the limits of vibration-based sensing as a power-

ful touch/ object sensing alternative that does not require

conductive materials and is robust to acoustic noise.

• Extending passive vibration sensing to allow distinguish

touches on any surface using a single receiver that can

precisely work for an imaginary/paper keyboard.

• Exploring the capabilities of active vibration-based sens-

ing in applications such as differentiating objects placed

on a surface, as well as locating these objects.

• Prototyping a passive/active vibration transceiver by

using a low-cost piezo-electric sensor as well as touch

identification and localization algorithms that rely on

power spectral density profiles.

• Demonstrating experimentally that VibSense can

achieve high accuracy of localizing touches, and

personal object localization and identification in both

passive as well as active vibration sensing scenarios

under real environments.

II. VIBRATION EFFECT

A. Propagation Characteristics

Vibration Signal Attenuation. When a vibration signal

travels through a medium, the energy of the signal spreads out

in an omnidirectional way and diminishes with its traveled

distance due to the wave attenuation caused by the medium.

Figure 1(a) illustrates the diminishing energy of the vibration

signal during its propagation. The amplitude of the signal

after attenuation can be modeled as the following [14]:

A(d) = A0e
−α×d, (1)

where A0 is the initial amplitude, d is the propagation

distance from the vibration source, and α is the attenuation

coefficient. The attenuation coefficient quantifies the intensity

of the signal attenuation resulted from a particular medium.

The value of attenuation coefficient varies in accordance

with the type of materials and the frequency of vibration

signals. For example, the attenuation coefficients of some

typical materials, such as wood, would be around 0.11 and

0.07 under the different frequencies of 250 Hz and 4 kHz,

respectively [15].

Equation 1 shows that the amplitude of the vibration signal

is governed by the distance of propagation and attenuation

coefficient. Under a fixed propagation distance, vibration

signals with different frequencies will experience different

attenuation. Whereas signals with the same frequency will

also experience different attenuation when traversing through

different materials and paths. The propagation media of

vibration could consist of different materials. For instance,

when putting a vibrator on a desk, the vibration signal will

traverse through the desk and also the cup placed on it.

Such an attenuation diversity reflects the details of the type
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Fig. 1. Illustration of the propagation characteristics of vibration signals.

of material and the path the vibration signal goes through,

resulting in rich sensing information.

Vibration Multi-path Interference. Interference happens

when two vibration signals superpose to form one resultant

signal. The amplitude of the resultant signal may be either

greater or smaller than those of the two participating ones

depending on the phase difference between the two original

signals. When a vibration signal hits the boundary of two

propagation media (e.g., the contacting area when an object

is placed on a desk) as illustrated in Figure 1(b), reflection

and diffraction happen. Part of the wave is reflected back

into the same medium and generates a new wave of the

same frequency transmitting along a different propagation

path, and part of the wave traverses into the different

medium becoming a new wave with a different frequency.

These new waves coming from multiple paths will meet

and create various interference effects among each other.

Such diverse multi-path interference effects could be captured

by a vibration receiver and used to discriminate different

propagation scenarios such as placing a cup on desk. The

coexistence of both attenuation and multi-path interference

when vibration signals traverse through different materials

allows fine-grained discrimination to support various sensing-

based applications.

B. Potential Applications

Vibration effects caused by diverse signal attenuation and

interference, either intentional or non-intentional, have high

potential to discriminate the propagation conditions in a fine-

grained manner. Such effects can be utilized to support a

broad array of application domains.

1) Localizing Touches: Instead of interacting with mobile

devices using the touch screens with restricted sizes, there

have been active research on developing ubiquitous human-

computer interaction techniques to mitigate this constraint.

Existing approaches either use acoustic signals [7, 12] or

laser projections to construct virtual keyboards. Compared to

acoustic-based approaches, vibration-based sensing is more

robust to various environmental sounds. And the approach

only requires a single low-cost vibration receiver, making

it scalable comparing to the laser projection based solution.

When users touch a surface, each touch generates vibra-

tion signals with different frequencies. The vibration signals

spread out in the medium and experience various attenuation

and interference resulted from different surface materials and

multiple paths dominated by the location of the touch on

the surface. The diverse vibration signals could be exploited

to discriminate the fine-grained location of each touch on

the surface via fingerprint-based approaches. In this work,
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(a) Recognizing keystrokes on a
paper keyboard.
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(b) Localizing objects.

