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ABSTRACT

With increasing private and sensitive data stored in mobile devices,

secure and effective mobile-based user authentication schemes are

desired. As the most natural way to contact with mobile devices,

finger touches have shown potentials for user authentication. Most

existing approaches utilize finger touches as behavioral biometrics

for identifying individuals, which are vulnerable to spoofer attacks.

To resist attacks for on-touch user authentication on mobile de-

vices, this paper exploits physical characters of touching fingers by

investigating active vibration signal transmission through fingers,

and we find that physical characters of touching fingers present

unique patterns on active vibration signals for different individu-

als. Based on the observation, we propose a behavior-irrelevant

on-touch user authentication system, TouchPass, which leverages

active vibration signals on smartphones to extract only physical

characters of touching fingers for user identification. TouchPass

first extracts features that mix physical characters of touching fin-

gers and behavior biometrics of touching behaviors from vibration

signals generated and received by smartphones. Then, we design a

Siamese network-based architecture with a specific training sample

selection strategy to reconstruct the extracted signal features to

behavior-irrelevant features and further build a behavior-irrelevant

on-touch user authentication scheme leveraging knowledge dis-

tillation. Our extensive experiments validate that TouchPass can

accurately authenticate users and defend various attacks.
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Figure 1: Illustration of various finger touching modes on

smartphones.
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1 INTRODUCTION

With the widespread use of mobile devices, an increasing number

of people use them to carry out commercial transactions, store sen-

sitive personal information, etc. According to a report[16], nearly

41% of all data breach events from 2005 to 2015 were caused by lost

mobile devices, which demands effective authentication schemes on

mobile devices. Existing mobile-based user authentication schemes

are either password-based[29][28] or explicit biometric-based (e.g.,

Fingerprint[17], Face[35], Voiceprint[8]), which are vulnerable to

smudge attacks[39] and replay attack[44], respectively.

With the increasing popularity of touch screen onmobile devices,

recent years have witnessed the emerging of behavioral biometric-

based on-touch user authentication schemes[1][7][9][11], which

could validate the identity of users based on the touching behavior

on mobile devices. Although behavioral biometric-based on-touch

authentication schemes provide a natural way for mobile user iden-

tification, these approaches are proved quite vulnerable[18] un-

der mimic attacks. Moreover, current behavioral biometric-based

schemes usually degrade user experiences, as the login touch needs

to have similar behavioral biometrics as predefined touches. While

in real scenario, finger touching of the same user on mobile de-

vices could have various modes(e.g., different positions, different

forces, supports for smartphones, etc.), as shown in Figure.1. To im-

prove security and user experience, it is desired to build a behavior-

irrelevant on-touch user authentication scheme on mobile devices.



Fingers have unique physical characters(e.g., density, conduc-

tance, etc) that vary among individuals[34]. To realize behavior-

irrelevant for on-touch user authentication, we exploit these phys-

ical properties of touching fingers. Since vibration signals have

excellent short-range transmission characteristics for reflecting

physical characters of different media, we consider vibration sig-

nals transmitted through touching fingers could embed physical

characters of fingers. Therefore, this work aims to leverage active vi-

bration signals to capture physical characters of fingers for realizing

a behavior-irrelevant on-touch user authentication scheme.

To realize the behavior-irrelevant on-touch user authentication

scheme on smartphones leveraging vibration signals, we face sev-

eral challenges in practice. First, the influence from physical char-

acters of touching fingers to vibration signals is unclear, so it is

necessary to extract representative features from active vibration

signals generated and received by smartphones. Second, behavioral

biometrics of finger touching could also influence the vibration

signals, thus the authentication scheme should eliminate the in-

fluence of behavioral biometrics for realizing behavior-irrelevant

user authentication. Third, since smartphones are computational-

restricted, the authentication scheme should be light-weighted for

off-the-shelf smartphones without any additional hardware.

In this paper, we first investigate the feasibility of utilizing active

vibration signals to capture the physical characters of touching

fingers for user authentication, and find that the transmission of

active vibration signals through touching fingers presents unique

patterns for different individuals. Motivated by the observation,

we propose a behavior-irrelevant on-touch user authentication

system on smartphones, TouchPass, which leverages active vibration

signals to extract unique physical characters of touching fingers

for identifying different individuals. Specifically, when detecting

a finger touching on a smartphone, TouchPass actively generates

vibration signals through the built-in motor on the smartphone,

and collects the vibration signals with IMU sensors on the same

smartphone. Then, from the received vibration signals, TouchPass

extracts features that mix physical characters of touching finger and

behavioral biometrics of touching behavior. After that, we propose

a Siamese network[5]-based architecture with a specific training

sample selection strategy to reconstruct the extracted features to

behavior-irrelevant features, and further design a light-weighted

behavior-irrelevant on-touch user authentication scheme based on

knowledge distillation[13]. Our extensive experiments demonstrate

that TouchPass can accurately authenticate users under different

touching modes and defend both mimic and replay attacks.

We highlight our main contributions as follows:

• We explore the transmission process of active vibration sig-

nals generated by the built-in motor on smartphones, and

extract unique features that relate to the physical characters

of touching fingers from vibration signals received by the

IMU sensor on smartphones.

• We reconstruct features extracted from active vibration sig-

nals to behavior-irrelevant features based on Siamese net-

work for building a behavior-irrelevant authentication scheme.

• We build a light-weighted on-touch user authentication

scheme based on knowledge distillation for user authen-

tication and spoofer detection on off-the-shelf smartphones.
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Figure 2: Smartphone vibration model.

• We conduct extensive experiments in real environments

settings and the results show that our system is feasible to

authenticate users and resist both mimic and replay attacks.

2 PRELIMINARY

Touching is one of the most natural way to interact with mobile

devices, which makes it a perfect behavior for user authentication.

In this section, we first introduce the attack model of touch-based

user authentication, and then exploit the feasibility of an on-touch

user authentication scheme leveraging active vibrations.

2.1 Attack Model

Touch-based user authentication on mobile devices is a process

to identify a user by extracting the biometric (e.g., fingerprint) or

behavioral (e.g., touching area, duration, force, etc.) characteristics.

However, the above touch-based user authentication is threatened

by two kinds of attacks, i.e., replay attack and mimic attack.

In a replay attack, a spoofer records the information that a legit-

imate user used to pass the authentication. For instance, a spoofer

can take photos of the fingerprint of a registered user and fake it to

perform a replay attack to the authentication system, which threats

most of existing fingerprint-based authentication schemes.

