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ABSTRACT

Recent years have witnessed the rapid development of automatic
speech recognition (ASR) systems, providing a practical voice-user
interface for widely deployed smart devices. With the ever-growing
deployment of such an interface, several voice-based attack schemes
have been proposed towards current ASR systems to exploit certain
vulnerabilities. Posing one of the more serious threats, hidden voice
attack uses the human-machine perception gap to generate ob-
fuscated/hidden voice commands that are unintelligible to human
listeners but can be interpreted as commands by machines. How-
ever, due to the nature of hidden voice commands (i.e., normal and
obfuscated samples exhibit a significant difference in their acoustic
features), recent studies show that they can be easily detected and
defended by a pre-trained classifier, thereby making it less threat-
ening. In this paper, we validate that such a defense strategy can
be circumvented with a more advanced type of hidden voice attack
called HVAC!. Our proposed HVAC attack can easily bypass the
existing learning-based defense classifiers while preserving all the
essential characteristics of hidden voice attacks (i.e., unintelligible
to humans and recognizable to machines). Specifically, we find that
all classifier-based defenses build on top of classification models
that are trained with acoustic features extracted from the entire au-
dio of normal and obfuscated samples. However, only speech parts
(i.e., human voice parts) of these samples contain the useful linguis-
tic information needed for machine transcription. We thus propose
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a fusion-based method to combine the normal sample and corre-
sponding obfuscated sample as a hybrid HVAC command, which
can effectively cheat the defense classifiers. Moreover, to make the
command more unintelligible to humans, we tune the speed and
pitch of the sample and make it even more distorted in the time
domain while ensuring it can still be recognized by machines. Exten-
sive physical over-the-air experiments demonstrate the robustness
and generalizability of our HVAC attack under different realistic at-
tack scenarios. Results show that our HVAC commands can achieve
an average 94.1% success rate of bypassing machine-learning-based
defense approaches under various realistic settings.
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1 INTRODUCTION

Driven by the rapid development of voice-user interfaces, auto-
matic speech recognition (ASR) systems have been implemented
in many facets of our daily lives. They have been integrated into
smartphones (e.g., Apple Siri [5]), smart speakers (e.g., Amazon
Alexa [4], Google Home [15]), smart home appliances (e.g., smart
TVs), and even vehicles (e.g., Tesla Voice Commands [34]). With
these ubiquitous voice-user interfaces, people can just speak to
their devices to make phone calls, set up timers & alarm clocks, and
control IoT devices, etc. Given higher permission, voice assistants
can even unlock the doors of a car [34], make mobile payments [17],
and schedule personal appointments [24]. A market share report
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suggests that there are an estimated 3.25 billion digital voice as-
sistants being used in devices around the world in 2019, and the
number would reach around eight billion units by 2023 [10].

Unfortunately, despite the great convenience provided by these
voice assistants, many existing studies have demonstrated that they
are vulnerable to various kinds of voice-based attacks. For instance,
deep neural networks (DNNs), serving as the computation cores
of ASR systems, have been proved to be fragile against adversarial
machine learning attacks [7-9, 29, 33, 37], where an adversary could
inject an imperceptible perturbation into a normal audio command
to make recognition models output any adversary-desired tran-
scription. Another type of attack is hidden voice attack [1, 6, 35].
Different from adversarial machine learning attacks, hidden voice
attacks use a different attacking angle: an adversary could generate
a noise-like obfuscated audio sample (i.e., a hidden voice command),
which sounds unintelligible to humans but can be correctly rec-
ognized as the target transcription by ASR systems. To generate
such a hidden voice command, the adversary could use the human-
machine perception gap to either adjust the parameters of Mel
frequency cepstral coefficients (MFCCs) to produce lower fidelity
(to humans) but recognizable (to machine) audio samples [6, 35]
or randomize the time-domain signal of normal commands while
ensuring the frequency-domain is unchanged [1].

Compared with adversarial machine learning attacks, hidden
voice attacks are more realistic and present a relatively better per-
formance in practice, since the obfuscated/hidden audio samples
are less sensitive to the audio distortions introduced in over-the-air
transmissions than imperceptible perturbations. This makes them
easier and more effective to launch in practice, leading to more
severe security concerns. For instance, hidden voice commands
could be stealthily embedded in a broadcast or a trending Youtube
video, potentially having a broader attack range and infecting a
large number of unnoticed victims [6]. The adversary could also
play the hidden voice command near the victim ASR device to
make the device execute the obfuscated malicious command with-
out causing any suspicion. Therefore, the central focus of this paper
is on hidden voice attacks.

Classifier-based Defenses Against Hidden Voice Attacks.
Although hidden voice attacks introduce a severe threat against
voice assistants, existing studies have demonstrated that they can be
easily detected and defended using a machine-learning-based classi-
fier [6]. Since hidden voice commands sound like noises, the hidden
voice samples exhibit significantly different acoustic characteristics
compared with the normal human voice. Thus, devices with ASR
system could incorporate a machine learning-based classifier as a
verification step, classifying the received speech as being issued
by a human or machine-generated. Specifically, through training a
classifier using the acoustic features (e.g., zero-crossing rate, MFCC
coefficients, and chroma vectors) extracted from two types of audio
samples, a simple logistic regression classifier could distinguish
hidden voice commands from normal commands with a 99.8% true
positive rate and a 0.2% false-positive rate [6]. As shown in Figure 1,
without the protection from a defense classifier, the hidden voice
command can be directly received and transcribed by the victim
ASR system. However, in the presence of a defense classifier, the
hidden voice command will be correctly detected, thereby being
rejected by the ASR system. Given the existence of classifier-based
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defenses, we take one step further and explore: How hard to defeat
the classifier-based defenses and launch an advanced hidden voice
attack to bypass the classifier-based defenses?

