
Chapter 10

Security Protocols

Up to this point, we have covered many basic cryptographic tools, rang-
ing from encryption algorithms to hash algorithms to digital signatures. A
natural question to ask at this point is: Can we just apply these tools directly
to secure computers and communications?

At first glance, one might think that public key methods are the panacea
for all of security. They allow two parties who have never met to securely
exchange messages. They also provide an easy way to authenticate the
origin of a message and, when combined with hash functions, these signature
operations can be made efficient.

Unfortunately, the answer is definitely no and there are many problems
that still remain. In discussing public key algorithms, we never really dis-
cussed how the public keys are distributed. We have casually said that Alice
will announce her public key for Bob to use. Bob, however, should not be
too naive in just believing what he hears. How does he know that it is
actually Alice that he is communicating with? Perhaps Alice’s evil twin,
Mallory, is pretending to be Alice but is actually announcing Mallory’s pub-
lic key instead. Similarly, when you access a web site to make a purchase,
how do you know that your transaction is really with a legitimate merchant
and that no one has set up a false organization? The real challenge in these
problems is the issue of authentication, and Bob should really confirm that
he is communicating with Alice before sending any important information.

Combining different cryptographic tools together to provide security is
much trickier than grabbing algorithms off of the shelf. Instead, security
protocols involving the exchange of messages between different entities must

251



252 Chapter 10. Security Protocols

be carefully thought out in order to prevent clever attacks. This chapter
focuses on such security protocols.

10.1 Intruders-in-the-Middle and Impos-

tors

If you receive an email asking you to go to a web site and update your
account information, how can you be sure that the web site is legitimate?
An impostor can easily set up a web page that looks like the correct one, but
which simply records sensitive information and forwards it to Eve. This is
an important authentication problem that must be addressed in real-world
implementations of cryptographic protocols. One standard solution uses
certificates and a trusted authority and will be discussed in Section 10.7.
Authentication will also play an important role in the protocols in many
other sections of this chapters.

Another major consideration that must be addressed in communications
over public channels is the intruder-in-the-middle attack, which we’ll discuss
shortly. It is another cause for several of the steps in the protocols we discuss.

Intruder-in-the-Middle Attacks

Eve, who has recently learned the difference between a knight and a rook,
claims that she can play two chess grandmasters simultaneously and either
win one game or draw both games. The strategy is simple. She waits for
the first grandmaster to move, then makes the identical move against the
second grandmaster. When the second grandmaster responds, Eve makes
that play against the first grandmaster. Continuing in this way, Eve cannot
lose both games (unless she runs into time trouble because of the slight delay
in transferring the moves).

A similar strategy, called the intruder-in-the-middle attack, can be
used against many cryptographic protocols. Many of the technicalities of
the algorithms in this chapter are caused by efforts to thwart such an attack.

Let’s see how this attack works against the Diffie-Hellman key exchange
from Section 7.4.

Let’s recall the protocol. Alice and Bob want to establish a key for
communicating. The Diffie-Hellman scheme for accomplishing this is as
follows:

1. Either Alice or Bob selects a large, secure prime number p and a
primitive root α (mod p). Both p and α can be made public.



10.1. Intruders-in-the-Middle and Impostors 253

2. Alice chooses a secret random x with 1 ≤ x ≤ p − 2, and Bob selects
a secret random y with 1 ≤ y ≤ p− 2.

3. Alice sends αx (mod p) to Bob, and Bob sends αy (mod p) to Alice.

4. Using the messages that they each have received, they can each cal-
culate the session key K. Alice calculates K by K ≡ (αy)x (mod p),
and Bob calculates K by K ≡ (αx)y (mod p).

Here is how the intruder-in-the-middle attack works.

1. Eve chooses an exponent z.

2. Eve intercepts αx and αy.

3. Eve sends αz to Alice and to Bob (Alice believes she is receiving αx

and Bob believes he is receiving αy).

4. Eve computes KAO ≡ (αx)z (mod p) and KOB ≡ (αx)z (mod p). Al-
ice, not realizing that Eve is in the middle, also computes KAO, and
Bob computes KOB.

5. When Alice sends a message to Bob, encrypted with KAO, Eve inter-
cepts it, deciphers it, encrypts it with KOB, and sends it to Bob. Bob
decrypts with KOB and obtains the message. Bob has no reason to
believe the communication was insecure. Meanwhile, Eve is reading
the juicy gossip that she has obtained.

To avoid the intruder-in-the-middle attack, it is desirable to have a pro-
cedure that authenticates Alice’s and Bob’s identities to each other while
the key is being formed. A protocol that can do this is known as an au-
thenticated key agreement protocol.

A standard way to stop the intruder-in-the-middle attack is the Station-
to-Station (STS) Protocol, which uses digital signatures. Each user U
has a digital signature function sigU with verification algorithm verU . For
example, sigU could produce an RSA or ElGamal signature, and verU checks
that it is a valid signature for U . The verification algorithms are compiled
and made public by the trusted authority Trent, who certifies that verU is
actually the verification algorithm for U , and not for Eve.

Suppose now that Alice and Bob want to establish a key to use in an en-
cryption function EK . They proceed as in the Diffie-Hellman key exchange,
but with the added feature of digital signatures:

1. They choose a large prime p and a primitive root α.

2. Alice chooses a random x and Bob chooses a random y.



254 Chapter 10. Security Protocols

3. Alice computes αx (mod p), and Bob computes αy (mod p).

4. Alice sends αx to Bob.

5. Bob computes K ≡ (αx)y (mod p).

6. Bob sends αy and EK(sigB(αy, αx)) to Alice.

7. Alice computes K ≡ (αy)x (mod p).

8. Alice decrypts EK(sigB(αy, αx)) to obtain sigB(αy, αx).

9. Alice asks Trent to verify that verB is Bob’s verification algorithm.

10. Alice uses verB to verify Bob’s signature.

11. Alice sends EK(sigA(αx, αy)) to Bob.

12. Bob decrypts, asks Trent to verify that verA is Alice’s verification
algorithm, and then uses verA to verify Alice’s signature.