In a mimic attack, a spoofer first observes the way that a le-

gitimate user performs to the pass the authentication, and then

practices to mimic the behavior for conducting the attack. This is a

kind of attack that focuses on the behavioral biometrics-enabled

touch-based user authentication. A recent work[18] have shown

that mimic attack can break through the behavioral biometrics-

enabled authentication in system level.

2.2 Propagation Model of Active Vibration
Signals on Mobile Devices

Fingers embed unique physical characters(e.g., density, conduc-

tance, etc.) that vary among different individuals[34] and thus can

be leveraged for user authentication. Comparing to fingerprint and

behavioral biometrics of finger touching, these physical characters

are neither easily duplicated, nor vulnerable to mimic attack. To

capture these characters, a stimulating signal is desired to propagate

through the touching finger and then be received for analysis. For

finger touching on mobile devices, active vibration signal could be

a suitable stimulator, since it has been long severed as the natural

touching feedback on mobile devices.

In active vibration, a mobile device, e.g., a smartphone, actively

generates a vibration wave with the built-in motor, and the wave

travels through the smartphone and other medium that is phys-

ically connected to the smartphone, with attenuation along the
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Figure 3: Vibration profile of two users in transient-state.

propagation path and reflections/diffractions on the boundary of

each medium. Specifically, the vibration propagation can be divided

into two states: transient-state at the beginning of the vibration

when the vibration is built, and steady-state when the vibration

reaches an equilibrium and becomes stable. In the following, we

discuss the vibration model in these two states, respectively.

Transient-state: Since transient-state of vibration signals is

highly dynamic, it is intractable to build the full physical model.

Therefore, we build a simplified model that focuses on the most

significant process in the transient-state, i.e., vibration waveform

propagation at the contacting area of different media. During this

process, the original waveform hits the contacting area, parts of the

waveform is reflected and other parts of the waveform transmits

to the next medium, as shown in Figure.2(a). Given the original

waveform, the reflected waveform and the transmitted waveform

as f1(t), д1(t) and f2(t), and the characteristic impedance[12] of two

connected media as Z1 and Z2, we have

д1(t) =
Z1 − Z2
Z1 + Z2

f1(t), (1)

f2(t) =
2Z1

Z1 + Z2
f1(t). (2)

The characteristic impedance of amedium is to describe the impedance

of a medium to wave propagation, which is mainly determined by

the material and density of the medium. According to Eq.1 and Eq.2,

given transmitted waveform f1(t), both reflected signal д1(t) and
transmitted signal f2(t) could be very different according to the

characteristic impedance of different media.

Steady-state:Themodel of active smartphone vibration in steady-

state can be taken as a forced vibration with damping, which has

a well-known spring-mass-damper model as shown in Figure.2(b).

The model describes a body with mass m, damper coefficient k ,
spring coefficient c moves a distance x under a external force Ft :

m
d2x

dt2
= −k

dx

dt
− cx + Ft . (3)

In the case of steady-state for active smartphone vibration, the body

corresponds to the whole vibration system containing several media

(including smartphone, finger, etc.). So the physical characters of

the touching finger have a significant influence on the parameters

m, c , k , and thus can be reflected in the vibration signals.

2.3 Feasibility of on-touch User Authentication
Leveraging Active Vibration Signals

According to the propagation models of active vibration signals,

the vibration propagation is strongly dependent on the physical

characters of the medium contacting to the vibration source. Since

(a) One user. (b) Two users.

Figure 4: Vibration profile of two users in steady-state.

the physical characters of fingers as a medium of vibration wave

are different from person to person[34], we consider to leverage

active vibration signals to enable on-touch user authentication on

smartphones. Specifically, when a user touches a smartphone with

his/her fingers, the smartphone generates active vibrations to sense

the physical characters of fingers as a medium and authenticates

the user accordingly.

To show the feasibility of on-touch user authentication scheme,

we conduct an verification experiment. Specifically, we ask two

volunteers to touch a smartphone (Samsung Galaxy S6) with their

right index fingers. To rule out the influence of behavioral bio-

metrics(e.g., touching force, location, etc.) as much as possible, we

leverage the data collected by the touch screen sensor as real-time

feedback to make sure that the behavioral biometrics are almost

the same for each touching behavior. As soon as the smartphone

detects a finger touching behavior with its touch screen sensor, it

generates a vibration signal of 0.5s with the built-in vibration motor

in the smartphone. During the procedure, the vibration signal is col-

lected by the International Mathematical Union (IMU) in the same

smartphone, and then roughly separated into the transient-state

and steady-state according to their frequency changes.

We compares the collected vibration signals of the two users

during the two states, respectively, and the results are shown in

Figure.3 and Figure.4. Figure.3 shows the vibration frequency pro-

file of two users in transient-state. It can be seen that the vibration

frequency profile covers a large range of frequencies. Moreover, for

the same user, the two touches present similar vibration patterns in

frequency domain as shown in Figure.3(a), while for different users,

the vibration patterns tend to have different patterns in frequency

domain as shown in Figure.3(b). Figure.4 shows the vibration profile

of two users in steady-state. It can be observed that the vibration

profile has clear structure in frequency domain with a dominating

frequency component at the resonance frequency of smartphone

motor (i.e., 129Hz in this case) and several harmonic frequency com-

ponents. Furthermore, for the same user, the two touches presents

pattern in almost all frequency components as shown in Figure.4(a),

while for different users, the vibration patterns tend to have differ-

ent patterns in these frequency components as shown in Figure.4(b).

These encouraging results demonstrate that active vibration signals

(both in transient-state and steady-state) during finger touching to

smartphones varies from person to person, which can be utilized

to identify different individuals.

2.4 Towards Behavior-irrelevant

The vibration propagation model in Section.2.2 considers the con-

nection between a smartphone and a touching finger as a rigid link
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ity and intra-class variability of behavioral biometrics.

so that only physical properties of the finger influence the signal.

In fact, the smartphone-finger connection is more of an elastic link,

which means besides physical characters, behavioral biometrics of

touching could also influences the propagation of vibration signals.

However, involving behavioral biometrics in user authentication

brings two concerns, i.e., vulnerability under mimic attack and high

intra-class variability. We conduct an experiment to show these

two concerns. Specifically, we ask a volunteer (denoted as user) to

touch a smartphone several times in two different days (denoted

as day 1 and day 2) and collect the multi-dimensional behavioral

biometrics (including touching position, area size, duration, etc.)

from touch screen sensor on the smartphone. Then, we further

ask another volunteer (denoted as spoofer) to mimic the touching

behavior of the user in day 1. After that, we compare the collected

multi-dimensional behavioral biometrics in Figure.5, which plots

the t-SNE[26] of the behavioral biometrics in 2-dimensional space.