Evading Classifier-based Defenses. Existing learning-based
defense classifiers tend to utilize the acoustic features of the entire
audio of normal and obfuscated/hidden samples, while only the
features of their speech parts (i.e., human-voice parts) contain use-
ful linguistic information for translation to ASR systems. Relying
on this observation, in this paper, we propose HVAC (Hidden Voice
Attacks in presence of Classifier), a more powerful hidden voice at-
tack that can circumvent existing learning-based defense classifiers
while preserving all essential characteristics of hidden voice attacks
(i.e., unintelligible to humans but recognizable to ASR systems). To
make our attack more realistic, HVAC commands are generated in
a black-box setting, where the adversary has no internal knowledge
of the target ASR system (e.g., model architecture, parameters).
Specifically, to create such an HVAC command, we first generate a
hidden voice command through tuning MFCC parameters to pro-
duce obfuscated audio, which is the similar black-box method of
the prior work [6]. Through elaborately mixing the signals of the
hidden voice command and its corresponding normal command,
the adversary could push the acoustic features of the fused HVAC
commands towards the features of the normal human voice, poten-
tially making the defense classifier make false predictions, as shown
in Figure 1. Furthermore, to make the generated HVAC command
more unintelligible to humans, we tune the speed and pitch of the
command and make the sample more distorted in the time domain
while ensuring it can still be recognized by the ASR system. Our
main contributions are summarized as follows:

o We dissect existing defense techniques and find these classifier-
based strategies are not robust enough to defend against hid-
den voice attacks. The effectiveness of these defense classifiers
largely relies on the acoustic features extracted from normal and
obfuscated samples, an adversary thus can make them yield false
predictions through modifying the hidden command’s features
while preserving the properties of hidden voice attacks.

e We present our novel design for an HVAC (Hidden Voice Attacks

in presence of Classifier) attack against ASR systems that can

bypass the state-of-the-art classifier-based defense approaches.

The generated HVAC commands could be successfully recog-

nized by ASR systems while remaining indecipherable to human

listeners similar to existing hidden voice attacks (in the absence
of classifier defenses).

To further improve the unintelligibly of the generated HVAC

commands to humans, in the generation phase we also propose to
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employ a human perception mask, including audio speed tuning,
audio pitch tuning, and time-domain inversion.

e Extensive physical over-the-air experiments demonstrated the ro-
bustness and generalizability of our HVAC commands under var-
ious realistic attack settings (e.g., in different environments, with
various commercial voice assistants, and attack distances). The
results showed the effectiveness of our proposed HVAC attack
with an average 86.1% ASR transcription recognition accuracy
and a high success rate of bypassing various defense classifiers
of 94.1%.

2 STUDY OF EXISTING HIDDEN VOICE
COMMANDS: ATTACK AND DEFENSE

In this section, we first give a brief introduction on the background
of automatic speech recognition (ASR) system. Then, we present a
comprehensive study on the prior work [6] (i.e., the first work of
hidden voice attacks) by reproducing its corresponding attack and
defense strategies, respectively.

2.1 Background of Automatic Speech
Recognition System

An automatic speech recognition (ASR) system is a voice process-
ing procedure that automatically converts human speech input
to text output. As shown in Figure 2, a typical speech recogni-
tion system takes four steps (i.e., pre-processing, feature extrac-
tion, model-based prediction, and post-processing) to generate the
speech recognition results from the received human speech. As
the first step, pre-processing mainly focuses on filtering out back-
ground noises as well as frequencies that are outside the range of
human speech. Then in the feature extraction step, signal process-
ing algorithms are applied to capture effective audio features from
the denoised signal. Among current ASR systems, the most wildly
applied features in this step are Mel Frequency Cepstral Coefficient
(MFCC) features, which can capture phonetic characteristics of
human speech [20, 26]. After that, the extracted features are fed
into a pre-deployed model to generate text predictions. Either a
statistical inference-based or machine-learning-based model can
be applied in this step. And for the final step, post-processing votes
or ranks the generated text predictions to decide the text output as
the result of speech recognition.
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Figure 2: Illustration of a typical speech recognition system.

2.2 Performance Study of Existing Hidden
Voice Command Attack
As the pioneering work of hidden voice attacks, Carlini et al. [6]

have shown that an adversary could generate hidden voice com-
mands, which are intelligible to ASR systems but not to humans,
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Figure 3: Attack flow of hidden voice command [6].

Table 1: Performance comparison of existing hidden voice
commands and our implementation.

Results in Hidden Voice Command [6] | Our Implementation Results
N N “Turn on « N 500 commands in the
Commands OK Google airplane mode” Call o1 telephone corpus [23]
Normal 90% (36/40) | 75% (30/40) | 90% (36/40) 83% (415/500)
Hidden Voice
Command 95% (38/40) 45% (18/40) 40% (16/40) 56% (279/500)

in a black-box attack setting, where the adversary has no internal
knowledge of the target ASR system.

Essentially, a hidden voice command is generated from a normal
speech signal by preserving most of the MFCC features. Figure 3 il-
lustrates the workflow for producing a valid hidden voice command.
After a normal command is produced by the adversary, it is sent to
the audio mangler, where the MFCC features of the given command
are extracted. Specifically, 5 MFCC parameters (i.e., wintime, hop-
time, numcep, nbands, and maxfreq listed in Table 3) pre-determined
by the attacker are isolated during the MFCC feature extraction.
The choices of these parameters determine the dimension & reso-
lution of the extracted MFCC features. Then, the extracted MFCC
features are converted back to an audio sample through inverse
MFCC operation, which produces a candidate command sample.
Through the MFCC extraction-inverse MFCC process, the candidate
command sample shares the same MFCC features with the normal
command, which will tend to make ASR systems output the same
transcription. Meanwhile, it only preserves features that are useful
for machine understanding, while features contributing to human
perception are discarded. Then, the candidate command sample is
sent to the Command Selector shown in Figure 3, where both ASR
system recognition test and human perception test are applied to
the candidate sample. If the candidate sample can be recognized
by the given ASR system correctly, and also cannot be understood
by humans at the same time, then the command is a valid hidden
voice command. Otherwise, if the candidate command fails either
the ASR system recognition test or human perception test, it needs
to be reproduced by adjusting the 5 MFCC parameters in audio
mangler, until it can pass the two tests in the command selector.
After all the processes, a valid hidden voice command is generated
as a black-box attack towards ASR systems.

Since the prior work [6] only reported the performance of three
specific commands, i.e., "OK Google", "Call 911" and "Turn on air-
plane mode", under black-box attack scenario, to validate the gen-
erality and robustness of the hidden voice attack, we reproduced
the procedure in Figure 2 to generate and test hidden voice com-
mands on a larger set of samples. In particular, 500 hidden voice
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Table 2: Performance comparison of the defense classifier
proposed in hidden voice commands [6] and our reproduc-
tion.

Hidden Voice Command [6]
Loigistic Regression

Reproduced
(SVM)

99.93%

Reproduced
(Logistic Regression)

Attack

Detection Rate 99.80%

99.90%

commands were generated from telephone corpus [22]. For the
machine understanding test, the experiment was conducted in a
small office (approximately 4.5sqft), with an external microphone
(iTalk-02) to record the attack command while the environment
sound level was 55dB according to the noise meter measurement.
A loud stereo speaker (Logitech Z623) was set up for playing the
attack commands and placed 1.5m away from the smartphone. The
target ASR system is the Google speech recognition system with
open APIs.

