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Abstract— The formation of coalitions in a Gaussian interfer- .—O
ence channel comprised of\/ transmit-receive links where the TX
receivers are allowed to cooperate is studied under the fragwork .___-—-—‘O

of coalitional game theory. Allowing any arbitrary sharing of the

total rate achieved by a coalition between its member linksit is

shown that the grand coalition (coalition of all links) maximizes Rx
spectrum utilization and is also stable, that is, the links in this

coalition have no incentives to leave and form other coalitins.

The issue of fairness in allocating rates to members of a grah

coalition is addressed via a Nash bargaining solution where

each link utility is modeled as the rate gained by being in a O\.
coalition relative to the rate achieved in the interferencechannel.

Further, a rate allocation solution using proportional fairness is
also presented and the results are illustrated with exampke
Fig. 1. An interference channel with/ transmit-receive links

I. INTRODUCTION

We consider a Gaussian interference channel [1] comprised
of a number of communication links where a link corresponggaximizes spectrum utilization and is alstable We further
to a single transmitter-receiver pair as shown in Fig. 1.€ptc propose a Nash bargaining solution and a proportional fair
for certain special cases (see [1]), the capacity region &jution as two approaches to allocate rate to the members
this channel remains an open problem. Recently, cooperatigf a grand coalition; specifically the Nash solution allesat
between transmitters and/or receivers in communicatidn ngates by maximizing the product of the rate gains that each
works has been shown to mitigate interference between raglifk achieves via receiver cooperation relative to thatieved
links and lead to rate and diversity gains (see for e.g. ], [in the interference channel.

and the references therein).
Il. SYSTEM MODEL

We analyze the effect of cooperation between the receiversye consider an interference channelldf communication
of a M-link interference channel under the framework ofks each formed by a single transmitter-receiver pair, ¢
coalitional game theory. When a set of links cooperate @(isting in the same shared spectrum [&],, is the input
form a coalition, we assume that the receivers of these "nka?phabet of the transmitter of links and ), is the output
jointly decode their received signals. Further, we assumé talphabet at the corresponding receiver. We denoteSby:
the signals from the links that are not part of this coali@a 1 2 A/} the set of all links and writeXg = {X,, : m €
treated as interference by the receivers in the coalitidre Tg} for all G C S and ¢ as the complement @ in S. We

valueof a coalition is the maximum information-theoretic ratggnsider an additive white Gaussian noise channel with flat
that can be achieved between the transmitters and the meiYading. The channel is used times. The received signal at

in the coalition. Depending on the share of the value thatla liihe receiver of linkm in the it* time instant is given by
receives while in a coalition, it can choose to leave or remai
in the coalition. The formation of coalitions is studied i [
for the Gaussian multi-access channel where the integferin Yin,i = th’“X’” + Zm.i @)
transmitters bargain for rates by threatening to transroitstv k=1

case jamming noise. For the interference channel considevéhere X, ; € X,,,, Yy, i € Vi, andh,, i, is the channel gain
here, we determine the coalitions formed when the receivdrstween the transmitter of link to the receiver of linkm

of mutually interfering radios cooperate and each link with and is assumed known at the receiver. We also assume the
coalition can be assigned an arbitrary share of the totaleval channel gains remain unchanged overithehannel uses. The
Under these conditions, we show that tgeand coalition noise entriesZ,,; ~ CAN(0,1), are independent, circularly
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symmetric, complex Gaussian random variables with zemsembers of the coalition, the game is said to hagasferable
mean and unit variance, for ath. The power constraint at payoft
the m*" transmitter is Definition 1: A coalitional game with transferable payoff
n 9 (S, v) consists of
Loy BlXmil" S nbm €S @, 4 finite set of linkss,
The capacity region of the interference channel that result « a functionv that associate with every non-empty subset
when links do not cooperate is, in general, unknown. For G (a coalition) ofS, a real numbep(G) (the value ofG).
the interference channel considered here, we assume #hat thReceiver cooperation through joint decoding results ificoa
transmitters employ Gaussian signaling subject to a pow®ns where the value of each coalition is not influenced by
constraint (2). We also assume that receivers that choosehe actions of players outside that coalition. This is beeau
cooperate communicate with one another vigide channel the maximum sum-rate(G) achievable by such a coalition
or through a central agent such asgectrum servef5], [6]. G depends on the players §f only through the interference
Further, we assume that the transmitters do not cooperatffered by them, which in turn is independent of coalitions
This models a variety of practical networks operating in thiermed withinG<. In general, however,(G) may depend upon
unlicensed bands where the receivers can communicate vidha actions of links outside the coalitigh For example, if
backbone network while the wireless transmitters, in galnertransmitters were allowed to cooperate in our model it would
cannot. For the input signaling considered, a coalition ¢fad to such a situation.
cooperating receivers treats signals from transmittetsiae Definition 2: A coalitional game with transferable payoff
the coalition as additive white Gaussian noise. Such atomali is said to be superadditive if for any two disjoint coalition
can be modeled as a single-input, multiple-output multiplg;, Go C S, v(G1 U Ga) > v(G1) + v(G2).
access channel (SIMO-MAC), the capacity region of which
is known [7] and is achieved by the Gaussian input signaling Theorem 3:The grand coalition maximizes spectrum uti-
chosen. lization in the interference channel coalitional game.
Proof: From definition 2, for a superadditive game,