This protocol is due to Diffie, van Oorschot, and Wiener,. Note that Alice
and Bob are also certain that they are using the same key K, since it is
very unlikely that an incorrect key would give a decryption that is a valid
signature.

Note the role that trust plays in the protocol. Alice and Bob must trust
Trent’s verification if they are to have confidence that their communications
are secure. throughout this chapter, a trusted authority such as Trent will
be an important participant in many protocols.

10.2 Key Distribution

So far in this book we have discussed various cryptographic concepts and
focused on developing algorithms for secure communication. But a crypto-
graphic algorithm is only as strong as the security of its keys. If Alice were
to announce to the whole world her key before starting a DES session with
Bob, then anyone could eavesdrop. Such a scenario is absurd, of course. But
it represents an extreme version of a very important issue: If Alice and Bob
are unable to meet in order to exchange their keys, can they still decide on
a key without compromising future communication?

In particular, there is the fundamental problem of sharing secret in-
formation for the establishment of keys for symmetric cryptography. By
symmetric cryptography, we mean a system such as DES where both the
sender and the recipient use the same key. This is in contrast to public



10.2. Key Distribution 255

key methods such as RSA, where the sender has one key (the encryption
exponent) and the receiver has another (the decryption exponent).

In key establishment protocols, there is a sequence of steps that take
place between Alice and Bob so that they can share some secret information
needed in the establishment of a key. Since public key cryptography methods
employ public encryption keys that are stored on public databases, one might
think that public key cryptography provides an easy solution to this problem.
This is partially true. The main downside to public key cryptography is
that even the best public key cryptosystems are computationally slow when
compared with the best symmetric key methods. RSA, for example, requires
exponentiation, which is not as fast as the mixing of bits that takes place in
DES. Therefore, sometimes RSA is used to transmit a DES key that will then
be used for transmitting vast amounts of data. However, a central server that
needs to communicate with many clients in short time intervals sometimes
needs key establishment methods that are faster than current versions of
public key algorithms. Therefore, in this and in various other situations, we
need to consider other means for the exchange and establishment of keys for
symmetric encryption algorithms.

There are two basic types of key establishment. In key agreement
protocols, neither party knows the key in advance; it is determined as a
result of their interaction. In key distribution protocols, one party has
decided on a key and transmits it to the other party.

Diffie-Hellman key exchange (see Sections 7.4 and 10.1) is an example
of key agreement. Using RSA to transmit a DES key is an example of key
distribution.

In any key establishment protocol, authentication and intruder-in-the-
middle attacks are security concerns. Pre-distribution, which will be dis-
cussed shortly, is one solution. Another solution involves employing a server
that will handle the task of securely giving keys to two entities wishing
to communicate. We will also look at some basic protocols for key distri-
bution using a third party. Solutions that are more practical for Internet
communcations are treated in later sections of this chapter.

Key Pre-Distribution

In the simplest version of this protocol, if Alice wants to communicate with
Bob, the keys or key schedules (lists describing which keys to use at which
times) are decided upon in advance and somehow this information is sent
securely from one to the other. For example, this method was used by
the German navy in World War II. However, the British were able to use
codebooks from captured ships to find daily keys and thus read messages.

There are some obvious limitations and drawbacks to pre-distribution.



256 Chapter 10. Security Protocols

First, it requires two parties, Alice and Bob, to have met or to have estab-
lished a secure channel between them in the first place. Second, once Alice
and Bob have met and exchanged information, there is nothing they can
do, other than meeting again, to change the key information in case it gets
compromised. The keys are predetermined and there is no easy method to
change the key after a certain amount of time. When using the same key for
long periods of time, one runs a risk that the key will become compromised.
The more data that are transmitted, the more data there are with which to
build statistical attacks.

Here is a general and slightly modified situation. First, we require a
trusted authority whom we call Trent. For every pair of users, call them
(A, B), Trent produces a random key KAB that will be used as a key for
a symmetric encryption method (hence KBA = KAB). It is assumed that
Trent is powerful and has established a secure channel to each of the users.
He distributes all the keys that he has determined to his users. Thus, if
Trent is responsible for n users, each user will be receiving n − 1 keys to
store, and Trent must send n(n−1)/2 keys securely. If n is large, this could
be a problem. The storage that each user requires is also a problem.

One method for reducing the amount of information that must be sent
from the trusted authority is the Blom key pre-distribution scheme.
Start with a network of n users, and let p be a large prime, where p ≥ n.
Everyone has knowledge of the prime p. The protocol is now the following:

1. Each user U in the network is assigned a distinct public number rU

(mod p).

2. Trent chooses three secret random numbers a, b, and c mod p.

3. For each user U , Trent calculates the numbers

aU ≡ a + brU (mod p) bU ≡ b + crU (mod p)

and sends them via his secure channel to U .

4. Each user U forms the linear polynomial

gU (x) = aU + bUx.

5. If Alice (A) wants to communicate with Bob (B), then Alice computes
KAB = gA (rB), while Bob computes KBA = gB (rA).

6. It can be shown that KAB = KBA (Exercise 2). Alice and Bob com-
municate via a symmetric encryption system, for example, DES, using
the key (or a key derived from) KAB.