Table 1 shows the performance of hidden voice command attack,
both from the prior work [6] and our reproduction. It can be seen
that for machine understanding, 56% of the generated hidden voice
commands could be understood by the Google speech recognition
system (given the baseline as 83% of the normal commands can be
recognized). The reproduced results show a comparable level to the
prior work [6], validating the effectiveness of this way to generate
valid hidden voice commands.

2.3 Performance Study of Learning-based
Defense Classifier

Although hidden voice command attack seems creating a great
threat to ASR systems as a black-box attack, there have already
been some defense strategies. The notification and authentication
mechanisms of ASR systems could potentially prevent such hidden
voice command attack. For instance, ASR systems may notify users
via lights and/or beeps, or require audio CAPTCHA [25] whenever
sensitive operations are requested by users. Speaker identification
and verification techniques [30, 31] are also effective in defend-
ing against hidden voice command attacks as they require user
authentication before executing the speech command.

Most importantly, as pointed out in the prior work [6], training a
simple classifier (i.e., logistic regression) with the acoustic features
extracted from hidden voice command and normal speech command
could almost fully defend against hidden voice command attack. In
other words, once the attack strategy is known, the hidden voice
command attack can be easily defended by integrating a simple
defense classifier in ASR system, which greatly reduces the threat
of hidden voice command attacks.

To validate the effectiveness of the learning-based defense clas-
sifier against hidden voice command attacks, we implemented two
classifiers using logistic regression and SVM respectively. The mod-
els were trained with statistical features from partial Vystadial
project [23] including 20,000 samples of normal human speech
and corresponding 20, 000 samples of hidden voice commands. The
statistical features were extracted from the audio signal using pyAu-
dioAnalysis [13] which splits the input audio signal into short-term
windows (frames) and computes a total of 68 features (e.g., MFCC
coefficients, chroma vectors, spectral spread) for each frame. The
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mean and standard deviation of these features among all frames
make up a total of 136 features representing the audio signal.

Table 2 shows the performance of learning-based defense classi-
fiers, both from the prior work [6] and our reproduction with SVM
and logistic regression, respectively. All three results are close to
100% attack detection rate, showing that the learning-based defense
classifier is extremely effective to detect and defend against hidden
voice commands.

3 HVAC: THREAT MODEL & ATTACK
OVERVIEW

In this section, we will introduce the threat model and the overall
attack flow of our proposed HVAC attack.

3.1 Threat Model

Considering the weakness of the prior work [6], we present a
stronger threat model. The goal of the adversary is to launch an
attack targeting ASR systems, by generating commands that can be
recognized by the targeted ASR system but cannot be understood
by humans. Moreover, the generated commands could also pass the
defense classifier that is trained with hidden voice commands. The
specific assumptions from the adversary’s perspective are listed
below.

e No prior knowledge of the target ASR system is required for
the adversary to launch the attack, which makes it a black-box
attack.

o The targeted ASR system could apply a training-based classifier
(e.g., Logistic Regression, Support Vector Machine, Deep Neural
Networks) to defend against hidden voice attacks.

o The adversary could get access to the same or similar ASR system
(as a black-box) to test if the generated commands can be correctly
recognized by the ASR system.

As the proposed HVAC attack is built in a black-box setting, the
attack is widely applicable to attacking various ASR systems includ-
ing those commercial closed sourced speech recognition devices
(e.g., Google Home and Alexa Echo). Some representative attack
scenarios include embedding the generated hidden command into
the audio tracks of regular media (e.g., Youtube videos and radios)
to control all the ASR devices exposed to that media, and playing
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Table 3: Parameter Set

Type Parameter Description
wintime Sliding window size for MFCC extraction
hoptime Step between successive windows
MFCC
numcep Number of cepstras to return
Parameters
nbands Number of warped spectral bands to use
maxfreq The highest band edge of mel filters
ComI‘nand K The hybrid fusion ratio
Fusion
Human tRim Speed tuning ratio for the speech part
Perception tRc Speed tuning ratio for the non-speech part
Mask pitch Pitch shifting ratio
Parameters wlen Sliding window size for time domain inversion

the designed attack sample in the physical proximity of the victim
ASR devices, etc.

3.2 Attack Overview

The goal of our attack is to generate an HVAC command which
can: 1) be correctly recognized by ASR systems; 2) bypass classifier-
based defenses; and 3) maintain unintelligible to humans.

To achieve the above attack goal, we propose a generic audio-
processing flow that can generate HVAC commands from any nor-
mal commands, as shown in Figure 4. There are two main com-
ponents including HVAC Command Generation which generates
HVAC commands that can bypass classifier-based defenses while
still being correctly recognized by ASR systems, and Human Percep-
tion Mask which is used to further enhance the unintelligibility of
the generated commands. Specifically, an understandable normal
command (adversary-desired command) needs to be produced first.
For instance, an adversary could either use his pre-recorded voice
command or create such a normal command using a text-to-speech
(TTS) engine. Next, the adversary generates the corresponding hid-
den voice command through tuning MFCC parameters during the
process of MFCC extraction and inverse MFCC, which is similar
to the black-box method proposed by Carlini et al. [6]. To be more
specific, the adversary first extracts commonly used acoustic fea-
tures (i.e., MFCC) from the normal command, and then performs
inverse MFCC to convert the extracted MFCC features back to an
audio sample. In this step, 5 MFCC parameters listed in Table 3 are
used to regulate the granularity of the extracted features, including
sliding window size, step between successive windows, number of
cepstras to return, number of warped spectral bands to use, and the
highest band edge of mel filters. These parameters are initialized
with random values at the beginning and then iteratively adjusted
according to whether the command can be recognized by ASR sys-
tems. After the step of inverse MFCC, the generated audio sample
only contains MFCC features which are necessary to the machine-
based speech recognition while disregarding other useful features
for human comprehension. This essentially makes the command
recognizable to machines but unintelligible to humans.

