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ABSTRACT
With the popularity of intelligent audio systems in recent years,
their vulnerabilities have become an increasing public concern.
Existing studies have designed a set of machine-induced audio at-
tacks1, such as replay attacks, synthesis attacks, hidden voice com-
mands, inaudible attacks, and audio adversarial examples, which
could expose users to serious security and privacy threats. To de-
fend against these attacks, existing efforts have been treating them
individually. While they have yielded reasonably good performance
in certain cases, they can hardly be combined into an all-in-one
solution to be deployed on the audio systems in practice. Addition-
ally, modern intelligent audio devices, such as Amazon Echo and
Apple HomePod, usually come equipped with microphone arrays
for far-field voice recognition and noise reduction. Existing defense
strategies have been focusing on single- and dual-channel audio,
while only few studies have explored using multi-channel micro-
phone array for defending specific types of audio attack. Motivated
by the lack of systematic research on defending miscellaneous
audio attacks and the potential benefits of multi-channel audio,
this paper builds a holistic solution for detecting machine-induced
audio attacks leveraging multi-channel microphone arrays on mod-
ern intelligent audio systems. Specifically, we utilize magnitude
and phase spectrograms of multi-channel audio to extract spatial
information and leverage a deep learning model to detect the fun-
damental difference between human speech and adversarial audio
generated by the playback machines. Moreover, we adopt an unsu-
pervised domain adaptation training framework to further improve
the model’s generalizability in new acoustic environments. Evalua-
tion is conducted under various settings on a public multi-channel
replay attack dataset and a self-collected multi-channel audio attack
∗Corresponding author.
1“Machine-induced attack” refers to the audio attack that requires to use a playback
device (e.g., loudspeaker or ultrasound speaker) to play the crafted speech samples.
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dataset involving 5 types of advanced audio attacks. The results
show that our method can achieve an equal error rate (EER) as low
as 6.6% in detecting a variety of machine-induced attacks. Even in
new acoustic environments, our method can still achieve an EER
as low as 8.8%.
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1 INTRODUCTION

During the past decade, the adoption of intelligent audio systems
has surged in both residential and industrial sectors, as they provide
a convenient interface for users to control and interact with smart
devices through voice commands. In particular, voice assistants
such as Amazon Alexa, Google Assistant, and Apple Siri have been
integrated into various platforms, enabling users to conveniently
control different aspects of their daily lives, such as smart home
appliance controls, online purchases, personal schedule/memo in-
quiries, and smart vehicle operations, etc.

With such widespread applications, the vulnerabilities of these
intelligent audio systems to various types of audio attacks have
become a rising security concern. For instance, replay attack [32, 74],
which attempts to bypass the authentication process simply using
a recording from the victim, has long been one of the dominant
sources of audio spoofing attacks. Synthesis attack [46, 78] utilizing
text-to-speech engines to mimic the victim’s voice is a common
alternative when the victim’s speech sample cannot be directly
obtained. Besides these conventional attack approaches, recent
studies have revealed new vulnerabilities including hidden voice
commands [7, 13, 68], inaudible attacks [85], and audio adversarial
examples [14, 81], which exploit either the gap between machine
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and human perceptions or the intrinsic vulnerability that lies in
deep learning models to make the attack unnoticeable.

Existing Defenses. The emerging attack vectors of intelligent
audio systems demand a general defense strategy to secure the
voice user interface against the disclosed suite of audio attacks.
However, most existing studies treat each type of attack differently
and seek to design specific mechanisms against each individual
attack. The replay attack is the most studied audio attack, where
many features derived from speech signals have been considered
for designing classifiers to distinguish replayed speech from human
speech, such as Mel Frequency Cepstral Coefficient (MFCC) [24],
Constant Q Cepstral Coefficients (CQCC) [66], Linear Prediction
Cepstral Coefficient (LPCC) [76], and Rectangular Frequency Cep-
stral Coefficient (RFCC) [24]. In addition to these power spectrum
features, relative phase shift [17], pitch patterns [33], and neuron
activation patterns [73], alongwith other spectral features [42] have
been proposed to help discriminate between human and synthetic
speech. Countermeasures to hidden voice commands, as pointed
out in the original work [13], include training a classifier (i.e., lo-
gistic regression) with the acoustic features extracted from hidden
voice commands and normal speech commands which was shown
to almost fully defend against this type of attack. A recent work [71]
also showed the potential of using the built-in motion sensors of
smartphones to defeat hidden voice commands. To defend against
inaudible attacks, microphone enhancement, baseband cancellation,
or learning unique features of modulated voice commands which
are distinctive from genuine ones have been considered [85]. Addi-
tionally, detection method based on propagation attenuation [65]
and active defense using an emitted inaudible “guard” signal to can-
cel the attack [27] have also been explored. As for defending audio
adversarial examples, various methods leveraging audio transfor-
mation [82] or transcription analysis [30, 83] have been proposed.

Limitation of PriorWork.As described above, existing studies
have been mostly focusing on designing dedicated mechanisms
for defending individual attack. These mechanisms are designed
from different perspectives and require different sensing modalities
or additional hardware modules, making them almost impossible
to be combined and deployed onto an audio device in practice.
Thus, a lightweight holistic defense strategy against all existing
audio attacks is highly desirable. In addition, most off-the-shelf
intelligent audio systems are equipped with a microphone array
for far-field voice recognition, noise reduction, and acoustic echo
cancellation [8]. For instance, Amazon Echo (4th generation) has 6
mics; Amazon Echo Auto has 8 mics; Apple HomePod has 6 mics,
etc2. In contrast, most existing efforts for detecting replayed audio
are based on single-channel recordings. Several studies [49, 64,
80, 87] go beyond a single channel to explore dual-channel stereo
recordings on smartphones. However, this line of work often suffers
from short detection range and still fails to exploit the rich sensing
capability of multi-channel microphone arrays that are ubiquitous
in intelligent audio systems. As one of the few works that exploit
multi-channel audio, EarArray [65] proposes to utilize the estimated
attenuation rate of the ultrasound signal via microphone array for
detecting inaudible attacks but does not generalize to other audio

2The number of microphones on mainstream intelligent audio devices is summarized
in Appendix Table 8.
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Figure 1: Overview of the proposed approach.

attacks. A more recent work by Gong et al. [23] demonstrates that
compared to single-channel audio, multi-channel audio can help
improve the performance (up to 34.9%) for detecting replay attacks.
However, this work leverages beamforming technique [10] to filter
and combine multi-channel audio signals into a single-channel
signal, which loses distinct spatial information carried on other
channels. In addition, this work merely focuses on replay attacks
and does not address other more advanced audio attacks.

Benefits of Leveraging Multi-channel Audio. Compared to
existing single-channel-based solutions, multi-channel audio attack
detection offers benefits in several aspects: 1. Spatial Feature: In
addition to the temporal and spectral information used for single-
channel audio attack detection, multi-channel audio also encodes
important spatial information (e.g., angle of arrival (AoA) and time
difference of arrival (TDoA)) that is harder for the attacker to manip-
ulate; 2. Detection Range: Existing single-channel or dual-channel
audio attack detection systems (e.g., [49, 86, 87]) only perform
well in close-range scenarios (e.g., talking on phones) as its per-
formance decreases drastically when the microphone is far from
the user, while multi-channel audio signals collected from micro-
phone arrays can be utilized to achieve sound source localization
and speech enhancement by reducing noise and reverberations
which are critical for far-field detection; 3. Device Compatibility: To
achieve far-field hands-free voice control, intelligent audio devices
(e.g., Amazon Echo and Apple HomePod) often come equipped
with a multi-channel microphone array. Thus multi-channel audio
attack detection solutions can be directly deployed to these devices
to obtain enhanced performance without requiring extra hardware.