Fig. 2. Potential applications of VibSense: (a) is passive sensing, (b) is
active sensing.

we explore the limit of localizing touches through passive

vibration sensing in human-computer interaction (HCI), for

example, building a ubiquitous keyboard for mobile devices

as shown in Figure 2(a).

2) Personal Object Localization/Identification: Fine-

grained localization/ identification of objects plays an in-

creasingly important role in smart home, smart healthcare,

and smart cities. The existing approaches rely on pressure

sensors [16] or tactile sensors [17], but their sensing capa-

bility is restricted in a small area, which limits the usage

in practice. To address these issues, we explore the limit

of vibration sensing on extended surfaces through VibSense,

which enables localizing/ identifying personal objects (i.e.,

objects with fixed shapes and weights that are usually carried

by a person, such as keys and phones) on any solid surface

(Figure 2(b)). By exploiting the vibration signal propagation

principles in physics, Vibsense pushes the limits of vibration

sensing to provide fine-grained localization of a personal

object placed on any solid surface through capturing the

attenuation and interference effects to the vibration signals,

resulting from the characteristics of the object (e.g., weight,

shape, location and material).

III. VIBSENSE OVERVIEW

The main objective of this work is to develop a general

system that can realize the vibration-based sensing modality

and explore its limit for various domains requiring fine-

grained information. Toward this end, we design a low-

cost vibration-based sensing system, VibSense, which aims

to work on ubiquitous surfaces for localizing touches, object

identification and differentiation.

The vibration-based sensing could be separated into Pas-

sive Sensing and Active Sensing depending on whether the

vibration source is known to the system. VibSense can

support both types of sensing and facilitate different touch-

based applications, including recognizing keystrokes on a

surface, personal object localization and identification. Vib-

Sense takes as input time-series amplitude measurements of

vibration signals from a vibration receiver. After receiving the

vibration signals, the system performs Vibration Detection &

Segmentation (Section IV-B) to detect and obtain the useful

segment of the received vibration signals. Next, the system

utilizes the Vibration Feature Extraction (Section IV-D) to

extract the unique vibration feature (e.g., power spectrum

density) from the segmented signals in the frequency domain.
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Fig. 3. Overview of VibSense.

Next, the extracted vibration features are used by two phas-

es in VibSense: profiling and identification. In the profiling

phase, the extracted features are considered to be the unique

signature corresponding to the characteristics of the object’s

touches on the medium, for example, keystrokes’ locations,

or the weight and size of a smartphone on a nightstand.

These features are labeled with corresponding ground truth

(i.e., location, object type, etc.), and saved to build an object

profile. In the identification phase, the collected vibration

samples are used to extract vibration features, which serve

as inputs to a vibration classifier via Vibration Classification

based on SVM. The classifier compares the extracted features

with the signatures in the preconstructed profile to identify

the target object and determine its location. The details of

the classification are elaborated in Section IV-E.

IV. VIBSENSE DESIGN

In this section, we first describe the touch vibration signals

(i.e., finger tapping) in passive sensing, and present how to

detect and segment the vibrations, then describe the pre-

defined vibration signals in active sensing and the unique

vibration signatures being extracted. We finally show how

to discriminate different touches or localize/ identify objects

through classification.

A. Unknown Vibration Source in Passive Sensing

The vibration signals collected in the passive sensing

are generated by unknown vibration sources depending on

specific application needs. The capability of passive sensing

enables us to localize vibration sources in a fine-grained man-

ner on ubiquitous surfaces. In particular, VibSense explores

the limit of localizing close-by touches when tapping on any

surface. When tapping on a medium (e.g., desk), we find that

the received vibration from a finger click consists of a broad

range of frequencies. The length of a finger click is usually

around 0.1s, and the highest frequency of the vibration

could reach 15kHz. Figure 4(a) and Figure 4(b) display

an example of signal patterns from a finger click on the

desk in the time domain and frequency domain respectively.

The observed frequency band and tapping duration could

guide the system to segment each keystroke/tapping and

extract vibration features accurately when constructing the

virtual keyboard/buttons. VibSense further utilizes the power

distribution in the observed frequency band of the received
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Fig. 4. Passive sensing: received vibration signals from finger tapping a
desk surface.

vibration signals to discriminate close-by touches and support

various applications (Section IV-D).

