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ABSTRACT
The proliferation of wearable devices, e.g., smartwatchesand ac-
tivity trackers, with embedded sensors has already shown its great
potential on monitoring and inferring human daily activities. This
paper reveals a serious security breach of wearable devicesin the
context of divulging secret information (i.e., key entries) while peo-
ple accessing key-based security systems. Existing methods of ob-
taining such secret information relies on installations ofdedicated
hardware (e.g., video camera or fake keypad), or training with la-
beled data from body sensors, which restrict use cases in practical
adversary scenarios. In this work, we show that a wearable device
can be exploited to discriminate mm-level distances and directions
of the user’s fine-grained hand movements, which enable attackers
to reproduce the trajectories of the user’s hand and furtherto re-
cover the secret key entries. In particular, our system confirms the
possibility of using embedded sensors in wearable devices,i.e., ac-
celerometers, gyroscopes, and magnetometers, to derive the mov-
ing distance of the user’s hand between consecutive key entries re-
gardless of the pose of the hand. Our Backward PIN-Sequence
Inference algorithm exploits the inherent physical constraints be-
tween key entries to infer the complete user key entry sequence.
Extensive experiments are conducted with over5000 key entry
traces collected from20 adults for key-based security systems (i.e.
ATM keypads and regular keyboards) through testing on different
kinds of wearables. Results demonstrate that such a technique can
achieve80% accuracy with only one try and more than90% accu-
racy with three tries, which to our knowledge, is the first technique
that reveals personal PINs leveraging wearable devices without the
need for labeled training data and contextual information.
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1. INTRODUCTION
The convenience of wearable devices, such as smartwatches and

fitness bands (e.g., Fitbit and Jawbone), has greatly stimulated the
growth of the market of mobile devices in recent years; market
researchers estimated that 72.1 million wearable devices will be
shipped in 2015, which will be about 173% from the 26.4 million
wearable devices shipped in 2014 [4]. Such increasing popularity
of wearable devices has enabled a broad range of useful applica-
tions, including fitness tracking, falling detection, gesture control
and user authentication. Since such wearable devices have the abil-
ity to capture users’ hand movements and derive human dynamics
directly, a major concern arises on whether a user’s sensitive in-
formation could be leaked and obtained by adversaries including
the user’s PIN sequence when accessing an ATM machine or using
debit cards for payment.

In this work, we demonstrate that a user’s personal PIN sequence
could be leaked through his wearable devices (e.g, smartwatch or
fitness tracker), when accessing a key-based security system. Such
systems are very common in daily lives. Examples include ac-
cessing ATM cash machines, electronic door locks, and keypad-
controlled enterprise servers. A key-based security system requires
people to enter personal key combinations on the keypad for iden-
tity verification. With people tending to wear wearable devices
around-the-clock, the movements of their wrists during thekey en-
try process to a security system (i.e., clicking keys and moving
between clicks) are captured by the sensors on wearable devices.
As such, wearables could cause a new way of sensitive informa-
tion leakage when a user accesses the key-based security systems.
In particular, adversaries can obtain sensor readings of wearables
via sniffing Bluetooth communications [16, 19] or installing mal-
wares [3] on the devices, and further infer the user’s PIN sequence
(e.g., ATM PIN sequences or key sequences on access control pan-
els) for his own use.

There has been active study on sensitive information leakage
when using key-based security systems. Traditional attacks rely on
either shoulder surfing or hidden cameras [6, 11]. Such attacks re-
quire direct visual contact to key entry actions and additional instal-



lation efforts. Furthermore, Shuklaet al. propose a side-channel
attack utilizing a camera-based method to recover smartphone lock
PINs from the user’s spatial-temporal hand dynamics without di-
rectly seeing the keypad on screen [18]. The proposed method
has a low inference accuracy and requires cameras to capturethe
user’s hand and the back side of the touch screen. Two recent
work [10, 20] propose to utilize sensors in smartwatches to infer
user’s typed words or passwords. The MoLe [20] system relieson
a linguistic model to infer user’s typed words, which is difficult to
work with non-contextual inputs. Liuet al. [10] devise a system
that requires training of the sensor data to classify user inputs.

In contrast to these prior studies, we develop a training-free,
context-free technique to reveal a user’s private PIN sequence (to a
key-based security system) when a wrist-worn wearable device is
employed. The wrist-worn wearable devices could be either smart-
watches or fitness trackers. While the digital smartwatch isde-
signed to be worn on either hand, the user can wear it on the right
hand without the concern on traditional watch designed to adjust
time easily when wearing it on the left hand. Additionally, many
people tend to wear fitness tracker on the right hand while keep-
ing wearing traditional watch on the left hand. The basic idea is to
exploit embedded sensors in wearable devices to capture dynam-
ics of key entry activities and derive fine-grained hand movement
trajectories traversing secret key entries. While wearable devices
have equipped with various sensors, it is challenging to accurately
recover such fine-grained hand-movement trajectories thatexhibit
only mm-level difference in distance between keys via low-fidelity
sensors. In addition, due to hand vibrations and rotations,the co-
ordinate system of a wearable device is not always aligned with a
fixed reference, which makes it hard to track the hand movements
by using sensor readings directly. Additionally, in order to obtain a
person’s key entries without user cooperation or drawing any atten-
tion, the adversary has to achieve the PIN sequence with no training
or contextual information.

To address these challenges, our approach examines the inher-
ent physics phenomenon extracted from the user’s key entry ac-
tivities via wearable sensors and develops distance calculation and
direction derivation schemes to produce mm-level accuracywhen
estimating the moving distance and angle between two consecu-
tive key entries. To obtain the complete PIN sequence, our back-
ward PIN-sequence inference algorithm exploits the physical con-
straints of distance between keys and temporal sequence of key en-
try activities to construct a tree of candidate key entries for deter-
mining the PIN sequence in a reversed manner, because in many
practical cases, the “Enter” key is the last key after the user enters
his/her PIN sequence. The mm-level precision of estimatingthe
fine-grained moving distance and direction between two keysand
the backward PIN-sequence inference algorithm enable our sys-
tem to obtain the user’s PIN sequence without training and contex-
tual information. Such a technique can also be extended to support
password recovery when people type on keyboards while wearing
wearables.

We summarize our main contributions as follows:

• We demonstrate that a single wrist-worn wearable device can
reveal a user’s PIN sequence to key-based security systems.
We develop a training-free approach by exploiting the inher-
ent physics meaning extracted from sensor readings on wear-
ables. Such an approach does not require contextual informa-
tion, allowing it to recover random key entries.

• We develop the distance estimation and direction derivation
schemes that capture the fine-grained hand movements at
mm-level precision.

• We show that it is possible to infer a complete user’s PIN
number via a backward PIN-sequence inference algorithm.
By exploiting spatial and temporal constraints of PIN entries
and the fine-grained hand movement analysis, our approach
can accurately pin-point the location of each PIN entry with
the right sequence.

• We conduct extensive experiments with20 participants wear-
ing two types of smartwatch and a prototype of wearable on
key-based security systems such as ATM keypads and key-
boards over an eleven-month period. We show that our sys-
tem can achieve80% accuracy of inferring PIN sequences
with only one try and over90% accuracy with three tries
without training and contextual information.