Proposed Work.Motivated by the potential benefits of multi-
channel audio, in this work, we develop a holistic solution to detect
various machine-induced audio attacks leveraging multi-channel
microphone arrays that are available on intelligent audio systems.
As shown in Figure 1, our method draws inspiration from the ob-
servation that all audio attacks require a playback device (e.g., loud-
speaker or ultrasound speaker) to play the crafted attack speech
sample, while genuine speech is uttered from human vocal cords.
This inherent difference of sound production will be carried over
into the produced audio, resulting in different patterns in signal fre-
quency and directivity [22], which can be captured by microphone
arrays and further utilized to differentiate genuine speech from
machine-induced attack audio. Instead of manually searching for
the optimal set of features, we resort to a learning-based approach
where the model can automatically adapt to any attack method,
microphone configuration, or acoustic environment that is repre-
sented in the training dataset, without requiring to be explicitly
tuned. Moreover, different from a conventional approach [23] that
utilizes beamforming to filter and combine multi-channel audio
signal into one single-channel signal, we make use of audio signals
from all available channels separately by forming 3D feature maps



with magnitude-phase spectrograms so that the important spatial
information is preserved throughout the whole process. In addition,
to enable efficient detection in unseen environments, we exploit
unsupervised domain adaptation training to help the learned model
adapt to new acoustic environments without requiring labeled data.
We also explore different model configurations to design a compact
model that suits mobile applications without sacrificing much de-
tection accuracy. We summarize our main contributions as follows:
• We dissect existing machine-induced audio attacks, including
replay attacks, synthesis attacks, hidden voice commands, inaudi-
ble attacks, and audio adversarial examples, and design a holistic
defense strategy leveraging multi-channel audio recorded by the
microphone array equipped on intelligent audio systems.

• We build a deep learning model leveraging both magnitude and
phase information derived from multi-channel audio to achieve
accurate and robust detection of audio attacks without hand-
crafted features. Moreover, we adopt the unsupervised domain
adaptation framework to achieve environment-independent de-
tection, making the system still work well when deployed in a
new environment.

• To evaluate our proposed holistic solution, we re-implement a
set of representative advanced audio attacks and collect a dataset
of voice recordings of the reproduced adversarial speech sam-
ples in different environmental conditions with various play-
back/recording devices.

• Extensive experiments on a public multi-channel replay attack
dataset and an empirically-collected advanced audio attack dataset
showed that our method can achieve up to 6.6% equal error rate
(EER) in detecting these machine-induced audio attacks. Even in
a new environment, our environment-independent solution can
still achieve reasonably good performance.

2 RELATEDWORK

2.1 Machine-induced Audio Attacks
Due to the open nature of voice access, intelligent audio systems
have been proven to be vulnerable to many spoofing attacks, such
as conventional replay attacks [32, 76], synthesis attacks [39, 46, 75,
78] and some other more advanced audio attacks leveraging mod-
ulated attacking sound (e.g., hidden voice commands [7, 13, 68]).
Among these attacks, replay attacks are the most accessible to
the adversary since it simply involves recording a victim’s speech
samples with a handy recording device (e.g., a smartphone) and
replaying the speech samples for the attack. A recent study [74]
also designed modulated replay attacks that align the frequency
domain distortions induced in the replay process, rendering the
replayed sound more similar to genuine human speech. When col-
lecting speech samples is difficult, the adversary can also launch
synthesis attacks that produce speech samples mimicking the vic-
tim’s voice characteristics (e.g., pitch range, frequency component
distributions). These attacks usually leverage voice synthesis mod-
els [46, 75] to convert text into the target speech of a victim, by
using only a small number of the victim’s voice samples for training
(e.g., collected through the Internet or public speech). In addition,
the adversary can modify the voice samples from arbitrary speakers
to make them sound like the victim’s voice for the attack [39, 78].

Due to the recent advancements in deep learning, such speech syn-
thesis models can produce natural-sounding speech, making the
attacks difficult to be detected.

In addition to these conventional attacks through replaying
human-sounding speech signals, recent studies demonstrated the
potential of generating unintelligible or even inaudible attacking
sound, by leveraging the perception gap between humans and ma-
chines [7, 13, 41, 68, 85] or the intrinsic vulnerability of embedded
deep learning models [14, 35, 36, 41, 84]. For example, hidden voice
commands [13, 68] convert speech into obfuscated voice commands
that are recognizable to speech recognition models while remain-
ing unintelligible to humans. As another example, inaudible at-
tacks [41, 85] modulate the recorded speech samples onto ultrasonic
frequency bands (e.g., over 20kHz), which are completely inaudible
to human listeners but can be demodulated by the microphones
due to their non-linearity properties. Furthermore, as current em-
bedded speech/speaker recognition engines are mostly based on
deep neural network (DNN) models, the adversary can explore the
models’ inherent vulnerabilities to generate well-crafted adversar-
ial perturbations to access intelligent audio systems. Such attacks
either add imperceptible perturbations to replayed audio [14, 35] or
embed speech samples into ambient noises/background music [84]
to spoof the speech/speaker recognition engines, making the model
yield adversary-desired output (e.g., speaker identity or speech con-
tent). A more recent study [36] even developed practical adversarial
examples that injects adversarial perturbations onto streaming au-
dio inputs (e.g., live human speech) in an unsynchronized manner,
demonstrating a severe threat to intelligent audio systems.

2.2 Existing Attack Detection Strategies
Although significant research efforts have been devoted to devel-
oping attack detection methods to secure voice access, few studies
have investigated using readily available microphone arrays on
modern intelligent audio systems to further enhance their secu-
rity levels. Most existing studies rely on extracting frequency do-
main features from single-channel audio to differentiate replayed
or synthesized voice from genuine human speech. For instance,
power spectrum features [24, 33, 42], relative phase shifts [17],
and magnetic field distortions [15] are exploited to detect replayed
and synthesized speech. A recent study, VOID [9], leveraged the
spectral features extracted from single-channel audio to detect var-
ious audio attacks. However, the lack of using multi-channel audio
and the spatial information makes it still vulnerable to many ad-
vanced attacks, such as modulated replay attacks [74], which aligns
the frequency domain distortions induced in the replay process.
Furthermore, several studies performed liveness detection using
dynamic acoustic features from dual-channel audio, such as pop
noises from breaths [49], cross-correlation of stereo signal [80],
and time-difference-of-arrival changes of phoneme sounds [87].
However, such dynamic acoustic features only exist in proximity
and require the microphones to be placed close to the user’s mouth
(e.g., when talking to a smartphone). Gong et al. [23] demonstrated
the potential of using multi-channel audio to defend replay attack,
which shows a significant improvement compared to using single-
channel audio (up to 34.9%), but the proposed system can only
address replay attacks. More importantly, this work treats multi-
ple audio channels as a whole and combines multi-channel audio
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Figure 2: Comparison of sound production mechanisms.

signals into a single-channel signal, which loses distinct spatial
information among the channels.

To mitigate the threats introduced by more advanced audio at-
tacks, recent research studies developed various approaches to
detect the unintelligible and inaudible attacking signals [13, 27, 36,
71, 83, 85]. To detect hidden voice commands, Carlini et al. [13]
exploited a classifier (i.e., logistic regression) trained with frequency
domain features (e.g., MFCCs, spectral entropy). Wang et al. [71]
proposed converting the audio recordings into vibration signals
(captured via motion sensors) to reveal the unique spectral charac-
teristics of hidden voice commands. Regarding inaudible attacks,
researchers have explored using frequency domain analysis [85] to
detect the ultrasound signals or emitting inaudible "guard" signals to
cancel the impacts of the attack [27]. More recently, to defeat inaudi-
ble voice commands (known as DolphinAttack [85]), EarArray [65]
proposes to utilize the estimated attenuation rate via microphone
array to differentiate ultrasound sounds from audible sounds. Fur-
thermore, signal filtering, quantization, audio compression, down-
sampling, and adversarial training have shown to be effective to
defend against audio adversarial examples [36, 83]. Although afore-
mentioned studies, using either software-based approaches or dedi-
cated hardware, show reasonably good performance in defending
against individual attacks, it is almost impossible to combine them
together as an all-in-one solution for practical deployment.

Furthermore, some researchers proposed using extra devices in-
cluding smart glasses [19], smartphone [11], wearable [48], or head-
phone [21], to capture additional voice characteristics to perform
user authentication. These investigations leveraged either unique
vibration patterns (e.g., body-surface vibrations [19], air-borne vi-
brations [48]) or the direction of speech (e.g., angle of arrival [11])
to confirm the authenticity of the sound source. However, these
approaches require additional devices, which could add extra cost
and are not always applicable in practice. CaField [64] achieves
continuous speaker verification by leveraging two on-board micro-
phones of a smartphone to capture the acoustic features embedded
in sound fields during propagation. Despite its improved usability,
this method requires the smartphone to be held at a relatively close
distance to the user’s mouth and the holding posture/position needs
to be consistent across continuous verification sessions. Thus, it
is not suitable for the broader context of intelligent audio systems
such as smart speakers.