B. Vibration Signal Segmentation

After receiving vibration signals, VibSense utilizes an

energy-based approach to detect and determine the segment

of useful vibration signals. In particular, it calculates the

short time energy levels of the received vibration signals by

accumulating the square of their amplitudes in a sliding time

window:

A(t) =

t+S∑

n=t

a2(n), (2)

where S is the length of the sliding time window and a(n)
is the amplitude of the received vibration signals.

We then use a threshold-based approach to detect the

starting point ps of the segment of useful vibration signals.

The ending point pe of the segment can be derived by

pe = ps + Ta, where Ta is the estimated time length of

original vibration signals determined by specific applications.

In this work, Ta is set to 0.1s for passive sensing applications

which covers the duration of most passive vibration signals

(e.g.,finger tapping). The segmented vibration signal is then

normalized with respect to the maximum amplitude of each

to tackle different intensities of taps.

C. Vibration Signals in Active Sensing

As discussed in Section II-A, the attenuation and inter-

ference of vibration is strongly affected by the frequency

of vibration signals. In active sensing, VibSense utilizes a

vibrator to generate vibration. The vibration signals need to

satisfy two aspects: i) contain a broad range of frequencies to

increase the diversity of vibration features in the frequency

domain; and ii) have sufficient vibration power (i.e., mag-

nitude) to be transferred to the receiver end to support an

expanded physical transmission medium (e.g. a large desk).

Specifically, the frequencies of the vibration signals increase

logarithmically with time, which can be represented as:

f(t) = f0 × (
f1

f0
)

t

T , (3)

where f0 and f1 are the initial and ending frequencies used

from the frequency band, and T is the time duration of the

generated vibration signal. In this work, we use T = 1s

to maintain the balance between good performance and low

annoyance caused by the vibration. The initial and final

frequencies are determined by the hardware used in the

prototype of VibSense. We empirically choose a relatively

low frequency range (i.e., f0 = 300Hz and f1 = 12kHz)
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Fig. 5. Finger click vibrations of three nearby keys ’E’ and ’D’ and ’X’ in
a hand-written paper keyboard: (a) PSD pattern of keystroke vibrations; and
(b) Pearson correlation between PSD of the three keys, each key is clicked
20 times.

in VibSense to support a larger sensing area, since the

magnitude of the vibration signals generated by a vibrator

would be greatly decreased under the higher frequency range.

We discuss the details of the vibrator and the generated

vibration in Section V-C. Generally, VibSense could transmit

the vibration signals repeatedly with a short time interval to

keep its continuous sensing capability, and we use the similar

method as discussed in Section IV-B to detect and segment

each vibration signal.

D. Vibration Feature Extraction

Equation 1 shows that the effect of the channel is reflected

through the amplitude of the received vibration signals, which

is dominated by multi-dimensional factors, including the

propagation distance, vibration frequencies, and material of

the object touching the surface. Each transmission medium

can be considered as a frequency selective channel for

vibration signals resulting in different power and amplitude

for the received vibration signal in the frequency domain. We

thus choose vibration features based on the power of received

vibration signals in the frequency domain in VibSense.

Specifically, VibSense utilizes the power spectral density

(PSD) of the received vibration signals in both passive and

active sensing as the basis for feature extraction to perform

localizing touches and differentiating/ localizing objects. The

PSD reflects the power distribution of the sensed vibration

signals at each specific frequency, which can well capture

the attenuation and interference effects influenced by vibra-

tion source, propagation medium, and objects contacting the

medium surface. The PSD of a received vibration signal ri
can be estimated by:

PSDi = 10 log10
(abs(FFT (ri)))

2

fs × n
, (4)

where n is the number of samples of the received signal

ri, fs is the sampling rate, and FFT (·) is the fast Fourier

transform operation.

To demonstrate the capability of using PSD feature to

support both passive and active sensing in VibSense, we

show the results from two preliminary experiments: virtual

keyboard construction on a desk surface (passive sensing)

and object location differentiation on a table (active sensing).

