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Abstract

Extended Reality (XR) headsets are increasingly serving as reposito-
ries for substantial volumes of sensitive data and gateways to web
applications. This transition highlights the need for convenient and
secure user authentication solutions. Traditional password/PIN-
based schemes are ill-suited to the XR’s gesture- and voice-based
interfaces and are prone to shoulder-surfing attacks. Some recent
XR systems incorporate two-factor authentication, but it requires
additional operations on a second device (e.g., a smartphone or
wearable). In this work, we introduce the first effortless and in-
built XR user authentication system by leveraging the harmonics
of vibrations excited by users’ vital signs. The system is transpar-
ent to users (no efforts during enrollment and authentication) and
requires no additional hardware. The key idea is that vital signs
(i.e., breathing and heart beating) naturally generate low-frequency
mechanical vibrations, causing human skull to vibrate and produces
harmonic signals. When the harmonics pass the human head, they
carry rich biometrics associated with the wearer’s skull structure
and soft tissues, which can be captured by the XR motion sensors.
Instead of directly utilizing the vibrations, we extract more reliable
biometrics from the ratios among different harmonic frequencies,
which capture wearers’ unique head and facial attenuation prop-
erties and are non-volatile when the periodicity and amplitude of
vital signs fluctuate. We further design an adaptive filter to mitigate
the body motion distortions in common XR interactions. By adopt-
ing advanced deep learning models with the attention mechanism,
our system realizes effective and robust authentication across XR
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scenarios. Evaluations across 10 months, with 52 users and two pop-
ular XR headsets, show that our system can accurately authenticate
users with over 95% true positive rates and rejects unauthorized
users with over 98% true negative rates under various XR scenarios,
with biometrics remaining consistent over long-term periods.
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1 Introduction

Head-mounted Extended Reality (XR) devices have rapidly gained
global attention, driven by advancements in 3D spatial displays and
motion tracking technologies. These devices allow users to interact
with programs and digital media through intuitive inputs such as
gestures and voice in augmented (AR), virtual (VR), and mixed real-
ities (MR) [3, 17, 18]. The adoption of XR headsets grows rapidly at
an annual rate of 11.5% and will result in more than 34 million users
in 2026 [1]. The rapid surge of XR devices is driving a transition from
traditional computers, limited by 2D screens or mice/keyboards,
to spatial computing using XR headsets [7] and reforming many
critical sectors, such as remote workspace/collaboration [6], manu-
facturing [2], education [9], entertainment [8], and healthcare [19].
As the XR headsets are gaining worldwide adoption, a substantial
amount of sensitive data (e.g., personal and work accounts, confi-
dential documents, financial and health records) is being transferred


https://orcid.org/0000-0002-2084-6383
https://orcid.org/0009-0000-5523-8647
https://orcid.org/0000-0002-2874-316X
https://orcid.org/0000-0002-2874-316X
https://orcid.org/0009-0003-5528-0783
https://orcid.org/0009-0002-4136-7004
https://orcid.org/0000-0002-7599-202X
https://orcid.org/0000-0002-3984-6973
https://orcid.org/0000-0001-6083-104X
https://orcid.org/0000-0002-3994-766X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3719027.3765060
https://doi.org/10.1145/3719027.3765060

CCS 25, October 13-17, 2025, Taipei, Taiwan

Authentication
o ~,

/ Profile matching
o o '
i
i
i

Harmonics of Vital Sign Vibrations

o

Sensitive
private data |

Uiy Web sen/ices:
i
A ’

Figure 1: Illustration: Our system harnesses harmonics of
vital sign vibrations to realize effortless (does not require
any explicit user actions) and inbuilt (uses motion sensors
available on all XR headsets) XR user authentication.
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from traditional computing devices to XR headsets. They are also
increasingly serving as gateways to many web services (e.g., search
engines, online shopping) and applications (e.g., editors, games,
virtual assistants). These transitions highlight the urgent need for
convenient and secure user authentication for XR headsets.
However, the development of user authentication for XR sys-
tems still remains in its infancy. Existing password/PIN-based meth-
ods directly migrated from traditional computing devices do not
align well with XR’s unique input interfaces. Utilizing gestures
or voices to enter passwords or PINs in XR systems is usually
cumbersome as XR devices normally do not include a physical
keyboard. These methods are also prone to the observation and
shoulder-surfing attacks [21, 48, 51]. To address these issues, be-
havioral/physiological biometrics [38, 44, 52, 53, 63] and two-factor
authentication (2FA) [10, 11, 13] have been investigated. Never-
theless, these methods present two main limitations: (i) Lack of
Seamlessness: Some XR headsets have adopted a QR code [10] or
virtual button [11] on a smartphone/wearable as a second factor
for authentication. However, they usually require operations on
the second device, interfering with XR’s immersive experience. A
few high-end XR headsets (e.g., Apple Vision Pro) employ infrared
cameras for iris authentication, but such headsets are prohibitively
expensive (e.g., over $3000). More affordable headsets, such as Meta
Quest 2/3 and Valve Index, typically lack these dedicated sensors.
(ii) Lack of Biometrics Robustness. Recent studies leverage behav-
ioral biometrics from the user’s hand [52, 53], head [38, 63], and
eye motions [44] for authentication. This trend brings convenience
as gestures are commonly used during XR interactions. However,
these mechanisms experience reduced performance due to intra-
user variability, meaning that a user’s behavior may shift with
different emotional states, physical conditions, XR contexts, etc.
In this paper, we set forth to address the limitations by designing
a seamless and robust user authentication system for XR headsets.
We find that vital signs (i.e., breathing and heartbeating) naturally
generate low-frequency mechanical vibrations propagating through
the human head. These vibrations cause the skull structure to vi-
brate, producing the signal patterns at the natural frequencies (i.e.,
multiples of the breathing/heartbeat frequency), which we refer
to as vital sign harmonics. These vibration harmonics reflect the
unique skull structural properties of the user, such as geometry and
density of cranial bones, facial bones, and ossicles. In addition, the
vibration signals propagate through the soft tissues of the face (e.g.,
skin, muscle, fat), undergoing a unique attenuation pattern shaped
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by the face’s bio-mechanical properties. As the headset is mounted
on the user’s head, it can pick up the vital sign harmonics, thereby
passively encoding the skull and facial tissue properties into the
motion sensor readings. We show that robust biometrics can be ex-
tracted from the vital sign harmonics even when the breathing and
heartbeat rates change. The robustness is rooted in the consistent
properties of skull structure and facial tissues, enabling non-volatile
biometric extraction. More importantly, the vibration harmonics
carry head properties confined to the human body. The internal
propagation mechanism makes our system resilient to spoofing
attacks relying on biometric theft via video/voice recordings.

The core idea of our system is to derive robust biometric features
from vital sign harmonics to realize user authentication, as illus-
trated in Figure 1. The user enrollment and authentication process
of our system are transparent. As built-in XR motion sensors are
always on to track head motions, our system can extract biometrics
by analyzing streaming sensor readings for either user profile con-
struction or authentication, without requiring additional devices
or sensors. Compared with traditional password/PIN-based user
authentication methods, our system removes the need for explicit
user inputs, such as entering passwords, interacting with secondary
devices, and performing gestures, which could interrupt or nega-
tively impact the user’s XR experience. While a recent study [69]
shows the feasibility of using facial vibrations induced by vital signs
for user re-identification, it did not account for the inherent phys-
iological variability in vital signs [49, 55], such as fluctuations in
periodicity, amplitude, and temporal patterns. For instance, a user’s
heart rate and pulse volume typically elevate during intense gaming
compared to more passive activities, such as watching 3D videos.
Similarly, immersive XR experiences may cause shorter respiration
cycles if users become excited or anxious. These vital sign variations
may cause a biometric mismatch between the user’s profile con-
structed during the enrollment and the authentication phase with
new vibration data. Instead of directly utilizing facial vibrations, we
extract biometric features from various harmonic components that
reflect the stable biomechanical properties of skull structures and
facial tissues. Particularly, we leverage ratios between harmonic
components of the vibrations. These ratio-based features capture
unique skull structure properties [25, 31], such as the geometry and
density of the skull. Furthermore, the unique attenuation properties
of soft tissues of the face are also reflected in these features. Both
types of properties are non-volatile under the variations of vital
signs, thereby allowing robust user authentication.