Different from existing approaches, we develop a holistic defense
system by leveraging multi-channel microphone arrays that are
readily available in modern intelligent audio devices. Relying on
both temporal and spatial information extracted frommulti-channel
audio, our system can detect a variety of existing machine-induced
voice attacks through holistic training.

Recording
Device

Playback
Device

Processing

Figure 3: Typical process of audio attacks.

3 MULTI-CHANNEL AUDIO ANALYSIS
In this section, we explore potential acoustic features to differentiate
machine-induced audio from human speech as well as validating the
benefits of leveraging multi-channel audio through thoroughly an-
alyzing a public multi-channel replay audio dataset, ReMASC [22].

3.1 Characteristics of Machine-induced Audio
Machine vs. Human Production of Sound.Machine (i.e., loud-
speakers) produces sound by moving a diaphragm back and forth
along one dimension to emit sound waves. As shown in Figure 2(a),
during sound production, an electric current flows through the
vocal coil, inducing a magnetic field that interacts with the perma-
nent magnet and creates a force that drives the diaphragm, causing
it to vibrate. Differently, as depicted in Figure 2(b), human voice
production involves multiple physiological components including
lungs, vocal cords, and vocal tract, and can be generally viewed
as a two-stage process where a raw sound is first produced by a
source and then shaped in the vocal tract [53]. Specifically, there
are three different sources of speech sounds. The first type of source
is vocal cord vibration, which is produced during the phonation
of voiced sounds: the air stream generated by lungs flows through
an open vocal tract and sets the vocal cords to oscillate, creating
vowel sounds such as [a], [e], [i] and [o]. The second source of
speech sound is air turbulence, which is generated by constricting
the vocal tract with teeth, tongue, or lips to produce high-velocity
airflow. The noises generated by the air is then shaped by the vocal
tract to form consonant sounds such as [f ], [s], [v] and [z]. The
third source is created by completely blocking the airflow toward
the front of the mouth and then followed by the sudden release of
the air, which results in plosive consonants such as [k], [p] and [t].
Compared to machine-induced sound, human speech is produced
from different locations within the vocal tract (e.g., oral and nasal
cavities) and further shaped by the resonances of the vocal tract
system. These differences result in traceable patterns in spectral
energy distribution [12, 76] and propagation path [87], which will
all be reflected in the magnitude and phase domain features.

Audio Attack Process. Figure 3 illustrates the typical process
of machine-induced audio attacks. The attacker first records speech
commands using a recording device, then plays the recorded audio
using a playback device when launching the attack. For some ad-
vanced audio attacks, the recorded audio will undergo an additional
preprocessing phase before playback (e.g., computing the inverse
MFCC [13], inverse filtering [74], or modulation onto ultrasonic
carrier [85]). In contrast, genuine speech commands are directly
inputted into the intelligent audio system via one-time over-the-air
propagation. The redundant procedures of audio attacks will intro-
duce additional noises to the audio signal in several aspects: first,
the attack audio propagates through physical environments twice,
resulting in more distortions due to the effects of room acoustics
(e.g., environmental noise, attenuation, and reverberation); second,
the hardware imperfection (e.g., non-flat frequency response and
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Figure 4: Illustration of the magnitude and phase spectrum of genuine and replayed audio in different environments.
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Figure 5: Comparison of the genuine and replayed audio recorded from different channels of a microphone array in various
environments.

noise in electronics) of the recording and playback devices will also
greatly impact the signal received by the intelligent audio system.

3.2 Potential Feature Analysis
Traditionally, power spectrum-based features are the most widely
used features for audio signal analysis, and their effectiveness on
replayed audio detection has been validated by many prior stud-
ies [12, 24, 66, 76]. However, power spectrum-based features alone
might not be sufficient, as a recent work [74] has demonstrated that
these features can be potentially manipulated by sophisticated at-
tackers to evade the detection. In addition to the widely-considered
magnitude-based features, recent studies on single-channel replay
attack detection have revealed that the phase domain features also
contain complementary channel information to the magnitude-
based features that are potentially useful for replayed and synthe-
sized audio detection [37, 43, 55, 72, 79]. However, utilizing multi-
channel phase information for audio attack detection remains un-
explored. To investigate the discriminability of the magnitude and
phase information derived from multi-channel audio, we perform a

feature analysis on the recently-published ReMASC dataset [22],
which contains genuine and replayed speech samples recorded from
multi-channel devices in four environments. The dataset and its
recording environments are detailed in Section 7. Specifically, we
divide all speech samples recorded by the ReSpeaker 4-Mic Lin-
ear Array into 4 groups according to the recording environment
(i.e., outdoor, indoor #1, indoor #2, and in-vehicle). This results in
a total of 192, 713, 275, and 673 genuine speech samples and 311,
2157, 846, and 959 replayed speech samples for each environment,
respectively. Figure 4 plots the average power spectrum for all the
genuine and the replayed audio samples and the continuous phase
spectrum averaged across all channels. From the figure, we can
clearly observe that both the magnitude and phase spectrum ex-
hibit distinguishable patterns between genuine and replayed audio
in all the environments. This confirms that both magnitude and
phase information in the frequency domain can be used to learn the
innate difference between the vocalization mechanism of humans
and loudspeakers.



Table 1: Inter-channel L1 distance of magnitude and phase spectrum in different environments.

Outdoor Indoor #1 Indoor #2 In-vehicle
Channel Pair 1-2 1-3 1-4 2-3 2-4 3-4 1-2 1-3 1-4 2-3 2-4 3-4 1-2 1-3 1-4 2-3 2-4 3-4 1-2 1-3 1-4 2-3 2-4 3-4

Genuine
Magnitude

(dB) 1.00 1.07 0.94 0.80 1.56 1.71 0.83 0.89 0.68 0.57 1.22 1.13 0.96 1.11 0.98 0.92 1.16 1.26 0.76 1.01 0.71 0.72 0.90 1.05

Phase
(radians) 202.19 276.56 348.61 74.49 147.42 75.86 10.55 15.54 35.18 18.55 27.18 45.57 8.35 14.54 34.09 14.61 26.97 24.53 27.15 108.61 70.84 82.08 44.68 40.38

Replayed
Magnitude

(dB) 1.39 1.92 2.09 1.28 1.84 1.61 0.79 0.86 0.96 0.82 1.25 1.09 1.17 1.31 1.39 1.14 1.46 1.40 0.78 0.81 0.81 0.57 1.09 1.09

Phase
(radians) 82.38 117.48 81.45 35.11 13.82 36.058 15.15 22.79 79.60 35.76 94.19 60.86 46.22 31.35 16.00 15.45 34.65 23.81 57.86 47.56 78.76 16.13 21.33 31.21

Table 2: Channel-wise L1 distance of magnitude and phase spectrum between genuine and replayed audio in different envi-
ronments.

Outdoor Indoor #1 Indoor #2 In-vehicle
Channel# 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Magnitude (dB) 3.60 3.48 3.79 3.45 2.59 2.84 2.95 2.85 2.00 2.38 2.44 2.48 1.06 1.10 1.02 0.98
Phase (radian) 1587.52 1707.57 1746.88 1854.19 2933.04 2940.81 2925.86 2819.91 878.47 824.35 837.70 829.94 1458.11 1427.10 1519.01 1447.60

3.3 Distinct Information Carried on Multiple
Channels

Conventional approaches for multi-channel speech recognition of-
ten rely on beamforming techniques [10] to combine the received
multi-channel signal into an enhanced single-channel signal to
separate or extract speech signals from noisy environments. In par-
ticular, a beamformer acts like a spatial filter to enhance the signal
from a specific direction of interest (i.e., the speech signal) and
reduce the contamination caused by signals from other directions
(e.g., ambient noises). However, different from speech separation
or speech recognition that focuses only on the speech signal, the
multi-channel audio signal picked up by the microphone array
could contain distinct information (e.g., different surrounding noise
patterns) that are beneficial to the machine-induced audio detec-
tion process. To validate the feasibility of leveraging multi-channel
audio to enhance the performance of audio attack detection, we
further analyze the ReMASC dataset by plotting the magnitude
and phase spectrum of two individual channels, as shown in Fig-
ure 5. We observe that each individual channel possesses unique
information (especially visible in the phase domain) that could be
helpful for the detection of machine-induced audio. In addition,
we perform statistical analysis on the audio samples to quantify
the magnitude/phase difference between each pair of channels by
calculating their average L1 distance. As shown in Table 1, there
exists a difference in both magnitude and phase between any two
channels of the recorded audio, showing that each channel indeed
carries distinct information. Moreover, we observe that the pair of
channels with the most distinct magnitude information does not
necessarily carry the most distinct phase information. These find-
ings encourage us to design a deep learning model that leverages
both the magnitude and phase information of multi-channel audio
and extracts features from each channel independently to achieve
robust and high-performance audio attack detection.