Meanwhile, a syllables detection algorithm [19] is implemented
to detect the speech parts and non-speech parts of the normal
command. The adversary then fuses the normal command and
the hidden voice command in Command Fusion, where the non-
speech parts are directly copied from the normal command and the
speech parts are a combination of the two audio samples. Through
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command fusion, parts of the HVAC command preserve the charac-
teristics of the normal command, which makes traditional classifier-
based defenses that extract features from the whole audio hard to
distinguish it from normal commands. The parameter K represents
the proportion of the hidden voice command in the HVAC com-
mand. A larger K indicates more features from the hidden voice
command are preserved, and vice versa. Same with the 5 MFCC
parameters, K is also initialized with a random number at the be-
ginning of command generation.

To further downgrade human intelligibility to the generated
command, the adversary would tune the speed & pitch of the HVAC
command and inverse it in the time domain to make it distorted and
lose consistency. The four human perception mask parameters (i.e.,
tRim, tRc, pitch, and wien) control the scale of the audio distortion.
A more distorted HVAC command would be harder for humans to
understand, but it may also let ASR systems couldn’t recognize it.
Therefore, the adversary needs to test whether the HVAC command
can be recognized by the target ASR system. If the command is not
recognizable, the adversary needs to start over the whole process
using a new set of parameters. It’s essential for the adversary to
try different sets of parameters and find an appropriate trade-off
between machine understanding and human intelligibility.

4 ATTACK DESIGN

In this section, we will introduce the core components of generating
an HVAC command from a normal command.

4.1 MFCC Extraction & Inversion

Similar to the black-box attack method in the prior work [6], the
adversary first extracts MFCC features from the normal command
and then inverses these features back to an audio sample, which
is the corresponding hidden voice command. The obfuscated hid-
den voice command thus shares the same MFCC features with the
normal command, which will tend to make ASR systems output
the same transcription. However, it only preserves features that
are useful for machine understanding, while features contributing
to human perception are discarded. The dimension and resolution
of the extracted MFCC features are determined by the 5 MFCC
parameters (i.e., wintime, hoptime, numcep, nbands, and maxfreq
listed in Table 3), which further influences the sound quality of
the re-constructed hidden voice command. A higher dimension &
resolution of the extracted MFCC features would help the ASR sys-
tem understand the hidden voice command more precisely, but also
makes it more perceptible to humans. If the reconstructed audio
can be easily understood by humans, the adversary can generate
a new candidate by adjusting these MFCC parameters to produce
lower fidelity audio.

4.2 Syllables Detection

For a command or a short sentence, it contains speech parts (pres-
ence of human speech) and non-speech parts (absence of human
speech). To ASR systems, only speech parts contain the informa-
tion that is useful for speech recognition. However, classifier-based
defenses usually extract acoustic features from the entire audio
sample (both speech and non-speech parts) to build learning-based
classifiers. To make the HVAC command unintelligible to humans
while being able to bypass classifier-based defenses, the adversary
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Figure 5: Illustration of Syllables Detection.

needs to combine these two parts of hidden commands and normal
commands in a way that makes the acoustic features extracted
from HVAC commands close to the features extracted from normal
commands. Thus, the adversary first needs to detect and segment
speech parts and non-speech parts of the normal command.

The speech parts consist of multiple audio segments, and each
segment represents a single syllable. Specifically, the adversary
uses the syllable segmentation algorithm proposed by Harma et
al. [19], in which the key idea is to find segments in the audio
sample which contains a relatively larger power density than a
pre-defined threshold. To be more specific, the adversary first calcu-
lates the Short-time Fourier transform (STFT) of the input normal
command sample, which is represented as a matrix S(f, t), where
f is frequency and ¢ is time. A minimum magnitude threshold 7
is set for the syllables. The adversary then repeats the following
steps: for the nth syllable, the adversary first finds f;, and t, where
S(fu, tn) is the maximum value in the spectrogram. The adversary
stops searching if S(f,, tn) is smaller than 7. The adversary then
finds the starting point and ending point of the syllable segment ¢,
and t, through solving the following equation:

arg max te — ts,
ts,te

S.t,ts <ltp,te > In,

[ts. tel, max(S(f, t:)) > S(fa, tn) — 7.

After finding the starting and ending points of a syllable, the
adversary sets S(f, [, te]) to 0 and search for the maximum value
(i.e., S(fn, tn)) in the spectrogram again for the next syllable. Fig-
ure 5 represents an example of implementing the syllables detection
algorithm on a normal command with "Ok Google" as its correspond-
ing transcription. Figure 5 (a) and Figure 5 (b) represent the audio
signal in frequency and time domain, respectively. The detected
syllables are labeled with red rectangles and ¢; (used for searching
for t, and t) is marked with red dots. We can clearly observe that

1

s.t,Vt; €
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Figure 6: Illustration of fusing normal command and hidden
voice command.

the detected syllables segments contain relatively larger energy
and match the voice activity in the audio sample.

4.3 HVAC Command Generation

After the detection of syllables, the adversary fuses the normal com-
mand and hidden voice command together to generate the HVAC
command. The fused HVAC command thus carries the characteris-
tics from both audio samples, making it hard to be understood by
humans while exhibits more similar acoustic features to the normal
command. This will help the fused command have higher chance
to bypass learning-based defense classifiers. Each detected syllable
would be regarded as a segment of the speech parts of the normal
command. Since the hidden voice command shares the same length
and is synchronized with the normal command, the adversary can
directly combine these two samples. Specifically, as shown in Fig-
ure 6, the non-speech parts of the HVAC command are directly
copied from the normal command without any modification, while
the speech parts are the combination of both audio samples. Since
the non-speech parts won’t affect machine understanding and hu-
man perception, preserving the whole non-speech parts from the
normal command would maximize the proportion of the character-
istics inherent from it in the HVAC command. This further makes
the HVAC command exhibit a similar pattern with the normal com-
mand, enabling it to bypass the existing learning-based defense
classifier. To be more specific, given the normal command as N and
the hidden voice command as H, the fused HVAC command F can
be derived as:

N(t)+H(t) xK

, I € speech parts,
K+1 P P

F(t) =
N(t),

()

t € non — speech parts,

where K is the pre-defined hybrid fusion ratio, which represents the
proportion of the hidden voice command in the HVAC command,
ranging from 2 to infinite.