The rest of the paper is organized as follows. We first put our
work in the context of related studies in Section 2. In section 3,
we investigate the feasibility of using wearables to obtaina user’s
PIN sequence of key-based services. We then describe the design
of our PIN-sequence inference framework in Section 4. Next,we
present two schemes of distance estimation and direction derivation
to capture fine-grained hand movements via sensors on wearables
in Section 5. The backward PIN-sequence inference algorithm to
recover the complete user PIN sequence is described in Section 6.
We present the detailed implementation of our framework in terms
of pre-processing of the sensor data and coordinate alignment in
Section 7. In Section 8, we perform extensive evaluation of our
approach involving real key-based security systems. Finally, we
discuss the relative issues and conclude our work in Sections 9 and
10 respectively.

2. RELATED WORK
Recent studies show that embedded sensors on mobile devices,

such as accelerometers and touch screens, can capture users’ mo-
tion and leak their sensitive information [13, 15, 17]. Recently,
wearable devices, such as smartwatches and fitness bands, extend
the sensing capability to limbs and enable many useful applica-
tions [9, 14, 22]. These existing studies have shown the sensing
capabilities of up-to-date mobile devices, which inspire us to ex-
plore the potential of using wrist-mounted wearables to recover
fine-grained hand movements, and study to what extent the user’s
sensitive information could be leaked from their fingers.

Toward this end, we explore the possibility of recovering peo-
ple’s private PIN sequences through their wrist-worn mobile de-
vices when they enter PINs on key-based security systems. Tra-
ditionally, key-based security systems could be breached by sev-
eral methods, such as hidden cameras and skimmers. For exam-
ple, some ATM machines are attached by a hidden camera, which
was used to record PIN sequences or body movements of entering
PINs [11]. An adversary may also put a skimmer into the ATM
machine card slot. When the customer slides their card, it will go
through the skimmer first and then into the machine. A chip inside
the skimmer device records information about the account without
the knowledge of the customer [1]. These existing methods largely
depend on installing dedicated devices in the restricted area.

In addition, researchers show that it is possible to recognize users’
keystrokes by using acoustic approaches. Bergeret al. [7] demon-
strate that by using linguistic models and recorded typing sound
on a keyboard, an attacker can successfully reconstruct thetyped
words. Zhuet al. [23] present a context-free and geometry-based
approach to recover keystrokes by using multiple smartphones to
record acoustic emanations from the keystrokes. Wanget al. [21]
develop a system that extracts and optimizes the location-dependent
multipath fading features from the audio signals and leverages the
signal diversity resulted from the dual-microphone interface in a
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Figure 1: Acceleration patterns inherited from key entry activ-
ities, shown in the readings of a 3-axis accelerometer on IMU.

mobile device to identify key entries typed on a keyboard. Along
this line, Jianet al. [8] demonstrate that mobile audio hardware in
off-the-shelf mobile devices can be exploited to discriminate mm-
level position differences, based on which they develop a system
that can locate the origin of keystrokes by using only a single phone
behind a keyboard [8]. Marquardtet al. develop an application that
can utilize accelerometers in a smartphone to sense the vibrations
caused by keystrokes from a nearby keyboard and further identify
the keystrokes [12]. Their proposed technique relies on a linguistic
model and labeled training data and the system is highly sensitive
to environment noise (e.g., people moving around).

The most related work to ours are two concurrent studies, which
analyze the leak of users’ passwords or typed words from smart-
watches [10, 20]. Wanget al. [20] devise a system that can infer
typed words on a keyboard by utilizing motion sensors in smart-
watches. The system assumes to know the fixed initial position
of the smartwatch and relies on a linguistic model to infer typed
words, which makes it hard to deal with non-contextual inputs,
such as passwords and PIN sequences. Liuet al. [10] apply sen-
sors in a smartwatch to infer users’ inputs on a keyboard or POS
terminal by utilizing machine-learning based techniques.Their ap-
proach requires training of hand movements between keystrokes,
and it is unclear how the system handles changing positions of the
wrist during typing. Moreover, both of the above work can only
achieve moderate accuracy in deriving the user inputs givenlimited
number of tries. Different from previous work, our key entryinfer-
ence system is training-free, contextual-free and does notinvolve
additional devices. Furthermore, our backward PIN-sequence in-
ference framework is not subject to environmental noises, such as
ambient noise, light interference and people walking around.

3. ATTACK MODEL AND FEASIBILITY STUDY
The positions of wearable devices on human bodies naturallyen-

hance the devices’ capability of the activity recognition and facili-
tate many applications based on the context of activities. However,
such strong sensing ability brings up new security and privacy is-
sues. In this work, we study the possible personal secret leakage
in a very common scenario that people wear wrist-worn wearable
devices while using key-based security systems, such as ATMma-
chines, password secured door entries, and keypad-controlled en-
terprise servers. In this section, we describe the attack model and
explore the feasibility of utilizing wearable devices to recover per-
sonal key entries in key-based security systems.

3.1 Attack Model
We consider an adversary aiming at recovering a person’s secret
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Figure 2: Distance estimation of the number pad on the Dell
keyboard based on IMU.

PIN entries leveraging embedded sensors (e.g., accelerometer, gy-
roscope and magnetometer) in wearable devices worn on his/her
wrist. The adversary has the knowledge of where the victim vis-
its the key-based security system and can obtain the layout of the
keypad. We assume that the adversary is able to access the sensor
data and communicate over networks on the smartphone, but can-
not observe the PIN entry activities visually by any means. The
wearable device is usually paired with the user’s smartphone via
Bluetooth and constantly sends sensor data to the person’s smart-
phone for logging purpose. Most wearables are using Bluetooth
Low Energy (BLE) to transmit sensor data. BLE comes with low
security capability compared with Bluetooth, and as a result the
sensor data could be sniffed by the adversary [16, 19]. But the ad-
versary does not have access to training data, which is specific to a
particular key-based security system. Particularly, we identify two
representative attacking scenarios as follows:

Sniffing Attacks. An adversary can place a wireless sniffer close
to a key-based security system (e.g., ATM machine or key-based
security door) to eavesdrop sensor data from the wearable device,
which is worn on the victim’s wrist when he/she enters security
PINs into the security system. The adversary utilizes the wireless
sniffer to capture Bluetooth packets sent by the wearable device
to its associated smartphone [16, 19], and determines the victim’s
PIN sequence based on the sensor data extracted from Bluetooth
packets.

Internal Attacks. An adversary can access the embedded sen-
sors in the victim’s wrist-worn wearable device by installing a mal-
ware app without the victim’s notice [3]. The malware app waits
until the victim accesses the key-based security system andkeeps
sending sensor data back to the adversary’s server through the In-
ternet. The adversary can aggregate the sensor data on the server to
determine the victim’s PIN sequence remotely.

3.2 Intuitions of Hand Movements behind Key
Entry Activities

When accessing a key-based security system, a person’s PIN se-
quence is entered through multiple key clicks. During each key
click, there exhibits acceleration and deceleration of keys when
pressed and released by the user. This simple information can serve
as a guideline to discriminate different key clicks. The critical ques-
tion we need to answer is that whether the sensors on wearable
devices can discriminate between key clicks and capture thefine-
grained movements between two consecutive clicks. In particular,
we look for unique sensing patterns inherited from such accelera-
tion and deceleration that could be used to facilitate the discrim-
ination of key clicks and distance estimation of hand movement
between two key clicks.