It can be seen from the figure that the touching behavior of the user

in day 1 and day 2 are not very close in the t-SNE figure, which

shows the high intra-class variability. Moreover, comparing to the

user in day 2, the mimic touching behaviors of the spoofer are

closer to the touching behaviors of the user in day 1, which shows

that the spoofer could mimic the behavioral biometrics of touching

behavior better than a user himself/herself.

We further investigate the vulnerability to attacks for user au-

thentication systems involving behavioral biometrics. Concretely,

in an authentication system leveraging both behavioral biometrics

and physical characters, assuming α%(α ∈ (0, 100)) of the authen-

tication is based on behavioral biometrics, and other (100 − α)%
is based on physical characters. Then, the overall authentication

score of a individual can be denoted as

s = a × α% + b × (100 − α)%,a,b ∈ [0, 1], (4)

where a and b represent the score of physical characters and be-

havioral biometrics authentication for the individual, respectively.

Then, if the authentication score s is greater than a threshold s0,
then the authentication successes. Otherwise, the authentication

fails. Consider the intra-class variability of a user, we further assume

the value of a for a registered user varies from x to 1 (0 < x ≤ 1),

and b is always 1 as the physical characters are usually stable. Then,

to ensure that the registered user can enter the system despite of

the intra-class variability, the threshold s0 needs to satisfy

s0 < x × α% + 1 × (100 − α)% = 1 − (1 − x)α%. (5)

For a spoofer, we assume he/she can mimic the behavioral biomet-

rics of a registered user to get a ≥ y(x < y < 1), then, to pass the

authentication (s > s0), the authentication score b of the spoofer
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needs to satisfy

b >
1 − (1 − x + y)α%

1 − α%
. (6)

Since we have 1 − x + y > 1, it can be seen from Eq.6 that the

required score of b monotonically decreases when α increases,

showing that with more reliance on behavioral biometrics, the user

authentication system would be more vulnerable to spoofers.

Therefore, in order to build a secure on-touch user authentication

scheme, we should reduce the reliance of behavioral biometrics

as much as possible, and realize towards a behavior-irrelevant on-

touch user authentication system.

3 SYSTEM OVERVIEW

We design a behavior-irrelevant on-touch user authentication sys-

tem, TouchPass, which identifies different individuals through finger

touching on smartphones. Figure.6 shows the architecture of Touch-

Pass, which can be divided into two phases, i.e., register phase and

login phase.

In register phase, TouchPass collects data from users. Once a

touching behavior on smartphones is detected, TouchPass first gen-

erates a specific-designed vibration signal through the built-in vibra-

tion motor and collects the vibration signal with the IMU sensor in

the smartphone. After the signal is collected, it further goes through

calibration and segmentation to obtain segments in transient-state

and steady-state of vibration propagation. Then, based on the seg-

ments, TouchPass utilizes wavelet-based method to extract features

in transient-state of vibration signals, and cepstrum-based method

to extract features in steady-state of vibration signals, respectively.

After that, TouchPass leverages the extracted features and behav-

ioral biometrics collected from touch screen sensor to design a

behavior-irrelevant on-touch user authentication model. In par-

ticular, TouchPass develops a siamase network-based approach to

reconstruct the extracted features to behavior-irrelevant features,

and further proposes a knowledge distillation-based model to train

a light-weighted behavior-irrelevant model for user authentication

on mobile devices.

In login phase, TouchPass first captures the vibration signals

generates by a smartphone’s motor when a finger touching on

the smartphone is detected, and then extracts the features in the

same way as in register phase. After that, TouchPass performs user

authentication and spoofer detection with the trained model from

the register phase based on the extracted features.
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4 VIBRATION SIGNAL PROCESSING

For utilizing active vibration signals to realize user authentication

on a smartphone, TouchPass first needs to generate vibration sig-

nals with the motor in the smartphone and receive the vibration

signals with the IMU sensor in the same smartphone. In this sec-

tion, we introduce details of the active vibration signal design, and

further describe the synchronization and segmentation of received

vibration signals.

4.1 Vibration Signal Design

To capture the finger’s characteristics of a user who touches a

smartphone for authentication, we first design the active vibration

signal generated by smartphones. Once senses a touching behavior

on a smartphone, TouchPass actively generates a vibration signal

utilizing the vibration motor on the smartphone. The motors imple-

mented in most smartphones are Linear Resonant Actuators (LRA),

which allow for regulating both the magnitude and frequency of

vibration signals. However, most current smartphone operator sys-

tems (i.e., Android, iOS, etc.) do not give the authority of changing

the vibration frequency to users and developers, but only allow the

motor to vibrate at its resonance frequency, which is the frequency

of vibration signals at steady-state as described in Section 2.2.

Base on the characteristics of motors on smartphones, TouchPass

generates the vibration signal by activating/deactivating the motor

on a smartphone. Specifically, after the smartphone senses a finger

touching, TouchPass activates the motor periodically to let the vi-

bration goes through transient-state and steady-state alternately.

Figure.7 illustrates the generated vibration signals in TouchPass.

The signal begins with a very short impulse of vibration (< 1ms),
and then a short delay with about 10ms , which is used for signal

synchronization. After generating the impulse and the following

delay, the motor is activated for 90ms with a steady-state process

and a transient-state process, and then deactivated for 10ms to de-

cay the vibration. The activate-deactivate process continues for 3

times to generate a vibration signal with about 300ms , which is a

very short time period that a user could hardly feel uncomfortable.

4.2 Signal Synchronization and Segmentation

Since we use the vibrationmotor on a smartphone to generate active

vibrations and the IMU sensor in the same smartphone to receive

the vibration signals, the motor and the IMU sensor need to be

synchronized. TouchPass realizes the synchronization by utilizing

the short impulse of vibration at the beginning of the generated

vibration signal. Since the transmitting speed of the vibration signal

is larger that 2000m/s in smartphones, and the sampling rate of

the IMU sensor on most off-the-shelf smartphones is no more than

1000Hz(which brings the time resolution as 1ms), the time that the
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Figure 8: Illustration of vibration signal segmentation.

motor starts generating vibration signals is within the 1ms sample

that the IMU sensor receives the impulse. So the motor and the

IMU sensor is synchronized at the level of 1ms .
After synchronization, TouchPass further segments the received

vibration signal into transient-state and steady-state based on the

frequency changes of vibration signals. The vibration frequency

changes over time in transient-state, while remains steady in steady-

state. Specifically, TouchPass first applies a sliding window to com-

putes the frequency variance within the window, and then uses

a threshold h to segment vibration signals. When the frequency

variance becomes lower than h, we consider the signal is in the

steady-state (h is determined by empirical study). Figure.8 illustrates

the vibration signal segmentation. Since the motor and the IMU

sensor is synchronized, TouchPass first separates the 90ms vibration
phase when the motor is activated from the 10ms vibration decay-

ing phase when the motor is deactivated (denoted as C in Figure.8).