To realize such a system, we need to address several challenges.
(1) Distortions Caused by Body Motions. In XR contexts, the user
interacts with virtual objects via various body motions (e.g., head
and hand gestures). The motion artifact can affect signal patterns of
a wide frequency range, even overshadowing the vital sign harmon-
ics. (2) Unknown Biometrics Related to Harmonic Ratio. Biometric
features based on harmonic attenuation ratio have not been stud-
ied in prior works. It is necessary to study the correlations among
different harmonic components, and extract features invariant to
vital sign variations. (3) Biometric Robustness Across XR Contexts.
Vital sign harmonics and their ratios are inherently sequential sig-
nals, with small-scale temporal variations. To realize robust user
authentication, our system should derive reliable representations
capturing inherent skull structure and tissue properties.
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To mitigate the distortions in vital sign harmonics, we develop
an adaptive filtering scheme that dynamically cancels the motion
artifacts and extracts the denoised harmonic signals. We further
develop a harmonic augmentation scheme that simulates the distor-
tions caused by variations in vital sign magnitude and frequency
to enrich user profiles for robust authentication. Based on the con-
sistent harmonic ratio under different physiological conditions, we
develop a series of attenuation features, such as Harmonic Am-
plitude Ratio and Harmonic Energy Ratio, to depict users’ unique
skull and facial soft tissues. Additionally, we derive structural fea-
tures, including cepstral and wavelet features, to characterize vital
sign harmonics from the spatial domain. Together, these features
and augmentation scheme enable robust user profile construction
that accommodates various XR scenarios and long-term usage. We
further design a transformer-based model with self-attention mech-
anisms to derive user representations. A user will be authenticated
if the representations match those in the claimed identity profile.
Our main contributions can be summarized as follows:

e We propose the first effortless and inbuilt user authentication
system for commodity XR headsets harnessing unique head bio-
metrics derived from vital sign harmonics. It is also the first work
that demonstrates distinctive and robust biometrics can be ex-
tracted from vibration harmonics, without requiring any active
user interactions or extra hardware/sensors.

o We design a series of harmonic features based on the ratios be-
tween different harmonic components of vital sign vibrations.
These harmonic features characterize users’ unique skull struc-
tures and properties of soft tissues on human faces, which are
non-volatile under the variations of vital signs.
We develop a harmonic augmentation approach based on noise in-
jection and frequency shifting to simulate the distortions caused
by vital sign variations and enrich user biometric profiles. For
reliable authentication, we develop a transformer-based encoder
to derive robust feature representations that characterize the
skull and facial tissue properties of the wearer.

e We validate our system by conducting extensive experiments
on Meta Quest and HTC Vive Pro Eye across 10 months with
more than 52 users aged 18 to 45. The results show that our
system achieves true positive rates of over 95% under various
XR scenarios and long-term authentication (e.g., over 60 days).
Moreover, it effectively rejects adversaries with true negative
rates of more than 98% under practical attack scenarios.

2 Preliminary Studies

This work aims to explore effective and robust user authentication
by analyzing vital sign harmonics that characterize human skull
and facial soft tissues of the wearer. As illustrated in Figure 2, the
human head consists of skull bones, such as the frontal, parietal,
and temporal bones. When the mechanical vibrations induced by
vital signs propagate through the head, the human skull will act
as a resonant structure, and produce distinctive harmonic patterns.
According to prior studies [37, 57, 62], the relationship among the
amplitudes of fundamental frequencies and harmonics of vital sign
vibrations on the human skull can be formulated as:

. E
A(i - fo) < A(fo) - by F k>1, (1)
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Figure 2: Kinetics and related structures of the minute vibra-
tions induced by human respiration and heartbeat.

where A(-) denotes the frequency amplitude of vital sign harmonics
on the human skull and f; represents the fundamental frequency
of vital sign vibrations. E, p, and 5 refer to the elastic modulus,
density, and viscosity. i is the harmonic level and k is an empirical
constant, which indicates the exponential reduction of harmonic
amplitude on higher frequencies. The bio-mechanical properties of
human skull and head bones [20, 22, 58] are summarized in Table 1.
With extremely high elastic modulus and low viscosity, the human
skull tends to amplify the harmonics after receiving the vital sign
vibrations. Moreover, users’ unique skull structures and properties
are encoded in the distinct harmonic amplitudes after amplification,
enabling biometric extraction from vital sign harmonics.

After being manipulated by the human skull, the vital sign har-
monics travel through the soft tissues of human faces, manifest dis-
tinct attenuation patterns. With different bio-mechanical properties
in Table 1, these tissues create a complex medium for propagating
vibrations. In particular, soft tissues, such as brain, muscle, and fat,
have substantially low elastic modulus and high viscosity compared
to the human skull. According to Equation 1, the amplitude of i-th
vital sign harmonic A(i - fy) will experience unique attenuation
effects while passing the different facial tissues given their distinct
bio-mechanical properties. Inspired by these findings, we explore
how skull structures and tissue properties influence the harmonic
generation and attenuation signatures of individual users.

Harmonic Properties of Vital Signs. To investigate the im-
pact of skull structures and facial tissues on the vital sign harmonic
patterns and attenuation effect, we conduct a preliminary experi-
ment using Meta Quest. Specifically, we recruit two participants (U1
and U2) with different facial structures and distributions of tissues.
During the experiment, both participants wear the headset, sit still
and watch an immersive XR spacewalk video. The sampling rate
of the headset’s accelerometer is set to 1000Hz. The face meshes
and frequency distributions of heartbeat harmonics from both par-
ticipants are shown in Figure 3. In particular, U1, whose face has a
higher proportion of bones and limited fat tissues, manifests strong
harmonic amplitudes and mild attenuation effects (e.g., a reduc-
tion of 18.63% from the fundamental amplitude A(f;) to the first
harmonic amplitude A(2f})). In contrast, U2, whose face contains
more fat tissue, shows weaker harmonic amplitudes and significant
harmonic attenuation (e.g., a reduction of 50.70% from the funda-
mental amplitude A(f;) to the first harmonic amplitude A(2f;)).
Moreover, compared to U1, U2’s face indicates more prominent
attenuation at higher frequencies, which aligns with the analysis
from Equation 1. We further analyze the multi-dimensional motion
sensor readings and observe that facial width and skull thickness
influence the harmonic attenuation patterns along the y- (parallel
to the human faces) and z-axes (perpendicular to the human faces).
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Figure 3: Face structures of two users (U1 and U2) and their
harmonic attenuation patterns of heartbeat vibrations.

Table 1: Bio-mechanical characteristics (e.g., density, elastic-
ity, viscosity) of representative facial tissues and structures.

Facial tissues  Density (kg/m®) Elasticity (kPa) Viscous Ratio (%)
human skull ~1.92x 10° 1.00 X 10° ~ 7.00 X 10° ~15%
head bones ~1.90 x 10° 1.00 X 10° ~ 5.00 X 10° ~20%
brain tissue ~ 1.04 X 10° 0.1 ~ 100 40% ~ 50%
facial skin ~1.10 x 10° 1.95 x 10* ~ 8.71 x 10* 30% ~ 60%
facial muscle ~ 1.06 X 10° 6.40 X 10% ~ 1.58 X 10° 18% ~ 22%
fat tissue ~0.90 x 10° 53~ 18.1 45% ~ 60%

Specifically, users with wider faces and thicker skull structures
exhibit stronger attenuation effects from the base frequency to the
first-order harmonic. These findings validate that vibration har-
monics can capture the anatomical differences of human faces from
spatial perspectives and attenuation patterns of vital sign vibrations
can be leveraged to differentiate users.