A key click can be separated into two consecutive time periods:
key pressingand key releasingperiods. The key pressing period
starts when a person’s finger touches the key and ends when the
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Figure 3: Accelerometer readings from IMU.

finger presses the key to the bottom of the keypad (denoted aspress-
ing point). The key releasing period starts when the person’s finger
releases the key from the bottom of the keypad and ends when the
finger stops moving after it is detached from the key (denotedasre-
leasing point). Intuitively, the hand accelerates towards the keypad
while pressing the key before the pressing point, and decelerates
and stops quickly due to the reaction force from the key that touches
the bottom of the keypad. When releasing the key, the hand accel-
erates towards the opposite direction to the keypad and stops after
the finger is detached from the keypad. We illustrate the hand’s
acceleration/deceleration in the Z-axis caused by key pressing and
releasing in Figure 1. We use the keypad’s coordinate systemwith
the Z-axis perpendicular to the keypad plane and pointing out from
the keypad, and the X-axis aligned to the direction connecting the
first and the second key.

Furthermore, in between two consecutive key clicks, the keyen-
try activity involves the hand movement from one key to another.
As shown in Figure 1, the accelerations on the X axis present an
obvious up-and-down trend, while the accelerations on the Zand
Y axes remain stable. The intuition behind this phenomenon is that
the hand usually accelerates and moves relatively in parallel with
the keypad on the shortest trajectory between the first and second
keys. After passing the middle point of the trajectory, the hand de-
celerates to stop when it reaches the Key2’s position. Such unique
up-and-down acceleration trend is very useful to help capturing the
small distance of hand movement between two keys.

Feasibility Study. To study whether the sensors on wearables
can capture such detailed acceleration patterns during keyentry ac-
tivities, we conduct two sets of experiments on the number pad of
a Dell USB wired keyboard L100 with an Invensense MPU-9150
9-axis motion sensor (i.e., IMU), which is a prototyping alterna-
tive to a wearable device. The sensor uses a moderate sampling
rate of100Hz and contains an accelerometer, gyroscope and mag-
netometer that are comparable to embedded sensors in wearable
devices. During the experiments, the participant wears thesensor
on his wrist and keeps his hand in parallel to the keypad belowso
that the sensor’s Z axis points out and is perpendicular to the key-
pad. The first set of experiments moves from keys4 to 5, which is
along the sensor’sX axis, and the second set of experiments moves
from keys5 to 8 along the sensor’sY axis. The distance between
keys4 to 5 is only1.9cm, the same as that between keys5 to 8. We
use a camera on top of the keyboard to record the moving distance
ground truth of the sensor. We note that these two experimentse-
tups are special as the sensor’s coordinate system is fully aligned
with the keypad’s coordinate system.

We estimate the sensor’s moving distance by applying the dou-
ble integration to the acceleration readings of the X axis and the
Y axis from the accelerometer on the sensor. The details of the
distance estimation scheme are presented in Section 5. Figure 2
compares the ground truth and the estimated distance in 10 runs of
aforementioned settings, respectively. We find that overall the es-
timation errors are less than1cm, the mean error of the 10 runs of
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Figure 4: PIN-sequence inference framework.
each experimental setting is as low as0.27cm and0.24cm on the
X and Y axes, respectively.

Additionally, we find that there is an unique up-and-down ac-
celeration pattern captured by the sensor, which can be utilized to
determine the sensor’s moving direction. Figure 3 shows that the
up-and-down acceleration pattern (like a sine wave) appears on X
and Y axes respectively when the sensor is moving along X or Y
axes. The capability of accurate distance estimation of thesmall
moving distance between keys and the moving direction determi-
nation are the foundation for recovering the user’s secret PIN se-
quence. Thus, these observations are encouraging as they indicate
the sensors on wearables have the capability to capture the fine-
grained hand movements to facilitate PIN sequence recovery.

4. SYSTEM DESIGN
In this section, we discuss the challenges in our system design

and provide an overview of our system.

4.1 Challenges
The goal of accurately recovering personal PIN sequences byus-

ing the embedded sensor of wearable devices worn on the victim’s
wrist is not trivial. Our system design and implementation need to
overcome the following challenges:

Robust Fine-grained Hand Movement Tracking. Using em-
bedded sensors in wrist-worn wearable devices to reconstruct the
trajectories of hand movements in key-entry activities is challeng-
ing since the sensors not only capture the acceleration patterns of
key clicks and movements from key to key, but also are affected by
the users’s unconscious hand vibration and rotation. Furthermore,
due to the limited size of the keypad, the distance between keys is
small, making it hard to estimate using the low-grade sensors on
wearables. Thus, we need to design distance estimation and di-
rection derivation schemes to accurately estimate the handmoving



distance between keys and track the direction of fine-grained hand
movements despite various interfering sensing factors.

Training-free Key Entry Recognition. Considering the attack-
ing nature of our goal, it would be unlikely for the adversaryto
collect any training data (e.g., sensor data of hand movements) be-
fore recovering a user’s PIN sequence. And it is also unlikely to
have the user’s cooperation during this process. Thus, we aim to
infer the user’s secret PIN sequence leveraging wearables without
training efforts involving target users’ participation.

Recovering PIN Sequence without Contextual Information.
The target user’s PIN sequences used in key-based security systems
are usually consisted of numbers without contextual information or
linguistic meaning. Our developed method should have the ability
to recover sensitive information consisting of random combination
of numbers. This requires our system to be able to recover PIN
sequences without relying on linguistic model or dictionaries.

Sensing with Single Free-axis Wearable Device.Using a sin-
gle wearable device to recover PIN sequence is necessary because
usually there is only one wearable device available on the wrist of
the hand that performs key entry activities. There is no reference
point available besides the single wearable device. Furthermore,
sensor readings are with respect to the wearable device’s coordi-
nate system, which is not stable and changes often accordingto
the device’s posture. In order to recognize key entry activities and
derive fine-grained hand movement trajectories, it is important for
our system to translate the sensor readings from the wearable de-
vice’s coordinate system to a fixed coordinate system, such as the
keypad’s coordinate system.

4.2 System Overview
The main goal of our work is to demonstrate that using wearable

devices could reveal people’s secret PIN sequence to key-based se-
curity systems such as ATM machines, electronic-key based door
entries, and enterprise servers. We design and implement a system
that has the capability to reveal target user’s secret PIN sequences
through tracking the fine-grained hand movement trajectories re-
lated to key entry activities. The basic idea is to examine the ac-
celeration of the user’s hand movements when accessing key entry
based security systems. Based on the feasibility study of two spe-
cial cases in Section 3, wrist-worn wearables can capture the unique
patterns of acceleration embedded in the hand movements caused
by entering the secret PINs. Such unique patterns can be exploited
to estimate hand moving distances and directions during thekey-
entry activities, which can be leveraged to reconstruct fine-grained
moving trajectories of the user’s hand and infer the PIN sequence
traversed by the trajectories. We note that our approach canalso be
extended to recover letters on any kind of keypad.

The flow of our system is illustrated in Figure 4. Our system
takes as input the raw sensor readings, such as acceleration, rota-
tion rate, and quaternion, from the wearable device worn on atarget
user’s wrist. Then the system performsKey Click Detection and
Trace Segmentationto detect each key click by examining accel-
erations and separate the sensor readings into segments containing
consecutive key entries. TheData CalibrationutilizesQuaternion-
based Coordinate Alignmentand Noise Reductiontechniques to
translate each segment of accelerations into the measurements with
respect to the coordinate system of the keypad, and remove noise
from readings by using the Savitzky-Golay filter.