Figure 5(a) shows the distinguishable PSD features of the

received vibration signals collected in a passive sensing

scenario, i.e., when a user taps multiple times without
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Fig. 6. PSD of the received vibration signals when an object is placed at
two locations of a wooden table.

controlling intensity at each of three close-by positions

on a desk, corresponding to keys ’E’, ’D’, and ’X’ on a

handwritten paper keyboard. Figure 5(b) further indicates

that the PSD features associated with the finger clicks at

the same position have higher correlation than those at

different positions. In addition, Figure 6 compares the PSD

features of two vibration signals that are received in an

active sensing scenario, i.e., when a mug is placed at two

different positions with about 10cm distance respectively on

a table. The results show promisingly distinguishable patterns

in the PSDs corresponding to different locations in various

frequency bands.

E. Vibration Classification

During the profiling phase, VibSense constructs a set of

object profiles with the vibration features (i.e., PSD) by

labeling vibration signals collected from various touch-based

applications. For example, vibration features are extracted

from finger clicks at different locations in localizing touches,

a smartphone or a cup at a same location in personal object

identification, etc. In the later identification phase, when

there is a vibration signal detected and segmented, VibSense

needs to extract the vibration feature from the segmented

signal and classify the feature by matching it to the existing

object profiles. Specifically, a vibration classifier is built

inside of VibSense based on the Support Vector Machine

(SVM) using LIBSVM [18] and the linear kernel function.

The other kernel functions such as Gaussian radial basis

kernel, quadratic kernel have been tested and could achieve

comparable performance.

For classification, we estimate prediction probabilities for

each object profile by combining all pairwise comparison-

s [19]. An incoming target object with the highest prediction

probability for a profile would be identified as the same type.

In order to prevent VibSense from mistakenly identifying

an unknown target object as a known type, we devise a

threshold based approach on top of object classification. After

identifying the highest prediction probability for a profile, the

classifier compares the probability to a threshold, and only

identifies the target object as the type of the profile when the

probability exceeds the threshold.

V. HARDWARE PLATFORM DESIGN

VibSense needs to meet two basic requirements: 1) re-

ceiving the vibration of a wide frequency range on the

vibration receiver; and 2) precisely regulating the frequency
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Fig. 7. The hardware design of VibSense.

components of the vibrations generated by a vibrator for

active sensing.

A. Vibration Receiver

We design and implement two versions of low-cost vibra-

tion receivers as shown in Figure 7: the Static Receiver is a

stand-alone embedded system based on the Arduino platfor-

m, which amplifies, digitizes, and stores received vibration

signals; while the Mobile Receiver is a simplified version

that only consists of a vibration sensor and a low-power

consumption amplifier, which can be easily connected to

mobile devices to facilitate mobile vibration-based sensing

applications.

In both versions, we devise a low-cost passive vibration

sensor, piezoelectric sensor, to collect vibration signals. Com-

pared to other vibration sensors (e.g., Geophone sensors and

capacitive MEMS accelerometers), the piezoelectric sensor

has the largest frequency response range and the lowest cost.

Moreover, the sensor is so small (i.e., 0.48 square inches

in area and 0.3 inches thick) that can be easily attached to

any solid surface and integrated with a smartphone, for both

passive as well as active sensing.

Mobile Receiver. The mobile receiver is designed for

mobile device based applications, for instance, providing a

virtual keyboard on a wooden desk rather than just typing

on the mobile device’s confined touch screen. A low-power

consumption operational amplifier TLC272 is used to provide

amplified analog voltage signals from the vibration sensor to

a processing device, e.g., a smartphone. The receiver can be

easily plugged into the standard audio jack of an off-the-

shelf mobile device to sense vibration signals by exploiting

the audio components in the mobile device. The sampling

rate of this receiver is determined by the Analog to Digital

Converter (ADC) used for the audio components in mobile

devices, which is typically over 48kHz.

Static Receiver. The static receiver utilizes a rail-to-rail

operational amplifier OPA350 to increase the peak-to-peak

voltage of the analog signals obtained from the piezoelectric

sensor. The sampling rate of the ADC in the Arduino

platform is set to 40kHz so that the receiver can fully recover

the vibration signals with the frequency up to 20kHz based

on the Nyquist rule.

B. Vibration Transmitter

For active sensing, VibSense utilizes a Linear Resonant

Actuator (LRA) [20] based vibrator to regulate both frequen-
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(a) Frequency spectrum. (b) Zoom-in spectrum.