To demonstrate the fused HVAC commands are indeed hard to
be distinguished from normal commands, we generate 200 normal
commands, 200 hidden voice commands and 200 HVAC commands.
For each command sample, we extract 136 acoustic features as
aforementioned in Section 2.3. For visualization purposes, we use
three representative features to differentiate the three types of com-
mands, as shown in Figure 7. Specifically, the features we visualized
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Figure 7: Illustration of distinguishing hidden voice com-
mands from normal & HVAC commands.

are the mean of the second MFCC coefficient, the mean of the sec-
ond central moment of the spectrum, and the standard deviation
of the 8th chroma vector. We can observe that it is very hard to
distinguish HVAC commands from normal commands since most
of these two types of samples are mixed with each other, while the
hidden voice commands are clustered separately from them. When
training the defense classifier using the complete 136 features, we
observe that nearly all HVAC commands would be classified as
normal commands, which will be demonstrated with more details
in Section 5.

4.4 Human Perception Mask

To further increase the unintelligibility of the generated HVAC
sample, we propose a human perception mask to make the audio
sample even more distorted in the time domain while ensuring it
can still be recognized by machines.

Audio Speed Tuning. When the same speech is spoken at a
faster rate, it would be harder for humans to understand [18]. How-
ever, although the duration of the command is shorter after speed-
ing up, the frequency spectrum will remain mostly the same and
won'’t largely affect the performance of being recognized by ASR
systems [1]. The adversary thus can further downgrade human per-
ception through speeding up the HVAC command. Different from
existing studies where the whole audio is sped up with a constant
ratio, in our attack, the adversary speeds up the speech parts and
non-speech parts of the HVAC command with two different ratios,
tRim and tRc, respectively. Compared with tRim, tRc is slightly
smaller. This would still make the command harder for humans to
perceive but increase the probability of being correctly transcribed
by the ASR system. This is because when the ratio is too high, the
ASR system will likely miss words or treat two separate words as
a single one. Slowing down the ratio for non-speech parts a little
would enlarge the gap between two successive syllables therefore
largely decreasing the probability of the occurrence of this type
of mistake. Meanwhile, the transcription is still spoken at a faster
rate which makes it harder for humans to understand. Moreover,
this would also disturb the consistency of features extracted from
the whole audio which is used by current learning-based defense
approaches.

Pitch Shifting. In addition to speeding up the HVAC command,
the adversary can also scale up the pitch. Scaling up the pitch
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would make the command shriller and less likely to be regarded
as a human speech. The adversary uses the pitch shifting algo-
rithm provided by the Time-scale modification (TSM) Toolbox [11]
in Matlab. Given the pre-defined pitch-shifting ratio pitch in the
parameter set, the algorithm will change the pitch of the signal
by z ;ggh semitones while ensuring the original sampling rate and
audio speed is not influenced. Specifically, given an input audio
whose sampling rate is f,;4, the algorithm first resamples it to a
new frequency fpew. When the resampled signal is played back

Jold pitch)
fl’lEW 100 ’

and the length of it would change by a factor of %. Therefore,

with f;,;4, the pitch would change by log2 L (equals to

another TSM algorithm that rescales the time-axis of the resampled
audio is further implemented to compensate for the reduced length
while ensuring the original audio speed and the modified pitch
won’t be influenced when playing back using the original sampling
rate fy14.

Time Domain Inversion. Proposed by Abdullah et al. [1], time-
domain inversion is a sliding-window based algorithm which in-
verses the audio signal in time domain in each window. There is no
overlap between successive windows and the size of the windows is
pre-defined in the parameter set as wlen. This would preserve the
frequency characteristics in each window, but make the audio sig-
nal discontinuous and perturbed in the time domain which makes
it harder for humans to understand.

The whole process of the human perception mask is illustrated
in Figure 8. For visualization purposes, we only show the effect on
a small segment (i.e., approximately 0.075 seconds) of the HVAC
command audio sample. Specifically, the speed-up ratio is 1.25 for
both speech parts and non-speech parts, the pitch tuning ratio is
200, and the sliding window size wlen for time domain inversion is
10. We can see after adding the human perception mask, the HVAC
command is further distorted, making it even harder for humans to
understand.

The adversary finally feeds the HVAC command after adding
the human perception mask into the target ASR system and test
whether it could be successfully transcribed. If it could not be
recognized, the adversary will start over the whole process using
a new set of parameters. The adversary could try to increase the
dimension of the MFCC features (i.e., increase numcep), reduce
the characteristics inherent from the hidden voice command (i.e.,
reduce K), or make the HVAC command less distorted (i.e., decrease
wlen), etc.

5 EVALUATION

In this section, we first present the experimental methodology and
then evaluate the performance of HVAC commands with respect to
their intelligibility level, probability of bypassing defense classifiers,
and the ASR recognition accuracy under over-the-air transmission.

5.1 Experimental Methodology

Data Collection & Experimental Setup. We select 15 speech
commands for evaluation as shown in Table 6 in Appendix, which
exhibit a series of potential practical threats. The normal command
version of these 15 speech commands is generated through the
IBM Watson text to speech service APIs [28]. After that, with the
generated normal commands as input, we apply the framework
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Figure 8: Illustration of Human Perception Mask.

illustrated in Figure 4 to generate corresponding HVAC commands.
Specifically, during the HVAC command generation, the Google
speech recognition system API [16] is leveraged to test whether
the generated digital command can be recognized by ASR systems.

We consider the most realistic attack scenarios where the HVAC
commands are played over-the-air to attack the ASR systems. In
particular, the HVAC commands are played in three different in-
door setups using two models of loudspeakers and received by
three different voice assistants. As illustrated in Figure 9 (a), the
first setup takes place in a bedroom, with an Amazon Echo acting as
the victim voice assistant. The HVAC commands are played using
a Logitech Z623 loudspeaker which is placed one meter away from
the Amazon Echo. Similarly, setup 2 shown in Figure 9 (b) is also
a bedroom setup. A Google Home acts as the victim ASR system
and the HVAC commands are played using an Edifier R980T loud-
speaker [12] placed one meter away. Lastly, an office setup is shown
in Figure 9 (c) as setup 3. An iTalk-02 360-degree omnidirectional
microphone is utilized to emulate the builtin microphones of smart
home appliances and is placed 1 to 3 meters away from the Edifier
R980T loudspeaker. In each setup, we played the generated HVAC
commands 20 times, resulting a total of 2,100 HVAC command
recordings.

To validate that our HVAC commands can bypass learning-based
classifiers, we use two sets of data to train the classifiers. First, we
train the classifiers using normal commands and hidden voice com-
mands proposed in the prior work [6], each with 20,000 training
samples. The normal commands are randomly chosen from Vys-
tadial project [23], and we generate their corresponding hidden
voice commands and HVAC commands. In particular, statistical
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features are extracted from the command samples using pyAudio-
Analysis [13]. We use four machine learning algorithms (i.e., logistic
regression, SVM, random forest and gradient boosting) to train the
classifiers leveraging sklearn open source library [27]. Second, we
aim to build more advanced defense classifiers by involving HVAC
commands. The training process is almost the same except the
training set consists of normal commands and HVAC commands,
each with 20,000 samples.