The core of our system consists of two components,Fine-grained
Subpath RecoveryandBackward PIN-Sequence Inference, which
first estimate the distance and direction of hand movements in each
segment of acceleration collected between two consecutivekey en-
tries, and then integrate the estimated distance and direction of each
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segment to determine the entire PIN sequence based on the physi-
cal constraints of the keypad and temporal relationship of the key
entering sequence. We define asubpathas the trajectory of the
user’s hand movement between two consecutive key clicks inside
one segment. As shown in Figure 4, the Fine-grained Subpath Re-
covery consists of two subtasks:Distance EstimationandDirection
Derivation. The Distance Estimation identifies the unique acceler-
ation patterns embedded in the key pressing and releasing activities
and perform distance estimation based on such patterns. Addition-
ally, the Direction Derivation leverages the estimated distance to-
gether with the acceleration patterns caused by the hand movement
in each subpath to derive the hand moving direction.

After obtaining the estimated moving distance and direction in
each subpath, the system develops the Backward PIN-Sequence In-
ference to recover the user’s PIN sequence. Specifically, our system
first applies theBackward Subpath Integrationto combine subpaths
in a backward manner in time series. Then the system performs
Point-wise Euclidean Distance Accumulationto calculate the accu-
mulated Euclidean distance for each candidate of key sequence at
each estimated key position (i.e., point-wise). Last, theTree based
Key Sequence Derivationgenerates a tree with the candidates of
key sequence and their accumulated Euclidean distance. Thekey
sequence candidate with the minimum accumulated Euclideandis-
tance is chosen to be the output of the system, which is the inferred
PIN sequence that the victim uses in the key-based security system.

5. DISTANCE ESTIMATION AND DIREC-
TION DERIVATION SCHEMES

Our system requires tracking hand movement trajectories onsmall
keypads accurately without training. Inspired by the basicdead
reckoning technique, we seek to derive such fine-grained trajecto-
ries based on hand movement distances and directions. Particularly,
we developDistance EstimationandDirection Derivationschemes
to estimate the distances and derive direction for each subpath (i.e.,
between two consecutive key clicks).

5.1 Distance Estimation
In order to accurately estimate the hand movement distance be-

tween two consecutive key clicks, we need to identify the patterns
in the sensor data corresponding to the hand movement precisely.
Therefore, our system needs to first search the starting and end-
ing points of the sensor data caused by the hand movements based
on pressing and releasing points of key clicks; then calculate the
hand moving distance by utilizing the extracted patterns from the
sensor data. In the rest of the section, we assume the system has
performed theKey-click Detectionand segmented the sensor data
to traces that capture hand movements between two consecutive
key clicks. The sensor data in each trace are translated intokeypad



coordinate system throughCoordinate Alignment. The details of
Key-click Detection and Coordinate Alignment will be discussed
in Section 7. Figure 5 illustrates the coordinate system of atypical
ATM keypad, where the center of key5 is the origin; the directions
of positive X and Y axes are in parallel with the direction from keys
5 to 6 and keys5 to 2, respectively; and the Z axis is perpendicular
to the X-Y plane, pointing out from the surface of the keypad.The
four quadrants of the X-Y plane are defined as the standard quad-
rants in a two-dimensional Cartesian system. Figure 5 also shows
some examples of moving directions of key clicks, e.g,13 indicates
clicking from keys1 to 3.

Starting and Ending Points Searching based on Pressing and
Releasing Points.The hand movements from one key to another
happen after releasing the first key and end when touching thesec-
ond key. Ideally, the hand movement distance can be calculated
based on the acceleration (e.g., acceleration from the Z-axis) ex-
tracted between the releasing point of the first key click andthe
pressing point of the second key click. However, such coarseseg-
mentation includes the sensor data resulted from hand vibrations
usually result in large estimation errors. In Section 3, we find that
the acceleration captured during the hand movements between con-
secutive key clicks has significant and unique patterns on X and Y
axes (i.e., either up-and-down or down-and-up shapes due todiffer-
ent moving directions).

Apparently, such unique acceleration patterns include merely the
dynamics of the key-to-key hand movements, and can be further
utilized to facilitate accurate hand moving distance estimation. In
order to determine the right segment of acceleration data corre-
sponding to the unique acceleration pattern, we propose to further
search the starting and ending points of the pattern based onthe seg-
ment of sensor data. Specifically, we define the first zero-crossing
point occurring before and after the unique acceleration pattern as
thestarting pointandending point, respectively. The intuition be-
hind this is that when a hand moves from one key to another, its
moving trajectory is mainly in parallel with the X-Y plane ofthe
keypad. Therefore, the acceleration and deceleration of the hand
during such movement dominates the acceleration on X and Y axes,
and results in the acceleration that always experiences a pattern of
[0, ak,max(ak,min), 0, ak,min(ak,max), 0] as shown in Figure 6,
whereak,max andak,min denote local maximum and minimum of
acceleration on X and Y axes withk = x or y.

Thus, we design a strategy to locate the starting and ending points
of the unique acceleration pattern so that we could estimatethe
distance between two key clicks accurately. Our strategy involves
the following steps: 1) extract the acceleration on X and Y axes
between the releasing and pressing points of two consecutive key
clicks respectively; 2) examine the extracted acceleration to find
the ax,max, ax,min, ay,max, ay,min; 3) determine thedominated
axisby choosing the axis has the more significant unique accelera-
tion pattern (i.e., a larger peak-to-peak value defined by|ak,max−
ak,min|, k = x or y ); 4) find the starting point of the unique pat-
tern on the dominated axis by searching the first time that accel-
eration crosses the axis (i.e., zero-crossing point) before ak,max

or ak,min, whichever occurs earlier; 5) similarly, find the ending
point of the unique pattern on the dominated axis by searching the
first zero-crossing point afterak,min or ak,max, whichever occurs
later. The accelerations within the starting and ending points de-
rived above merely correspond to the hand movements between
two consecutive key clicks and are utilized to calculate thehand
movement distance and direction in our schemes.

Distance Calculation. The distance estimation between two
consecutive key clicks is obtained by considering the movements
in both X and Y axes. To perform accurate estimation, we compute

Starting point: first zero-

crossing point before the 

unique acceleration pattern Ending point: first zero-

crossing point after the 

unique acceleration pattern

Figure 6: Searching for starting and ending points based on
releasing and pressing points within an acceleration segment.

the small movement between two samples in sensor data and then
sum up to produce the distance estimation in one acceleration seg-
ment bounded by the identified starting and ending points. Asthe
distance is two times integration of accelerations, we utilize trape-
zoidal rule to approximate each integration.

5.2 Direction Derivation
In order to recover the complete PIN sequence, our system needs

to determine the moving direction of each subpath during thekey-
entry process in addition to the distance. We define the moving
direction of a subpath as the angle between the positive X axis and
the subpath with counter-clockwise rotation as shown in Figure 5.
The moving direction is denoted asϑ ∈ [0◦, 360◦). The basic idea
is to find the direction based on the ratio of distances on X andY
axis derived from hand movement acceleration. In particular, we
design a two-step approach, including theQuadrant Determination
andSlope-based Direction Calculation. The Quadrant Determina-
tion first leverages the unique acceleration patterns to determine
which quadrant of X-Y plane that the hand moving direction be-
longs to. Then the Slope-based Direction Calculation examines the
slope angle of the moving direction in a quadrant ranging from 0◦

to 90◦ based on the hand movement distances on X and Y axes,
and converts the slope angle to the moving directionϑ.