Fig. 8. Frequency spectrum analysis of the received vibration signals.

cy and amplitude of vibration. The vibrator has a small size

of 0.48 square inches. The vibrator has a wide frequency

response and low power consumption of 1 watt RMS. The

frequency and amplitude of the generated vibration is deter-

mined by the frequency and peak-to-peak voltage of an input

analog signal. An efficient way to such controllable analog

signal is using audio signals that can be easily generated

by any off-the-shelf mobile device through its audio jack.

In VibSense prototype we choose a class D audio amplifer,

MAX98306, which can provide about 18dB gain in a wide

frequency band with low power consumption. The hardware

of the vibration transmitter is shown in Figure 7 (transmitter).

C. Frequency Response in Prototype

Because the vibration frequency is critical to the diversity

of vibration features, we conduct an experiment by directly

attaching the transmitter with the static receiver to study

the frequency response of the prototype. The transmitter

generates a 30s analog signal with its frequency linearly

sweeping from 0Hz to 20kHz, which includes most natural

vibration frequencies. The frequency spectrum of the received

vibration signal is shown in Figure 8. We observe that our

prototype has a wide frequency response range covering from

300Hz to 20kHz, indicating the prototype can be used to

produce and receive vibration signals with a wide range

of frequencies. Note that the highest frequency boundary

is determined by the ADC’s sampling rate. In addition,

Figure 8(a) shows that the vibration strength degrades with

the increment of frequency (i.e., higher frequencies present

lower spectrum power). This suggests us to use a relatively

lower frequency range when generating vibration signals in

active sensing to cover an extended sensing area and avoid

the vibration signal is too weak to be captured by the receiver.

Toward this end, we empirically use the frequency band from

300Hz to 12kHz in active sensing.

VI. PERFORMANCE EVALUATION

A. Experimental Methodology

We evaluate the performance of our VibSense in typical

home/office environments with the key applications over a

six-month time period.

Keystroke Recognition (Passive Sensing). As shown in

Figure 9, we evaluate the performance of localizing touches

by identifying finger clicks/keystrokes from three participants

on a virtual keyboard (illustrated by a piece of paper on

the surface of a wooden desk). In the experiments, only

the vibration mobile receiver is connected with a mobile

Receiver

Hand written keyboard

Fig. 9. Experimental setup of localizing touches: keystroke recognition on
a paper keyboard.

phone (i.e., Samsung Galaxy Note 3) to perform the passive

sensing. The receiver is fixed on the table at a position close

to the top-left corner of the virtual keyboard. There are 26
alphabetic keys on three rows in the virtual keyboard. The

distance between two rows is about 2cm, and the center-

to-center distance between two adjacent keys in the same

row is also about 2cm. Participants are asked to randomly

type on the virtual keyboard with a natural speed (i.e.,

∼130 keystrokes/min) in a typical office environment. Each

participant types and collects vibration signals 20 times for

each key. In total, there are over 1, 560 keystrokes vibration

signals are collected from the three participants.

Personal Object Localization/ Identification (Active

Sensing). We conduct experiments by placing personal ob-

jects at nine locations (i.e., 3 × 3 grid) on a middle-size

wooden table with the dimension of 120cm ×50cm ×3cm.

In the experiments, six personal objects (including a small

empty paper cup of 8 fl oz capacity, an U.S quarter coin, a

small apple, an iPhone 5s, an empty glass cup, and a can

of coke) are chosen to represent different material, weight,

and size. The distance between any two adjacent predefined

locations is 5cm. The vibration transmitter and static receiver

are attached to the surface of the table. We also adopt two

setups with different distances between the transmitter and

receiver (i.e., L = 40cm and 120cm) to mimic the common

sizes of a night table and an office desk, respectively. For each

setup, we place the six chosen objects on the nine predefined

locations to collect vibration signals for 20 times per location

per item. We additionally collect 20 vibration signals when

there is no object placed on these nine locations and a mouse

(i.e., labeled as other objects) at each of the nine predefined

locations. In total, there are 1, 620 vibration signals collected

for object localization and identification. The sampling rate

is also set to 40kHz on the receiver.