3.4 Dominant Channel in Each Environment
To further investigate the impact of different acoustic environments,
we compute the channel-wise L1 distance of magnitude and phase
spectrum between genuine and replayed audio for each environ-
ment in Table 2, where the dominant channel that carries the most
discriminative information for detecting replayed audio is marked
in bold. We observe that the dominant magnitude/phase channel
varies in different acoustic environments, which is caused by the

varying recording condition (e.g., environmental noise) and behav-
ior of the recording and playback device (e.g., the relative location
of the sound source to the microphone array). The results demon-
strate the characteristics of the genuine and replayed audio can
be heavily affected by the type of recording environment. As a
result, the patterns learned from existing environments might not
generalize to new environments, which motivates us to explore a
way to remove environment-specific features from the model.

4 SYSTEM DESIGN
4.1 Design Objectives and Challenges
We aim to build a holistic solution to detect all the audio attacks
induced by machines. Specifically, the solution needs to meet the
following design objectives: 1) the model should be able to utilize
the rich information encoded in multi-channel audio to achieve
enhanced audio attack detection accuracy compared to existing
single-channel based methods; 2) in order to build a holistic defense
against anymachine-induced audio attack, the model should be able
to capture a set of generic acoustic features that distinguish gen-
uine speech from machine-induced audio; 3) the model should rely
on environment-independent features only to maintain a decent
detection performance in different acoustic environments.

Challenges. To design such a holistic and robust system, we
have to address the following challenges: 1) The voice interface
embedded in intelligent audio devices requires a swift system re-
sponse for usability considerations. To achieve timely detection,
the audio attack detection system should be able to make a decision
relying on only a short fraction of audio (e.g., ≤ 1 second); 2) The
attack audio may be induced by disparate types of loudspeakers
(e.g., standalone loudspeaker, built-in speaker on smartphone, and
ultrasound speaker) that have varying frequency responses. There-
fore, the model needs to be able to capture general features that
are pervasive across all playback devices; 3) Explicitly collecting la-
beled data for all common acoustic environments is rather difficult
in practice and thus it will be more desirable to enable the model to
generalize to new acoustic environments without requiring labeled
data for achieving robust defense.

4.2 Prepossessing
In real-world application scenarios, the detection model should be
able to make a decision relying on a short segment of the streaming
audio recorded by the microphone array. The length of the segment
𝑙 should be set as short as possible to achieve timely detection for
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Figure 6: Illustration of the standard and depthwise separa-
ble convolution and the inverted residual block.

real-time applications while maintaining a high recognition accu-
racy. In our implementation, we choose to set 𝑙 to be 1 second. This
gives us a multi-channel audio signal segment of size 𝑙 × 𝑐 , where
𝑐 is the number of channels for the microphone array. Instead of
directly operating on the rawwaveforms, we utilize the audio signal
to create a unified time-frequency map from the power magnitude
obtained via Short-time Fourier transform (STFT), which shows
how the intensity of each frequency component changes over time.
Specifically, we keep the entire audio signal segment without apply-
ing voice activity detection and use a sliding window to process the
signal into overlapping frames with a frame length of 10 ms and a
step of 5 ms. We then apply the Hann window function [40] to each
frame and calculate its spectrum using STFT, with the length for
fast Fourier transform being set to 512. For audio signals sampled at
the rate of 44.1𝑘Hz, the resulting dimension of the time-frequency
maps for each audio channel is 199 (time domain) by 257 (frequency
domain). Similarly, we process the phase information into time-
frequency maps of the same size by computing the angle of the
complex STFT values in radians and stack the phase maps along
with the magnitude maps. The final feature map shape used as the
input for our network is 199× 257× 2𝑐 for a 𝑐-channel audio signal.

4.3 Multi-channel Replay Attack Detection
Network

After preprocessing, the audio signals will be processed into image-
like feature maps, which enables us to leverage the rich body of
research on convolutional neural networks (CNNs) in the computer
vision domain to guide the design of our audio attack detection
network. Specifically, we propose to explore two flavors of network
configuration according to different usage scenarios: (1) Type I : a
large and powerful network that has more representational capac-
ity to enable high attack detection accuracy for desktop or cloud
application; and (2) Type II : a fast and lightweight network that
provides more computational and energy savings, which makes it
suitable for mobile and IoT deployments.

Design of Type I Network. Inspired by the previous study [50]
on CNN architecture for processing image data, we configure our
Type I network using modules composed of stacked convolution
layers with small-sized filters (e.g., 3 × 3) and pooling layers. The

intuition is that compared with large convolution filters, stacked
small convolution filters can achieve the same effective receptive
field as larger layers but with a fewer number of parameters (e.g.,
two stacked 3 × 3 layers have an effective field of 5 × 5, while
three stacked 3 × 3 layers have an effective field of 7 × 7), which
makes the model smaller and easier to be optimized. Additionally,
decomposing one convolution layer with a large filter into multiple
layers unlocks additional layers of non-linearity by injecting more
non-linear activation functions (e.g., Rectified Linear Unit (ReLU)),
which helps the network to capture complex patterns in the data.

Design ofType II Network. For our Type II network design, we
adopt the architectures proposed in MobileNet [28, 44] to compress
the model size and achieve efficient detection while maintaining
relatively high detection accuracy. The key innovation of MobileNet
compared with traditional deep networks (e.g., GoogLeNet [51],
DenseNet [29] and ResNet [26]) is the usage of depthwise separa-
ble convolution and the bottleneck residual block, which aims to
replace the expensive standard convolution layers with depthwise
separable convolutions which require a much fewer number of
parameters. As shown in Figure 6(a) and 6(b), the standard convo-
lution operation is substituted with a combination of two different
convolution operations, i.e., a depthwise convolution and a point-
wise operation. Different from standard convolution that combines
all input channels, depthwise convolution performs convolution
on each channel separately. The output channels of the depthwise
convolution operation are then combined using a pointwise con-
volution with 1 × 1 kernels. For a convolution operation with 𝑀

input channel, 𝑁 output channel, and 𝐷𝑘 ×𝐷𝑘 kernel, this transfor-
mation significantly reduces the computational cost by a factor of
1
𝑁

+ 1
𝐷2
𝑘

, which is especially helpful for processing multi-channel
audio signals that have a large number of input channels (e.g., a
6 channel audio signal will produce a 12 channel input feature
map). Leveraging this depthwise convolution, we can further con-
struct inverted residual blocks (Figure 6(c)) by adding expansion
layers that expand the compressed low-dimensional representa-
tion to high-dimensional space and projection layers that project
the filtered representation back to low-dimensional subspace. The
expansion ratio 𝑡 is used to control how much the representation
is expanded. In addition, a residual shortcut connect is added be-
tween the blocks to help accelerate the optimization process. A
width multiplier hyperparameter is used to further scale the model
by increasing/reducing the number of channels for all layers by a
factor of 𝛼 .