Quadrant Determination. Intuitively, the hand movement ac-
celeration projected on X and Y axes results in different combina-
tions of the unique acceleration patterns in terms of the order of
ak,max andak,min on X and Y axes withk = x or y. For exam-
ple, when the hand moves towards45◦, the acceleration on X and
Y axes both experiences theak,max before theak,min, while the
acceleration on the X axis experiences theax,max after theax,min

and the acceleration on the Y axis experiences the opposite when
the hand moves towards135◦. Therefore, we leverage the com-
binations of unique acceleration patterns on X and Y axes to de-
termine the quadrant that a certain moving direction shouldbelong
to. Specifically, the quadrant of the moving direction can bedeter-
mined by the following equation:

Q =





1; if Iax,max < Iax,min
& Iay,max < Iay,min

,

2; if Iax,max > Iax,min
& Iay,max < Iay,min

,

3; if Iax,max > Iax,min
& Iay,max > Iay,min

,

4; if Iax,max < Iax,min
& Iay,max > Iay,min

.

(1)

whereQ is the quadrant index,Iaaxe,max andIaaxe,min
denotes

the index of the local maximum and minimum on X and Y axes,
respectively.

Slope-based Direction Calculation.After quadrant determina-
tion, we compute the slope angle of the moving direction within
each quadrant based on the ratio of the distance on X and Y axes
by utilizing the following equation:

φ =

∣∣∣∣arctan
(
sy

sx

)∣∣∣∣ . (2)

Equation (2) returns the relative moving direction defined in a quad-
rant ranging from0◦ to90◦, we further convert theφ to an absolute
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Figure 7: Illustration of the clustering results of distance
estimation and direction derivation for 6 different subpaths
{46, 28, 19, 64, 82, 91} by treating the first key click as the ori-
gin. The red star is the ground truth.moving direction (i.e., the direction defined within keypadcoordi-
nate ranging from0◦ to 360◦). Given the quadrant indexQ, the
absolute moving directionϑ can be derived as follow:

ϑ =





φ; if Q = 1,
180◦ − φ; if Q = 2,
180◦ + φ; if Q = 3,
360◦ − φ; if Q = 4.

(3)

Once we estimate the distance and derive the direction of a sub-
path, the relationship between two consecutive key clicks in the
contained subpath is determined. Therefore, if the position of ei-
ther key click is known, we can derive the position of the other
key click according to the derived moving distance and direction.
We show an example of distance estimation and direction determi-
nation for6 subpaths{46, 28, 37, 64, 82, 73}. Figure 7 shows the
clustering results in both distance and direction when treating the
first click as the origin. We observe that each key-click combina-
tion is clustered together around the ground truth (shown asthe red
star) based on our distance estimation and direction determination
schemes, indicating that our schemes have the capability tocapture
the fine-grained hand movement trajectories in key entry activities.

6. BACKWARD PIN SEQUENCE INFERENCE
ALGORITHM

After performingFine-Grained Subpath Recoverygrounded on
distance estimation and direction determination, we next describe
how to reconstruct the hand-movement trajectory using the esti-
mated subpaths to infer the target user’s PIN sequence.

6.1 Backward Subpath Integration
We notice that all key-based security systems require the user to

execute the verification by pressing keyEnteror Confirm, which is
at a known position on the keypad. We can then utilize this infor-
mation to reconstruct the hand-movement trajectory on the keypad
by examining the subpaths in a backward time sequence. That is,
the position of key Enter can be considered as a end of the lastsub-
path, and the starting of the last subpath indicates the position of
the last key clicked before key Enter.

More generally, we concatenate the estimated end of the(j −
1)th subpath to the starting of thejth subpath and continue to re-
peat this step until reaching the starting of the first subpath. By
integrating all the derived subpaths in such a backward head-tail
connecting way, we can obtain a trajectory roughly matchingthe
hand movements during the key-entry process, called theNaively
Integrated Trajectory. Ideally, the vertices on the Naively Inte-
grated Trajectory should be mapped to real-key positions with the
last vertex mapping to the center of Key Enter.

6.2 Point-wise Euclidean Distance Accumula-
tion

1 2 3

4 5 6

7 8

0

Enter

9

Figure 8: Example of the naively integrated trajectory having
a large accumulated error cannot correctly map to the key po-
sitions of the PIN sequence "419" (though the estimation error
of distance and direction of individual subpath is small).

Although we can recover each individual subpath based on the
estimated distance and derived direction, each subpath contains
small errors and the Naively Integrated Trajectory inherits and fur-
ther accumulates such small errors in each subpath, resulting in
mapping to the wrong-key positions on the keypad. Figure 8 shows
an example that the naively integrated subpaths (i.e. in black dashed
lines) cannot recover the correct target user’s PIN sequence, e.g.,
“419”, instead, they return “529” as a result. To reduce cumulative
errors, we propose aPoint-wise Euclidean Distance Accumulation
approach. In this approach, instead of matching the NaivelyInte-
grated Trajectory directly to the keys on the keypad, we consider
each subpath separately by comparing the closeness in termsof the
Euclidean distance between the starting point of the subpath (i.e.,
point-wisely) and real key positions, while the ending point of the
subpath is fixed on real keys.

In particular, each subpathj contains the estimated distance (Sj )
and direction (ϑj). Given a real key’s position as an ending point
(assuming this key is clicked at this ending point), we can estimate
the starting point (̃xj , ỹj) of each subpath. We conduct this effort in
a backward manner starting from Enter key because we know the
ending point in the last subpath is the Enter key. The estimation of
the starting point in thejth subpath is obtained as following:

{
x̃j = cos(ϑj + 180) × Sj + X ,

ỹj = sin(ϑj + 180) × Sj + Y,
(4)

where(X ,Y) are the coordinates of ten real number keys{1, 2, 3,
..., 9, 0} on the keypad. Given that there are ten real number keys
in the key pad, there will be ten estimation results of the starting
points in subpathj. We note that, for the last subpath,(X ,Y) is
the coordinates of the key Enter. Once the starting point of the
jth subpath is estimated, our algorithm will recursively move to
the previous subpath. By doing so, we introduce the concept of
accumulated Euclidean distance, which is the sum of the Euclidean
distances between the starting point of a subpath and the coordinate
of a real key in the keypad, over all consecutive subpaths. Wecan
recursively run the following equation to calculate the accumulated
Euclidean distance:

Dj = Dj+1 + dj , (5)

whereDj andDj+1 denote the accumulated Euclidean distance of
two consecutive subpaths, respectively, anddj is the Euclidean dis-
tance between the estimated starting point (x̃j , ỹj ) of thejth sub-
path and a real key in the keypad. The resulted final accumulated
Euclidean distance measures the closeness of the real key combina-
tion, defined asPIN sequence candidate, to the estimated consec-
utive subpaths while leveraging the dimension of the keypad. The
insight is that we would like to explore the possible candidate keys
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Figure 9: Example of point-wise Euclidean distance accumulation for candidate PIN sequence "846", where the real PIN is"419".

leveraging the estimation from each subpath without fixing to a par-
ticular key matching. In this way, we will not end up with onlyone
Naively Integrated Trajectory, instead, we will obtain multiple key
sequences as the candidates for PIN sequence recovery. Further-
more, by conducting the point-wise Euclidean distance accumula-
tion for each candidate of PIN sequence, our algorithm balances the
contribution of each estimated subpath and reduce the accumulated
errors that impact the accuracy of PIN sequence inference.