B. Performance of Keystroke Recognition

Recognizing Keystrokes from Different Users. We con-

duct experiments with three participants, and the system

trains the classification models for them separately. Fig-

ure 10(a) shows the overall accuracy for the keystroke

recognition of three participants under different training set

size. We observe that the accuracy of all three users increases

with the growing size of the training set. And the average

accuracy over three users is around 87% and 97% with 3
and 5 training keystrokes per key, respectively. This indicates

that VibSense could provide sufficient accuracy to recognize

finger clicks at different close-by locations even with only

serval training keystrokes per key. Increasing the size of

6



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Training Keystrokes per Key

K
e

y
s
tr

o
k
e

 R
e

c
o

g
n

it
io

n
 A

c
c
u

ra
c
y
 (

%
)

 

 

User 1

User 2

User 3

(a)

q w e r t y u i o p a s d f g h j k l z x c v b n m

q
w
e
r
t
y
u
i

o
p
a
s
d
f

g
h
j

k
l

z
x
c
v
b
n
m

 

Identified Keystroke

 

A
c
tu

a
l 
K

e
y
 T

y
p
e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

q w e r t y u i o p a s d
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

/R
e

c
a

ll

f g h j k l z x c v b n m
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

/R
e

c
a

ll

 

 

Precision

Recall

(c)

Fig. 10. Keystroke recognition on a paper keyboard: (a) keystroke recognition accuracy for different users with
different sizes of training set, (b) confusion matrix and (c) precision and recall (training set size is 5 per key).

training set beyond 5 only provides a marginal performance

improvement, thus only 3 training keystrokes per key are

needed to obtain reasonable performance. Requiring only

limited training efforts greatly increases VibSense’s usability.

Confusion Matrix of Keystroke Recognition. Fig-

ure 10(b) plots the confusion matrix of the keystroke recogni-

tion with 5 training signals for each key on the hand written

keyboard. We find that there are only few keystrokes that

are mistakenly identified as incorrect keys. These mistakenly

recognized keystrokes usually correspond to the neighboring

keys which have the similar distance to the receiver and

vibration propagation path. For example, a few keystrokes

of the key u are mistakenly recognized as the key y since

they are close to each other with similar distance and path

to the receiver attached on the table as shown in Figure 9.

These few mistakenly classified keystrokes can be corrected

by using a linguistic model.

Precision and Recall for each Key. The precision and

recall of identifying keystrokes of each key is shown in

Figure 10(c). It combines the results for all three users with 5

training keystrokes per key. Overall, the average precision is

about 97% and the average recall is about 96%. These results

are a strong evidence that VibSense could accurately localize

unknown vibration sources (i.e., finger clicks) in very close

proximity.

C. Performance of Object Identification

Object Identification Accuracy. We next evaluate the

performance of object identification by placing different

personal objects with fixed sizes and shapes (i.e., a glass

cup, an iPhone 5, a coin and a paper cup) at the same

location on a table across different days. Figure 11 shows the

confusion matrix of object identification. VibSense achieves

100% accuracy, and objects which do not belong to any

of the selected personal objects are identified as unknown.

This indicates that VibSense can well capture the vibration

changes caused by the characteristics of different objects and

distinguish them from each other.

Impact of Object’s Weight. We further study the impact

of weight to vibration sensing by fixing the material and

contacting area of an object while varying its weight. We

collect 20 vibration signals when an empty glass is placed

in between the vibrator and receiver as the baseline, and

collect 20 testing vibration signals each when the same glass

contains different amount of water (i.e., 34g, 86g, 159g, 236g,

345g and 414g). We calculate the Euclidean distance of the

extracted PSD features between each test and the baseline

signal. Figure 12(a) shows the mean and standard deviation

of the calculated Euclidean distances, which shows that PSD

features change with different object weights, larger weight

differences would have stronger effects to the vibration

signals.

Impact of Object’s Material. Next, we experiment with

objects of different materials but the same weight and con-

tacting area. We put water in two cups made of different

materials (i.e., glass for cup1 and ceramic for cup2) to make

them have the same weight, and we add a same-size metal

piece at the bottom of each cup to make sure their contacting

areas are the same. We use 20 vibration signals collected from

one of the cups (i.e., cup1) as the baseline, and we collect

vibration signals of both cups for testing, and calculate the

Euclidean distance of the extracted PSD features between the

testing and baseline signals. Figure 12(b) shows the box-plot

of the Euclidean distance. We observe that the Euclidean

distances of the container made of different materials are

not overlapped, indicating that the make of an object is also

a strong impact factor to vibration sensing. However, the

impact of the material is much smaller comparing to that

of the object weight.

D. Performance of Object Localization

Localization Accuracy. Figure 13(a) shows the localiza-

tion accuracy of six different objects under different number

of training vibration signals when placed at 9 positions.