10.2. Key Distribution 257

Example. Consider a network consisting of three users Alice, Bob, and
Charlie. Let p = 23, and let

rA = 11, rB = 3, rC = 2.

Suppose Trent chooses the numbers a = 8, b = 3, c = 1. The corre-
sponding linear polynomials are given by

gA(x) = 18 + 14x, gB(x) = 17 + 6x, gC(x) = 14 + 5x.

It is now possible to calculate the keys that this scheme would generate:

KAB = gA(rB) = 14, KAC = gA(rC) = 0, KBC = gB(rC) = 6.

It is easy to check that KAB = KBA, etc., in this example.

If the two users Eve and Oscar conspire, they can determine a, b, and c,
and therefore find all numbers aA, bA for all users. They proceed as follows.
They know the numbers aE , bE , aO, bO. The defining equations for the last
three of these numbers can be written in matrix form as





0 1 rE

1 rO 0
0 1 rO









a
b
c



 ≡





bE

aO

bO



 (mod p).

The determinant of the matrix is rE−rO. Since the numbers rA were chosen
to be distinct mod p, the determinant is nonzero mod p and therefore the
system has a unique solution a, b, c.

Without Eve’s help, Oscar has only a 2 × 3 matrix to work with and
therefore cannot find a, b, c. In fact, suppose he wants to calculate the key
KAB being used by Alice and Bob. Since KAB ≡ a + b(rA + rB) + c(rArB)
(see Exercise 2), Oscar has the matrix equation





1 rA + rB rArB

1 rO 0
0 1 rO









a
b
c



 ≡





KAB

aO

bO



 (mod p).

The matrix has determinant (rO − rA)(rO − rB) 6≡ 0 (mod p). Therefore,
there is a solution a, b, c for every possible value of KAB. This means that
Oscar obtains no information about KAB.

For each k ≥ 1, there are Blom schemes that are secure against coalitions
of at most k users, but which succumb to conspiracies of k + 1 users. See
[Blom].



258 Chapter 10. Security Protocols

Authenticated Key Distribution

Key pre-distribution schemes are often impractical because they require sig-
nificant resources to initialize and do not allow for keys to be easily changed
or replaced when keys are deemed no longer safe. One way around these
problems is to introduce a trusted authority, whose task is to distribute
new keys to communicating parties as they are needed. This trusted third
party may be a server on a computer network, or an organization that is
trusted by both Alice and Bob to securely distribute keys.

Authentication is critical to key distribution. Alice and Bob will ask the
trusted third party, Trent, to give them keys. They want to make certain
that there are no malicious entities masquerading as Trent and sending them
false key messages. Additionally, when Alice and Bob exchange messages
with each other, they will each need to make certain that the person they
are talking to is precisely who they think they are talking to.

One of the key challenges facing key distribution is the issue of replay
attacks. In a replay attack, an opponent may record a message and repeat
it at a later time in hopes to pretend to be another party, or to elicit a
particular response from an entity in order to compromise a key. To provide
authentication and protect against replay attacks, we need to make certain
that vital information, such as keys and identification parameters, are kept
confidential. Additionally, we need to guarantee that each message is fresh,
that is it isn’t a repeat of a message from a long time ago.

The task of confidentiality can be easily accomplished using existing keys
already shared between entities. These keys are used to encrypt messages
used in the distribution of session keys, and are therefore often called key
encrypting keys. Unfortunately, no matter how we look at it, there is a
chicken-and-egg problem: In order to securely distribute session keys, we
must assume that entities have already securely shared key encrypting keys
with the trusted authority.

To handle message freshness, however, we typically need to attach extra
data fields in each message we exchange. There are three main types of data
fields that are often introduced in order to prevent replay attacks:

• Sequence Numbers: Each message that is sent between two enti-
ties has a sequence number associated with it. If an entity ever sees
the same sequence number again, then the entity concludes that the
message is a replay. The challenge with sequence numbers is that it
requires that each party keep track of the sequence numbers it has
witnessed.

• Timestamps: Each message that is sent between two entities has a
statement of the time period for when that message is valid. This
requires that both entities have clocks that are set to the same time.



10.2. Key Distribution 259

• Nonces: A nonce is a random message that is allowed to only be
used once, and is used as part of a challenge-response mechanism. In
a challenge-response, Alice sends Bob a nonce, and waits for Bob to
send back a correct response to her nonce.

We will now look at two examples of key distribution schemes, and ana-
lyze attacks that may be used against each in order to bypass the intended
security. These two examples should highlight how difficult it is to securely
distribute keys.

We begin with a protocol known as the Wide-Mouthed Frog Protocol.
The Wide-Mouthed Frog Protocol is one of the simplest symmetric key
management protocols involving a trusted authority. In the Wide-Mouthed
Frog Protocol, Alice chooses a session key KAB to communicate with Bob
and has Trent transfer it to Bob securely.

1. Alice→ Trent : EKAT
[tA‖IDB‖KAB].

2. Trent→ Bob : EKBT
[tT ‖IDA‖KAB].

Here, KAT is a key shared between Alice and Trent, while KBT is a key
shared between Bob and Trent. The parameter tA is a timestamp supplied
by Alice, while tT is a timestamp given by Trent. It is assumed that Alice,
Trent and Bob have synchronized clocks. Bob will accept KAB as fresh if it
arrives in within a window of time. The key KAB will be valid for a certain
period of time after tT .

The purpose behind the two timestamps is to allow Bob to check to see
that the message is fresh. In the first message, Alice sends a message with
a timestamp tA. If Trent gets the message and the time is not too far off
from tA, he will then agree to translate the message and deliver it to Bob.