After that, base on the threshold h, TouchPass further segments

the 90ms vibration transmitting phase into transient-state denoted

as A and steady-state denoted as B, as shown in Figure.8. After

transient-state and steady-state of the received vibration signals

are separated, we can extract features from each state of vibration

signals for user authentication.

5 FEATURE EXTRACTION

In order to obtain representative characters from received vibration

signals, we need to extract features from different states of active

vibration signals. In this section, we present the approaches for

extracting features from transient-state and steady-state of the

received vibration signals, respectively.

5.1 CWT-based Feature Extraction in
Transient-state

We first focus on extracting features from transient-state of re-

ceived vibration signals. In Section.2.4, we show that transient-state

of vibration signals tend to have different patterns in frequency

domain for different users, indicating that the frequency chang-

ing process in transient-state of vibration signals embeds unique

physical characters of touching fingers. Since the transient-state

of vibration signals is highly dynamic, we need to achieve high-

resolution in both time and frequency domain of vibration signals

for accurately capturing the frequency changing process. Therefore,

instead of fast Fourier transformation[41] (FFT)-based approaches

that inevitably have time-frequency trade-off, we apply contin-

uous wavelet transform[6] (CWT) to transient-state of received

vibration signals for obtaining a time-frequency spectrum with

high-resolution in both time and frequency domain. Specifically,
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CWT can be denoted as:

CWTf (a,τ ) =
〈
f (t),ψa,τ (t)

〉
= a−1/2

∫
R

f (t)ψ
( t − τ

a

)
dt , (7)

whereCWTf (a,τ ) is the obtained spectrum, f (t) is the signal func-
tion that corresponds to the transient-state of vibration signals in

TouchPass, and ψa,τ (t) is the wavelet base function, with a and

τ representing the resolution of frequency and time domain, re-

spectively. The choice of wavelet base function directly affects the

wavelet transformation processing result to the signal. In TouchPass,

we choose complex Morlet function as the wavelet base function

because of its extremely high resolution in frequency and time

domain.

Figure.9 illustrates the CWT result of TouchPass on a 50ms transient-
state of vibration signals, both in 2-D plot form (Figure.9(a)) and

3-D plot form (Figure.9(b)). It can be seen from Figure.9 that the

dominate part of vibration signals starts at a relatively high fre-

quency around 170Hz and decreases to a steady frequency around

140Hz within 50ms , which fits the model for transient-state of vibra-

tion signals in Section.2.2 well. Moreover, the high-resolution CWT

spectrum reveals that transient-state of vibration signals spreads

in a frequency range of about 20Hz, which forms a time-frequency

stripe as shown in Figure.9(b). The stripe describes the influence

during propagation of active vibration signals with respect to the

user’s finger, and thus can be taken as the response of the user’s

finger to the active vibration signal. Hence, TouchPass extracts the

stripe as time-frequency features in transient-state of active vibra-

tion signals. We could set a threshold (as shown in Figure.9(b)) to

filter the noises and obtain the stripe.

5.2 Cepstrum-based Feature Extraction in
Steady-state

Besides transient-state, steady-state of vibration signals also em-

beds characteristics of the user who touches a smartphone. So

we further extract features from steady-state of active vibration

signals. According to Section.2.2, vibration signals in steady-state

are centralized to the resonance frequency and several harmonic

frequencies. To realize the user authentication, we exploit these

frequencies for extracting effective features.

We first take a close look at the frequency spectrum. Figure.10(a)

plots two frequency spectrum for the steady-state of vibration sig-

nals, corresponding to two finger touching on a smartphone from

two different users. It can be observed from Figure.10(a) that there
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(a) Frequency spectrum. (b) Cepstrum.

Figure 10: Illustration of frequency spectrum & cepstrum

for steady-state of vibration signals.

are some less-powerful frequency components around the reso-

nance frequency and harmonic frequencies, which are denoted as

side-band frequencies[14]. The side-band frequencies in steady-

state usually present the influence of interactions among different

components in a system. In the case of TouchPass, it presents the

interactions among smartphone and the touching finger. In or-

der to capture the side-band frequencies, we further compute the

cepstrum[4] for the steady-state of vibration signals. Cepstrum is

widely utilized in the field of complex vibration system such as

vibration-based gear fault detection and speech analysis, as it can

provide the rate of changes in different spectrum bands and distin-

guish the influences of different components in a complex vibration

system. Specifically, the cepstrum can be calculated as:

Cy(q) = F−1
(
log Sy(f(t))

)
, (8)

where f (t) is the signal function that represents steady-state of vi-

bration signal in TouchPass, Sy(f(t)) is the power spectral density[27]

(PSD) of the signal, and F−1 is inverse fast Fourier transform[41]

(IFFT).

Through Eq.8, the cepstrum collects the side-band frequencies

and forms a new frequency representation of the vibration signal.

Figure.10(b) shows the cepstrum of vibration signals correspond-

ing to the two touching in Figure.10(a). Although the frequency

spectrums look similar in Figure.10(a), it can be seen from Fig-

ure.10(b) that two cepstrums present very different patterns. There-

fore, TouchPass extracts cepstrum as features in the steady-state of

vibration signals.

6 BEHAVIOR-IRRELEVANT
AUTHENTICATION MODEL DESIGN

To realize behavioral-irrelevant user authentication, TouchPass needs

to reconstruct extracted features to behavior-irrelevant features,

and then build a light-weight behavior-irrelevant authentication

model utilizing the reconstructed features.

6.1 Behavior-irrelevant Feature Reconstruction

The features extracted in Section.5 contain both physical characters

of touching fingers and behavioral biometrics of touching behav-

ior. To build a behavior-irrelevant user authentication scheme in

TouchPass, we need to eliminate the influence of behavioral biomet-

rics in the extracted features, i.e., reconstruct features to behavior-

irrelevant features. TouchPass leverages the Siamese network for

the feature reconstruction. The idea of Siamese network is basically

using a pair of neural networks with same architecture and weights
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Figure 11: Illustration of Training samples selection.

to compute a distance metric for two inputs[5][19]. The particular

structure of Siamese network enables customized feature extraction

by the selection of sample pairs during training, which supports

the feature reconstruction in TouchPass.