We observe that heavier objects obtain better localization

accuracy, and the localization accuracy increases with the

growing number of training signals. In particular, for heavier

objects such as glass cup, phone, and coke can, VibSense

localizes them with accuracy higher than 86% when only

one training data is used, and reaches 100% accuracy when

the number of training signals is greater than four. Whereas

for lighter ones such as the coin and paper cup, the average

accuracy of localization reaches 60% and above when more

than six training vibrations are used. This is encouraging as it

shows that VibSense is capable of localizing various personal

objects. Even for smaller and lighter objects like coins and

paper cups, VibSense can achieve acceptable accuracy with

a few training vibration signals.

Impact of Distance between the Vibrator and Receiver.

Figure 13(b) compares the object localization accuracy using
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Fig. 12. Personal object identification: (a) impact of object weight and (b)
impact of object shape/materials on the extracted vibration features.

a glass cup when L is set to 40cm and 120cm, respectively.

The accuracy performance under L = 40cm is better than

that under L = 120cm when the number of training signals is

small, whereas the localization accuracy reaches 100% under

both setups when the training signals exceed four.

Impact of Vibration Signal Strength. Finally, we study

the impact of different vibration signal strengths on the

vibration feature consistency. We regulate the vibration signal

strength by changing the amplitude of the input AC signals

for vibrator from 20% to 100%. For each vibration strength

level, we collect 20 pre-defined vibration signals when a glass

cup is placed at three different locations of the table. At each

vibration strength level, we calculate the Euclidean distance

between the features extracted from any two collected vibra-

tion signals at a specific location. Figure 14 shows the mean

and standard deviation of the vibration features. The results

show that the stronger the strength of the vibration signals,

the more stable and consistent the vibration features become

(i.e., the smaller the Euclidean distances are) when an object

is placed at the same location.

Temporary Presence of Other Objects. The current

system is designed for identifying/localizing a single object

on a surface. The temporary presence of additional objects

could alter vibration features from the trained ones but in a

preliminary experiment we find the effect to be pronounced

only when the other objects are very close. In this experiment,

we repeat the object location differentiation experiment with

the glass cup, considering six possible different locations

(i.e., 2×3 grid and 5cm between adjacent locations). This

time we put a Samsung Note 4 mobile phone on the table

during testing. As shown in Figure 15, when the phone was

10cm away, accuracy decreased noticeably from close to

100% to about 80%. When the phone was moved about 40

cm away, accuracy again approached 100%, however. This

suggests that only other objects in close proximity would

have a noticeable effect and this effect might be reduced
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Fig. 13. Fine-grained object localization accuracy.
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with further filtering or directional sensing techniques.

VII. RELATED WORK

In general, we separate the research on pervasive sensing

into touchless and touch-based sensing depending on whether

the sensing modalities require human or object touching or

not. The touchless approaches rely on sensing modalities

that do not require “touching”, such as radio frequency

(RF), acoustic sound, and visible light, whereas touch-based

approaches are developed based on “touching” including

capacity, pressure and vibration.

Active studies [1–4, 21] have been driven by the emerging

trend of mobile devices with RF module (e.g., WiFi) to detect

and track hand gestures (e.g., WiSee [1]), movements (e.g.,

WiDraw [3]), human daily activities [2, 4] and even recog-

nize keystrokes from a nearby keyboard [21]. Additionally,

approaches based on acoustic signal sensing have drawn

considerable attentions recently [5–7, 22]. EchoTag [6]

enables phones to tag and remember indoor locations by

sending/sensing a sound signal with a phone’s speaker-

s/microphones. Yun et al. [5] track hand movements to realize

mouse functions in the air by sending inaudible sound pulses.

Moreover, dual-microphones of a phone are used to recognize

keystrokes on a nearby paper keyboard [7, 22]. However, the

stability of acoustic-based user interaction is vulnerable to

various ambient noises. Furthermore, visible light is proposed

to be utilized to localize fingers and reconstruct 3D human

skeleton postures in real time [8, 9]. The visible light based

approaches can only be implemented in a particular optical

environment that is easy to be interfered. The aforementioned

touchless sensing techniques are mostly sensitive to inter-

ference resulted from environmental changes and ambient

noises.