The problem with the protocol comes from the second message. Here,
Trent has updated the timestamp to a newer timestamp tT . Unfortunately,
this simple change allows for a clever attack in which the nefarious Mallory
may cause Trent to extend the lifetime of an old key. Let us step through
this attack.

1. After seeing one exchange of the protocol, Mallory could pretend to
be Bob wanting to share a key with Alice. Mallory would send Trent
the replay EKBT

[tT ‖IDA‖KAB].

2. Trent would send back EKAT

[

t
′

T ‖IDB‖KAB

]

, where t
′

T is a new times-

tamp. Alice would think this is a valid message since it came from
Trent and was encrypted using Trent’s key. The key KAB will now be
valid for a period of time after t

′

T .



260 Chapter 10. Security Protocols

3. Mallory could then pretend to be Alice and get EKBT

[

t
′′

T ‖IDA‖KAB

]

.

The key KAB will now be valid for a period of time after t
′′

T > t
′

T .

4. Mallory would continue to alternately play Trent against Bob, and
then Trent against Alice.

The net result is that the Malicious Mallory can use Trent as an agent
to indefinitely force Alice and Bob to continue to use KAB. Of course, Alice
and Bob should keep track of the fact that they have seen KAB before and
begin to suspect that something fishy is going on when they repeatedly see
KAB. The protocol did not explicitly state that this was necessary, however,
and security protocols should be very explicit on what it is that they assume
and don’t assume. The true culprit, though, is the fact that Trent replaces
tA with tT . If Trent had not changed tT and instead had left tA as the
timestamp, then the protocol would have been better off.

Another example of an authenticated key exchange protocol is due to
Needham and Schroeder. In the Needham-Schroeder protocol, Alice and
Bob wish to obtain a session key KS from Trent so that they can talk with
each other. The protocol involves the following steps

1. Alice→ Trent : IDA‖IDB‖r1

2. Trent→ Alice : EKAT
[KS‖IDB‖r1‖EKBT

[KS‖IDA]]

3. Alice→ Bob : EKBT
[KS‖IDA]

4. Bob→ Alice : EKS
[r2]

5. Alice→ Bob : EKS
[r2 − 1]

Just as in the earlier protocol, KAT is a key shared between Alice and
Trent, while KBT is a key shared between Bob and Trent. Unlike the Wide-
Mouthed Frog Protocol, the Needham-Schroeder protocol does not employ
timestamps but instead uses nonces r1 and r2. In the first step, Alice sends
Trent her request, which is a statement of who she is and who she wants to
talk to, along with a random number r1. Trent gives Alice the session key
KS and gives Alice a package EKBT

[KS‖IDA] that she will deliver to Bob.
In the next step, she delivers the package to Bob. Bob can decrypt this to
get the session key, and the identity of who he is talking with. Next, Bob
sends Alice his own challenge by sending the second nonce r2. In the final
step, Alice proves her identity to Bob by answering his challenge.

Observe that the key exchange portion of the protocol is completed at
the end of the third step. The last two exchanges, however, seem a little
out of place and deserve some more discussion. The purpose of the nonce
in step 4 and step 5 is to prevent replay attacks in which Mallory replays



10.3. Kerberos 261

an old EKBT
[KS‖IDA]. If we didn’t have step 4 and step 5, Bob would

automatically assume that KS is the correct key to use. Mallory could use
this strategy to force Bob to send out more messages involving KS . Step 4
and step 5 allows Bob to issue a challenge to Alice where she can prove to
Bob that she really knows the session key KS . Only Alice should be able to
use KS to calculate EKS

[r2 − 1].
In spite of the the apparent security that the challenge-response in step

4 and step 5 provides, there is a potential security problem that can arise
if Mallory ever figures out the session key KS . Let us step through this
possible attack.

1. Alice→ Bob : EKBT
[KS‖IDA]

2. Bob→ Alice : EKS
[r3]

3. Mallory→ Bob : EKS
[r3 − 1].

Here, Mallory replays an old message from step 3 of Needham-Schroeder as
if she were Alice. When Bob gets this message, he issues a challenge to Al-
ice in the form of a new nonce r3. Mallory can intercept this challenge and,
since she knows the session key KS , she can respond correctly to the chal-
lenge. The net result is that Mallory will have passed Bob’s authentication
challenge as if she were Alice. From this point on, Bob will communicate
using KS and believe he communicating with Alice. Mallory can use Alice’s
identity to complete her evil plans.

Building a solid key distribution protocol is very tough. The security lit-
erature is littered with many examples of key distribution schemes that have
failed because of a clever attack that was found years later. It might seem a
lost cause since we have examined two protocols that both have weaknesses
associated with them. However, in the rest of this chapter we shall look at
protocols that have so far proven successful. We begin our discussion of suc-
cessful protocols in the next section, where we will discuss Kerberos, which
is an improved variation of the Needham-Schroeder key exchange protocol.
Kerberos has withstood careful scrutiny by the community and has been
adopted for use in many applications.

10.3 Kerberos

Kerberos (named for the three-headed dog that guarded the entrance to
Hades) is a real-world implementation of a symmetric cryptography proto-
col whose purpose is to provide strong levels of authentication and security
in key exchange between users in a network. Here we use the term users
loosely, as a user might be an individual, or it might be a program request-
ing communication with another program. Kerberos grew out of a larger



262 Chapter 10. Security Protocols

development project at M.I.T. known as Project Athena. The purpose of
Athena was to provide a huge network of computer workstations for the
undergraduate student body at M.I.T., allowing students to access their
files easily from anywhere on the network. As one might guess, such a de-
velopment quickly raised questions about network security. In particular,
communication across a public network such as Athena is very insecure and
it is easily possible to observe data flowing across a network and look for
interesting bits of information such as passwords and other types of infor-
mation that one would wish to remain private. Kerberos was developed in
order to address such security issues. In the following, we present the basic
Kerberos model and describe what it is and what it attempts to do. For
more thorough descriptions, see [Schneier].

