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Abstract—A secret-key sharing strategy based on layered
broadcast coding is introduced for slow fading channels. In the
model considered, Alice wants to share a key with Bob while
keeping the key secret from a passive eavesdropper, Eve. Both
Alice-Bob and Alice-Eve channels are assumed to undergo slow
fading, and perfect channel state information (CSI) is assumed
to be known only at the receivers during the transmission.
Layered coding facilitates adapting the reliably decoded rate
at Bob to the actual channel state without CSI available at
Alice. The index of a reliably decoded layer is sent back to
Alice via a public and error-free channel, which is exploited
by Alice and Bob to generate the secret key. In this paper,
the secrecy key rate is derived. In addition, the optimal power
distribution over coded layers is characterized. It is shown that
layered coding can increase the secrecy key rate significantly
compared with single-level coding.

I. INTRODUCTION

Wireless secrecy has attracted considerable research inter-
est due to the concern that wireless communication is highly
vulnerable to security attacks, particularly eavesdropping
attacks. Much recent research was motivated by Wyner’s
wire-tap channel model [1] where the transmission between
two legitimate users (Alice and Bob) is eavesdropped upon
by Eve via a degraded channel. The secrecy level in this
model is measured by the equivocation rate at Eve. Wyner
showed that secret communication is possible without shar-
ing a secret-key between legitimate users. Later, Csiszár
and Körner generalized Wyner’s model to consider general
broadcast channels in [2].

Interestingly, the wireless medium provides its own en-
dowments that facilitate defending against eavesdropping.
One such endowment is fading [3], whose effects on secret
transmission has been studied in [4]–[6]. In these works, as-
suming that all communicating parties have perfect channel
state information (CSI) prior to transmission, the ergodic
secrecy capacity has been derived. The ergodic scenario in
which Alice has no CSI about Eve’s channel (but knows the
channel statistics) has also been studied in [4]. When Alice
does not know any prior CSI (except channel statistics),
but can receive 1-bit of automatic repeat request (ARQ)
feedback per channel coherence interval from Bob reliably,
the throughput of several secure hybrid-ARQ protocols has
been derived in [7].
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Arguably, the most useful application of (keyless) secret
message transmission is secret-key sharing as discussed
in [8], [9] and other related works, although there exist
some fundamental differences between these two problems.
Roughly speaking, in secret message transmission, the mes-
sage is known to Alice before starting the transmission;
while in secret-key sharing, the key (a secret message to be
shared by Alice and Bob) can be established (and become
known to Alice) after the transmission is completed.

In this paper, we consider a key-sharing problem in which
Alice wants to share a key with Bob while keeping it secret
from Eve. Alice-Bob and Alice-Eve channels are assumed
to undergo slow fading, and CSI is assumed known only
at the receivers during the transmission. The key-sharing
scheme consists of a communication phase and a key-
generation phase. The communication phase is based on
Gaussian layered broadcast coding. The index of a reliably
decoded layer at Bob is sent back to Alice through a public
and error-free channel. The key-generation phase is based
on the layer index and follows Wyner’s secrecy binning
scheme [1]. We derive the secrecy key rate and also char-
acterize the optimal power distribution over coded layers.
Interestingly, layered broadcast coding creates interference,
where the undecodable layers (for Bob) play the role of
self-interference. We show that the best Eve can do is to
treat the interference as noise (as Bob does), and therefore
cannot benefit from the structure of the interference either.

There are several closely related works. Layered cod-
ing over slowly fading single-input single-output (SISO)
channels was originally introduced by Shamai in [10] and
discussed in more detail in [11]. The results in this paper
are consistent with [10] and [11] if the additional secrecy
constraint is disregarded. An ARQ-based secret-key sharing
scheme was studied in [12], where single-level coding is
used. The scheme can be viewed as a special case of
the proposed layered-coding scheme. Finally, the problem
of secret communication over a medium with interference
was discussed in [13] for a more general (but non-fading)
setting.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a three-terminal model,
in which Alice and Bob want to share a secret key in the
presence of Eve (a passive eavesdropper).
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Fig. 1. Alice and Bob want to agree on a key (W = Ŵ ), while keeping
the key secret from Eve (H(W |Y2,H2,K)/n → 0).