Network Structure. The overall structure of the proposed au-
dio attack detection network is presented in Figure 7. Specifically,
the network is composed of 3 components: a CNN feature extractor,
a fully-connected (FC) genuine/attack audio classifier, and an op-
tional domain discriminator which is only involved in environment-
independent training and will be detailed in Section 5. The Type I
network is built upon the VGG-16 network [50], with the number
of input channels modified according to the multi-channel audio
and the number of output neurons set to 2. We build the Type II
network based on the MobileNetV2 [44], with similar modifications
made to the network structure to accommodate the multi-channel
audio attack detection task.
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4.4 Optimization
The attack detection is modeled as a binary classification problem
(i.e., genuine speech or machine-induced audio) and the networks
are trained in an end-to-end manner from raw waveforms of multi-
channel audio to the prediction label, with the preprocessing units
(magnitude and phase spectrogram extraction) being implemented
as part of the network. We use cross entropy as the classification
loss to train the network. Due to the difficulty in gathering large sets
of human voice samples, public audio attack datasets often suffer
the class imbalance problem where the data distribution is biased
towards the attack audio class (e.g., the ratio of genuine audio to
replayed audio in the ReMASC dataset [22] is approximately 1 : 5).
This poses a challenge for the deep learning model training as the
minority class (i.e., the genuine speech) is more important and
thus more sensitive to classification errors. To address the class
imbalance problem, during training we re-weight the cross-entropy
for each class according to the number of samples available in the
training set. The ADAMoptimizer [31] with 𝛽1 = 0.9 and 𝛽2 = 0.999
is used to train the network for a total number of 100 epochs. As
for learning rate schedule, the step learning rate decay with warm-
up is used, where the learning rate is initially set to a small value
and increased by 10× in the first 20 epochs and then reduced by
a half every 20 epochs. Batch normalization layers and l2 weight
regularization are also applied to stabilize the training process and
prevent over-fitting.

5 DOMAIN-INVARIANT REPRESENTATION
LEARNING

The learning-based predictive modeling approaches heavily rely
on the training data to make predictions and its performance is
likely to degrade if the provided training samples are not an accu-
rate reflection of the underlying distribution of actual data. This
poses a challenge for audio attack detection since the model will
inevitably face new acoustic environments that are unrepresented
in the training data when deployed in practice.

To address this problem, we take inspiration from the recent
success in domain adaptation techniques in the computer vision
domain [20, 47, 67] and adopt an unsupervised domain adaptation
scheme for achieving domain-invariant representation learning. In
the context of audio attack detection, the term “domain” refers to
different acoustic environments and the domain adaptation process
aims to help the model generalize from the training-time environ-
ment (i.e., the source domain) to the test-time environment (i.e.,
the target domain). Specifically, let𝑤 𝑓 and𝑤𝑐 denote the param-
eters of the feature extractor and the classifier, respectively. As is
mentioned in Section 4, the network is trained on the classification

loss 𝐿𝑐 (𝑤 𝑓 ,𝑤𝑐 ) to recognize genuine/attack audio. To help the fea-
ture extractor learn domain-invariant features, we introduce a new
domain discriminator with parameters 𝑤𝑑 during training. The
domain discriminator shares the same architecture as the classifier
but the objective of the discriminator is to distinguish between the
source domain training samples and the target domain training
samples by minimizing the domain classification loss 𝐿𝑑 (𝑤 𝑓 ,𝑤𝑑 ).
The objective of the domain-invariant training process is to search
for the parameter set𝑤 𝑓 to minimize the audio classification loss
𝐿𝑐 and simultaneously maximize the domain classification loss 𝐿𝑑 ,
which can be achieved by minimizing the following integrated loss
function:

𝐿(𝑤 𝑓 ,𝑤𝑐 ,𝑤𝑑 ) = 𝐿𝑐 (𝑤 𝑓 ,𝑤𝑐 ) − 𝜆 · 𝐿𝑑 (𝑤 𝑓 ,𝑤𝑑 ),
where 𝜆 is a weighting factor to control the impact of the domain
discriminator on the learned feature mapping during training. This
can be achieved by inserting a gradient reversal layer [20] into
the network which implements the identity function during for-
ward propagation and reverses the gradient by multiplying it by a
negative scalar (i.e., 𝜆) during the backpropagation process. After
training, the feature extractor will learn to extract features that
are both discriminative for detecting various audio attacks and
invariant to the change of acoustic environments.

6 ATTACK IMPLEMENTATION
In order to evaluate our designed machine-induced audio attack
detection approach, we reproduced a set of representative audio
attacks. In addition to conventional replay attack, for which we
used a recently-published dataset (Section 7), we generated a set
of adversarial speech samples through the following procedures
and conducted extensive real-world experiments in various envi-
ronmental conditions.

Modulated Replayed Attack. Due to the security concerns
brought by replay attacks, a number of defense approaches have
been developed to detect replayed audio signals, by examining
unique acoustic distortions (e.g., energy distribution in the fre-
quency domain) induced by the playback device. To bypass such
defenses, a recent study [74] designed a new type of replayed at-
tack, namely modulated replayed attack, which can compensate for
the acoustic distortions through profiling the frequency response
of the playback device. Specifically, in our implementation, the
frequency response is measured with 68 single-frequency testing
signals across 0 ∼ 4000𝐻𝑧. We play the testing signals on three
playback devices (i.e., Huawei Nova 4, iPhone 12 Pro Max, and HP
Elitebook 1050 G1 laptop) and record the replayed audio signals
with a microphone (i.e., ReSpeaker Core v2.0). We then use the
played testing signals and the recording to generate an inverse
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Figure 8: Microphone arrays used for data collection.

filter [74] to compensate for the acoustic distortions for each play-
back device. Finally, we record the 10 original voice commands
shown in Table 9(a) spoken by a volunteer and pass the recordings
through the corresponding inverse filter to generate modulated
speech samples for each playback device.

Synthesis Attack. Synthesis attacks usually rely on a speech
synthesis model to produce attacking audio mimicking the voice
characteristics of the victim. The current synthesis models based on
deep learning can simulate natural sounding voices similar to hu-
man subjects. To evaluate synthesized speech, we use two state-of-
the-art speech synthesis models, including Google Text-to-Speech
based on WaveNet [1, 69] and Tacotron 2 based on WaveGlow [46].
Both WaveNet and WaveGlow are CNN-based audio generative
models exploiting temporal dependencies for speech signal genera-
tion. For the Google Text-to-Speech, we directly use a pre-trained
WaveGlow model of a male speaker provided by the API, while for
Tacotron 2, we train a WaveGlow-based speech synthesis model by
using 13,100 voice samples from a female speaker (i.e., LJ Speech
Dataset [3]). We use the two models to separately generate the 10
original voice commands listed in Table 9(a).

HiddenVoice Command.Hidden voice commands [13, 68] are
obfuscated voice commands that are unintelligible to human beings
but can be interpreted by intelligent audio systems. Such attacks
exploit the perception difference between humans and machines
(e.g., speech recognition models) in processing speech and modu-
late the recorded voice samples into attacking audio. To generate
hidden voice commands, the attack will first extract voice features
from normal commands and then train a network for reconstruct-
ing voice with these features and meanwhile continuously update
parameters of the network and feature extraction to make it unin-
telligible to humans. The attack can be either black-box (through
inverting MFCC features) or white-box (through applying gradient
descent-based approach on a target speech recognition model). A
recent study even proposed a more practical hidden voice com-
mands [7] aiming to spoof the feature extraction process of speech
recognition models, rendering the attack black-box and effective.
To evaluate our system, we use 14 publicly released hidden voice
commands, including 10 regular hidden voice commands [2] and 4
practical hidden voice commands [4].

Table 3: Description of the collected audio attack datasets.

Type
of Audio Environment Distance (cm) # Samples

of Device 1
# Samples
of Device 2

# Samples
of Device 3

# Total
Samples

HVC Room 1, 2, 3 30, 50, 100, 200, 300 1,812 1,680 1,478 4,970
Synthesis Room 1, 2, 3 30, 50, 100, 200, 300 2,397 2,531 2,531 7,459
Inaudible Room 1, 2, 3 10, 30 520 520 520 1,560
Adversarial Room 1, 2, 3 30, 50, 100 503 503 503 1,509
Modulated Room 1, 2 30, 50, 100 510 510 510 1,530
Genuine Room 1, 2 50, 100, 200, 300 1,324 1,147 1,240 3,711

Inaudible Attack. The adversary can launch inaudible attacks
by modulating the voice commands into ultrasound frequency
bands [41, 85] (e.g., over 20𝑘𝐻𝑧). Although ultrasound signals can-
not be perceived by the human ear, they can be demodulated by
the microphones in audio intelligent devices due to their inherent
non-linearity. To implement inaudible attacks, we first use Google
Text-to-Speech API to generate the 10 original voice commands
listed in Table 9(a). We then use amplitude modulation to modu-
late the voice commands onto a baseband signal of 35𝑘𝐻𝑧, where
the modulated sound is completely inaudible and can be demod-
ulated by microphones. The modulated signals are generated on
a Keysight 33500B signal generator and played by an ultrasonic
speaker (Avisoft Bioacoustics Vifa [5]).