Different from touchless sensing, touch-based sensing

(e.g., capacitive touch sensing, resistance and pressure sens-
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ing) requires users touching a medium, thus being more

applicable for applications requiring security and robustness.

Recently, Touche [10] utilizes the difference of body elec-

trical conductivity to recognize the complex configuration

of the human hands and body by using special circuits.

Karata and Gruteser [11] create multi-key conductive-ink

touch interfaces which can be printed on a paper. Addition-

ally, UnMousePad [16] leverages pressure-sensing sensors to

distinguish multiple fingertip touches while simultaneously

tracking pens. However, electrical conductivity based inter-

action systems can only be implemented on electrical con-

ductive surfaces, which is not always applicable in daily lives.

And, pressure sensor based techniques have the limitation of

sensing the slow changes in pressure distributions of objects

placed on its sensing panel.

Comparing to existing approaches, vibration based sensing

is resistant to radio interferences and various environmen-

tal sounds. In previous studies, vibration has been used

to communicate information [20, 23]. In terms of object

sensing, Toffee [12] leverages multiple piezoelectric sensors

to determine the direction of touches on a surface with

respect to a device based on the acoustic time-of-arrival

correlation. Touch & Activate [13] actively generates acoustic

signals and records the sound patterns to identify how the

user touches an object by using a pair of vibration speaker

and piezo-electric microphone. Toffee relies on four well-

separated sensors for determining directions, whereas Touch

& Activate focuses on active sensing with both vibration

speaker and sensor mounted on the same small object. In our

work, the proposed VibSense enables both passive and active

sensing leveraging a single receiver (and a single vibrator

for active sensing). It can be easily deployed and integrated

with existing mobile devices. VibSense provides an extended

sensing area to demonstrate the power of vibration sensing

in a broad array of applications.

VIII. CONCLUSION

We propose VibSense to explore the limit of vibration-

based sensing when supporting a broad array of touch-based

applications. Through sensing physical vibrations from either

unknown sources (passive sensing) or a vibrator (active sens-

ing), VibSense works with extended surface areas through a

single sensor. We push the limits of vibration-based sensing

by applying VibSense to key applications including keystroke

recognition on ubiquitous surfaces for mobile devices, per-

sonal object localization and identification. Such an approach

is robust to environmental interferences from acoustic or

radio-frequency noise. The extensive experiments demon-

strate VibSense successfully pushes further the limits of

vibration sensing to extended surface areas with only a single

receiver, making vibration-based sensing a suitable candidate

to achieve high accuracy in localizing touches and fine-

grained object identification/localization through both passive

and active sensing. We note that there are still many other

factors such as different surface materials/sizes/thicknesses

affecting the system’s trained models, which are left for our

future work to investigate.

IX. ACKNOWLEDGEMENT

This work was partially supported by the National Sci-

ence Foundation Grants CNS-1409767, CNS-1514436, CNS-

1409811 and CNS-1618019.

REFERENCES

[1] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in ACM MobiCom, 2013, pp. 27–
38.

[2] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-eyes:
device-free location-oriented activity identification using fine-grained
wifi signatures,” in ACM MobiCom, 2014, pp. 617–628.

[3] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “Widraw: Enabling
hands-free drawing in the air on commodity wifi devices,” in ACM

MobiCom, 2015, pp. 77–89.
[4] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding

and modeling of wifi signal based human activity recognition,” in ACM

MobiCom, 2015, pp. 65–76.
[5] S. Yun, Y.-C. Chen, and L. Qiu, “Turning a mobile device into a mouse

in the air,” in ACM MobiSys, 2015, pp. 15–29.
[6] Y.-C. Tung and K. G. Shin, “Echotag: Accurate infrastructure-free

indoor location tagging with smartphones,” in Proceedings of the

21st Annual International Conference on Mobile Computing and

Networking (ACM MobiCom), 2015, pp. 525–536.
[7] J. Wang, K. Zhao, X. Zhang, and C. Peng, “Ubiquitous keyboard

for small mobile devices: harnessing multipath fading for fine-grained
keystroke localization,” in ACM MobiSys, 2014, pp. 14–27.

[8] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile
interaction through near-field visible light sensing,” in ACM MobiCom,
2015, pp. 345–357.

[9] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing
using visible light communication,” in ACM MobiCom, 2015, pp. 331–
344.

[10] M. Sato, I. Poupyrev, and C. Harrison, “Touché: enhancing touch
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