Example. Figure 9 shows an example of how the Euclidean dis-
tance is accumulated point-wisely in backward for a specificcan-
didate PIN sequence “846” (The real PIN entry in this example
is "419"). In the sequence of Figure 9, (a) we first generate the
Naively Integrated Trajectory consisted of three consecutive sub-
paths,subpath1, subpath2, and subpath3, which need to be
point-wisely compared with the candidate subpaths: “84”,“ 46”,
and “6enter” in the candidate PIN sequence “846”. The gener-
ation of naively integrated trajectory is based on the estimated dis-
tances and derived directions of each subpath. (b) then we start
by mapping the ending point of subpath3 to the key Enter and set
D4 = 0, and utilize the estimated moving distance and derived di-
rection in the subpath to estimate its starting point on the keypad
in a backward way. The Euclidean distance between the estimated
starting point of subpath3 and key6 (i.e. the3rd key entry in
the candidate PIN sequence “846”) is found to bed3 = 1.2cm,
and the accumulated Euclidean distance for this subpath isD3 =
D4 + d3 = 1.2cm; (c) next, assuming the ending point of subpath
2 is mapped to key4, we similarly estimate the starting point of
the subpath and calculate the Euclidean distance between the esti-
mated starting point and the position of key4 (i.e.,d2 = 2.1cm).
The accumulated Euclidean distance for the previous two supaths is
D2 = D3 + d2 = 3.3cm; (d) lastly, we assume the ending point of
the subpath1 to be key8 and estimate the starting point of the sub-
path. We find the Euclidean distance between the estimated start-
ing point and the position of key8 to bed1 = 0.8cm and calculate
the accumulated Euclidean distance for the entire candidate of PIN
sequence “846” as: D1 = D2 + d1 = 4.1cm. We note that our al-
gorithm recursively calculates the accumulated Euclideandistance
for every possible candidate of PIN sequence based on Equations
(4) and (5) and select the candidate with the minimum accumulated
Euclidean distance as the final result.

6.3 Tree-based Key Sequence Inference
To implement the Backward PIN-Sequence Inference algorithm,

we develop a tree-based approach for the PIN-sequence inference.
Next, we discuss how to build and optimize the tree in our algo-
rithm.

Building a Tree with PIN Sequence Candidates.In order to
record and compare different candidates of PIN sequence, weseek

to build a decimal tree according to the backward order of allPIN
sequence candidates. Each node is defined as a2-tuple structure
containing its corresponding key entry and the Euclidean distance
accumulated on the path from the root node to the node, denoted
as< NodeKey,AccuDist >. Because the tree is built based on
a backward order, nodes in thejth level of the tree correspond to
the(N − j)th key entries of all candidates of PIN sequences. The
root node is always the last key entry (i.e., key Enter), while the
leaf nodes are always the first key entry of the candidate of PIN
sequence (i.e., number keys on the keypad). Each node (except the
leaf nodes) has10 child nodes corresponding to keys0 to 9. The
branches from one parent node to its child nodes represent the sub-
paths between the keys corresponding to the parent and childnodes.
The leaves of the tree stores the final accumulated Euclideandis-
tance of each candidate of PIN sequence. Our algorithm searches
for the leaf node having the minimum accumulated Euclidean dis-
tance, and traces back to recover the path from the leaf node to the
root node. The inferred PIN sequence is generated by recording the
key entries corresponding to the nodes on the recovered path.

Figure 10 shows an example of a tree for inferring a PIN se-
quence of “419”, where the accumulated Euclidean distance for
one candidate of PIN sequence “846” is 4.1cm, while another can-
didate of PIN sequence “419” has the accumulated Euclidean dis-
tance of1.6cm, which is the minimum over all candidates. There-
fore, the candidate of PIN sequence “419” will be determined to be
the inferred PIN sequence.

Subpath Calibration and Tree Pruning. In order to improve
the accuracy of our system, we take the advantage of the keypad
dimension to calibrate subpaths. Intuitively, the distance of a sub-
path should not exceed the dimension of a keypad. Therefore,if the
estimated distance of a subpath exceeds the dimension of a keypad,
our system replaces the estimated distance of the particular subpath
with the possible longest distance on the keypad. In addition, since
every non-leaf node in a PIN-sequence tree has10 child nodes, the
jth level has10j nodes. Apparently, it is not necessary to store
and calculate the Euclidean distance in every node. Our algorithm
prunes the tree by keeping the child nodes with the leastm accu-
mulated Euclidean distances for each parent node. In this way, leaf
nodes are largely reduced from10N tomN , whereN is the length
of the PIN sequence. In our experiments, we setm = 4, which
balances the tree size and produces good performance.

7. IMPLEMENTATION

7.1 Key-click Detection
Given embedded sensor data from wearable devices, our system

first performs key-click detection based on acceleration readings to
find the key-click events and the number of keys in a PIN sequence
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Figure 10: Illustration of the construction of the backward trajectory inference tree for recovering PIN "419".

and assist the trace segmentation. Key clicks usually causesignifi-
cant changes of acceleration towards the keypad that has thepoten-
tial to be distinguished from other hand movements. In particular,
we calculate the magnitude of the composition of accelerations on
three axes first, and apply a threshold to examine the normalized
magnitude of the composed acceleration to detect key clicks. We
empirically determine the threshold to be0.6 based on our experi-
ments with20 participants in this work.

7.2 Key-click Trace Segmentation
After key-click detection, we roughly segment input sensordata

into small chunks containing the data between two consecutive de-
tected key clicks. After segmentation, the resulted small chunks
contain the sensor data representing subpaths, which include the
acceleration caused by hand movements from one key to another.
In addition, to mitigate high frequency noise caused by handvi-
bration, we apply theSavitzky −Golay filter to each chunk of
sensor data respectively.

7.3 Quaternion-based Coordinate Alignment
When recovering the user’s PIN sequence from the wearables’

embedded sensors, our system involves three different coordinate
systems, namely,wearable coordinate, world coordinateandkey-
pad coordinate. The sensor readings from a wearable are defined
within the wearable coordinate and thus cannot be used directly to
represent hand movements because of the rotating wearable coordi-
nate caused by frequently changed hand position. In this work, we
employ quaternion to help convert sensor readings from the wear-
able coordinate to keypad coordinate for hand trajectory derivation.

Specifically, we first convert the sensor readings from the wear-
able coordinate to world coordinate by applying~aw = qdw~adq

−1

dw ,
where~aw and~ad are the sensor readings in the world coordinate
and werable coordinate, respectively, andqdw is the quaternion that
represents the conversion from the werable coordinate to world co-
ordinate. Thenaw will be further converted to the keypad coordi-
nate via~ak = qwk~awq

−1

wk , where~ak denotes the sensor readings
in the keyboad coordiante andqwk denotes the quaternion that rep-
resents the conversion from the world coordinate to keypad coor-
dinate. The quaternionqdw can be extracted from wearables dur-
ing hand movements, andqwk can be derived fromqwk = q−1

kw ,
where the quaternionqkw can be collected by placing a sensor (i.e.,
smartphone, smartwatch, or IMU) aligned with the coordinate of
the target keypad. We note that adversaries can utilize thismethod
to obtainqkw without attention at a time other than the user entering
the PIN sequence.

8. PERFORMANCE EVALUATION
In this section, we present the experimental methodology and de-

scribe the evaluation metrics. We then present the most important
results of our system with respect to PIN sequence recovery us-

Figure 11: Experiments: three different kinds of keypads, de-
tachable ATM pad, keypad on ATM machine, keyboard; and
wearable devices.
ing the Backward PIN-sequence Recovery Algorithm. Finally, we
show the performance of two supporting schemes for PIN sequence
recovery, distance estimation and direction derivation schemes.

8.1 Experimental Methodology
Keypads. We evaluate our system with three different kinds of

keypads as shown in Figure 11: 1) A keypad on ATM machine
(from PNC bank) with the dimension of108mm × 76mm; 2)
A real detached ATM keypad with the dimension of127mm ×
95mm, both 1) and 2) representing the use cases with different
ATM pad sizes; and 3) A number pad of Dell USB wired keyboard
L100 with the dimension of77mm× 97mm, representing the use
case of key-based security access to enterprise servers. The three
keypads have different structures and key depths. It is important to
evaluate their effects on our approach when capturing fine-grained
hand movements. We focus on experiments on numbers to recover
PIN-sequences.