Audio Adversarial Example. The current intelligible audio
systems mainly rely on deep neural networks to perform speech
recognition, which are inherently vulnerable to well-craft and im-
perceptible adversarial perturbations [14, 35, 84]. The adversary
can inject the adversarial perturbations into the audio signals to
spoof the deep learning models. We implement the gradient-based
perturbation generation presented in the previous study on audio
adversarial examples [14], which targets to spoof an end-to-end
speech recognition (i.e., DeepSpeech [25]). To implement the at-
tack, we first generate 10 original voice commands (i.e., original
commands listed in Appendix Table 9(a)) using Google text-to-
speech API and then compute the adversarial perturbations to fool
DeepSpeech with the corresponding target commands (i.e., target
commands listed in Appendix Table 9(b)). The perturbations are
then added to the original voice commands for the attack.

7 PERFORMANCE EVALUATION
7.1 Experimental Methodology
To evaluate our system under the replay attack, we use a public
dataset collected using 4 different microphone arrays. For more
advanced audio attacks (e.g., hidden voice commands, inaudible
attacks), we use 3 representative microphones arrays shared in the
public dataset to recorded the attacking sound and genuine human
speech for evaluation.
7.1.1 Public Replay Attack Dataset. To evaluate our system under
the replay attack, we use a public dataset, ReMASC [22], which
is collected using a set of 4 microphone arrays with 2 ∼ 7 audio
channels. We partition the dataset into the core training set and
the evaluation set as described in ReMASC. The training set and
the evaluation set are disjoint and contain 26, 946 and 17, 581 audio
samples, respectively.
• Devices. To mimic multi-channel recording in commercial in-
telligent audio devices, ReMASC uses 4 microphone arrays with
different number of audio channels as shown in Figure 8. These
microphone arrays include: 1) Google AIY Voice Kit (2 channels);
2) ReSpeaker 4-mic linear array (4 channels); 3) ReSpeaker Core
V2 (6 channels) 4) Amlogic A113X1 (7 channels). To generate
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Figure 9: Recording devices and environments of the self-
collected dataset.

the attacking sound, ReMASC uses 3 different playback devices,
including a Sony SRSX5, a Sony SRSX11, an Audio Technica
ATH-AD700X headphone, and an iPod Touch.

• Environments. The dataset contains a total number of 9, 240
genuine speech samples and 45, 472 replayed recordings collected
in 4 different acoustic environments: 1) Outdoor (Env-A): an out-
door student plaza with various background noises such as chat-
ting, traffic, and wind; 2) Indoor #1 (Env-B): a quiet study room; 3)
Indoor #2 (Env-C): a lounge with music players and TVs ruining
in the background; and 4) In-vehicle (Env-D): inside a moving
vehicle (Dodge Grand Caravan) in different areas (e.g., campus,
residential area, urban area, and highway) with speeds ranging
from 3 to 40 miles per hour. The samples are recorded at varying
distances (0.5 − 6m) and angles (0 − 90 degrees) according to
each environment. The data volume and the involved number of
speakers for each environment are shown in Appendix Table 10.

7.1.2 Self-collected Audio Attack Dataset. Besides conventional
replay attacks, we also collect data samples of other 5 more ad-
vanced audio attacks using multiple microphone arrays in different
environments, following the implementation described in Section 6.
Table 3 shows the detail of the self-collected dataset.

• Devices. The data are collected using three microphone arrays,
i.e., Google AIY voice kit, ReSpeaker 4-Mic linear array, and
ReSpeaker core V2, which are shown in Figure 8. For the inaudi-
ble attack, we use an ultrasound speaker (i.e., Vifa Ultrasonic
Dynamic Speaker), while for other audio attacks, we use 2 smart-
phones (i.e., Huawei Nova 4 and iPhone 12 pro max) and a laptop
(i.e., HP EliteBook 1050G1) as the playback device, as shown in
Figure 9(a).

• Environments. The attack audio and genuine speech samples
are collected in 3 different room environments as shown in Figure
9(b)-(d), including two living rooms and a bedroom.

• Genuine Speech and Attack Setup.We recruit 6 participants
(i.e., 4 males and 2 females) aging from 22 and 30 to collect the
genuine speech samples. The attacking audio and genuine speech
are mostly recorded at 3 different distances between the partic-
ipant/loudspeaker and the microphone arrays, i.e., 30𝑐𝑚, 50𝑐𝑚,
100𝑐𝑚, except for the inaudible attack, which is only recorded

(a) Setup for inaudible attack (b) Setup for the remaining audio attacks

Figure 10: Experimental setup of audio attacks.

Table 4: Results for replay attack detection in environment-
dependent settings.

EER(%)/RA(%) Device 1 Device 2 Device 3 Device 4
Gong et al. [23] 14.9/- 15.4/- 16.5/- 19.8/-
CQT-LCNN [54] 15.0/90.3 23.4/76.3 26.9/77.9 21.5/81.0
LFCC-LCNN [62] 14.8/89.8 24.2/90.0 23.5/81.4 27.3/78.6
RawNet2 [59] 10.8/89.5 15.9/89.3 18.2/82.9 24.9/74.2
Ours (Type I ) 6.6/96.0 11.0/92.8 9.2/93.5 15.7/85.4
Ours (Type II ) 10.3/94.2 14.6/91.8 12.3/92.6 18.2/90.3

at 10𝑐𝑚 and 30𝑐𝑚 due to its short effective range [85]. More-
over, for genuine speech and attacks that are less sensitive to the
recording distance (i.e., the hidden voice command and synthesis
attack), we further conduct experiments to collect samples in the
long-range scenario by extending the attack range to 200𝑐𝑚 and
300𝑐𝑚. The device placement for recording the attack audio is
shown in Figure 10.

7.1.3 Evaluation Metrics. We use two metrics to evaluate the per-
formance of the system: (1) Recognition Accuracy (RA): Audio attack
detection can be viewed as a binary classification problem. Recog-
nition accuracy is the percentage of audio samples being correctly
classified; and (2) Equal Error Rate (EER): EER is a commonly used
metric for evaluating replay attack detection system [32]. It depends
on two detection error rates: the false acceptance rate (FAR) and the
false rejection rate (FRR). EER corresponds to the point at which
the two detection error rates are approximately equal.
7.1.4 Baseline Models. We compare our results with 4 state-of-
the-art baseline replay attack detection models: (1) Gong et al. [23],
which is a multi-channel replay attack network composed of learn-
able filter-and-sum beamformer, a frequency convolution layer, and
multiple stacked LSTM layers for classification; (2) CQT-LCNN [54],
which is a single-channel replay attack detection model using the
log power magnitude spectrum extracted via the constant Q trans-
form (CQT) [66] as the features and a light convolutional network
(LCNN) [63] as the classifier. This single model achieves 1.23% EER
in the ASVspoof2019 Physical Access (PA) [60] scenario and can
be further improved to 0.54% EER (ranks the 2𝑛𝑑 place) if score-
level fusion is applied using models with other front-end features;
(3) LFCC-LCNN [62], which is a single-channel-based model that
adopts linear frequency cepstral coefficients (LFCC) as the front
end and LCNN as the back-end classifier. This model is used as
the official baseline for the ASVspoof2021 challenge [6]; and (4)
RawNet2 [59], which is a single-channel model that aims to release
the constraints of hand-crafted features by training an end-to-end
CNN-GRU network with sinc-convolution layer [56] to extract use-
ful cues directly from raw audio waveforms. SVM-based fusion
of RawNet2 and high-spectral-resolution LFCC [58] can achieve



Table 5: Results for replay attack detection in the environment-independent settings3.
EER(%) Device 1 Device 2 Device 3 Device 4

Models Gong et al. [23] Ours
(w/o DA)

Ours
(w/ DA) Gong et al. [23] Ours

(w/o DA)
Ours

(w/ DA) Gong et al. [23] Ours
(w/o DA)

Ours
(w/ DA) Gong et al. [23] Ours

(w/o DA)
Ours

(w/ DA)
Env-A 35.2 31.2 22.8 34.6 16.2 12.5 23.8 21.1 14.5 31.5 24.5 19.1
Env-B - - - 36.4 17.7 11.9 40.4 36.4 27.4 44.9 42.6 39.0
Env-C 36.7 38.3 27.0 18.5 24.0 8.8 13.0 14.2 12.6 32.7 28.6 19.9
Env-D 34.0 37.4 27.4 41.0 38.9 26.3 43.6 41.2 23.8 40.6 41.7 34.1

an EER as low as 1.12%, which ranks the 2𝑛𝑑 best place in the
ASVspoof2019 Logical Access scenario (LA).