Consistency of Harmonic Properties. The patterns of vital
sign excitations, such as periodicity, amplitude, and morphology,
naturally change with the users’ physiological status. Different XR
scenarios, such as glancing over and being attentive to XR contents,
could influence the vital sign patterns, and alter the energy and
frequency distribution of vital sign harmonics. To study the im-
pacts of vital sign variations on harmonic properties, we collect the
data from two participants (U3 and U4) under two XR scenarios:
1) browsing an XR webpage, and 2) playing an XR room escaping
game. Compared to webpage browsing, the immersive room escape
game leads to a prominent increase in the user’s heart rate. The har-
monic distributions for each scenario are shown in Figure 4. Despite
physiological changes, the attenuation ratio across the amplitude
of fundamental frequency, first and second harmonic remains sta-
ble for the same user’s facial properties. Nevertheless, the overall
energy is generally higher during the room escape game due to the
increased pulse rates. These differences in harmonic frequency and
energy distribution pose challenges for robust biometric derivation.
To realize reliable user authentication, we develop a set of features
to characterize human skull and facial attenuation properties of
individual users, which will be introduced in Section 5.2.

3 Threat Model

The adversary understands the basic workflow of our system and
attempts to bypass it to access the private data (e.g., photos, medi-
cal/financial records), web services, or applications linked to the
user’s XR device. We consider the following attacks with different
prior knowledge of the legitimate user’s vital sign harmonics.
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Figure 4: Harmonic attenuation of heartbeat vibrations from
two users (U3 and U4) under different XR scenarios.

Scenario I: Attack with Zero Prior Knowledge. In this attack,
the adversary does not have any prior knowledge of the harmonic
attenuation signatures of legitimate users. During the attack, the
adversary wears the user’s XR headset, and uses his own vital signs
to generate similar vibration patterns for bypassing our system.
The adversary may also recruit other people for this attack, hoping
to bypass our authentication system.

Scenario II: Attack with Prior Knowledge of Vital Signs.
The adversary may have prior knowledge of the legitimate users’
respiration rates/patterns (e.g., captured via a respiration monitor-
ing belt), heartbeat rates/patterns (e.g., captured via a PPG sensor),
demographic information (e.g., gender and age), and body measure-
ments (e.g., height, weight, and fat ratio), which could be leaked
from their health records. The adversary can recruit people with
similar demographic and body measurements to those of legitimate
users and instruct them to imitate the breathing rates (e.g., using
a metronome). In terms of heartbeat mimicking, as heartbeats are
uncontrollable, the adversary may choose people with similar demo-
graphic and body measurements and then picks those with resting
heart rates similar to the legitimate users to perform the attack.
By doing these, the adversary expects to replicate the attenuation
patterns of vital sign harmonics from legitimate users, and utilize
them to bypass the authentication of our system.

Note that we do not consider OS/firmware attacks against our
system, where an adversary digitally feeds pre-collected harmonic
attenuation signatures for spoofing. All biometric authentication
systems could face security breaches if the OS/firmware is compro-
mised. They are beyond the scope of our work studying biometric
authentication based on human skull and facial tissue properties.

4 System Design
4.1 Challenges

Significant Distortions from Body Motions. In common XR
scenarios, users could frequently interact with the XR system via
different types of gestures (e.g., moving controllers, rotating head,
grabbing virtual objects). Such movements could distort the minute
vibrations associated with human vital signs and their harmonic
patterns. To achieve reliable authentication under different XR
scenarios, we should develop an effective scheme to mitigate the
impacts of distortions caused by body motions.

Deriving Biometrics Related to Head Properties. The re-
lationship between the attenuation ratio of vital sign harmonics
and human skull/facial tissue properties has not been studied in
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Figure 5: Overview of the authentication system.

previous studies. It is essential to extract biometric features that
remain consistent under the variations of vital sign excitations,
while carrying distinctive head characteristics (e.g., structure of
human skull, attenuation of soft tissues) for user authentication.

Biometric Robustness Across XR Contexts. Vital sign har-
monics and the attenuation ratios among different harmonic compo-
nents are embedded into sequential motion sensor readings. Thus,
the biometrics extracted from the XR sensor readings inherit some
temporal variations of vital signs, even after biometric feature ex-
traction. The system should derive more reliable representations
that maintain a high consistency.

4.2 System Overview

The basic idea of our system is to derive unique human skull struc-
tures and facial soft tissue properties from vital sign harmonics.
As illustrated in Figure 5, our system has three key components,
including Vibration Signal Calibration, Harmonic Feature Extraction,
and User Authentication based on Attention.

Vital Sign Signal Calibration. To derive clean harmonic pat-
terns without body motion artifacts, we develop an adaptive fil-
tering approach. This approach dynamically removes motion dis-
tortions and reconstructs clean patterns of vital sign harmonics.
To separate the breathing and heartbeat patterns, we apply two
band-pass filters with different cut-off frequencies to separate the
harmonics. The system then calculates the 3D velocity and displace-
ment of two types of harmonics to depict their geometric patterns.
The breathing and heartbeat harmonics are then split into segments
with a sliding window for further processing.

Harmonic Feature Extraction. We first propose a harmonic
augmentation scheme based on energy injection and frequency
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shifting to simulate the energy fluctuations and frequency changes
caused by vital sign variations under different XR scenarios. In-
spired by the consistent attenuation ratio across different levels
of harmonics, we develop a series of attenuation features, such as
Harmonic Amplitude Ratio and Harmonic Energy Ratio, to char-
acterize the unique bio-mechanical properties of users’ facial soft
tissues. During the internal propagation of vital sign harmonics,
the structure of human skull and face also affect the patterns of har-
monic attenuation. To characterize the unique internal structures of
users’ skull and facial tissues, we extract structural features, includ-
ing cepstrogram features and wavelet features. By incorporating
these harmonic-based features and the augmentation scheme, we
enhance the robustness of user profile construction under various
physiological conditions caused by different XR contexts.

User Authentication Based on Attention. With attenuation
and structural features extracted from vital sign harmonics, distinct
deep-learning-based encoders are then designed to derive unique
user embeddings from these features. For attenuation features, we
develop a Long Short-Term Memory (LSTM) network with the self-
attention mechanism to extract user embeddings. For structural
features, we propose a feature encoder based on the transformer
architecture, which splits the 2D patterns into patches with tem-
poral position encoding. After generating user representations by
combining both feature embeddings, a binary classifier is built for
each legitimate user to distinguish him/her from others. Moreover,
we accommodate multi-user enrollment (e.g., family use of XR de-
vices) by creating individual profiles for all legitimate users, with
each represented by a unique binary classifier.

5 Vital Sign Biometric Extraction
5.1 Vital Sign Harmonic Calibration

In practical XR scenarios, the motions that users perform to interact
with the headsets (e.g., hand gestures, head rotations) could distort
vital sign harmonics across a wide range of frequencies. Given the
strong instantaneous acceleration of these motions, the vital sign
harmonics could be completely overshadowed by these motions
and cannot be effectively recovered via simple bandpass filtering.
To mitigate the motion artifacts, we develop a vital sign harmonic
calibration scheme based on adaptive filtering.

Body Motion Detection via Short-Time Energy. Our ap-
proach calculates the Short-Time Energy (STE) on the time series
of the 3-axis motion sensor readings using a sliding window with a
pre-defined size to locate the temporary regions of body motions.
With all axes of the accelerometer readings x(t) captured from the
XR headsets as inputs, the STE computation can be described as:

t+N
STE(x(t)) = Z x(£)%t€{0,1,2,...L - N}, @
=0
where L is the length of accelerometer reading x(t). N denotes the
size of the pre-defined sliding window and we set N = 1000 (e.g.,
1-second data with the sampling rate of 1000Hz). We then apply an
empirical threshold 7 = 0.1, which is pre-defined from extensive
data collection under various scenarios, to determine whether body
motions exist in the current sliding window.