Kerberos is based on a client/server architecture. A client is either a
user or some software that has some task that it seeks to accomplish. For
example, a client might wish to send e-mail, print documents, or mount
devices. Servers are larger entities whose function is to provide services to
the clients. As an example, on the Internet and World Wide Web there is a
concept of a domain name server (DNS), which provides names or addresses
to clients such as e-mail programs or Internet browsers.

The basic Kerberos model has the following participants:

• Cliff: a client

• Serge: a server

• Trent: a trusted authority

• Grant: a ticket-granting server

The trusted authority is also known as an authentication server. To
begin, Cliff and Serge have no secret key information shared between them,
and it is the purpose of Kerberos to give each of them information securely.
A result of the Kerberos protocol is that Serge will have verified Cliff’s
identity (he wouldn’t want to have a conversation with a fake Cliff, would
he?), and a session key will be established.

The protocol, depicted in Figure 10.1, begins with Cliff requesting a
ticket for Ticket-Granting Service from Trent. Since Trent is the powerful
trusted authority, he has a database of password information for all the
clients (for this reason, Trent is also sometimes referred to as the Kerberos
server). Trent returns a ticket that is encrypted with the client’s secret
password information. Cliff would now like to use the service that Serge
provides, but before he can do this, he must be allowed to talk to Serge.
Cliff presents his ticket to Grant, the ticket-granting server. Grant takes this
ticket, and if everything is OK (recall that the ticket has some information



10.3. Kerberos 263

1

2 3

5

4

Trent Grant

Serge

Cliff

Figure 10.1: Kerberos.

identifying Cliff), then Grant gives a new ticket to Cliff that will allow Cliff
to make use of Serge’s service (and only Serge’s service; this ticket will not
be valid with Sarah, a different server). Cliff now has a service ticket, which
he can present to Serge. He sends Serge the service ticket as well as an
authentication credential. Serge checks the ticket with the authentication
credential to make sure it is valid. If this final exchange checks out, then
Serge will provide the service to Cliff.

The Kerberos protocol is a formal version of protocols we use in everyday
life (for example cashing a check at a bank, or getting on a ride at a fair).

We now look at Kerberos in more detail. Kerberos makes use of a sym-
metric encryption algorithm. In Version V, Kerberos makes use of DES op-
erating in CBC mode; however, any symmetric encryption algorithm would
suffice.

1. Cliff to Trent: Cliff sends a message to Trent that contains his name
and the name of the ticket-granting server that he will use (in this case
Grant).

2. Trent to Cliff: Trent looks up Cliff’s name in his database. If he finds
it, he generates a session key KCG that will be used between Cliff and
Grant. Trent also has a secret key KC with which he can communicate



264 Chapter 10. Security Protocols

with Cliff, so he uses this to encrypt the Cliff-Grant session key:

T = eKC
(KCG).

In addition, Trent creates a Ticket Granting Ticket (TGT), which will
allow Cliff to authenticate himself to Grant. This ticket is encrypted
using Grant’s personal key KG (which Trent also has):

TGT =

Grant’s name‖eKG
(Cliff’s name, Cliff’s Address, Timestamp1, KCG).

Here ‖ is used to denote concatenation. The ticket that Cliff receives
is the concatenation of these two subtickets:

Ticket =T‖TGT.

3. Cliff to Grant: Cliff can extract KCG using the key KC , which he
shares with Trent. Using KCG, Cliff can now communicate securely
with Grant. Cliff now creates an authenticator, which will consist of
his name, his address, and a timestamp. He encrypts this using KCG

to get

AuthCG = eKCG
(Cliff’s name, Cliff’s address, Timestamp2).

Cliff now sends AuthCG as well as TGT to Grant so that Grant can
administer a service ticket.

4. Grant to Cliff: Grant now has AuthCG and TGT. Part of TGT was
encrypted using Grant’s secret key, so Grant can extract this portion
and can decrypt it. Thus he can recover Cliff’s name, Cliff’s address,
Timestamp1, as well as KCG. Grant can now use KCG to decrypt
AuthCG in order to verify the authenticity of Cliff’s request. That
is, dKCG

(AuthCG) will provide another copy of Cliff’s name, Cliff’s
address, and a different timestamp. If the two versions of Cliff’s name
and address match, and if Timestamp1 and Timestamp2 are suffi-
ciently close to each other, then Grant will declare Cliff valid. Now
that Cliff is approved by Grant, Grant will generate a session key
KCS for Cliff to communicate with Serge and will also return a service
ticket. Grant has a secret key KS which he shares with Serge. The
service ticket is

ServTicket =

eKS
(Cliff’s name, Cliff’s address, Timestamp3, ExpirationTime, KCS) .



10.4. Public Key Infrastructures (PKI) 265

Here ExpirationTime is a quantity that describes the length of validity
for this service ticket. The session key is encrypted using a session key
between Cliff and Grant:

eKCG
(KCS) .

Grant sends ServTicket and eKCG
(KCS) to Cliff.

5. Cliff to Serge: Cliff is now ready to start making use of Serge’s services.
He starts by decrypting eKCG

(KCS) in order to get the session key
KCS that he will use while communicating with Serge. He creates an
authenticator to use with Serge:

AuthCS = eKCS
(Cliff’s name, Cliff’s address, Timestamp4) .