A. Channel Model

The Alice-Bob and Alice-Eve channels undergo block
fading, in which the channel gains are constant within a
block while varying independently from block to block [3].
We assume that each block is associated with a time slot
of duration T and bandwidth W ; that is, n1 = b2WT c
real symbols can be sent in each slot. We also assume that
the number of channel uses within each slot (i.e., n1) is
large enough to allow for the invocation of random coding
arguments.

In a certain time slot indexed by m, Alice sends xm,
which is a vector of n1 real symbols. Bob receives y1,m

through the channel gain h1,m and Eve receives y2,m

through the channel gain h2,m. A discrete time baseband-
equivalent block-fading channel model can be expressed as

yt,m =
√

ht,mxm + zt,m (1)

for t = 1, 2, where {zt,m} are independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian
N (0, 1) random sequences. Without any confusion, we
drop the index m and denote ht as a random channel
realization. We assume that it is a real random variables with
a probability density function (PDF) ft and a cumulative
distribution function (CDF) Ft, for each t = 1, 2.

Furthermore, we assume a short term power constraint
(excluding power variation across time slots) such that the
average power of the signal xm per slot has the constraint
that E[‖xm‖2] ≤ n1P for every m.

There exists an error-free feedback channel from Bob to
Alice, through which Bob sends back km for time slot m.
The feedback channel is assumed to be public, and therefore
km is obtained by both Alice and Eve without any error.

B. Secret Key Sharing Protocol

The secret-key sharing protocol consists of two phases:
a communication phase and a key-generation phase.

1) Communication Phase: We assume that the trans-
mission during the communication phase takes place over
M time slots. That is, Alice sends a sequence of signals
x = [x1,x2, . . . ,xM ] to the channel. Accordingly, Bob
receives from his channel a sequence of signals denoted
by y1 = [y1,1,y1,2, . . . ,y1,M ] and Eve receives y2 =

[y2,1,y2,2, . . . ,y2,M ] from her channel. We let n = Mn1

denote the number of symbols sent by Alice in the commu-
nication phase.

Let h1 = [h1,1, . . . , h1,M ] and h2 = [h2,1, . . . , h2,M ]
denote vectors whose elements are the power gains of the
Alice-Bob and Alice-Eve channels, respectively. We assume
that Bob and Eve know their own channel gains perfectly;
Alice does not know the CSI before its transmission, except
for the channel statistics. After the communication, Bob
uses the feedback channel to send k = [k1, . . . , kM ], which
is obtained by both Alice and Eve.

2) Key-Generation Phase: The communication phase is
followed by a key-generation phase, in which both Alice and
Bob generate the key based on the signals sent and received.
Let W = {1, 2, . . . , 2nRs}, where Rs represents the secrecy
key rate. Alice generates a secret key w ∈ W by using a
decoding function fa, i.e., w = fa (x,k). Bob generates the
secret key ŵ ∈ W by using a decoding function fb, i.e.,

ŵ = fb (y1,h1,k) = fb (y1,h1) , (2)

where the second equality holds since we assume that k is
a deterministic function of y1 and h1.

The secrecy level at Eve is measured by the equivocation
rate Re defined as the entropy rate of the key W conditioned
upon the observations at Eve, i.e.,

Re , 1
n

H(W |Y2,H2,K).1 (3)

A secrecy key rate Rs is achievable if the conditions

Pr
(
W = Ŵ

)
≥ 1− ε, (4)

and Re ≥ Rs − ε, (5)

are satisfied for any ε > 0 as the number of channel uses
n →∞.

III. KEY SHARING BASED ON LAYERED CODING

In this section, we introduce a secret-key sharing scheme,
in which Gaussian layered broadcast coding is used for the
communication phase, and random secrecy binning is used
for the key generation phase. Before presenting the scheme,
we first introduce Gaussian layered broadcast coding.