Design of Adaptive Filtering Scheme. Then, an adaptive filter

is applied to the detected regions to mitigate the motion artifacts
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and reconstruct clean vital sign harmonics. The adaptive filtering
scheme can be formulated as an optimization problem. Specifically,
we define an adaptive filter via a weight vector w with the same
length N of the sliding window. For signal segments with body
motions, we locate the adjacent segment with the same length that
is not affected by body motions (e.g., STE lower than the threshold
7). The segment then works as the reference signal to optimize
the weight w until the segments with body motions have similar
patterns to the reference signal, which can be formulated as:

®)
x(t) 3
s.tow(t) =a-w(t)+p-L(t) - x(t),x(t) = w(t) - x(t),

L-N

arg min Z E(t) =D1<L(r(f)|
wor=0

r

fc(t)) =r(t) - log

where x(-), X(-), and r(-) are the motion sensor readings before
and after motion artifact mitigation, and the reference signal.
and y refer to the leakage parameter for initiating the weight w
and the step size for optimization. To optimize the weights of adap-
tive filter, we apply Kullback-Leibler Divergence [33] as the loss
function given its reliable quantification of similarity between two
signal patterns. Examples in Figure 6 validate that the motion ar-
tifacts can be effectively mitigated via adaptive filtering. We then
separate the denoised breathing and heartbeat harmonics using
two Butterworth band-pass filters with the cut-off frequencies of
normal breathing (0.1Hz ~ 0.5Hz) and heartbeat (0.8Hz ~ 3.0Hz).
The filtered vibration harmonics are split into segments with the
same length (e.g., 3 seconds) to derive user biometrics.

5.2 Harmonic Feature Extraction

Attenuation Feature Extraction. During the propagation of vi-
tal sign vibrations, users’ facial soft tissues manifest distinct at-
tenuation patterns on vital sign harmonics. Given the consistent
bio-mechanical properties of users’ facial tissues, the attenuation
ratio across different levels of harmonics remains stable, even with
different fundamental frequencies (i.e., breathing and heartbeat
frequencies). To validate this finding, we collect the frequency dis-
tribution of heartbeat harmonics from two users (e.g., Ul and U2)
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Figure 8: Distribution of the attenuation features from two
users under different XR scenarios.

under two XR scenarios (e.g., browsing an XR webpage and watch-
ing a spacewalk video), as shown in Figure 7. In particular, U1’s
heart rate while browsing the webpage is 1.20Hz (72BPM), with a ra-
tio of 0.274/0.099 between the amplitude of fundamental frequency
and first/second harmonics. Although the heart rate increases to
1.61Hz (97BPM) while watching the video, the ratio between the
amplitude of fundamental frequency and first/second harmonics
remains 0.257/0.086 without significant changes. Inspired by the
consistency of attenuation ratio among different harmonics, we
derive the Harmonic Amplitude Ratio (HAR) and Harmonic Energy
Ratio (HER) from harmonic signals, which can be formulated as:
HARy (x(1) = 22 O) pipp ey < P D). @
Ap(x(1)) Pp(x(2))
where Ap, () and Ay (-) denote the amplitude of Short-Term Fourier
Transform (STFT) from the i-th harmonic and fundamental fre-
quency. Py, (-) and P, (-) refer to the power of i-th harmonic and
fundamental frequency. Specifically, we extract the attenuation
features from the first, second, third, and fourth harmonics (i.e.,
i=1,2,3,4) given their prominent magnitude. Besides the atten-
uation ratio of harmonics at different levels, we also character-
ize the total distortion caused by vibration harmonics in all lev-
els. In particular, we derive Total Harmonic Distortion (THD) and
Harmonic-to-Total Ratio (HTR) from vital sign harmonics, which
can be formulated as:

2
ZlAh,.(x(t))’ HTR(x(t)):ZiPhi(x(t))’ )

Ap(x (1)) Py(x(2))
where P, () refers to total power of vital sign harmonics. Some
selected features are shown in Figure 8, which indicates that our
proposed attenuation features are effective and robust for differenti-
ating users under vital sign variations across various XR scenarios.
Beyond spatial features, we also find that the temporal patterns of
vital sign vibration harmonics can provide additional features for
user differentiation. Based on these observations, we include mul-
tiple breathing and heartbeat cycles in a data segment to reliably
extract the proposed harmonic features. The extracted attenuation
features will then be leveraged to generate high-fidelity representa-
tions for user authentication.

Structural Feature Extraction. Our system then extracts struc-
tural features, including cepstrogram and wavelet features, which
characterize users’ unique skull and internal facial structures.

(1) Cepstrogram Feature Extraction. Widely used in speech pro-
cessing, cepstrogram features are able to characterize the properties
of mechanical vibrations during propagation. As a kind of mechan-
ical vibrations, vital sign harmonics propagate through the human
skull and facial soft tissues, and carry unique structural properties.

THD(x(t)) =
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Figure 9: Breathing vibrations and harmonic patterns cap-

tured from time-frequency and wavelet spectrogram.

Additionally, cepstrogram is highly effective at detecting multi-path
reflection and propagation effects, which are very common in the
complex human skull and facial structures. The cepstrogram feature
extraction is formulated as:

C(g) = STFT™" log |STFT(x (1))

) ©

where C(q) represents the cepstrogram coefficients of the vibration
signal x(t), q refers to the index of cepstrogram features.

(2) Wavelet Feature Extraction. During the propagation of vital
sign harmonics, the structural properties of human facial tissue
could also affect the attenuation patterns of harmonic signals. In
particular, they modify the frequency distributions by attenuating
or amplifying different frequencies and induce time delays depend-
ing on the tissue’s internal structural properties. Although Fourier
Transform realizes frequency and harmonic analysis via a global
spectrogram, its time-frequency resolution is fixed and cannot be
dynamically adapted to different frequencies. In contrast, wavelet
transform adaptively modifies the resolutions (e.g., high time res-
olutions on vibration patterns and high frequency resolutions on
harmonics) to effectively depict the vibrations and their harmonics
caused by complex internal facial structures. To extract wavelet
features, we apply Continuous Wavelet Transform (CWT) to vital
sign harmonics, which can be formulated as:

CW e (x(£)) = {x(8), Yz (1)) = % /Lx(t)w(

where CWT, . (+) represents the function of CWT. where CWT, ,(+)
represents the function of CWT. a, 7, L, and ¢, (t) refer to the fre-
quency resolution, time resolution, signal length, and base function
for transform, where we choose Morlet function given its generality
on different frequency ranges. An example of the time-frequency
and wavelet spectrogram on respiration vibrations and harmonics
is shown in Figure 9, which indicates that the wavelet spectrogram
achieves higher resolution in detecting respiration (e.g., 4 complete
cycles in 20 seconds) and harmonic distributions.

t—1

e, (7)

a

5.3 Harmonic Augmentation

In practical usage scenarios, variations in vital sign signals may
introduce subtle differences in vital sign harmonic patterns, and
affect the biometric matching accuracy. Although robust harmonic
features can be extracted to characterize unique skull structures
and facial tissues, enriching the biometric patterns will further
enhance the authentication performance of our proposed system.
We accordingly develop a harmonic augmentation scheme with
two techniques to improve the robustness of authentication.
Harmonic Energy Injection. Existing studies [60, 64] show
that vital sign variations usually manifest as uncorrelated fluctua-
tions similar to Gaussian white noise in respiration and heartbeat
amplitudes. To simulate such variations on harmonic energy distri-
bution, we process the Gaussian white noise via a bandpass filter
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Figure 10: Harmonic distributions before and after harmonic
energy injection and harmonic frequency shifting.