Cliff now sends Serge AuthCS as well as ServTicket. Serge can de-
crypt ServTicket and extract from this the session key KCS that he
is to use with Cliff. Using this session key, he can decrypt AuthCS

and verify that Cliff is who he says he is, and that Timestamp4 is
within ExpirationTime of Timestamp3. If Timestamp4 is not within
ExpirationTime of Timestamp3, then Cliff’s ticket is stale and Serge
rejects his request for service. Otherwise, Cliff and Serge may make
use of KCS to perform their exchange.

10.4 Public Key Infrastructures (PKI)

Public key cryptography is a powerful tool that allows for authentication,
key distribution, and non-repudiation. In these applications, the public
key is published, but when you access public keys, what assurance do you
have that Alice’s public key actually belongs to Alice? Perhaps Eve has
substituted her own public key in place of Alice’s. Unless confidence exists
in how the keys were generated, and in their authenticity and validity, the
benefits of public key cryptography are minimal.

In order for public key cryptography to be useful in commercial appli-
cations, it is necessary to have an infrastructure that keeps track of public
keys. A public key infrastructure, or PKI for short, is a framework con-
sisting of policies defining the rules under which the cryptographic systems
operate and procedures for generating and publishing keys and certificates.

All PKIs consist of certification and validation operations. Certification
binds a public key to an entity, such as a user or a piece of information.
Validation guarantees that certificates are valid.

A certificate is a quantity of information that has been signed by its
publisher, who is commonly referred to as the certification authority



266 Chapter 10. Security Protocols

(CA). There are many types of certificates. Two popular ones are iden-
tity certificates and credential certificates. Identity certificates contain an
entity’s identity information, such as an e-mail address, and a list of pub-
lic keys for the entity. Credential certificates contain information describing
access rights. In either case, the data are typically encrypted using the CA’s
private key.

Suppose we have a PKI, and the CA publishes identity certificates for
Alice and Bob. If Alice knows the CA’s public key, then she can take the
encrypted identity certificate for Bob that has been published and extract
Bob’s identity information as well as a list of public keys needed to com-
municate securely with Bob. The difference between this scenario and the
conventional public key scenario is that Bob doesn’t publish his keys, but
instead the trust relationship is placed between Alice and the publisher.
Alice might not trust Bob as much as she might trust a CA such as the
government or the phone company. The concept of trust is critical to PKIs
and is perhaps one of the most important properties of a PKI.

It is unlikely that a single entity could ever keep track of and issue every
Internet user’s public keys. Instead, PKIs often consist of multiple CAs that
are allowed to certify each other and the certificates they issue. Thus, Bob
might be associated with a different CA than Alice, and when requesting
Bob’s identity certificate, Alice might only trust it if her CA trusts Bob’s
CA. On large networks like the Internet, there may be many CAs between
Alice and Bob, and it becomes necessary for each of the CAs between her
and Bob to trust each other.

In addition, most PKIs have varying levels of trust, allowing some CAs to
certify other CAs with varying degrees of trust. It is possible that CAs may
only trust other CAs to perform specific tasks. For example, Alice’s CA may
only trust Bob’s CA to certify Bob and not certify other CAs, while Alice’s
CA may trust Dave’s CA to certify other CAs. Trust relationships can
become very elaborate, and, as these relationships become more complex,
it becomes more difficult to determine to what degree Alice will trust a
certificate that she receives.

In the following two sections, we discuss two examples of PKIs that are
used in practice.

10.5 X.509 Certificates

Suppose you want to buy something on the Internet. You go to the website
Gigafirm.com, select your items, and then proceed to the checkout page.
You are asked to enter your credit card number and other information.
The website assures you that it is using secure public key encryption, using
Gigafirm’s public key, to set up the communications. But how do you know



10.5. X.509 Certificates 267

that Eve hasn’t substituted her public key? In other words, when you are
using public keys, how can you be sure that they are correct? This is the
purpose of Digital Certificates.

One of the most popular types of certificate is the X.509. In this system,
every user has a certificate. The validity of the certificates depends on
a chain of trust. At the top is a Certificate Authority (CA). These are
often commercial companies such as VeriSign, GTE, ATT, and others. It is
assumed that the CA is trustworthy. The CA produces its own certificate
and signs it. This certificate is often posted on the CA’s website. In order
to ensure that their services are used frequently, various CAs arrange to
have their certificates packaged into Internet browsers such as Netscape and
Microsoft Internet Explorer.

The CA then (for a fee) produces certificates for various clients, such as
Gigafirm. Such a certificate contains Gigafirm’s public key. It is signed by
the CA using the CA’s private key. Often, for efficiency, the CA authozizes
various Registration Authorities (RA) to sign certificates. Each RA then
has a certificate signed by the CA.

A certificate holder can sometimes then sign certificates for others. We
therefore get a certification hierarchy where the validity of each certificate
is certified by the user above it, and this continues all the way up to the CA.

CA

Client Client

RA

Client Client Client

Figure 10.2: A Certification Hierarchy

If Alice wants to verify that Gigafirm’s public key is correct, she uses
her copy of the CA’s certificate (stored in her computer) to get the CA’s
public key. She then verifies the signature on Gigafirm’s certificate. If it
is valid, she trusts the certificate and thus has a trusted public key for
Gigafirm. Of course, she must trust the CA’s public key. This means that
she trusts the company that packaged the CA’s certificate into her computer.
The computer company of course has a financial incentive to maintain a
good reputation, so this trust is reasonable. But if Alice has bought a used
computer in which Eve has tampered with the certificates, there might be
a problem (in other words, don’t buy used computers from your enemies,
except to extract unerased information).