Evaluation Metrics. We evaluate our HVAC commands using
three different metrics:

e Normalized Mel Cepstral Distortion (MCD): The Mel cepstral dis-
tortion is used to evaluate the human intelligibility level of HVAC
commands, defined as

24
MCD = (10/In(10)) X 4|2 X Z(mcg - mci)z,
d=1

where mcg and mc? are the dth mel-cepstra of two audio signal,
respectively. To generalize the results, the MCD is normalized
using W

ASR Recognition Accuracy: We leverage the Levenshtein distance
ratio to measure the recognition accuracy of ASR systems. Given
the ground truth text of an HVAC command as X, and the cor-

responding recognition result of the ASR system as Y, then the

len(X)—leven(X,Y)
len(X) >

where leven(X,Y) is the Levenshtein distance between X and Y,

and len(X) is the string length of text X.

Success Rate of Bypassing Defenses: The possibility that an HVAC
command is recognized as a normal command by the defense
classifier, which is defined as the ratio of HVAC commands that
are not correctly recognized out of all the HVAC commands.

Levenshtein distance ratio is defined as R =

5.2 Intelligibility Test

We use the normalized Mel Cepstral Distortion (MCD) to evaluate
the human intelligibility level of our HVAC commands compared
with hidden voice commands [6]. The normalized MCD between
two audio samples indicates the level of distortion needed to trans-
fer from one to another [8]. If the MCD between the HVAC com-
mand and the normal command is larger than the MCD between
the hidden voice command and the normal command, it means
that the HVAC command shares a lower similarity with the normal
command in phonetic characteristics, indicating it’s more distorted
and less likely to be recognized by human listeners.

Although some studies perform a user study (e.g., Amazon Turk
Study) to test human intelligibility [6], we do not apply this method
for the following reasons: 1) As pointed out by Abdullah et al. [1],
this type of user study has many uncontrollable variables. For in-
stance, the participants could have different ages, first languages,
listening equipment (e.g., a headphone or a loudspeaker). These
will all affect their perception of the HVAC commands, which may
lead to significantly biased results. 2) When the participants are
listening to our HVAC commands, they would be aware that there’s
a transcription hidden in it, and would thus be more focused on re-
vealing the hidden transcription instead of regarding the command
as meaningless noise. However, when the attack is launched in
practice, nobody would try to perceive the potential transcriptions
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Figure 10: Intelligibility test of HVAC commands compared
with hidden voice command [6].

hidden in a noise-like sound. Therefore, we do not feel a live user
study is the appropriate method for determining the intelligibility
level of our HVAC commands.

For each generated hidden voice command [6] and HVAC com-
mand, we calculate the normalized MCD between these hidden
commands and their corresponding normal commands. The exper-
imental results are shown in Figure 10. It’s clear that our HVAC
commands have comparable distortion distance to normal com-
mands compared with hidden voice commands [6], with 13 out
of 15 are even more distorted. These results demonstrate that our
HVAC commands have comparable unintelligibility to humans as
the prior work [6].

5.3 Validation of Bypassing Defense Classifier

We first test whether the HVAC commands could bypass defense
classifiers trained using normal commands and hidden voice com-
mands [6]. Specifically, four machine learning algorithms including
logistic regression, SVM, random forest and gradient boosting are
utilized to train these classifiers. We use 1,000 recorded HVAC com-
mand samples collected by the external microphone in setup 3 as
our testing set. The success rate of bypassing defense classifiers of
these samples is shown in Table 4. We find that nearly all of our
HVAC commands can bypass the existing state-of-the-art classi-
fiers. When the classifier uses Random Forest, we can maximize
the success rate of bypassing defense classifiers to 100%. Among
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Table 4: Success rate of bypassing defense classifiers (trained
using normal commands and hidden voice commands [6]).

Logisti Gradient
Classifier Name Ogls fc SVM | Random Forest ra lfm
Regression Boosting
Success Rate of 904% | 98.8% 100.0% 99.7%
Bypassing Defenses

Table 5: Success rate of bypassing defense classifiers (trained
using normal commands and HVAC commands).

Logisti dient
Classifier Name OB1s TC SVM | Random Forest Gra l?n
Regression Boosting
f
Success Rate o 853% | 89.4% 93.0% 96.3%
Bypassing Defenses

all these classifiers, the logistic regression classifier exhibits the
best performance with the lowest 90.4% success rate of bypassing
defenses. When using the other three classifiers, our success rate
of bypassing defenses can reach an average as high as 99.2%. This
means that nearly all of the HVAC commands would be recognized
as normal commands, which demonstrate the classifiers are not
robust enough to defend against our HVAC attacks.

We further test our HVAC commands on a stronger defense
classifier that trained directly with HVAC commands and normal
commands. The 1,000 recorded HVAC samples are also used as the
testing set, and the results are shown in Table 5. Even if the training
set involves HVAC commands, due to their acoustic features share
a similar pattern with normal commands (Figure 7), it would be
hard for the classifiers to distinguish them from normal commands.
When using the gradient boosting classifier, we can increase the
success rate of bypassing defenses to at most 96.3%, while the
logistic regression classifier still outperforms others with the lowest
85.3% success rate. However, this success rate of bypassing defenses
is much higher compared with our reproduced results shown in
Table 2, which is as low as 0.1%. The convincing results demonstrate
our HVAC attacks cannot be defeated even if the ASR system is
able to get access to our attack flow and gather a large amount of
training data.
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Figure 11: Experimental results of attacking Google Home,
Amazon Echo and external microphone under three attack
settings.

5.4 Over-the-air Attack Performance

The attack flow shown in Figure 4 ensures the HVAC commands can
always be recognized in the digital domain, because an adversary
can update the parameters if the sample cannot be recognized after
adding the human perception mask. Therefore, we mainly evaluate
the performance of our HVAC commands under realistic over-the-
air settings.

Attack Performance on Amazon Echo & Google Home. Fig-
ure 11 shows the results of attacking Amazon Echo and Google
Home smart speaker at setup 1 & 2, respectively. For each speech
command, we play the generated HVAC command 20 times, result-
ing in a total of 300 samples recorded in each setup. We place a
sound level meter (i.e., RISEPRO decibel meter) near the speakers to
measure the noise level. The ambient noise level is around 36 dBSPL
and the commands are played around 70 dBSPL. The recognized
transcriptions of these commands could be checked via the mobile
apps of these smart speakers online. The average ASR recognition
accuracy of these 20 samples are used as the evaluation metric.