with the cut-off frequencies of respiration (0.1Hz ~ 0.5Hz) and
heartbeat (0.8Hz ~ 3.0Hz). Then the processed noise is injected
into the vital sign harmonics to simulate the energy distortion. By
involving distorted vibrations for feature extraction and training,
the authentication model will accommodate the amplitude varia-
tions of vital signs to enrich user biometric profiles. The harmonic
energy injection process can be described as follows:

Gt o®) =A-G(t.p,0%) , x(t) =x(t) + G(t. 1, 0%) ®)

0.1~0.5Hz/0.8~3.0Hz

where x () represents the vital sign vibrations after mitigating mo-
tion artifacts via adaptive filtering. G(t, i, 6) denotes the Gaussian
white noise with the average value y, standard deviation o, and
same length as %(¢). Gft) denotes the Gaussian noise after filtering
with the cut-off frequency of breathing and heartbeat. We empiri-
cally set the average value y as 0 and the standard deviation o as 0.05.
A refers to the noise magnitude and is randomly selected from the
range of [0, 0.005] for breathing and [0, 0.001] for heartbeat deter-
mined by empirical testing. For each vibration sample, we generate
a series of noise samples for injection to ensure a comprehensive
biometric enrichment. An example of harmonic distributions before
and after energy injection is shown in Figure 10(a).

Harmonic Frequency Shifting. We further develop a harmonic
frequency shifting scheme to simulate the distortion on vibration
harmonic distributions caused by the duration variations of vital
sign signals during practical XR usage. With the shifted patterns
of vital sign harmonics being involved in feature extraction and
training, the authentication model will enrich the user profiles
under variations of vital sign periodicity. The harmonic frequency
shifting can be formulated as:

x(t)yex(t’) 0<y<1,

x(t) y>1, ©)

x(2) =x(y - 1), x() ={

where the shifting parameter y is used to adjust the duration of
vital sign vibration x(¢) and & is the function of concatenation. In
particular, the signal is compressed while 0 < y < 1. We refer to the
re-scaled vibration as the concatenation of compressed vibration
x(t) and segments of the original vibration %(t") defined within
t € [0,y-L]and t’ € [0,(1 —y) - L], where L denotes the signal
length. The signal is stretched while y > 1 with ¢t € [0,L]. An
example of vibrations before and after harmonic frequency shifting
is illustrated in Figure 10(b). With different y, we generate a series
of shifted vibration signals. These shifted signals will simulate
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Figure 11: The overview of user authentication framework based on harmonic and spectral feature extraction.

the harmonic distortions caused by the variations of vital sign
periodicity across various XR scenarios.

6 User Authentication Framework

Attenuation Feature Encoding via Recurrent Network. Given
the unique attenuation properties of users’ facial tissues, the vital
sign harmonics exhibit distinct patterns. As a result, the attenuation
features in vital sign harmonics manifest unique sequential patterns.
Motivated by the effectiveness of Recurrent Neural Networks (RNN)
in processing sequential inputs, we propose an attenuation feature
encoder H(-) based on Long Short-Term Memory (LSTM) and self-
attention mechanism, as illustrated in Figure 11. Specifically, we
involve two bidirectional LSTM layers with the output units of 256
and 128 to derive the sequential embeddings. To extract internal
dependencies within harmonic patterns, we apply a self-attention
layer for each LSTM layer with the query, key, and value equal to
the output dimension of its connected LSTM layer. After passing the
attenuation feature encoder, the embeddings will be concatenated
with others to generate unique user representations.
Transformer-based Structural Feature Encoding. Architec-
tures based on transformer, such as Vision Transformer (ViT) [30],
have outperformed traditional deep learning models on image
recognition tasks. Specifically, the multi-head self-attention mech-
anism in these models enable them to learn the correlations of
different segments within the input sequences. Inspired by the ar-
chitecture of ViT, we develop a transformer-based structural feature
encoder V(-) to extract user representations from the structural
features. In particular, our transformer-based encoder splits the
features into patches and encodes them with the temporal position
index in the original patterns. We then embed these patches via the
transformer-based encoder, including 4 convolutional layers with
self-attention to extract user representations. The procedures of
patch splitting and position encoding are shown in Figure 11.
Optimization for Representation Extractor. With attenua-
tion and structural feature encoding, we combine the generated
embeddings as the user representations. In particular, we optimize
the parameters of the attenuation feature encoder H(-) and struc-
tural feature encoder V(+) to extract unique user embeddings. To
recognize users via extracted representations, we build a user classi-
fier P(-) with two fully-connected layers. During training, we apply
triplet loss and cross-entropy loss as loss functions to optimize
model parameters. For triplet loss, it aims to maximize the differ-
ence among users with limited training data. It also ensures the
harmonic augmentation does not make the system more vulnerable

to attacks by the adversaries, which can be formulated as:
Fp = ||F(xb(t)) - F( Fp =||F(x5(£)) = F(xn(8))]|,

- F,+0,0),

(10)

Z max

where xp(t), x,(t), and x,(t) denote the baseline, positive, and
negative samples with user labels of y, y,, and y, (yp» = yp # yn).
F(+) refers to the combination of attenuation features h(x(t¢)) and
structural features s(x(t)). o represents the margin between posi-
tive and negative pairs, which is empirically set as 0.1. To recognize
the representations as correct users, we apply cross-entropy loss
with triplet loss to optimize the encoder and user classifier, and the
optimization procedure can be formulated as:

33 e

where y; and N denote the label of the i-th vibration input x;(t)
and the total number of vibration samples for training the fea-
ture encoder. Note that we recruit several participants and collect
vibration samples from them as the training dataset. The user clas-
sifier P(-) is only involved in training for extracting reliable user
representations, and will not be utilized for user authentication.
Optimization for User Authentication Model. While train-
ing the user authentication model U(-), we fix the parameters of
the harmonic feature encoders H(-) and the spectral feature en-
coder V (-). For each legitimate user j, we collect a few samples for
training a binary classifier U;(-) with two fully-connected layers to
determine whether the input representations d belong to user j or
not. The loss function used to optimize U;(-) can be described as:

xl(t)))), L=Lr+Lec, (11)

N
Ly = § D) v oB(Uy @) &

where y; denotes the label of user representation d;. Specifically,
our system builds the classifier for each legitimate user using the
training samples of the user and a few other people known by the
system (e.g., users recruited by the developer), thus creating profiles
for legitimate users and distinguishing them from adversaries.

7 Prototype Implementation

We build a prototype! of our system on Meta Quest to evaluate
its on-device user enrollment and authentication. The headset is
connected to a commercial desktop (i.e., with an Intel i9-13900K

The demo of our designed system prototype can be found at our anonymous website:
https://sites.google.com/view/xrharmonics
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Figure 12: Experimental setups of Meta Link with a USB-C
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CPU and an NVIDIA GeForce RTX4090 GPU) via USB-C, which
serves as the host computer, to run the XR and our system. The vi-
bration processing, user enrollment, and authentication procedures
are implemented on the host computer, emulating scenarios where
the users’ biometrics are confined to their own XR devices. Besides
the cable connection, we also evaluate the wireless connection be-
tween the headset and host computer (i.e., via Meta’s Air Link) for
running our system. To avoid biometric leakage during data routing
via the WiFi router, we leverage a direct WiFi connection by setting
an ad-hoc network on the host computer. The data collection is
realized using Meta SDK, with other ML functions implemented
using Python 3.9.2 and TensorFlow 2.17. The experimental setups
and examples of user authentication while watching an XR video
are shown in Figure 12 and Figure 13. Specifically, the operation of
our system includes three components:

(1) Data Calibration & Feature Extraction. This component is
shared in both user enrollment and user authentication phases. Our
system first mitigates the motion artifacts via adaptive filtering
introduced in Section 5.1, which is realized using the functions
in NumPy and SciPy. The calibrated data are then split into short
segments (e.g., 3 seconds). During enrollment, our system augments
the vibrations using our designed harmonic augmentation scheme
and extracts representative features, which are implemented using
the signal processing functions provided by SciPy.