7.2 Overall System Performance for Replay
Attack

We first evaluate the overall performance of the proposed system
on replay attacks using the public ReMASC dataset. For fair com-
parison, we use the same default data separation scheme suggested
in the original paper [22] for all baseline methods and develop a sep-
arate model for each recording device as is used by Gong et al. [23].
For the Type II network, we use a width multiplier of 𝛼 = 1 for de-
vice 1 & 2 and 𝛼 = 1.5 for device 3 & 4. Each model is trained using a
batch size of 32 for 100 epochs on the same learning rate scheduling
strategy with an initial learning rate of 1 × 10−3 for our Type II
models and 1 × 10−5 for other models. We implement all baseline
methods and compare the experiment results with the proposed
models in Table 4. By default we use the signals collected from the
first channel for the training of single-channel-based models. For
the beamforming-based network proposed by Gong et al. [23], we
report its best results presented in the original paper (RA is not
shown since it has not been reported). From the results we can
see that RawNet2 achieves the overall best performance among
all single-channel-based methods, which is even able to produce
EER that is lower than the multi-channel beamforming-based net-
work proposed by Gong et al. [23] for recording device 1 with 2
channels. However, in general we observe that multi-channel-based
methods still outperform single-channel-based methods with the
performance gain becoming more visible as the number of available
channels increases. The proposed Type I network can consistently
achieve better EERs that are 20% − 55% lower comparing to the
existing beamforming-based network. The Type II network can also
reduce the EER by up to 31% compared to the beamforming-based
network. These results verify that comparing to using a beamformer
to combine multi-channel audio signal into an enhanced signal, uti-
lizing magnitude and phase information from all available channels
can result in better performance in audio attack detection.

Inference Time. The inference time is crucial for real-time de-
tection. To investigate the inference time of our models, we run
experiments on a Nvidia 2080Ti GPU with a batch size of 16 and
repeat for 100 trials to measure the average inference time. The
results show that the proposed Type I model takes 36.5ms while
the Type II model only takes 23.3ms. Compared to the latency of
commercial speaker recognition model [52] (∼40ms) and speech
recognition model [61] (∼600ms), the latency of the proposed de-
tection model is sufficient to achieve timely detection of any types
of audio attacks for various real-time applications.

3The dataset lacks genuine speech samples recorded using Device 1 in Env-B, and
therefore the EER cannot be obtained.

Table 6: Comparison with single-channel-based methods in
the environment-independent settings on Device 2.

EER(%) Gong
et al. [23]

CQT-
LCNN [54]

LFCC-
LCNN [62] RawNet2 [59] Ours

(w/o DA)
Ours

(w/ DA)
Env-A 34.6 30.8 40.3 39.1 16.2 12.5
Env-B 36.4 43.4 37.8 26.4 17.7 11.9
Env-C 18.5 40.0 35.3 36.3 24.0 8.8
Env-D 41.0 31.9 57.4 39.1 38.9 26.3

Model Size. For desktop or cloud applications with sufficient
storage and computational resources, we often prioritize the per-
formance over the size of the model. However, for mobile and
embedded applications that require the model to be executed of-
fline in an on-device manner, the size of the model should be small
enough in order to match the resource restrictions (e.g., memory,
computational resource, and power consumption). The model size
of our Type I network is around 479MB, which we believe can be
deployed in most desktop or cloud applications. For our Type II
network, the model size is only 18MB with 𝛼 = 1 and 40MB with
𝛼 = 1.5. This demonstrates that by utilizing the inverted residual
module, the proposed Type II network is extremely lightweight
while still retaining sufficient representation power to achieve a
high attack detection accuracy.

7.3 Environment-independent Detection
In addition to inspecting the overall performance of the model by
training on a mixture of data samples from all the environments,
we also evaluate the model in environment-independent conditions.
Specifically, we set one of the 4 environments to be the target
domain for testing, while the remaining 3 environments serve as the
source domain for training.We set 𝜆 = 0.33 and use the optimization
techniques as mentioned in Section 4.4 to train the models. To
validate the effectiveness of the domain adaptation (DA) training
procedure, we compare the performance of our Type-I model with
DA to the performance of model without DA in Table 5, where the
results of the multi-channel beamforming-based network [23] are
also shown for comparison. In addition, we compare the results
of our models with single-channel-based methods using the data
recorded from Device 2 in Table 6.

From the results we observe that models trained on data from
source environments generally suffer low generalizability to new
environments. In particular, Env-D (i.e., the in-vehicle environ-
ment) is the most difficult environment for the model to gener-
alize among environment-independent cases. This is because the
in-vehicle setting has several unique acoustic features (e.g., loud
road and engine noises and strong reverberations due to narrow
cabin) that cannot be learned from other environments. As shown
in Table 6, apart from RawNet2 which achieves an EER of 26.4%
in Env-B, all single-channel-based methods perform poorly in the
environment-independent scenario (>30% EER). Despite this, lever-
aging the domain adaptation process, the proposed network is still



Table 7: Results for detecting replay attack as well as 5 other
types of advanced machine-induced audio attacks.

EER(%)/RA(%) Device 1 Device 2 Device 3
Gong et al. [23] 19.3/84.1 19.8/87.5 15.1/83.8
CQT-LCNN [54] 18.7/87.6 20.7/84.3 23.1/81.9
LFCC-LCNN [62] 19.5/85.2 24.2/81.2 26.7/81.3
RawNet2 [59] 19.0/87.4 23.9/83.9 23.5/84.0
Ours (Type I ) 13.1/91.5 15.2/90.6 10.3/92.3
Ours (Type II ) 15.4/88.3 15.5/90.3 14.9/90.2

able to reduce the EER by up to 42.2%, achieving an average EER
of 21.8%, which is much lower comparing to the beamforming-
based network (33.8%) and the proposed network (30.3%) without
applying domain adaptation.

7.4 Robustness Against Other More Advanced
Attacks

In this section, we expand the evaluation of the system robustness to
include other more advanced audio attacks using the self-collected
dataset described in Section 7.1.2. We randomly split the collected
audio attack samples into training and test sets with 60% samples
used for training and 40% samples reserved for testing, which is
similar to the train/test split ratio used in the ReMASC dataset4. The
separated datasets are then merged with the the audio samples from
the ReMASC dataset, resulting in a total number of 9596, 10260,
9931 samples for training and 5816, 7295, 6951 for testing, for the
device 1, 2, 3, respectively.

Table 7 compares the results of the proposed model with baseline
models. As we can see, when considering all 6 types of audio attacks,
the performance of most models are degraded compared to the
ones that are trained exclusively for detecting replay attacks, due
to the highly varying behaviors of the advanced audio attacks. The
proposed Type I network, however, is still able to achieve the best
performance among baseline models, achieving an overall average
EER of 12.9% across all 3 devices. Despite its compact model size,
the proposed Type II network is also able to achieve a relatively
high recognition accuracy and low EER that surpasses existing
single- and multi-channel-based models in most cases. These results
demonstrate that the proposed methods can learn general features
that are able to distinguish machine-induced audio from genuine
speech to achieve robust detection of various types of audio attacks.

7.5 Ablation Study
Impact of Involved Channels. To investigate the impact of the
number of involved channels on the detection performance, we
train a group of models on the genuine and replayed audio data
recorded using device 2 by varying the number of input audio
channels and measure the resulting recognition accuracy and EER.
From the results shown in Figure 11, we observe that the recognition
accuracy increases as more channels are involved. The EER has
decreased from 17.1% to 11.0% if using four channels. These results
validate the effectiveness and benefits of using multiple channel
audio for audio attack detection.

Impact of Phase Information. To investigate the impact of
the phase information on the system, we modify the structure of the
proposed Type I network to only involve magnitude spectrograms
and evaluate its impact on the models’ performance. We get a
4The suggested data separation for the ReMASC dataset is shown in Appendix Table 11.
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Figure 11: Results with different number of channels.

recognition accuracy of 96.3%, 87.9%, 73.1% and EER of 8.6%, 11.4%,
29.2% for device 1, 2, and 3, respectively. Compared to the model
that uses both magnitude and phase spectrogram as input, the
average EER is increased by 38.8%. This result validates that the
phase spectrogram can serve as complementary information in
addition to the magnitude spectrogram to help further improve the
performance of audio attack detection.