We achieve an 89.3% average ASR recognition accuracy for Ama-
zon Echo and 91.9% for Google Home. Among the 15 commands,
7 of them are fully recognized (reach a 100% average ASR recog-
nition accuracy) by Amazon Echo, while 9 out of 15 commands
are fully recognized by Google Home. Note although sometimes
the transcription is not fully recognized, the smart speakers would
also understand the meaning of it and execute the corresponding
operation (i.e., command 1 "What is my schedule today?" recognized
as "my schedule today"). The performance results demonstrate our
HVAC commands can effectively attack these state-of-the-art com-
mercial smart speakers.

Attack Performance on External Microphone. Figure 11
also shows the results of using an external omnidirectional mi-
crophone to record the HVAC commands at a distance of 1 meter
from the loudspeaker (setup 3). We feed the recorded samples to
the Google speech recognition system API [16] to obtain the recog-
nized transcription. We achieve an overall average ASR recognition
accuracy of 91.7%, which is similar to the results obtained from
two smart speakers. To further demonstrate the robustness of these
commands, we extend the distance between the loudspeaker and
the microphone to at most 3 meters, and the results are shown
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Figure 12: Experimental results for attacking the external
microphone with 1.5, 2, 2.5 and 3 meters away.

in Figure 12 and Figure 13. Specifically, we achieved an average
ASR recognition accuracy of 91.8% at 1.5 meters, 81.9% at 2 meters,
81.4% at 2.5 meters, and 74.6% at 3 meters. As shown in Figure 13,
with the increase of the distance between the loudspeaker and the
microphone, the average ASR recognition accuracy tends to drop.
This is because the sound level of the played commands would
decrease at the microphone’s side (i.e., drop from 70dBSPL at 1m to
55dBSPL at 3m), meanwhile a larger distortion will be introduced in
the prolonged transmission channel. However, even if we increased
the distance up to 3 meters, we still achieve a 74.6% overall ASR
recognition accuracy which means most of the HVAC commands
could be understood, with 7 out of 15 reach 100% average ASR recog-
nition accuracy. These results demonstrate the generalizability of
our HVAC commands under various realistic attack scenarios.

6 DISCUSSION

Why Hidden Voice Commands?: In this work, we focus our ef-
forts on advancing the existing hidden voice commands attack,
and defeating the existing defense classifier. We find that the bulk
of existing research related to hidden voice commands actually
focuses on the adversarial example attacks. Although similar, we
chose to investigate hidden voice commands for a few significant
reasons. First, the work by Carlini et al. [6] introduced the first
true hidden voice command attack that could defeat ASR while
remaining unintelligible to humans and has gained significant at-
tention in academia and media coverage. Additionally, the authors
present a modern defense classifier that can defeat their attack as
the leading defensive work in this area of research. This encour-
aged us to explore if and how we could improve the existing hidden
voice command attack and its practicality in a real-world setting
by defeating the current defense classifier.

Another reason that we chose to focus on hidden voice com-
mands is because in a real-world scenario an adversarial example
attack would be very hard to implement. In an adversarial example
attack, the attacker insert an audio perturbation over a live issued
user command so that it is transcribed to a different command that
is chosen by the attacker. Therefore, an attacker would have to
remain undetected by the nearby user and issue the correct audio
perturbation (specialized for each unique user command) at the
same time as the user speaks their live command. So not only will



Session 1B: Cyber-physical Systems

=
=

Average ASR Recognition Accuracy
S S I S S
> ~ — =) o®
5 — :

2.5m
ker and the micr

q
P

Distance between the |

h
P

Figure 13: Performance of attacking the external micro-
phone at various distances.

the attacker have to correctly guess what live command the user
will speak, but they will also have to initiate the playback of their
audio perturbation at the same time as the user starts speaking. On
the other hand, in a hidden voice command attack the attacker gets
to inject a completely new command to the target system and does
not rely on an initial live user command. Since an attacker con-
structs their hidden voice command prior to attacking the system,
they can issue it when the user is not speaking and it should go
unnoticed. Further, an attacker could even wait for a more optimum
time, when the user is away, to issue the command and reduce the
chances of being detected.

Potential Defenses: While our proposed HVAC commands can
defeat the existing defense classifier proposed in prior work [6],
and even a classifier specially trained on HVAC commands, we
recognize that some defense approaches may potentially be used
to mitigate our attack. First, liveness detection refers to determin-
ing whether or not an audio signal originated from a live human
speaker or rendered from a speaker device by comparing specific
audio features. The work by Zhou et al. [39], described in Section 7,
demonstrates the potential for liveness detection as a defense strat-
egy. This technique seems robust against all acoustic adversarial
command attacks, no matter how imperceptible they are to human
listening. As our HVAC commands are still acoustic, and rendered
from a speaker device in the attack setting, liveness detection may
be a viable defense strategy against our attack.

The defense mechanism proposed by Wang et al. [36] also utilizes
physical features (i.e., induced vibrations) to distinguish hidden
voice commands and normal commands. They determine the unique
signatures of each type of command, in the vibration domain, to
label any new future commands and identify the hidden voice
commands. Again, this technique seems robust against all acoustic
adversarial command attacks. An attacker would have to change
the device used to playback the adversarial commands and control
the induced physical effects from acoustic audio.

Future Work: Recent research has demonstrated the potential for
hidden voice command attacks to compromise ASR systems. Many
different studies have explored how to craft these commands in
unique ways to achieve specific attack goals (i.e., speech recogni-
tion, speaker identification, etc.). Conversely, there is very little
prominent research on defending against these attacks in a practi-
cal setting. This leaves a large area of this research topic in need
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of further exploration. Future work related to hidden voice com-
mands [6] and our HVAC commands could explore the potential for
the above defense techniques to mitigate our attack in controlled
experimental settings. Exploring these defense strategies may re-
veal which of the present techniques is more robust to these hidden
voice command attacks.

7 RELATED WORK

Hidden Voice Commands: Most relevant to our research are the
recent studies that explore attacks using specialized, hidden voice
commands. The two main properties of these commands are 1) that
they can be recognized by ASR (machine-recognition) and 2) that
they are unintelligible to human listeners. The pioneer work on this
attack, and the main study that influences our research, is Hidden
Voice Commands [6] by Carlini et al. In their work, they utilized
the reverse feature extraction presented in [35] to construct their
commands and extended to a black-box approach. Their work was
able to achieve the unintelligibility required for these adversarial
commands, and could also beat modern ASR systems.