Wearable Devices. In our experiments, we use three different
types of wearable devices, including two smartwatches (i.e., LG
W150 and Moto360) and an IMU (Invensence MPU-9150). These
wearables represent different achievable maximum sampling rates
(i.e., 200Hz, 25Hz and100Hz, respectively). The LG W150 and
Moto 360 are two commodity smartwatches running on Android
Wear OS with Bluetooth LE. The IMU contains a 9-axis motion
tracking sensor designed for consumer electronics. We use it as
a prototyping alternative to a wearable device with its sampling
rate set to100Hz. During key-entry activities, the wearable de-
vices collect acceleration and quaternion data and send them to a
pre-associated storage device (i.e., smartphone via Bluetooth and
laptop via an USB cable for smartwatches and IMU respectively).
The ground truth of the hand moving distance and direction iscom-
puted through the video recorded by a camera set on top of the key-
pad. In particular, we use AutoCAD to connect two positions of
the sensor in two captured video frames corresponding to thetime
points when the finger just leaves the first key and about to touch
the second key, respectively. The measured distance and angle of
the line (with the positive X axis of the keypad) connecting these
two sensor positions are used as the ground truth of the distance
and direction of the hand movement.
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Figure 12: Performance of Backward PIN-sequence Inference
with three kinds of wearables on the detachable ATM Keypad.

Data Collection. We conduct experiments of various key-entry
activities with three different types of wearables on threekinds of
keypads.20 volunteers are recruited to performance key-entry ac-
tivities over an11-month period. The volunteers are asked to enter
keys in two ways: 4-digit PIN sequences consisting of five consec-
utive key clicks (with "Enter" as the last click) and a singlesubpath
consisting of two consecutive key clicks. For each subpath,based
on the keypad layout, we classify different subpath lengthsinto
three representative scales:short, mediumand long. Specifically,
short covers subpaths between two adjacent keys with no keys in
between (e.g.,45, 41 and75); mediumis for horizontal and vertical
subpaths between two keys with one key in between (e.g.,46 and
82); andlong contains subpaths of two keys neither horizontal nor
vertical and with one or more keys in between (e.g.,10, 37 and29).
We collect5000 PIN sequences from three keypads when having
20 volunteers wear three different kinds of wearables. For single
subpath, we collect3000 subpaths from three keypads including
long, mediumandshortdistances with volunteers wearing an IMU.

8.2 Evaluation Metrics
We develop the following metrics to evaluate our system withre-

gard to the accuracy of distance estimation and direction determina-
tion schemes and the performance of our Backward PIN-sequence
Inference Algorithm:

Distance Estimation Error. To evaluate the performance of our
distance estimation scheme, we define theDistance Estimation Er-
ror as the difference between the estimated distance and the ground
truth of the hand moving distance. The ground truth of the hand
moving distance is computed through the recorded video during
experiments. We study the Distance Estimation Error in two ways:
mean errorandcumulative distribution function (CDF).

Direction Classification Accuracy.To evaluate the performance
of our direction derivation scheme, we divide the360◦ on the X-
Y plane into16 groups (i.e.,5 groups in each quadrant exclud-
ing 4 overlapped groups) and examine whether the derived direc-
tion is classified into the same group as that of the corresponding
ground truth. The ground truth of angles is also computed through
the recorded videos. TheDirection Classification Accuracyis Ñc

Nc
,

whereÑc is the number of directions have been classified into the
same group containing the corresponding ground-truth direction,
andNc is the total experimental runs of direction classification.

Top-k Success Rate.Given an experimental run of a key-entry
activity, our algorithm could return multiple top candidates of key-
entry sequence in an ascending order of the accumulated Euclidean
distance. We define that the inference algorithm is aTop-k Success
Hit if the firstk candidates of key-entry sequence returned from our
algorithm contain the target user’s key-entry sequence. Wefurther

define theTop-k Success Rateas the ratio (Ñ
k
s

Ns
) of the number of

Top-k Success Hits (̃Nk
s ) over the total number of experimental
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Figure 13: Performance of PIN-sequence recovery on three dif-
ferent keypads by using medium sampling rate100Hz (IMU).

runs (Ns) when applying key-entry sequence inference to recover
the target user’s PIN sequence. Specially, whenk = 1, the ratio
indicates the rate of our algorithm that can successfully determine
the target user’s key-entry sequence without ambiguity.

Tries Until Success.Since our system can provide multiple can-
didates as the result for key-entry sequence inference, theadversary
has the chance to try out each key sequence returned in the candi-
date list to recover the target user’s PIN sequence. We definethe
Number of Tries Until Successas the number of candidate key-entry
sequence the adversary has tried (starting from the candidate with
the smallest accumulated Euclidean distance) until he/shebreaks
the key-based security system, suggesting a success recovery of
the target user’s PIN sequence. Thus, the Number of Trails Until
Success indicates the possible efforts that an attack needsto take to
break the key-based security system.

8.3 Performance of Backward PIN-Sequence
Inference

Wearable Devices. We first examine the performance of our
PIN-sequence inference algorithm on the detachable ATM keypad
with three different wearable devices. Figure 12(a) shows the top-k
success rate of our system from three different types of wearable
devices. We find that our system can effectively recover PIN se-
quences from all the three wearables, and higher success rate is
achieved under higher sampling rates. In particular, by choosing
the top-1 choice, our system can achieve over82% success rate
for the LG W150 and IMU, while the success rate is67% for
the Moto 360 . Furthermore, the PIN sequences can be inferred
with increasing success rates if the adversary utilizes more choices
from the top-k candidate list. Specifically, when using the top-2
choices, the adversary can achieve about94% success rate with the
LG W150 and IMU, and the success rate for the Moto 360 is over
80%. Although the Moto 360 achieves lower success rates than
the LG W150 and IMU due to its much lower sampling rate (i.e.,
25Hz), an adversary can still achieve a high probability to reveal
the PIN sequences based on top-2 or 3 choices. This indicatesthat
our system can tolerate the insufficient information introduced by
wearable devices with low sampling rates.

Figure 12(b) depicts the cumulative distribution of the number
of tries until successfully recovering the user’s PIN sequence from
three wearables. We find that the adversary can break over97%
PIN entries from the LG W150 and IMU within5 tries, which is
usually the maximum PIN tries on ATM machine. The number of
PIN entries revealed increases to99%, if the attacker conducts10
tries. For Moto360, the attacker can break90% PIN entries within
5 tries and96% within 10 tries. Therefore, regardless of the types
of wearable, the attacker can break the user’s PIN sequence with
few tries. Although the LG W150 is set to use200Hz sampling
rate and generates the best performance, we find that using100Hz
sampling rate is enough to achieve comparable good results.There-
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Figure 14: Distance estimation mean error and direction classi-
fication results between two consecutive key clicks under100Hz
sampling rate (IMU).

fore, we present the results using the IMU for the rest sections.
ATM Keypads and Keyboard. Figure 13(a) shows the top-k

success rate to recover PIN sequences on three keypads. We ob-
serve that our system can achieve around80% success rate for all
three keypads with the top-1 choice. When using the top-5 choices,
our system can achieve over97% success rate with both of the de-
tachable ATM pad and the number pad on keyboard, while on real
ATM machine, the success rate is over92.5%. Figure 13(b) con-
firms our observation in Figure 13(a). The results demonstrate that
our Backward PIN-sequence Inference is effective when applied
with keypads of different layouts and coordinates. The success rate
is higher with both of the detachable ATM pad and the number pad
on keyboard than that with the ATM machine. Our results suggests
that the electronic magnetic field and the tilt angle of the ATM ma-
chine affect the PIN entry recovery result on ATM machine.