7.6 Model Interpretability Analysis
We further investigate the interpretability of our approach by visual-
izing the saliency map of the model and its learned representations.

Visualization of SaliencyMap.We use the gradient-weighted
class activation map (Grad-CAM) to visualize the decision-making
process of the proposed deep learning model. Specifically, Grad-
CAM uses the gradient of the target class to produce a localization
map to highlight the important regions in the input feature map
used by the model to make the prediction, allowing us to visualize
the attention of the model. Figure 12 shows two examples of Gram-
CAM generated from our model, where the three columns from
left to right are the magnitude spectrogram of input, the generated
CAM image, and the CAM overlaid on the spectrogram. We can
observe that the most discriminative region on which the model
mainly focuses is the low-frequency region, with some attention
also being paid to the high-frequency noises. These findings are
well-correlated with previous studies on discriminative frequency
regions for replay attack detection [9, 12, 76], which demonstrates
the effectiveness of the proposed learning-based approach.

Visualization of Learned Representations. To investigate
the learned representations, we randomly select 20 audio samples
from the genuine speech and each type of the audio attacks recorded
using device 1 and compute the output of the first layer in the clas-
sifier of our Type I model as the embeddings. We first use Principle
Component Analysis (PCA) [77] to reduce the dimensionality of
each embedding to 100 and then use t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [70] to visualize the embeddings on a 2D
plane. The visualization result is shown in Figure 13. From the
figure, we can see that the genuine and attack audio samples are
well-clustered, which verifies the model’s ability to extract discrim-
inative features. In addition, although the model is not trained to
distinguish different audio attacks, we are still able to observe some
patterns between different types of attacks. In particular, among all
considered attacks, synthesis attack can produce audio samples that
are the closest to genuine speech in the learned manifold, which
shows that the deep learning-powered speech synthesizer used in
our attack implementation can generate lifelike speech samples
that resemble human speech.
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Grad-CAM [45].

8 DISCUSSION
Integration with Intelligent Audio Systems. The developed au-
dio attack detection models can be integrated into commercial intel-
ligent audio systems with few or no modifications required on the
hardware. Besides standalone intelligent audio systems (e.g., smart
speakers), mobile intelligent audio systems such as smartphones
also come equipped with multiple microphones for stereo recording
and noise/reverberation cancellation. Since the microphone array
on smartphones (usually located at the top and bottom of the phone
frame) is of similar dimension with the 2-channel device (Google
AIY voice kit) used in our experiments, we expect that our model
can be easily adapted to smartphone use. Moreover, the model can
be simply inserted at the beginning of the inference pipeline to
check the legitimacy of the audio input before it reaches the speech
or speaker recognition model. Depending on the application sce-
nario as well as the capability of the system, the detection process
can be executed either via cloud-based services or directly on the
device. The proposed Type I model is desirable for cloud servers
with sufficient computational power for achieving the maximum
detection accuracy. In addition, the model can be used in paral-
lel with other optimization components (e.g., attention module)
and neural-based countermeasure models to potentially improve
performance. For systems that have limited communication band-
width or scenarios with rigorous privacy requirements, the data
can also be processed locally. To support on-device inference on
voice-controllable mobile and IoT devices that have constrained
storage and computational resources, the audio attack detection
model should be as compact and energy-efficient as possible. In this
study, we provide a fast and lightweight Type II network, which
is approximately 12× lighter and 1.5× faster compared to the pro-
posed Type I network with slightly compromised performance as
an option for resource-constrained devices. For future work, model
compression [18, 38] and acceleration [16, 34] techniques can be
adopted to further improve the efficiency of the model.

Potential Evasion. Grounded on a data-driven approach, the
effectiveness of the proposed model requires collecting samples
from existing audio attack methods for attack profiling. Thus, a so-
phisticated attacker with the ability to access the established profile
may leverage this knowledge to design adaptive attacks to bypass
the system. For instance, crafting an attack audio sample that is
close to the genuine audio samples in the learned representation
space may force the model to falsely accept it. However, launching
such an adaptive attack in practice still faces several challenges.
First, the attacker cannot directly regulate the received signal in
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Figure 13: Visualization of the learned representation using
t-SNE [70].

its digital form as the model only accepts signals received through
the physical channel (i.e., picked up by the microphone array) as
valid inputs, while propagating in the physical environments will in-
evitably leave a certain level of traceable patterns to the audio signal.
Although injecting signals via other modalities such as laser [57]
may alleviate the distortion incurred by the over-the-air propaga-
tion, such attack only injects signal to one microphone channel
at a time and therefore can be defended by cross-checking signals
from all microphone channels before executing the command. An
attacker may also attempt to evade detection by manipulating the
sound field with multiple playback devices (e.g., a pair of stereo
loudspeakers or a multi-channel surround sound system) to control
the received signal in each microphone [64, 65]. However, precise
manipulation of the signal received by each microphone channel
is hard to achieve due to the low directionality and diffraction of
sound. In addition, such attacks still involve the same recording
and playback process which will cause distortions to be projected
into the magnitude and phase domain. Moreover, solely defeating
the detection model isn’t sufficient. Since our model is proposed
as an add-on module before the actual audio processing model
(e.g., speech or speaker recognition model), the attacker needs to
bypass both models to achieve a successful attack, which remains
challenging in practice.

9 CONCLUSION
In this paper, we propose a holistic solution for detecting machine-
induced audio attacks by leveraging the readily available micro-
phone array on modern intelligent audio systems. We utilize the
magnitude and phase information derived frommulti-channel audio
and train a deep learning model to capture the fundamental differ-
ence between human speech and adversarial audio launched from
playback devices. To improve the generalizability to new acoustic
environments, we use unsupervised domain adaptation to help the
model learn to extract domain-invariant features. We also develop a
more compact model that’s suitable for resource-constrainedmobile
and IoT devices. Extensive experiments on a public multi-channel
replay attack dataset and a self-collected advanced audio attack
dataset show that the proposed method can achieve an EER as
low as 6.6% for detecting a variety of audio attacks and still main-
tains a relatively high recognition accuracy even in the challenging
environment-independent case.
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A APPENDIX
A.1 Microphone Configuration

Table 8: Microphone arrays in intelligent audio devices.

Device Name # of Mics Device Name # of Mics

Amazon Echo (4th Gen) 6 Google Home 2

Amazon Echo (3th Gen) 7 Google Home Max 6

Amazon Echo Dot (4th Gen) 4 Google Nest Mini (2nd gen) 3

Amazon Echo Dot (3th Gen) 4 Google Nest Mini (1st gen) 2

Amazon Show 10 3 Google Nest Audio (1st gen) 3

Amazon Show 8 2 Google Nest Hub 2

Amazon Show 5 2 Google Nest Hub Max 2

Amazon Echo Studio 7 Apple HomePod 6

Amazon Echo Auto 8 Apple HomePod Mini 4

A.2 List of Speech Commands

Table 9: Speech commands used to generate attack speech
samples: (a) the commands for synthesis attack, inaudible
attack, andmodulated replay attack, and (b) the target voice
commands to generate the adversarial examples.

(a)

ID Command

1 Please call Stella
2 Call 12345
3 Facetime 12345
4 Turn on airplane mode
5 Open the door
6 Navigation
7 Hey Siri
8 Ok Google
9 Hi Galaxy
10 Hello Huawei

(b)

ID Command

1 Disable home alarm
2 Unlock the door
3 Browse to evil.com
4 Set volume to 0
5 Call mom
6 Power off
7 Open door
8 Call dad
9 Read email
10 Unlock iPhone

A.3 Description of the ReMASC Dataset

Table 10: Data volume of the ReMASC dataset [22].

Environment # Subjects # Genuine # Replayed

Outdoor 12 960 6,900
Indoor #1 23 2,760 23,104
Indoor #2 10 1,600 7,824
In-vehicle 10 3,920 7,644
Total 55 9,240 45,472

Table 11: Data separation of the ReMASC dataset [22].

# Device # Training # Testing Test Ratio

1 5,357 2,989 0.3581
2 6,126 4,538 0.4255
3 5,862 4,238 0.4196
4 6,161 4,515 0.4229
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