(2) User Enrollment. During user enrollment, our system automat-
ically records the motion sensor readings over short periods (e.g., 2
minutes) from the users while they are using XR devices. Then our
system extracts user biometrics using the representation extractor
and builds the user profile via a deep-learning-based authentica-
tion model, both of which are implemented using the functions of
TensorFlow/Keras. Note that the representation extractor is trained
on a group of users known by our system and the enrollment phase
does not need to re-train or fine-tune this model.

(3) User Authentication. With the profile of legitimate users, our
system determines whether the current headset wearer is legitimate
or not. For new vibration segments, our prototype calibrates the
data, extracts features, and derives user representations. The system
authenticates the wearer if the representation matches those in the
profile; otherwise, it rejects the authentication attempts.

8 User Authentication Performance

8.1 Experimental Setups

XR Headsets. We evaluate the authentication performance of our
system on Meta Quest and HTC Vive Pro Eye. Specifically, Meta
Quest incorporates a motion sensor board (model 330-00193-03
1PASF8K) and HTC Vive Pro Eye utilizes an InvenSense MPU-6500
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sensor board with an accelerometer and a gyroscope. During the
data collection, we leverage the function ovr_GetTrackingState()
from Meta SDK to access the motion sensor of Meta Quest. For HTC
Vive Pro Eye, we use the built-in lighthouse application to extract
the motion sensor readings from the headset. For both headsets,
we set the sampling rates of the motion sensors to 1000Hz.

XR Scenarios Involved in Data Collection. We collect vital
sign vibrations under four common XR scenarios. (1) Sitting and
Watching a Demo Video: Participants wearing the XR headset sit
and watch an immersive XR video for one minute, and remain
stationary. (2) Standing and Watching a Demo Video: Participants
stand and watch a demo video for one minute. Compared to the first
scenario, the participants exhibit subtle involuntary movements of
their heads or bodies. (3) Using Controllers to Browse Application
Store: Participants use controllers for browsing motions, such as
arm raising and lowering, which slightly affect the headset motion
sensors. (4) Head rotation in the Virtual Environment: Participants
rotate their head from left to right, which causes significant motion
sensor fluctuations due to instant changes in acceleration. To ensure
accurate authentication, we applied our adaptive filtering scheme
to minimize the motion artifacts on vibration signals. Moreover, the
four XR scenarios are performed under four different real-world
environments (e.g., four offices with different layouts and furniture).
By involving different XR scenarios and environments, we aim to
validate that our system will effectively authenticate users under
practical contexts and various physical locations.

Participants and Data Collection. We collect the vital sign
vibrations from 52 participants aged from 18 to 45. Specifically, we
involve 45 participants (30 males and 15 females) to collect the data
from Meta Quest, while the dataset of HTC Vive Pro includes 27
participants (17 males and 10 females). Before the data collection,
the participants are provided with a consent document, including a
detailed description of the procedure, risks, and potential discom-
forts. They have the option to accept or decline to collect the data.
In addition, our research team signs a confidential agreement with
each participant for biometric protection, with data of each partici-
pant labeled as a pseudo-identity during model training and testing.
The data collection procedure has been approved by our univer-
sity’s Institutional Review Boards (IRB). Each participant wears the
headset for data collection under all four scenarios. Note that prior
studies [36, 39, 72] for authentication are usually evaluated with
less than 30 users, thus the number of users for evaluation is in line
with existing works. The collected vibrations are then split into
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Figure 14: Overall user authentication performance and evaluation on our proposed harmonic augmentation scheme.

Table 2: User authentication performance of our system with
(w/) and without (w/0) Adaptive Filtering (AF).

Standing Moving arms | Head Rotation

w/o AF | w/ AF | w/o AF | w/ AF | w/o AF | w/ AF

TPR | 66.29% | 96.14% | 41.67% | 95.79% | 24.29% | 94.78%
TNR | 90.21% | 98.45% | 84.49% | 97.27% | 77.45% | 97.94%
BAC | 70.24% | 96.56% | 42.96% | 96.11% | 26.65% | 95.55%

3-second segments. In total, we collect 5,467 and 3, 389 vibration
segments from Meta Quest and HTC Vive Pro Eye.

Evaluation Metrics. We employ the following metrics to eval-
uate our system. (1) True Positive Rate (TPR): The percentage of
samples from legitimate users that are correctly authenticated. (2)
True Negative Rate (TNR): The percentage of samples from unautho-
rized users that are accurately rejected. (3) Balanced Accuracy (BAC):
a weighted average of TPR and TNR, reflecting the authentication
accuracy under imbalanced positive and negative samples. Higher
TPRs and TNRs (i.e., low FPRs and FNRs) indicate higher accuracy
in authenticating legitimate users and rejecting adversaries, and
BAC quantifies the overall performance of our system.

8.2 Overall User Authentication Performance

We utilize and combine the harmonics from respiration and heart-
beat collected from Meta Quest under four scenarios to evaluate the
overall authentication performance of our system. Specifically, we
take turns setting each of 45 participants as the legitimate user and
the remaining as adversaries. The vibration samples are separated
with a ratio of 8:2 for training and testing the authentication model.
The TPR and TNR of each user are shown in Figure 14(a). The
results show that our system achieves TPRs of more than 94.14%
and TNRs of more than 97.79% for all 45 participants. High TPRs
and TNRs demonstrate that our system accurately authenticate
users via vital sign harmonics. We also summarize the average TPR,
TNR, and BAC before and after harmonic augmentation, which are
shown in Figure 14(b). Without augmentation, the average TPR,
TNR, and BAC of our system are 91.77%, 97.98%, and 92.29%. After
applying harmonic augmentation, the average TPR, TNR, and BAC
achieve more than 96.95%, 98.77%, and 97.01%. The improvements
validate that our proposed harmonic augmentation scheme will
facilitate accurate authentication under vital sign variations.

8.3 Study of Impact Factors

Impact of Motion Artifact. To evaluate the motion artifact miti-
gation scheme via adaptive filtering, we conduct experiments on
Meta Quest with 20 participants involved. Specifically, we collect

and combine the breathing and heartbeat harmonics under the sce-
narios of standing, using controllers, and head rotation. To evaluate
our system, we split the collected samples into training and test-
ing sets with a ratio of 8:2. The average TPR, TNR, and BAC with
and without motion artifact mitigation are summarized in Table 2.
Under the head rotation scenario, the performance is significantly
degraded by motion artifacts, with average TPRs, TNRs, and BACs
below 24.29%, 77.45%, and 26.65%. In the standing scenario, the
performance is also affected by body motions, with TPR, TNR, and
BAC less than 66.29%, 90.21%, and 70.24%. After mitigating motion
artifacts, the TPR, TNR, and BAC achieve 94.78%, 97.94%, 95.55%
under head rotation and 96.14%, 98.45%, 96.56% in the standing
scenario. Prominent improvements in authentication accuracy vali-
date that our method can effectively mitigate motion artifacts, thus
enhancing system deployment under general XR scenarios.

Impact of Sample Length for Enrollment. Although increas-
ing the number of vibration samples for user enrollment could
improve the authentication accuracy of our system, it introduces
additional efforts on data collection. To evaluate the enrollment
cost of our system, we collect the vibration samples on Meta Quest
and HTC Vive Pro Eye from 20 users under the sitting scenario. The
TPR and TNR with different training-testing ratios are summarized
in Figure 15(a). For Meta Quest, our system achieves TPR and TNR
of more than 92.70% and 98.17% with the training-testing ratio of
4:6. For HTC Vive Pro Eye, the TPR and TNR exceed 91.44% and
97.09% under the same training-testing ratio. High authentication
accuracy across training-testing ratios validates the system effec-
tiveness with low enrollment costs. The TPR and TNR with different
segment lengths are shown in Figure 15(b). For Meta Quest, the
TPR and TNR achieve 95.79% and 97.64% with the frame length
of 3 seconds. For HTC Vive Pro Eye, the TPR and TNR also reach
94.65% and 97.33% with the same frame length. High authentication
accuracy with short-time data collection validates the low cost of
our system for user enrollment.