A. Gaussian Layered Broadcast Coding

As an example, we consider the Alice-Bob channel given
by (1). First, let us assume there are L layers in a layered
coding scheme. That is, the transmitted codeword is a
superposition of L codewords, i.e.,

x =
L∑

l=1

x[l] (6)

where x[l] is a codeword from codebook C[l] with a rate
r[l] and a constant power p[l] for l = 1, . . . , L, and the

1Capital letters W , Ŵ , X, Y1, Y2, H1, H2, H1, H2, and K represent
the random variables (or vectors), while corresponding realizations are
represented by lower-case letters.



total power is constrained by
∑L

l=1 p[l] = P . In general, L
depends on the cardinality of the random channel variable
(H1). For a Gaussian fading channel, a continuum of code
layers (L →∞) is required. For a certain fading realization
h[l], the receiver can decode up to the l-th layer, i.e., the
codewords {x[1], . . . ,x[l]} can be decoded reliably, while
the codewords {x[l+1], . . . ,x[L]} are undecodable. The
decoding is based on successive interference cancelation.
More specifically, in the decoding process, the receiver
first decodes x[1] by treating the remaining codewords
({x[i], i > 1}) as interference. After decoding x[1], the
receiver will subtract x[1] and then decode x[2] by treating
the remaining codewords ({x[i], i > 2}) as interference.
This process repeats until the l-th layer x[l] is decoded
reliably by treating the remaining codewords ({x[i], i > l})
as interference. Note that this predetermined ordering can
be achieved because of the degraded nature of Gaussian
SISO channels.

When a continuum of layers is used, the transmitter
sends an infinite number of layers of coded information.
Each layer conveys a fractional rate, denoted by dR, whose
value depends on the index of the layer. We refer to s, the
realization of the fading power, as a continuous index. The
incremental differential rate is given by2

dR(s) = log
(

1 +
sρ(s)ds

1 + sI(s)

)
=

sρ(s)ds

1 + sI(s)
, (7)

where ρ(s)ds is the transmit power of a layer parameterized
by s, and also represents the transmit power distribution
over coded layers. The layers indexed by u > s are
undecodable and function as additional interference, whose
power is denoted by I(s) and is given by

I(s) =
∫ ∞

s

ρ(u)du. (8)

The total power over all layers is constrained by

I(0) =
∫ ∞

0

ρ(u)du = P. (9)

B. Secret Key Sharing Based on Layered Coding

In this section, we discuss the key sharing scheme based
on Gaussian layered coding.

1) Codebook Construction: We need two types of code-
books, each of which is used for the communication or
key-generation phase, respectively.

The codebook used for the communication phase con-
sists of a continuum of coded layers represented by
{C(2n1dR(s), n1)}, where n1 is the codeword length and
dR(s) is the (incremental differential) rate at layer s. The
(sub-)codebook for each layer is generated randomly and
independently. That is, for any codebook C(2n1dR(s), n1),
we generate 2n1dR(s) codewords x[s](w), where w =
1, 2, . . . , 2n1dR(s), by choosing the n12n1dR(s) Gaussian
symbols (with power ρ(s)ds) independently at random.

2All logarithms are to the natural base, and thus rates are in terms of
nats per second per Hertz.

The codebook used for the key generation phase is based
on Wyner’s secrecy coding [1], [4]. By letting

R =
∫ ∞

0

∫ H1

0

sρ(s)ds

1 + sI(s)
dF1(H1), (10)

we first generate all binary sequences {B} of length n(R−
ε), where n = Mn1. The sequences {B} are then randomly
and uniformly grouped into nRs groups each with n(R −
Rs − ε) sequences. Each secret key w ∈ {1, . . . , 2nRs} is
then randomly assigned to a group, denoted by B(w).

2) Communication Phase: The communication takes
places over M time slots. At time slot m ∈ [1,M ], Alice
first randomly selects a message w

[s]
m ∈ {1, . . . , 2n1dR(s)}

for coded layer s, independent of the message chosen for
other layers. For convenience, we use wm to represent the
total message sent in time slot m (through all layers). Then,
Alice sends a superposition of all layers to the channel.

Bob receives y1,m and tries to decode all his decodable
layers, which depends on his channel state h1,m. For con-
venience, we use w

[D1]
m to denote the set of layers reliably

decoded by Bob, and w
[D̄1]
m to denote the set of layers

undecodable to Bob in time slot m. After decoding, Bob
sends back the index of the highest decodable layer (repre-
sented by km) to Alice. This completes the transmission in
time slot m. The communication phase ends when all M
(independent) transmissions are completed.

3) Key-Generation Phase: Once the communication
phase is completed, both Alice and Bob can generate the
secret key. Based on the feedback sequence k = {km},
Alice generates a binary sequence v from all the messages
reliably decoded by Bob (across all layers and time slots)
based on a deterministic one-to-one mapping Φ as

v = Φ({w[D1]
m ,m = 1, . . . , M}). (11)

Alice then looks up in the key-generation codebook for a
w such that v ∈ B(w), and outputs w as the secret key
generated. Note that all those messages are decoded by Bob,
and therefore Bob can generate the same sequence v and
the same key w as Alice does.