268 Chapter 10. Security Protocols

Figures 10.3, 10.4, and 10.5 show examples of X.509 certificates. The
ones in Figures 10.3 and 10.4 are for a CA, namely VeriSign. The part in
Figure 10.3 gives the general information about the certificate, including its
possible uses. Figure 10.4 gives the detailed information. The one in Figure
10.5 is an edited version of the Details part of a certificate for the bank Wells
Fargo.

This certificate has been verified for the following uses:

Email Signer Certificate

Email Recipient Certificate

Status Responder Certificate

Issued to:

Organization (O): VeriSign, Inc.
Organizational Unit (OU): Class 1 Public Primary Certification Authority - G2
Serial Number: 39:CA:54:89:FE:50:22:32:FE:32:D9:DB:FB:1B:84:19

Issued By:

Organization (O): VeriSign, Inc.
Organizational Unit (OU): Class 1 Public Primary Certification Authority - G2

Validity:

Issued On: 05/17/98
Expires On: 05/18/18

Fingerprints:

SHA1 Fingerprint: 04:98:11:05:6A:FE:9F:D0:F5:BE:01:68:5A:AC:E6:A5:D1:C4:45:4C
MD5 Fingerprint: F2:7D:E9:54:E4:A3:22:0D:76:9F:E7:0B:BB:B3:24:2B

Figure 10.3: CA’s Certificate; General

Some of the fields in Figure 10.4 are as follows:

1. Version: there are three versions, the first being Version 1 (from 1988)
and the most recent being Version 3 (from 1997).

2. Serial number: there is a unique serial number for each certificate
issued by the CA.

3. Signature algorithm: Various signature algorithms can be used. This
one uses RSA to sign the output of the hash function SHA-1.

4. Issuer: The name of the CA that created and signed this certificate.
OU is the Organizational Unit, O is the organization, C is the country.

5. Subject: The name of the holder of this certificate.



10.5. X.509 Certificates 269

Certificate Hierarchy

⊲ Verisign Class 1 Public Primary Certification Authority - G2

Certificate Fields

Verisign Class 1 Public Primary Certification Authority - G2
Certificate

Version: Version 1
Serial Number: 39:CA:54:89:FE:50:22:32:FE:32:D9:DB:FB:1B:84:19
Certificate Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Issuer: OU = VeriSign Trust Network

OU = (c) 1998 VeriSign, Inc. - For authorized use only
OU = Class 1 Public Primary Certification Authority - G2
O = VeriSign, Inc.
C = US

Validity
Not Before: 05/17/98 20:00:00 (05/18/98 00:00:00 GMT)
Not After: 05/18/18 19:59:59 (05/18/18 23:59:59 GMT)

Subject: OU = VeriSign Trust Network
OU = (c) 1998 VeriSign, Inc. - For authorized use only
OU = Class 1 Public Primary Certification Authority - G2
O = VeriSign, Inc.
C = US

Subject Public Key Info: PKCS #1 RSA Encryption
Subject’s Public Key:

30 81 89 02 81 81 00 aa d0 ba be 16 2d b8 83 d4

ca d2 0f bc 76 31 ca 94 d8 1d 93 8c 56 02 bc d9

6f 1a 6f 52 36 6e 75 56 0a 55 d3 df 43 87 21 11

65 8a 7e 8f bd 21 de 6b 32 3f 1b 84 34 95 05 9d

41 35 eb 92 eb 96 dd aa 59 3f 01 53 6d 99 4f ed

e5 e2 2a 5a 90 c1 b9 c4 a6 15 cf c8 45 eb a6 5d

8e 9c 3e f0 64 24 76 a5 cd ab 1a 6f b6 d8 7b 51

61 6e a6 7f 87 c8 e2 b7 e5 34 dc 41 88 ea 09 40

be 73 92 3d 6b e7 75 02 03 01 00 01

Certificate Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Certificate Signature Value:

8b f7 1a 10 ce 76 5c 07 ab 83 99 dc 17 80 6f 34

39 5d 98 3e 6b 72 2c e1 c7 a2 7b 40 29 b9 78 88

ba 4c c5 a3 6a 5e 9e 6e 7b e3 f2 02 41 0c 66 be

ad fb ae a2 14 ce 92 f3 a2 34 8b b4 b2 b6 24 f2

e5 d5 e0 c8 e5 62 6d 84 7b cb be bb 03 8b 7c 57

ca f0 37 a9 90 af 8a ee 03 be 1d 28 9c d9 26 76

a0 cd c4 9d 4e f0 ae 07 16 d5 be af 57 08 6a d0

a0 42 42 42 1e f4 20 cc a5 78 82 95 26 38 8a 47

Figure 10.4: CA’s Certificate; Details



270 Chapter 10. Security Protocols

Certificate Hierarchy

⊲ Verisign Class 3 Public Primary CA
⊲ www.verisign.com/CPS Incorp. by Ref. LIABILITY LTD.(c)97VeriSign

⊲ online.wellsfargo.com

Certificate Fields

Verisign Class 3 Public Primary Certification Authority
Certificate

Version: Version 3
Serial Number: 03:D7:98:CA:98:59:30:B1:B2:D3:BD:28:B8:E7:2B:8F
Certificate Signature Algorithm: md5RSA
Issuer: OU = www.verisign.com/CPS Incorp. · · ·

OU = VeriSign International Server CA - Class 3
OU = VeriSign, Inc.
O = VeriSign Trust Network
C = US

Validity
Not Before: Sunday, September 21, 2003 7:00:00 PM
Not After: Wednesday, September 21, 2005 6:59:59 PM

Subject: CN = online.wellsfargo.com
OU = Terms of use at www.verisign.com.rpa (c)00
OU = Class 1 Public Primary Certification Authority - G2
OU = ISG
O = Wells Fargo and Company
L = San Francisco
S = California
C = US