8.4 Distance Estimation of Different Kinds of
Keypads

We next study the performance of two supporting schemes. The
study of the distance estimation scheme is described in thissub-
section, and the results of the direction determination scheme is
presented in the next subsection. We apply our distance estimation
scheme to various subpaths across three different kinds of keypads.
We compare the distance difference between ground truth (i.e., ob-
tained from camera) and the estimated distance from sensor data.
Take ATM machine as an example, the distances forshort, medium
andlongare2.5cm, 5cm and6.4cm, respectively.

We observe that the mean error is proportional to the distance
scale, i.e., short distance has relative smaller error compared with
long distance, as shown in Figure 14(a). In particular, the mean
error of ATM machine for short, medium and long distance are
5mm, 7mm and8.5mm, respectively. For detachable ATM pad,
the error of long, medium and short distance are8mm, 6mm and
3.5mm, respectively. The mean error of long distance in keyboard
number pad experiment is8mm, 5mm for medium distance and
for short distance the error is as low as3mm. The experiment re-
sults from keyboard shows relative smaller distance error since the
physical layout of keyboard number pad is smaller than ATM ma-
chine keypad and detachable ATM pad. We observe that such error
difference is marginal and reveal the effectiveness of our scheme.

Figure 15(a) shows the cumulative distributive function ofdis-
tance estimation errors. We observe that the80th percentile errors
are8mm, 10mm and12mm for short, medium and long distance
of ATM machine, respectively. For detachable ATM pad the80th
percentile error are5mm, 10mm and13mm, receptively and the
80th percentile error of number pad experiment are4mm, 8mm

and13.2mm respectively. The results also show the effectiveness
and robustness of our scheme under various keypads.
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Figure 15: Performance of distance estimation and direction
derivation on three kinds of keypads under100Hz sampling
rate (IMU).

8.5 Direction Derivation of Different Kinds of
Keypads

Next, we evaluate our slope-based direction derivation scheme
by showing the performance under three different kinds of key-
pads. According to the keypad layout, we select five representative
directions in one quadrant. Take ATM machine as an example, the
five directions within the fourth quadrant are: keys2 to 8, keys2
to 9, keys1 to 9, keys4 to 9 and keys4 to 6. The corresponding
direction angle for these subpaths on the keypad are:270◦ , 302◦ ,
321◦, 338◦ and360◦. To evaluate our direction derivation scheme,
we study the direction classification accuracy of classifying the di-
rections of testing subpaths into the aforementioned5 groups of
directions angles. Figure 14(b) shows the direction classification
accuracy with five directions on ATM machine. The X axis rep-
resents the ground truth direction between two keys on the ATM
machine. We find that there are few subpaths mistakenly classified
as incorrect direction. In particular, our scheme can achieve 80%
classification accuracy for270◦ and we observe that directions with
larger angles have better accuracy, which is up to97% accuracy for
360◦. This may due to that when user performs vertical key clicks
(e.g., key2 to 8 with 270◦ on ATM pad), there might be a small
inclined angle between hand moving direction and wrist moving
direction. For keyboard and ATM pad, we have similar high clas-
sification accuracy. In addition, Figure 15(b) shows the cumula-
tive distribution function of estimated five directions in the fourth
quadrant. We find that all five directions obtained from our scheme
only have small overlap for any two adjacent directions. Moreover,
90% of the derived direction are close to the ground truth direction
within ±10◦. The above results show that our system provides ef-
fective distance estimation and direction derivation schemes under
various keypads and is robust in real environments.

9. DISCUSSION
Wearing the Wearable Device on the Left Hand or Right

Hand. Our training-free approach does not require mirroring the
derivation from sensor data when applied to either the left-handed
or right-handed user since the inherent physics of key entryactiv-
ities will be preserved regardless of either case. We assumethe
victim use either hand wearing a wearable (i.e. a smartwatchor
fitness tracker) to access key-based security systems. While it is
very difficult to know the exact number of how many people shar-
ing this style, we instead discuss the population of the potential
wearable user victims. We take the right-handed user for discus-
sion as the left-handed user share the same conclusion. Wearable
devices are usually designed in a way that allows users to comfort-
ably wear them on either wrist (e.g., smartwatches no longernec-
essarily have crowns as traditional watches do). There are many
smartwatch users [2, 5] claiming that they wear smartwatches on
their right wrists. Furthermore, for those wearing traditional watch



on the left wrist, they tend to wear fitness tracker on the right wrist
for health-related applications. Naturally, the right-handed people
use their right hand to perform key entry and the sensors in their
smartwatches or fitness trackers can be utilized by our approach to
reveal PINs. Given the growing cheaper price of these wearable
devices, many people wear both a smartwatch and a fitness tracker
on separate hand to better serve their work and health applications,
which further increases the number of potential victims. Lastly,
the increasing popular usage of wearables leaves adversarygreat
chances to recover the user’s sensitive information, making it vul-
nerable irrespective of the hand on which it is worn.

Using Sensor Moving Direction as Hand Moving Direction.
We discuss the rationality of using sensor moving directionas hand
moving direction. The current system is designed for recovering a
PIN sequence by reconstructing hand movement trajectories. We
leverage embedded sensor readings from wearable devices ona
user’s wrist to determine the direction. We use the sensor move-
ment to represent the hand movement since the hand and the wrist
are moving together. During our extensive experimental study, we
observe that sensor movement and hand movement share similar
moving trend. Therefore such a representation is reasonable.

10. CONCLUSION
In this paper, we show that the embedded sensors on wrist-worn

wearable devices (i.e., smartwatches and fitness trackers)can be ex-
ploited to discriminate mm-level distances of the user’s fine-grained
hand movements during key-entry activities, exposing the user to
a serious security breach. We present a PIN-sequence inference
framework to recover the user’s secret key entries when the user
accesses key-based security systems such as ATM keypads and
regular keyboards. The implemented system does not requireany
training or contextual information, which makes it applicable in
real world adversarial contexts. In particular, our systemexploits
the physics phenomenon and unique patterns of key entry activities
from the sensor data and develops distance estimation and slope-
based moving direction derivation schemes to capture the small
hand movement between two consecutive keys. Our system further
applies the Backward PIN-sequence Inference Algorithm to reveal
the user’s complete PIN sequence, leveraging both the spatial and
temporal constraints of the key entry to achieve a high success rate.
Extensive experiments involving20 volunteers on three different
types of keypads over11 months show that our system can achieve
80% accuracy in revealing the user’s PIN sequences with one try,
and over a90% success rate within three tries, while recovering the
hand movement trajectory has a mean error as low as6mm. Our
findings are an early and significant step to understand the possible
security vulnerabilities of a wearable device’s embedded sensors.
Future countermeasures may aim at camouflaging the sensitive sen-
sor data transmitted from wearables to host devices. For example,
a wearable can inject a certain type of noise to the data so that the
data cannot be used to derive fine-grained hand movements while
still effective for fitness tracking purpose (i.e., activity recognition
or step counts). Moreover, in the two attack models we discuss,
more secure encryption schemes are necessary to protect theBLE
communication, while accessing to sensor data should be regulated
by the wearable or its host’s operating system to avoid leakage.
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