Specifically, TouchPass applies a training sample selection scheme,

as shown in Figure.11. Besides extracted features, each collected

sample in TouchPass also contains behavioral biometrics collected

by the built-in touching screen sensors on smartphones. The ex-

tracted features are used as training inputs to the Siamese network,

while the behavioral biometrics are used for training sample selec-

tion. Concretely, for each pair of samples, TouchPass classifies it

into one of the four classes based on their behavioral biometrics and

user labels, as shown in Figure.11(b). If the user labels are the same,

TouchPass selects the sample pairs with less similar behavioral bio-

metrics as the training samples, so that the model could learn to

ignore the behavioral differences for samples from the same user,

while if the user labels are different, TouchPass selects the sample

pairs with similar behavioral biometrics, so that the model could

learn to distinguish samples from different users not based on the

behavioral biometrics. Hence, the key part of the training sample

selection is to determine whether two training samples have similar

behavioral biometrics. TouchPass calculates the similarity of the two

behavior features, x1 and x2, by Pearson Correlation Coefficient,

which can be denoted as:

rx1,x2 =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (9)

where n is the sample size of behavioral features. After calcula-

tion, we normalize the coefficient to [0, 1] and set a threshold δ to

determine the similarity of behaviors. Then, all pairs of training

samples can be divided into two categories, i.e., pairs with similar

behavioral biometrics, i.e., ρ > δ , and pairs with less similar be-

havioral biometrics, i.e., ρ < δ . Based on the similarity, TouchPass

selects proper training samples as input to the Siamese network for

reconstructing behavior-irrelevant features.

Figure.12 shows the architecture of Siamese network in Touch-

Pass. Given the a pair of signals features as the input, Siamese

network reconstructs the behavior-irrelevant feature representa-

tion from the signals features through two identical sub-networks,

and computes the distance of the behavior-irrelevant feature repre-

sentation as the similarity of the inputs. The structure of the sub-

network in TouchPass is basically a 6-layer time-delay neural net-

work (TDNN)[40], as illustrated in Figure.12(b). The sub-network

is designed with two 1-D convolution (Conv) blocks[20] to extract

the behavior-irrelevant features and a fully-connected (FC) layer to
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Figure 12: Siamese network architecture.
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Pass.

merge the features into a compact representation. Within each con-

volution block, we implement a 1-D convolution kernel followed

by a batch-normalization (BN) layer[15] and a ReLU layer[30] to

normalize the features. With the multiple-layer CNN architecture,

the sub-network has capability to learn the mapping from extracted

features to behavior-irrelevant feature representation.

By denoting the parameters of the sub-network asW , the loss

function L(W ) is designed as

L(W ) =

N∑
i=1

Y (Di
W )2 + (1 − Y )max(M − Di

W , 0)
2, (10)

where Y is a indicator to show if the two input samples are related

to the same user, i.e., if they are from the same user, then Y = 1,

otherwise,Y = 0.Di
W

is the Euclid distance of the ith input samples,

M is the margin that represents the decrease interval. The intuition

behind Eq.10 is that the loss L(W ) is monotonically increasing by the

distance DW if the two input samples are from the same user, while

L(W ) is monotonically decreasing by DW if they are from different

users. Then, the designed Siamese network aims at minimizing the

loss L(W ), i.e., minimizing the distance between samples of the

same user and maximizes the distance between samples of different

users.

To train the Siamese network, we recruit 20 volunteers (12 males,

8 females with ages in [19, 55]) to perform finger touching behavior

to three different types of smartphones(Xiaomi 6, Galaxy S6 and

Honor 7x). Each volunteer is required to touch each smartphone for

20 times, with different force (light, normal or hard) in different area

(as shown in Figure.15), and different supports for smartphones

(wooden desk, book or hand with different gestures). Based on the

collected data, the Siamese network is trained according to Eq.10.

After training, the designed Siamese network could reconstruct the

extracted features to behavior-irrelevant features.
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(a) Confusion matrix in laboratory environment.
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(b) Confusion matrix in bar environment.
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(c) Confusion matrix in bus environment.

Figure 14: Confusion matrix of TouchPass for user authentication and spoofer detection.

6.2 Light-weighted Behavior-irrelevant Model

To realize the behavior-irrelevant user authentication on off-the-

shelf smartphones, we further build a light-weighted behavior-

irrelevant user authenticationmodel upon the reconstructed behavior-

irrelevant feature representation.

For a smartphone with limited computing power, realizing the

generalized feature reconstruction model with multiple-layers CNN

implementation as described in Section 6.1 is too computational

expensive.

To achieve a light-weighted authentication model, while keep-

ing the generalization capability, TouchPass exploits the idea of

knowledge distillation, which transfers the knowledge from a large

and cumbersome model to a small model that is more adequate

for deployment[13]. In TouchPass, the reconstruction network in

Figure.12(b) is set as a trained teacher network to teach the knowl-

edge of behavior-irrelevant feature transformation to a smaller

student network with only two convolutional layers, as illustrated

in Figure.13. Specifically, the training of the student network is a

two-folded process. In the first training stage, the outputted features

of teacher network, denoted as FT , is utilized as the training goal

of the output of student network(denoted as FS ) with respect to the

training data from the teacher network. And the loss function LTS
is calculated as the cross entropy of FT and FS :

LTS = HFT (FS ) = −
∑
i

FT × log(FS ). (11)

In the second training stage, the student network refines the pa-

rameters of the network with its own training data from specific

user registered to the smartphone. And the loss function is in the

same form of Eq.10.

After the two-folded training, the student network is able to

extract behavior-irrelevant features (denoted as FL) of users that
registered to the smartphone. TouchPass then builds a behavior-

irrelevant authentication model to distinguish different registered

users and spoofer by determining a template Ti for each registered

user i . Specifically, the template of a registered user i is designed as
the average of the extracted behavior-irrelevant features of user i:

Ti =
1

N

N∑
i=1

FLi . (12)

With the template, TouchPass could authenticate users and detect

spoofers.

6.3 User Authentication & Spoofer Detection

When a user logs in TouchPass system, the user authentication is

performed based on the built-in templates for registered users in the

behavior-irrelevant authentication model. Specifically, assuming

there are n registered users, there should be n templates correspond-

ing to each registered user, i.e., T1,T2, . . . ,Tn in the authentication

model. Then, the extracted behavior-irrelevant feature of the login

user, Fx , is compared with each of the n templates, respectively,

and output n distances for each registered users, i.e., D1,D2, ...,Dn .

And the distance is calculated as:

Di = | |Ti − Fx | |2, (13)

where | |x | | denotes the 2-norm of the vector x . After the distances
are calculated, the login user is identified as user i with smallest

distance Di (i ∈ 1, 2, . . . ,n) among the n distances.