Subject Public Key Info: PKCS #1 RSA Encryption
Subject’s Public Key: 30 81 89 02 81 81 00 a9 · · ·
Basic Constraints: Subject Type = End Entity,

Path Length Constraint = None
Subject’s Key Usage: Digital Signature, Key Encipherment (AO)
CRL Distribution Points: (1) CRL Distribution Point

Distribution Point Name:
Full Name:

URL=http://crl.verisign.com/
class3InternationalServer.crl

Certificate Signature Algorithm: MD5 With RSA Encryption
Certificate Signature Value: · · · · · ·

Figure 10.5: A Client’s Certificate



10.5. X.509 Certificates 271

6. Public key: Several options are possible. This one uses RSA with
a 1024-bit modulus. The key is given in hexadecimal notation. In
hexadecimal, the letters a, b, c, d, e, f represent the numbers 10, 11,
12, 13, 14, 15. Each pair of symbols is a byte, which is 8 bits. For
example, b6 represents 11, 6, which is 10110110 in binary.

The last three bytes of the public key are 01 00 01, which is 65537 =
216 + 1. This is a very common encryption exponent e for RSA, since
raising something to this power by successive squaring (see Section 3.5)
is fast. The preceding bytes 02 03 and the bytes 30 81 89 02 81 81
00 at the beginning of the key are control symbols. The remaining 128
bytes aa d0 ba · · · 6b e7 75 are the 1024-bit RSA modulus n.

7. Signature: The preceding information on the certificate is hashed using
the hash algorithm specified – in this case, SHA-1 – and then signed
by raising to the CA’s private RSA decryption exponent.

The certificate in Figure 10.5 has a few extra lines. One notable entry is
under the heading Certificate Hierarchy. The certificate of the Wells Fargo
has been signed by the Registration Authority (RA) on the preceding line.
In turn, the RA’s certificate has been signed by the root CA. Another entry
worth noting is CRL Distribution Points. This is the Certificate Revocation
List. It contains lists of certificates that have been revoked. There are
two common methods of distributing the information from these lists to the
users. Neither is perfect. One way is to send out announcements whenever a
certificate is revoked. This has the disadvantage of sending a lot of irrelevant
information to most users (most people don’t need to know if the Point
Barrow Sunbathing Club loses its certificate). The second method is to
maintain a list (such as the one at the listed URL) that can be accessed
whenever needed. The disadvantage here is the delay caused by checking
each certificate. Also, such a web site could get overcrowded if many people
try to access it at once. For example, if everyone tries to trade stocks during
their lunch hour, and the computers check each certificate for revocation
during each transaction, then a site could be overwhelmed.

When Alice (or, usually, her computer) wants to check the validity of
the certificate in Figure 10.5, she sees from the Certificate Hierarchy that
VeriSign’s RA signed Wells Fargo’s certificate and the RA’s certificate was
signed by the root CA. She verifies the signature on Wells Fargo’s certificate
by using the public key (that is, the RSA pair (n, e)) from the RA’s cer-
tificate; namely, she raises the encrypted hash value to the eth power mod
n. If this equals the hash of Wells Fargo’s certificate, then she trusts Wells
Fargo’s certificate, as long as she trusts the RA’s certificate. Similarly, she
can check the RA’s certificate using the public key on the root CA’s cer-
tificate. Since she received the root CA’s certificate from a reliable source



272 Chapter 10. Security Protocols

(for example, it was packaged in her Internet browser, and the company
doing this has a financial incentive to keep a good reputation), she trusts
it. In this way, Alice has established the validity of Wells Fargo’s certificate.
Therefore, she can confidently do on-line transactions with Wells Fargo.

There are two levels of certificates. The high assurance certificates are
issued by the CA under fairly strict controls. High assurance certificates are
typically issued to commercial firms. The low assurance certificates are
issued more freely and certify that the communications are from a partic-
ular source. Therefore, if Bob obtains such a certificate for his computer,
the certificate verifies that it is Bob’s computer, but does not tell whether
it is Bob or Eve using the computer. The certificates on many personal
computers contain the following line:

Subject: Verisign Class 1 CA Individual Subscriber - Persona Not Validated.

This indicates that the certificate is a low assurance certificate. It does not
make any claim as to the identity of the user.

If your computer has Internet Explorer, click on Tools, then Internet Op-
tions, then Content. This will allow you to find the CA’s whose certificates
have been packaged with the browser. Usually, the validity of most of them
has not been checked. But for the accepted ones, it is possible to look at
the Certification Path that gives the path (often one step) from the user’s
computer’s certificate back to the CA.

10.6 Pretty Good Privacy

Pretty Good privacy, more commonly known as PGP, was developed by
Phil Zimmerman in the late 1980s and early 1990s. In contrast to X.509
certificates, PGP is a very decentralized system with no CA. Each user has
a certificate, but the trust in this certificate is certified to various degrees
by other users. This creates a web of trust.

For example, if Alice knows Bob and can verify directly that his certifi-
cate is valid, then she signs his certificate with her public key. Charles trusts
Alice and has her public key, and therefore can check that Alice’s signature
on Bob’s certificate is valid. Charles then trusts Bob’s certificate. However,
this does not mean that Charles trusts certificates that Bob signs – he trusts
Bob’s public key. Bob could be gullible and sign every certificate that he
encounters. His signature would be valid, but that does not mean that the
certificate is.

Each user, for example Alice, maintains a file with a keyring, containing
the trust levels Alice has in various people’s signatures. There are varying
levels of trust that someone can assign: no information, no trust, partial
trust, and complete trust. When a certificate’s validity is being judged, the