IV. SECRECY KEY RATE

In this section, we present the secrecy key rate achieved,
and the optimal distribution of power over coded layers.
Due to space limitations, we defer all proofs to an upcoming
long version of this paper.

A. Layered-Coding Based Key Sharing

The following result characterizes the secrecy rate when
the power distribution is given.

Theorem 1: For a given power distribution ρ(s) over
layers indexed by s, the secrecy key rate of the layered-
coding based key sharing scheme is

Rs =
∫ ∞

0

∫ H1

0

∆(H1,H2)dF2(H2)dF1(H1), (12)
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Fig. 2. (a) Coded layers sent by Alice, (b) decodable and undecodable
layers for Bob, and (c) decodable and undecodable layers for Eve, in time
slot m with the channel gains h1 > h2.

where ∆(H1,H2) is given by

∆(H1,H2) =
∫ H1

H2

[
sρ(s)

1 + sI(s)
− H2ρ(s)

1 + H2I(s)

]
ds (13)

and
I(s) =

∫ ∞

s

ρ(u)du with I(0) = P . (14)

We discuss some insights from Theorem 1. First, except
for the rare case in which H1 is always smaller than H2,
Rs is positive. Note that this is impossible without feedback
(one-way communication). Furthermore, Rs can be written
as

Rs = EH1,H2

[
∆̃(H1,H2)

]
, (15)

where

∆̃(H1, H2) =
{

∆(H1,H2) if H1 > H2

0 otherwise. (16)

The key rate Rs is the average of rewards (designated by
∆̃(H1,H2)) collected from all possible channel realizations.
Positive rewards are obtained from the time slots in which
Bob’s channel is better than Eve’s channel (H1 > H2). On
the other hand, when H1 ≤ H2, the reward is zero.

We focus on a particular time slot m in which
(H1,H2) = (h1, h2) with h1 > h2, and use xm to denote
all layers sent in the slot. As depicted in Fig. 2, xm can be
divided as

xm = x[D2]
m ∪

(
x[D1]

m ∩ x[D̄2]
m

)
∪ x[D̄1]

m , (17)

where x[D1]
m and x[D̄1]

m denote the set of decodable and
undecodable layers at Bob, respectively, and x[D2]

m and x[D̄2]
m

denote the set of decodable and undecodable layers at Eve,
respectively. Note that x[D1]

m ⊃ x[D2]
m since h1 > h2.

Both Alice and Bob can decode x[D2]
m , and neither

of them can decode x[D̄1]
m . Therefore, a nonzero reward

∆(h1, h2) comes from the set of layers x[D1]
m ∩ x[D̄2]

m . To
show this, we rewrite (13) as

∆(h1, h2) =
∫ h1

h2

sρ(s)ds

1 + sI(s)
−

∫ h1

h2

h2ρ(s)ds

1 + h2I(s)
. (18)

The first term at the right hand side of (18) is the sum-
rate decoded by Bob from x[D1]

m ∩ x[D̄2]
m (by decoding and

canceling x[D2]
m first, and treating the interference term x[D̄1]

m

as noise). Furthermore, the second term can be written as
∫ h1

h2

h2ρ(s)ds

1 + h2I(s)
= log

(
1 +

h2 [I(h2)− I(h1)]
1 + h2I(h1)

)
. (19)

By noticing that I(h2)− I(h1) is the total power used for
the layers x[D1]

m ∩ x[D̄2]
m , and I(h1) is the total power used

for the layers x[D̄1]
m , (19) gives the rate of information that

Eve can possibly deduce from x[D1]
m ∩ x[D̄2]

m through her
channel with power gain h2. An interesting finding here is
that what the best Eve can do is to treat the interference
term x[D̄1]

m as noise (as Bob does), and therefore cannot
benefit from the structure of interference either.

Due to the absence of CSI at the transmitter before the
transmission, the layered broadcast coding strategy creates
a medium with interference, where the undecodable layers
play the role of self-interference. We remark here that this
is a special case of secret communication over a medium
with interference as discussed in [13].