8.4 Long-Term Authentication Study

Morphological variations in users’ vital signs and harmonic signals
over a long period could downgrade the robustness of our system.
To evaluate the long-term performance of our system, we conduct
experiments by collecting and combining breathing and heartbeat
harmonics using Meta Quest and HTC Vive Pro Eye from 15 users
under all four XR scenarios. Specifically,the data is collected 5 times
within 60 days, with each collection across 15 days. We use the
vibrations collected on day 0 to build the authentication model and
data from other days (e.g., 15, 30, 45, 60) to evaluate the performance.
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Figure 16: Authentication performance on Meta Quest and
HTC Vive Pro Eye across different time intervals.

We take turns selecting each user as the legitimate user and the
average TPRs, TNRs, and BACs are shown in Figure 16. For Meta
Quest, our system attains TPR, TNR, and BAC of 94.97%, 98.45%, and
95.79% while the authentication performance is evaluated across
15 days. After 60 days, the TPR, TNR, and BAC still remain 93.32%,
96.75%, 93.97%, which demonstrates that our system achieves long-
term authentication on Meta Quest. For HTC Vive Pro Eye, our
system achieves TPR, TNR, and BAC of over 94.93%, 97.95%, and
95.24% for authentication across 15 days. Across 60 days, our system
still remains high TPR, TNR, and BAC of over 92.35%, 94.72% and
92.98%. High authentication accuracy across long time intervals
validates the system effectiveness on user authentication under
long-term usage. Additionally, our system can leverage adaptive
training by periodically updating user profiles to remain effective
as the vital sign harmonics can be passively collected from users.

8.5 Cross-Session Authentication Performance

To evaluate the system performance across different XR scenarios,
we conduct experiments by collecting and combining vital sign
harmonics using Meta Quest and HTC Vive Pro Eye from 10 users
under two separate sessions: (1) Session 1 (S1): The users sit still
and scan an XR webpage. (2) Session 2 (S2): The users stand still
and watch an XR spacewalk video. We then take turns selecting
each user as the legitimate user to evaluate the performance and
the average TPRs, TNRs, and BACs are shown in Figure 17. For
Meta Quest, the TPR, TNR, and BAC achieve 94.17%, 97.46%, and
94.99% with S1 for enrollment and S2 for authentication. Using S2
for enrollment, the TPR, TNR, and BAC with S1 for authentication
also reach 93.25%, 97.61%, and 94.04%. For HTC Vive, the TPR, TNR,
and BAC achieve 93.97%, 97.50%, and 94.32% with S1 for enrollment
and S2 for authentication. Using S2 for enrollment, the TPR, TNR,
and BAC also achieve 92.98%, 97.39%, and 93.65%. High authentica-
tion accuracy across different XR sessions validates that our system
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Figure 17: Authentication performance on Meta Quest and
HTC Vive Pro Eye across different XR sessions.
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Figure 18: Authentication performance on Meta Quest and
HTC Vive Pro Eye against potential attacks.

realizes robust authentication in different XR scenarios via bio-
metric augmentation. Additionally, we evaluate the authentication
performance by reproducing the feature design in FaceReader [69]
and the TPR, TNR, and BAC are 69.05%, 82.12%, and 72.73%. These
results further validate that our proposed biometric features remain
more consistent under different physiological states of users.

8.6 Evaluation of Authentication Latency

Real-time authentication is essential for enhancing the user expe-
rience in practical systems. To validate that our system achieves
real-time authentication, we evaluate the average time cost of differ-
ent components on Meta Quest with the setup described in Section 7.
Specifically, we measure the average time latency of vibration cali-
bration, feature extraction, user enrollment, and authentication, of
10 participants while they are rotating their heads. Particularly, the
vibration calibration and feature extraction have average time costs
of 52.44ms and 445.29ms for 3-second samples. For user enrollment,
the average time latency is 14.35s, including vibration segmentation,
biometric extraction, and model training. For authentication, the
average time cost is 12.45ms. Combined with the vibration length
(e.g., 3 seconds), our system takes 3.51s to authenticate users, which
is much shorter compared to existing approaches (e.g., ~7.0s in
SoundLock [72], ~11.2s in BlinKey [71], and ~6.0s in GaitLock [61])
and indicates that our system can realize real-time authentication.
We also measure the data routing latency while users leverage
Meta’s Air Link to access the host computer for running our sys-
tem. The average latency is less than 3.0ms, which validates the
real-time authentication with the wireless connection.

9 Robustness To Spoofing Attack

Robustness to Attack Scenario L. In this scenario, the adversary
attempts to bypass our system using the vital sign harmonics from
their own or the recruited users. In particular, we collect the vital
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Table 3: The frequency response of different types of com-
mercial vibration motors.

Vibration Motor
Precision Brushed ERM [15]

Category Frequency Range

30Hz ~ 500Hz

Eccentric Rotating

Mass (ERM) NFP-P0615-4302 [4] 140Hz ~ 190Hz
Linear Resonant Precision LRA [14] 150Hz ~ 205Hz
Actuator (LRA)  Vybronics VL32158H-L25 [16] 90Hz ~ 110Hz
Electromagnetic TOAUTO TO302S1 [12] 50Hz ~ 60Hz

Motors (EM) ATO-AVB-TB1002S2 [5] 50Hz ~ 60Hz

sign harmonics from 10 participants on Meta Quest and HTC Vive
Pro Eye with each selected as the legitimate user. We then collect
the data from the other 10 users and combine them with those from
legitimate users for testing. The evaluation results are shown in
Figure 18. For Meta Quest, our system achieves TPR, TNR, and BAC
of more than 97.95%, 99.17% and 98.67%. For HTC Vive, the system
remains high authentication accuracy with TPR, TNR, and BAC of
96.97%, 97.35%, and 97.21%. High authentication accuracy in rec-
ognizing legitimate users validates the robustness of our proposed
feature design. Additionally, the system effectively rejects potential
adversaries, indicating that the system can accurately differentiate
legitimate users from unauthorized users with our approach.
Robustness to Attack Scenario II. In this scenario, the adver-
saries have prior knowledge of the respiration or heartbeat (e.g.,
patterns, rates) of legitimate users. Specifically, we select 5 partic-
ipants as legitimate users and collect their vital sign harmonics
from Meta Quest and HTC Vive Pro Eye to train the authentication
model. For each legitimate user, we select 2 users with similar de-
mographic (e.g., gender, age) and body measurements (e.g., weight,
height, body fat ratio) as adversaries. We then use a metronome to
ensure that the adversaries and legitimate users have similar respi-
ration rates and the adversaries selected share similar resting heart
rates with legitimate users. During testing, we collect the vital sign
harmonics from the adversaries and combine them with those from
legitimate users. The average TPRs, TNRs, and BACs on Meta Quest
are shown in Figure 18(a). Specifically, our system achieves TPR,
TNR, and BAC of 97.65%, 98.92%, and 97.96%, which validates the
system’s robust authentication against spoofing attacks. The per-
formance on HTC Vive Pro Eye is shown in Figure 18(b), with TPR,
TNR, and BAC of over 95.75%, 97.35%, and 96.24%. For the scenario
that the adversary has prior knowledge of users’ heartbeat, our
system achieves TPR, TNR, and BAC of 96.25%, 98.10%, and 96.95%,
which validates the effectiveness on rejecting adversaries. For HTC
Vive, the TPR, TNR, and BAC also reach 94.25%, 96.94%, and 94.66%.
Consistently high accuracy under attack validates that our system
effectively recognizes legitimate users and rejects adversaries by
capturing users’ unique skull and facial tissue properties.
Analysis of Vibration Replay Attack. The adversary may
consider using programmable vibration motors to replay vibrations
of a user’s vital signs to spoof our system. However, reproducing
vibrations requires a vibration motor that can generate extremely
low-frequency vibrations (e.g., < 3.0Hz). The frequency responses
of common vibration motors are summarized in Table 3. We find
that none of the commercial vibration motors can produce vibra-
tions within the frequency ranges of vital signs. Specifically, the
vibration motors based on eccentric rotating mass normally gen-
erate vibrations higher than 30Hz and the other vibration motors
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Table 4: Efficient to Use (EU), Physically Effortless (PE), Mem-
orywise Effortless (ME), Nothing to Carry (NC), Resilient
to Spoofing (RS), and Resilient to Observation (RO) on our
system and existing XR authentication systems.