Other unique works attempt to tackle the “hidden" characteristic
of these specialized adversarial examples in new ways. Making an
adversarial command more imperceptible (hidden) to human listen-
ers will increase its likelihood of success in an attack. First, Dolphin
Attack [38], presented by Zhang et al., exploits the inaudible fre-
quency range above the threshold for human hearing. As a novel
approach, the authors modulate their adversarial commands above
20 kHz and find that although the audio signals cannot be detected
by the human ear, the ultrasonic frequencies are still capable of
relaying speech information to a microphone (for ASR). Similarly,
a work by Roy et al. [32] exploits the non-linearity of microphone
sensors and found a way to design high frequency, inaudible audio
signals that can be recorded by standard microphones. The authors
present the defensive applications of their crafted signals. Lastly,
CommanderSong [37] is a work by Yuan et al. that presents a novel
technique to hide an adversarial command in the audio of a song.
Again, this would allow an attacker to issue an adversarial com-
mand in the presence of a victim user without necessarily alerting
them to an attack.

Currently, there are few published works that explore the de-
fenses against hidden adversarial commands. Unique to other re-
lated works in this area, the Hidden Voice Commands [6] study
described previously also evaluated potential defense mechanisms
to mitigate hidden voice attacks. Further, they actually presented
a defense classifier that can beat their novel hidden voice com-
mands. Inspired by this, we found ourselves asking; could this de-
fense classifier potentially be beat by even more advanced hidden
voice commands?

A work by Zhou et al. [39], recently investigated the vulner-
ability of VCSs in autonomous cars to the Dolphin Attack [38]
and CommanderSong attack [37]. The authors designed a defense
mechanism, that utilized physical measures, to identify commands
spoken by a live human vs. commands played from a speaker device.
Specifically, the authors identified the “pop noise" that is produced
by human speech when it is near a microphone and used it to dis-
tinguish live speech from machine-rendered. In a similar work by
Wang et al. [36], the authors used learning-based methods and data
collected using low-cost MEMS motion sensors (i.e., accelerometer,
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gyroscope, etc.) to design a system that can identify hidden voice
commands vs. normal commands based on their unique signatures
in the vibration domain. So far, the defensive strategies that ex-
ploit physical characteristics to distinguish between hidden and
normal commands seem to be the most promising for mitigating
such attacks.

Research on hidden voice command and adversarial example

attacks is continuing to gain popularity and has lead to some pub-
lished works that provide a Systematization of Knowledge (SoK) on
these hidden command attacks and the potential defenses. In a very
recent work by Abdullah et al. [2], the authors evaluate and system-
atize a large set of existing research papers on attacks against ASR
and speaker identification (SI). They performed experimental tests
to assess the transferability of the existing attacks. Recognizing
that there has been little published work in the defense space of
this research, Abdullah et al. discussed adversarial training which
is a popular defense mechanism developed from related adversarial
image research. They conclude that this defense strategy may not
be effective in mitigating this attack in the audio domain. The au-
thors also analyzed the current published mechanism for detecting
machine vs. human-rendered speech and found that it has true
potential as a defense strategy.
Adversarial Examples: Many research works have explored the
use of adversarial examples to attack machine learning models. Co-
caine Noodles [35], by Vaidya et al., was one of the first published
works on generating adversarial examples. In their work, the au-
thors demonstrate a novel (reversed) feature extraction technique
that can be used to craft these examples. The authors confirmed
that their hidden commands could successfully attack ASR on a
smartphone. An interesting work by Carlini et al. [7] devised a
method to hide their hidden commands in normal audio such that
the adversarial example is 99% similar to the human ear as the
original audio. This means a malicious command, say “open the
garage door”, could be hidden in the inconspicuous audio of a TV
commercial that would not necessarily alert a victim user that an
attack is occurring.

Other works on adversarial commands sought to achieve more
specialized goals. In Houdini [9], Cisse et al. generated adver-
sarial examples using the loss function of a speech recognition
model. Their commands were specialized for combinatorial and
non-decomposable speech recognition tasks. Continuing, a work
by Iter et al. [21] showed that principles of image recognition task
models are effective for creating adversarial commands that can
defeat speech recognition. An interesting work by Gong et al. [14]
built an end-to-end scheme to generate adversarial examples by per-
turbing the audio and modulating it to be unintelligible to humans.
The adversarial commands created in this work were designed to
target computing paralinguistic applications. Similarly, Alzantot et
al. [3] designed targeted adversarial attacks against speech classi-
fication models. Focusing on short audio clips that classify to one
word (i.e., "Yes", "No", "Up", "Down", etc.), the authors forged certain
audio features in these clips to get them to classify as a different
label. More recently, Abdullah et al. [1] generated hidden voice
commands for more practical black-box attack settings.
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8 CONCLUSION

This paper proposed a more advanced hidden voice attack, HVAC,
which can bypass existing learning-based defense classifiers while
preserving all the essential characteristics of hidden voice attacks
(e.g., unintelligible to humans, recognizable to machines). Existing
classifier-based defenses largely rely on the acoustic features ex-
tracted from the entire audio of normal and obfuscated samples,
whereas only speech parts (i.e., human voice parts) of these samples
contain the useful linguistic information for the machine transcrip-
tion. In this work, we thus proposed a fusion-based method to
combine the normal sample and corresponding obfuscated sample
as a hybrid command for bypassing these defense classifiers. In
addition, several acoustic parameters, including speed, pitch, etc.,
are further tuned to make the command even harder to be under-
stood by human listeners, yet can still be recognized by machines.
Extensive physical over-the-air experiments demonstrated that our
proposed HVAC commands can bypass existing defense classifiers
while still maintaining a low intelligibility level to humans and a
high recognition rate to ASR systems.
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APPENDIX

A.1 Command List

Table 6: HVAC Command List

Command Index Command
1 What is my schedule today?
2 Take a picture.
3 Turn off all lights.
4 Turn on the airplane mode.
5 Ok google.
6 Call 911.
7 Open the door.
8 I cannot find my book.
9 What is my current location?
10 Turn off all alarms.
11 Play some music.
12 Turn the volume up.
13 What is the weather today?
14 Set a timer for 5 minutes.
15 Wake me up at 8 a.m.
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