B. Single-Level-Coding Based Key Sharing

When single-level coding is used, self-interference does
not occur. In this case, the following secrecy key rate can
be achieved.

Lemma 1: [12, Theorem 1] The secrecy key rate of a
single-level-coding based scheme is given by

Rs = Pr [R1 ≤ log(1 + H1P )]EH2 [R1 − log (1 + H2P )]+ ,
(20)

where R1 is the rate of single-level coding.
Comparing with the layered-coding based scheme, the

single-level-coding based approach has lower decoding
complexity, and requires less feedback (only 1-bit per time
slot). However, it is sub-optimal in general. Also, a single-
level coding scheme can be considered as a special case of
a layered-coding scheme, in which all power is allocated
to one layer. This again motivates us to find the power
distribution for optimizing the layered-coding scheme.

C. Secrecy Key Rate Under Optimal Power Distribution

The secrecy rate given by (12) is hard to evaluate and
optimize. After some tedious steps of derivation (mainly
integration by parts), we have an alternative form.

Lemma 2: The secrecy key rate given by (12) is equiva-
lent to

Rs = max
I(x)

∫ ∞

0

[1− F1(x)] ρ(x)
[∫ x

0

F2(y)dy

[1 + yI(x)]2

]
dx,

(21)
with the constraint I(0) = P , and ρ(x) = −dI(x)/dx.

In certain cases, optimization of Rs with respect to the
power distribution ρ(x), or, equivalently, the interference
distribution I(x), under the power constraint P can be found
by using the calculus of variations. First, we define the
functional of (21) as

L (x, I(x), I ′(x)) = − [1− F1(x)] I ′(x)
[∫ x

0

F2(y)dy

[1 + yI(x)]2

]
.



A necessary condition for a maximum of the integral of
L(x, I(x), I ′(x)) over x is a zero variation of the functional.
By solving the associated Eüler-Lagrangian equation [14]
given as

∂L

∂I
− d

dx

(
∂L

∂I ′

)
= 0, (22)

we have the following characterization for the optimal I(x).
Lemma 3: A necessary condition for optimizing I(x) in

order to maximize the secrecy rate given by (21) is to choose
I(x) to satisfy

∫ x

0

F2(y)dy

[1 + yI(x)]2
=

[1− F1(x)] F2(x)
f1(x) [1 + xI(x)]2

, (23)

where I(x) = 0 when x < x0 or x ≥ x1. Here, x0 and x1

can be found by letting I(x0) = P and I(x1) = 0 in (23).
Finally, we have the following secrecy key rate under the

optimal power distribution.
Theorem 2: When the optimal power distribution is used,

the following secrecy key rate is achieved,

Rs =
∫ x1

x0

− [1− F1(x)]2 F2(x)dI(x)
f1(x)[1 + xI(x)]2

, (24)

where I(x) and (x0, x1) are found from the condition given
by (23).

V. A RAYLEIGH FADING CHANNEL

In this section, we assume Rayleigh fading for Alice-
Bob and Alice-Eve channels. We consider a symmetric
scenario in which both fading power gains (H1 and H2)
are exponentially distributed with unit means.

The secrecy rate with layered coding is computed by
numerically evaluating

Rs =
∫ x1

x0

e−x[e−x − 1]
[1 + xI(x)]2

dI(x),

where I(x) can be found according to Lemma 3 by solving

Ei

(
1

I(x)

)
− Ei

(
x +

1
I(x)

)
=

I(x)[1 + I(x)]
[1 + xI(x)]2

×
{

exp
(
− 1

I(x)

)
− exp

(
−

[
x +

1
I(x)

])}
, (25)

where Ei(x) =
∫∞

x
[exp(−t)/t]dt is the exponential inte-

gral function. By letting I(x0) = P in (25), we can solve
for x0. By letting I(x1) = 0 in (23), we can solve for
x1. Every equation has a unique solution after excluding a
trivial solution 0.

Fig. 3 shows the optimal power distribution for coded
layers. A clear trend is that more power is allocated to lower
layers as the total power P becomes larger. In general, the
optimal power distribution does not concentrate much on a
certain layer (or a short interval), especially when P is large.
Fig. 4 compares the secrecy key rates of layered coding
and single-level coding based schemes (both optimized).
The secrecy key rate of the layered-coding based scheme is
significantly higher.
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