A login user can be an adversary that attempts to enter the

system. Hence, TouchPass needs to detect the adversary in the login

phase. Since the authentication model is trained to maximize the

distance between different inputs, the sample collected from the

adversary tend to have a large distance to any registered user. Thus,

if the smallest distanceDi is larger than a pre-determined threshold

δ (which is normally obtained by empirical study), TouchPass would

authenticate the login user as an adversary.

7 EVALUATION

In this section, we evaluate the performance of TouchPass in real

environments with 75 volunteers.

7.1 Setup & Methodology

The prototype of TouchPass is implemented as an Android App in

three different types of smartphones, which are Xiaomi 6, Galaxy S6

and Honor 7x, respectively. Our experiments are conducted in three

different environments, i.e., laboratory (static and quiet), bar (static

and noisy) and bus (dynamic and noisy). For each environment, we

randomly recruit 25 volunteers (16 males, 9 females with ages in

[20, 52]) to conduct experiments for evaluating the performance

of TouchPass, i.e., 75 volunteers in total are involved in the evalu-

ation. Among the 25 volunteers in each environment, 15 of them

register TouchPass system as legitimate users, the rest 10 volunteers

play the role of spoofers. Specifically, in register phase, each of

the 15 legitimate users are asked to touch the smartphone with a
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Figure 15: Illustration of different touch-

ing positions on a smartphone.

Figure 16: Authentication accuracy un-

der different environments.

Figure 17: Sensitivity of three versions

of TouchPass to behavioral biometrics.

randomly generated requirement for touching position (one of the

12 positions as shown in Figure.15), one of the touching forces (i.e.,

soft, normal or hard) and one of the supports for smartphones (i.e.,

hand, book or wooden desk (not available for bus environment)),

while the 10 spoofers do not touch with smartphones. Then, during

the login phase, all 25 volunteers in each environment are required

to touch smartphones with all possible combinations of 12 touching

positions, 3 touching forces and 3 supports for smartphones.

Since TouchPass is an authentication scheme towards behavior-

irrelevance, we also implement two extra version of TouchPass, i.e.,

Behavior-TouchPass andMix-TouchPass, to evaluate the effectiveness

of behavior-irrelevant for TouchPass. The main differences between

these versions and the original TouchPass are the reconstructed

features used for user authentication. For the original TouchPass,

we has the training sample selection strategy as Figure.11(b) for

constructing behavior-irrelevant features. For Behavior-TouchPass,

we utilize the opposite strategy of original TouchPass to construct

behavior-relevant features. While for Mix-TouchPass, we do not

perform training sample selection, but let all the Siamese network

train all the samples, so that the reconstructed features contain

both behavioral biometrics and physical characters.

To evaluate TouchPass, we define several metrics as follows:

• Authentication Accuracy: the probability that user A is

correctly authenticated as user A among all users.

• Confusion Matrix: Each row of the matrix represents the

instances in a predicted class while each column represents

the instances in an actual class. The ith -row and jth -column

entry of the matrix shows the percentage of samples that

are classified as the ith class while actually the jth class.

• False Accept Rate (FAR): The probability that system au-

thenticates a spoofer as a legitimate user.

• False Reject Rate (FRR): The probability that system au-

thenticates a legitimate user as a a spoofer.

7.2 Overall Performance

We first evaluate the overall authentication performance of Touch-

Pass for 15 legitimate users (denoted as U 1, U 2, . . . , U 15) and 10

spoofers (denoted as SP ) in each of three different environments,

and show the results as confusion matrix in Figure.14. It can be ob-

served that TouchPass can achieve average accuracy of 93.5%, 92.9%

and 91.0% for legitimate users authentication, and 94.7%, 94.5%

and 95.1% for spoofer detection in lab, bar and bus environments,

respectively. The result indicates that TouchPass can accurately

authenticate legitimate users and detect spoofers in different envi-

ronments. In bus environment, the accuracy for legitimate users

authentication is a little bit lower than other two environments due

to the influence of external vibration noises to the vibration-based

system, but the accuracy for spoofer detection remains high. Then,

we further compare the authentication accuracy of original Touch-

Pass with Behavior-TouchPass and Mix-TouchPass in three different,

and show the result in Figure.16. It can be seen that the original

TouchPass outperforms Behavior-TouchPass and Mix-TouchPass for

each environment, showing that behavior-irrelevant authentication

scheme is proper for cross-environment user authentication.

We then evaluate the performance of TouchPass under differ-

ent behavioral biometrics, including touching positions, touching

forces and supports for smartphones. Table.1 gives the authentica-

tion accuracy for each behavioral biometric. It can be seen that there

is no obvious difference in authentication accuracy of TouchPass for

different touching positions, touching forces and supports for smart-

phones. We further evaluate the sensitivity of the three versions

of TouchPass to the changes of behavioral biometrics(especially

between registration phase and login phase). The result is show in

Figure.17. It can be seen that for the original TouchPass, the authen-

tication is robust to behavior changes, while for Behavior-TouchPass

and Mix-TouchPass, the authentication accuracy drops evidently

when the behavior changes. The result shows that the by extract-

ing behavior-irrelevant features, TouchPass is not sensitive to the

changes of behavioral biometrics and can reach a good authenti-

cation performance even when the login touching behaviors are

different from registration.

7.3 Feature Validation

In the design of TouchPass, we utilize features extracted from both

transient-state and steady-sate of vibration signals, i.e., CWT-based

Table 1: Authentication accuracy of TouchPass under differ-

ent touching behaviors.

Position(#) 1 2 3 4 5 6

Accuracy(%) 92.8 93.1 93.0 93.2 93.3 92.9

Position(#) 7 8 9 10 11 12

Accuracy(%) 93.0 93.3 93.1 92.7 93.1 92.8

Force soft normal hard

Accuracy(%) 93.1 93.3 93.2

Supports hand book desk

Accuracy(%) 93.3 92.9 93.1



Origin Behavior Mix
0

20

40

60

80

100

Au
th

en
tic

at
io

n
Ac

cu
ra

cy
(%

)

TouchPass Version

Raw-Data
Cepstrum-Only
CWT-Only
All Features

Lab Bar Bus
0

5

10

15

20

Fa
ls

e
R

ej
ec

tR
at

e
(%

)

Environments

TouchPass
Behavior-TouchPass
Mix-TouchPass

0 1 2 3 4 5 6 7 8
Attempting Times for Successful Login

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n 
Fu

nc
tio

n(
CD

F)

Lab
Mall
Bus
Overall

Figure 18: Authentication accuracy of

TouchPass under different features.

Figure 19: FRR of TouchPass for authen-

tication approaches.