o]

U PE ME NC RS
X X

Category Method Name
Knowledge-based PIN PIN [32, 68]
Voice-based PIN [66]
gTalker [42, 43]
Password Swipe Pattern [32, 56]

RO
[¢] x Vv X
x 0 x vV x V
0O 0 x vV x V
0 x x vV X X
Token-based QR Code Glass OTP [27] N O vV x VvV V
Physiological Biometric Eye Iris & Periocular [26,34] N v v V X V
Visual Stimulus [70] v v v vV x Vv
Head Brain Password [45] x v vV x 0 V
SkullConduct [59] v v vV vV ox
Muscle ElectricAuth [29] o v vV x vV Vv
Behavioral Biometric Eye Oculock [47] x v v x 0 V
Gait/Head Virtual Scene [54] o v vV vV x Vv
Headbanger [40] X x v v 0 x
GaitLock [61] o x v v v O
Hand Glass Interactions [28] O o0 VvV VvV VvV X
Throw Trajectory [35] 0O x v v 0 X
Brain EEG Signal [41] X X v x v
Multi-factor Eye BlinKey [71] X 0 x vV vV Vv
Gait/Head GlassGesture [67] N x Vv Vv Vv /
Hand RubikBiom [50] 0O X x Vv Vv V
v v

Physical & Behavioral =~ Harmonics Ours

/: fulfills criterion X: does not fulfill criterion O: quasi-fulfills criterion N: not provided

based on linear resonant actuators and electromagnetic motors are
designed to generate vibrations over 50Hz. It is infeasible for an
adversary to replicate vital sign harmonics using these vibration
motors, even if they have access to users’ breathing and heartbeat.

10 Related Work

Current XR systems (e.g., Meta Quest) mainly adopt knowledge-
based methods, such as passwords and PIN numbers, to perform
user authentication. However, these methods do not align well
with the unique XR input interfaces relying on gestures and voice
input. In addition, the gestures have been proven vulnerable to
observation/shoulder-surfing attacks [21, 48, 51]. A few studies at-
tempt to improve the security and usability of password/PIN-based
authentication [32, 66, 68]. Specifically, spoken PINs with obfus-
cated digits [42, 43, 66] are designed to prevent password leakage
via voice eavesdropping. Besides, randomly generated tokens [13]
and QR codes [10] on a second device (e.g., smartphone or wear-
able) are employed. However, these methods require additional user
effort and could interrupt the immersive XR experience.

Recently, behavioral and physiological biometrics have been in-
vestigated to authenticate users. For example, unique behaviors
embedded in hand gestures [28, 35], head rotations [40, 54], and eye
movements [47]. However, these biometrics rely on active user inter-
actions, limiting their application scenarios. Researchers have also
exploited physiological biometrics for authentication, such as iris
patterns from cameras [26, 34], muscle properties from stimulation
sensors [29], and brainwave patterns from brainwave sensors [45].
Although these methods are effortless, they require extra hardware
or specialized sensors that are unavailable on mainstream headsets.
Moreover, multi-factor schemes integrate multiple authentication
factors [50, 67, 71], such as passwords/PINs and behavioral biomet-
rics, to improve security. They ensure a higher degree of security
against observation attacks, but inherit the usability problem in
each factor (e.g., active gestures). The weaknesses of existing XR
authentication schemes are summarized in Table 4.

A recent study (i.e., FaceReader [69]) designs a privacy attack that
reconstructs breathing and heartbeat patterns from facial vibrations.
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Although it shows a case study of user tracking, fundamental differ-
ences exist in terms of objectives, scope, and technical challenges.
FaceReader is a privacy attack, while ours is a benign and end-to-
end authentication system. FaceReader trains with a fixed dataset
and cannot detect users who are not involved in training. Under the
context of authentication, FaceReader cannot recognize unknown
adversaries/spoofers. In contrast, our system detects spoofers with
a complete authentication pipeline. Secondly, our system introduces
novel harmonic features to characterize unique human skull/facial
tissue properties with greater long-term consistency, whereas Fac-
eReader leverages raw vital sign pattern to realize short-term user
tracking. Thirdly, our system realizes robust authentication under
vital sign variations across XR scenarios via harmonic augmenta-
tion based on energy injection and frequency shifting. In contrast,
FaceReader re-identifies users under similar conditions.

11 Discussion of Biometric Protection

Analysis of False Positive Cases. By scrutinizing the misclassified
cases during authentication, we find that most false positive cases
arise in two particular scenarios: (1) at the beginning or end of usage
sessions when device placement or removal causes instability, and
(2) when wearing position slightly shifts across different sessions.
Both scenarios will introduce subtle alignment variations between
the XR headsets and the users’ faces, and then cause distribution
shifts from the extracted features to the enrolled user profiles. To
address this concern, we plan to explore adaptive training stategies
in future work, which improve authentication robustness against
cross-session variations during practical deployment.

Protecting Biometrics from Other Applications. While run-
ning our system, motion sensor readings with vital sign harmonics
can also be accessed by other applications, posing risks of biomet-
ric leakage if a malicious application is running in the back-end.
To mitigate this risk, a possible solution is to filter out vital sign
harmonics (e.g., band-pass filtering) for low-priority applications
that do not require vital sign data (e.g., gaming, social media) as
they maintain full functionality using filtered data. High-priority
access can be granted to our system, allowing it to receive motion
sensor data for authentication. This solution not only ensures the
functioning of other applications but also strengthens protection
against attacks that eavesdrop on motion sensors [69].

On-device Authentication. The biometrics of vital sign har-
monics may also be leaked during data transmission, such as send-
ing the data to a cloud or edge server for building the authentication
model. To mitigate these risks, we have explored on-device execu-
tion for our system, with our prototype introduced in Section 7. This
allows users to store their biometrics and run the models on their
XR headsets locally without data transmission. Multi-party compu-
tation can also be adopted, where multiple servers jointly generate
the complete user representations to prevent user biometric leakage.
Our system can also employ biometric encryption techniques (e.g.,
homomorphic encryption) to prevent biometric leakage on personal
devices or cloud servers with insecure or corrupted memory.

12 Conclusion

In this paper, we propose the first effortless and inbuilt user authen-
tication system for XR headsets by harnessing the unique skull and
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facial tissue biometrics from vital sign harmonics. Different from
prior works, our system passively collects vital sign harmonics
during regular XR usage, without requiring any active user inputs
and additional hardware. We develop an adaptive filtering method
that dynamically mitigates the body motion artifacts in vital sign
harmonics. Based on the ratios among different harmonic compo-
nents, we propose harmonic features that are non-volatile under
vital sign variations to depict users’ unique skull structures and
facial tissue properties. In addition, we design a harmonic augmen-
tation strategy based on energy injection and frequency shifting
to simulate the physiological variations across XR contexts. We
further employ transformer models and self-attention mechanisms
to create high-fidelity user representations. Extensive evaluations
validate the effectiveness of our system in authenticating legitimate
users and rejecting adversaries in diverse XR scenarios.
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