Figure 20: CDF of attempting times for

successful login.

features and cepstrum-based features, to realize user authentica-

tion. To show the individual contribution of these features, we

conduct an experiment that builds three extra user authentication

systems leveraging the raw vibration data, CWT-based feature

only and cepstrum-based feature only, respectively. Then we com-

pare the performance of these systems to TouchPass. The result is

shown in Figure.18. The average authentication accuracy of the

TouchPass with raw data can only achieve 69.1%, TouchPass with

only CWT-based features or with only cepstrum-based features

improve the average authentication accuracy to 85.4% and 78.3%,

respectively. And TouchPass with all features further improves the

average authentication accuracy to 93.2%. This pattern remains for

Behavior-TouchPass and Mix-TouchPass. The results indicates that

both CWT-based feature and cepstrum-based feature contributes

to the performance of TouchPass.

7.4 Performance on User Experience

Since TouchPass is designed as a smartphone user authentication

system, we evaluate the experience of TouchPass for registered users

through false reject rate (FRR), attempting times for successful login

and the time cost for each authentication.

False Reject Rate:We show the FRR for three versions of Touch-

Pass under three different environments in Figure.19. It can be seen

that the FRRs of TouchPass are the lowest under all environments,

with the FRRs lower than 4% for all environments. However, the

FRRs of Behavior-TouchPass and the FRRs of Mix-TouchPass are

higher than 9% and 5% under all environments, respectively. The

result demonstrates that TouchPass has a low probability to reject

legitimate in various environments, which provides a satisfactory

user experience.

Attempting Times for Successful Login: We evaluate the

the attempting times for successful login and show the result in

Figure.20. It can be seen from the figure that more than 92% login

operations are successful with only one attempt under different

environments, and more than 99.5% login operations are successful

with three attempts, which is user-friendly in real scenarios.

Authentication Time Cost:We also evaluate the user experi-

ence through the time cost for each authentication process under

different types of smartphones, and the result is shown in Table.2.

It can be seen that the overall time during each authentication

is lower than 1.2s with all three different types of smartphones.

For comparison, Touch ID on iPhone 7 Plus costs approximately

0.91s and Face ID on iPhone X costs approximately 1.5s for user

authentication[37]. So TouchPass could achieve a satisfactory user

experience.

7.5 Performance on Attack Resistance

To show that TouchPass can resist attacks described in Section.2.1,

we conduct experiments under mimic attack and replay attack,

respectively. For mimic attack, a spoofer tries his/her best to mimic

the touching behavior of a legitimate user during login. For replay

attack, we consider the case when the smartphone is supported by

a plane, and a spoofer places a smartphone besides the legitimate

user’s phone on the same plane to record the vibration signals, and

then replays the recorded samples to the authentication system.

In each experiments, we divide the 25 volunteers into 3 groups

in each environments(5 volunteers in the first group, 10 volunteers

in the second and third group). The volunteers in the first group

register to the system as legitimate users. Volunteers in the second

group and third group performs mimic attack and replay attack

to the system, respectively, in which each volunteer performs the

attack for 20 times.

Figure.21 shows the false accept rate for mimic attack. It can

be seen that for TouchPass, the false accept rates are lower than

1.8% for different touching modes in different environments, which

indicates that TouchPass can resist mimic attack well in various

environments. While the false accept rates of Behavior-TouchPass

and Mix-TouchPass are higher than 4.7% and 2.3% in different envi-

ronments, respectively, which are much more vulnerable to mimic

attacks than original TouchPass. Figure.22 shows the false accept

rate of all three versions of TouchPass for replay attack. The false

accept rates for all three versions of TouchPass are lower than 2%

under three different environments, showing that TouchPass can

resist the replay attack with low false accept rate.

7.6 Impact of Threshold for Determining
Similarity of Behavior Features

As described in Section 6.1, to obtain a behavior-irrelevant user

authentication model, TouchPass selects specific training data to the

Table 2: Running time of TouchPass during an authentica-

tion.

Devices Vib Signal CWT Cepstrum Authen Total

Xiaomi 6 0.3s 0.06s 0.35s 0.18s 0.31s 1.20s

Galaxy S6 0.3s 0.03s 0.27s 0.13s 0.26s 0.99s

Honor 7 0.3s 0.05s 0.34s 0.14s 0.28s 1.11s



Lab Bar Bus
0

4

8

12

16

20

Fa
lse

Ac
ce

pt
Ra

te
(%

)

Environments

TouchPass
Behavior-TouchPass
Mix-TouchPass

Lab Bar Bus
0

4

8

12

16

20

Fa
lse

Ac
ce

pt
Ra

te
(%

)

Environments

TouchPass
Behavior-TouchPass
Mix-TouchPass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100

Au
th

en
tic

at
io

n 
Ac

cu
ra

cy
 (%

)

0

1

2

3

4

5

6

7

8

9

10

Fa
lse

 A
cc

ep
t R

at
e 

(%
)

Acccuracy
FAR

Figure 21: FAR of TouchPass for mimic

attack.

Figure 22: FAR of TouchPass for replay

attack.

Figure 23: Impact of threshold.
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Figure 24: Impact of registration data

size.

Figure 25: Impact of sensor sampling

rate.

Figure 26: Impact of vibration strength.

Siamese network by calculating the similarity of behavior biomet-

rics, which is controlled by a threshold δ . Therefore, the value of δ
directly influences the training data selection and further impacts

the performance of TouchPass. Figure.23 shows the accuracy and

false accept rate of TouchPass under different thresholds δ . It can
be seen from the figure that as the threshold increases form 0 to

1, the accuracy first increases and then decreases, while the false

accept rate first decreases and then increases. The reason is that a

small δ results in few training samples for reducing the distance of

samples from the same user, while a large δ results in few training

samples for increasing the distance of samples from different users.

Hence, both small and large δ could add biases to the training data.

Moreover, we find that the accuracies of TouchPass is above 92.5%

when δ is in the range of [0.47, 0.63] and the false accept rates of

TouchPass is below 2% when δ is in the range of [0.55, 0.68]. There-

fore, a practical deployment can select a threshold in the range of

[0.51, 0.69] to meet the specific requirements. Therefore, to achieve

the best performance, we set δ = 0.6 for TouchPass during the

evaluation.

7.7 Impact of Registration Data Size

The size of registration data for a user is the number of touches dur-

ing register phase. A larger registration data size usually improve

the performance of the system, but leads to tedious finger work.

Hence, we evaluate the performance of TouchPass under different

sizes of registration data, and show the result in Figure.24. We can

observe that as the size of registration data for each user increases

from 1 to 10, the accuracy first increases and then remains stable

when the size reach about 7. Moreover, when a user touches the

smartphone only 2 times for registration, TouchPass can achieve

an accuracy of about 85% for authentication in all three different

environments.

7.8 Impact of Sampling Rate

We evaluate the performance of TouchPass under different sampling

rates of IMU sensors on smartphones. Figure.25 shows the authen-

tication accuracy of TouchPass under different sampling rates. It

can be observed that as the sampling rate increases, the accuracy

first increases sharply and then remains stable. Specifically, the

authentication accuracy is relatively low when the sampling rate of

IMU sensors is lower than 400Hz. The reason is that the frequency

components of active vibration signals are mainly in the range of

50Hz to 200Hz in frequency domain, which means that IMU sen-

sors can not capture all valid vibration signals if the sampling rate

is less than 400Hz. Furthermore, it can be observed that after the

sampling rate is larger than 600Hz, increasing sampling rate do not

contribute much to the authentication accuracy. Since most IMU

sensors used in commercial smartphones could support a sampling

rate up to 1000Hz, the result shows that TouchPass can be widely

employed in off-the-shelf smartphones.

7.9 Impact of Vibration Strength

Since TouchPass actively generates vibration signals to authenticate

users, the strength of vibration signals could impact the authentica-

tion performance. Hence, we evaluate the performance of TouchPass

on user authentication under different levels of vibration strength

and show the result in Figure.26. We can observe from the figure

that for Xiaomi 6 Galaxy S6 and Honor 7, as the vibration strength

increases from 0 to 100%, the authentication accuracy of Touch-

Pass first increases and then remains stable. This is because that a



stronger vibration signal leads to higher Signal-Noise-Ratio (SNR)

in the received signal and thus brings more robust features to train

the user authentication model. Moreover, with only 8% vibration

strength, TouchPass can achieve an accuracy over 90% for user

authentication.

8 DISCUSSION

We discuss several issues of TouchPass, including the advanced

attack resistance and the robustness to physical character changes.

AdvancedAttackResistance: Besides replay attack andmimic

attack, there could be skilled spoofers that can obtain the collected

data of the IMU in a registered user’s smartphone. In that case, the

spoofer could perform advanced replay attack by injecting the IMU

sensor data collected from a login operation of a registered user. To

prevent such advanced replay attack, TouchPass could give a small

and random turbulence to the duration of active vibration signal

generated by the motor smartphones, and the duration of transient-

state and steady-state for the collected vibration signal will change

accordingly. Then, by checking the duration of collected vibration

signal, TouchPass can resist the advanced replay attack, while keep

the performance of user authentication.

Robustness to Physical Character Changes: The physical

characters of fingers utilized by TouchPass are usually stable under

short-time environment changes such as weathers. But in a rela-

tively long time period, i.e., years, these physical characters could

change. For instance, the fat content changes when a user gains

or loss weight, and the bone density changes when a user grows.

These changes could influence the performance of TouchPass. To

deal with physical character changes, TouchPass could update the

user template periodically based on the login data.

9 RELATEDWORK

We review the related works of TouchPass as follows:

Smartphone User Authentication Password-based user au-

thentication including PIN number[29], lock pattern[28] and other

graphical passwords[38] are the most widely used approaches on

smartphones user authentication. Although low-cost and easy to

implement, these approaches are vulnerable under shoulder-surfing

and smudge attacks[39]. To overcome the shortcomings of pass-

word, previous works exploit physical biometric-based authenti-

cation approaches on smartphones, such as fingerprint[17], face

recognition[35], iris recognition[21], and voice-print recognition[8].

However, due to lack of liveness detection[44] and sensitive to en-

vironments, these approaches are vulnerable to replay attacks.

Touch-based User Authentication As one of the most per-

vasive and natural behavior to interact with smartphones, finger

touching presents unique behavioral biometrics among different

users, which has been exploited for touch screen-implemented

smartphone user authentication[1][7][10][9][11][23]. Among these

approaches, some leverages the behavioral biometrics including

touching pressure, finger area, duration and location for realizing

touch-to-access authentication[1][7][10], while others exploit the

changes of behavioral biometrics between successive touches for re-

alizing continuous user authentication[9][11][23]. However, Khan

et al.[18] show that these approaches are vulnerable under shoulder

surfing and offline training.

More Recently, a touch-based user authentication scheme com-

bining physical characters of a hand size and behavioral biometrics

of the touching behavior is proposed[36], and shows higher authen-

tication accuracy than behavioral biometrics-alone and physical

characters-alone approaches. However, since the approach is still

partly dependent on behavioral biometrics, it is less secure un-

der attacks against behavioral biometrics like statistical attack[33].

Moreover, the approach requires users to perform a fixed touching

gesture, which is an extra burden since users have to remember

that pattern as a ‘password’.

Besides touch screen scenario, there are other touch-based user

authentication approaches focusing on IoT[25] and smartwatch[3]

scenarios. VibWrite[25] develops a vibration-based finger-input au-

thentication system that can be implemented on various planes in

IoT scenarios. However, this approach uses stand-alone vibrator mo-

tor and piezoelectric sensor, which are not available on COTS smart-

phones. Taprint[3] leverages the IMU on smartwatches to sense

the passive vibrations generated by typing on the fix knots of hand

for user authentication, which is not practical for on-touch user

authentication on mobile devices with different touching modes.

Moreover, the above approaches still rely on behavioral biometrics,

which brings security risk to the authentication system and not

practical for finger touching on smartphones with various touching

modes.

Vibration-based Applications Due to the excellent transmis-

sion characteristics in short-range, recent years have witnessed

huge development for vibration-based applications. Previous stud-

ies explore vibration signals in gesture recognition[22][42], key-

stroke detection[24][2], and near-field communication[32][31].Most

recently, VibID[43] actively generates vibration signals on a smart-

watch to sense the physical characters for authenticating users.

However, this approaches is designed only for smartwatch scenario

with the device fixed to a certain area of body. Any movements

of the device could influence the performance of the authentica-

tion scheme. So it is not practical for on-touch user authentication

scheme on mobile devices.

Different from these works, TouchPass leverages active vibration

signals to build a behavior-irrelevant on-touch user authentication

system for smartphones, which can effectively resist both mimic

and replay attacks, while providing satisfactory user experiences.

10 CONCLUSIONS

In this paper, we propose a behavior-irrelevant on-touch user au-

thentication system on smartphones, TouchPass, which leverages

active vibration signals to extract physical characters of touching

fingers for identifying individuals. TouchPass first extracts features

that mix physical characters of touching fingers and behavioral bio-

metrics of touching from active vibration signals. Then, a Siamese

network-based architecture is designed to reconstruct the extracted

features to behavior-irrelevant features, and a behavior-irrelevant

user authentication model is further built leveraging knowledge

distillation. Our extensive experiments demonstrate that TouchPass

can accurately authenticate users and defend various attacks.
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