We use avalue v(G) of a coalition of linksG (precise the sum-rate of all links is maximized by the coalition
definitions are given in Section Ill) to denote the maximurformed by all links, namely the grand coalition. For the
sum-rate achievable by the links ¢h For the channel model interference channel coalitional game, maximizing the sum
consideredy(G) is then the mutual information between theate is equivalent to maximizing the utilization of the siar

transmitters and receivers ¢ given as spectrum. Therefore, we only need to show that the value
of a coalition v(G) for the interference channel coalitional
v(G) = max Ry =I(Xg:;Yg) (3) game, defined in (3), is a superadditive function.
EQGCQ )
€g

Consider two coalitiong/; and G, such thatg; N Gy = ¢.

whereR; = (R.,)meg IS the vector of rates for links ig and . o
Ce is the capacity region of the SIMO-MAC formed by thelrr:a(:rder to prove that(G) is superadditive, we need to show

users inG. The valuev(G) of a coalitionG can be apportioned

between its members in any arbitrary manner. Depending on I(Xg,u6,; Yo,ug,) > 1(Xg,3Yg,) + 1(Xg,;Yg,) (4)
its allocated share oH(G), a receiver may decide to break

away from the coalitiorg and join another coalition where it We expandl(Xg, ug.; Yg,ug.) as

achieves a greater rate. We model the problem of determining I(Xg,: Ya,) + I(Xo,: Yo, |Yo,)
the stable coalitions and the resulting rate allocationsttie Xo06s: Yoroa,) = i[()l(g Vg |)(1g7 )j !
interference channel as a coalitional game and refer to thig peER T I(Xg ;,’g |}"’,g )}g )

game as thenterference channel coalitional gamén the TR
following section, we use results from coalitional gameottye comparing (5) with (4), since mutual information is non-
to prove the existence of stable rate-maximizing coaldlitor negative, to prove (4), we only need to show that the thinhter
the network considered. in the expansion above is greater tHdX g, ; Y5, ). Expanding

IIl. COALITIONAL GAMES IN RECEIVER CoopeRaTION (X023 Ya:1Xa, ), we have

NETWORKS I(Xg,;Yg,|Xg,) = H(Xg,) — H(Xg,[Yg,. Xg,)  (6)

We first briefly review coalitional game theory [8] and > H(Xg,) — H(Xg,[Yg,) @)

present definitions in the context of our problem. We con- = I(Xg,:Yg,) 8)
29 2

sider a coalitional game in which every coalition of links is

ascribed a single number, interpreted as the payoff availalwhere we have exploited the independence of the transmitter
to the coalition. The share of payoff received by the linksignals in (6) and that conditioning reduces entropy to iabta
in a coalition is called gayoff vector When there are no the inequality in (7). Thus, the interference channel ¢ioalal
restrictions on how this payoff may be apportioned among tigame is a superadditive game. ]



We remark that, without superadditivity, finding the optima
coalition structure (partition of links into coalitions} ian Z R, = Z R, + Z R, =1(Xs;Ys) (12)
NP-complete problem [9]. This is because the number of mes meg mege
possible coalition structures, given by the Bell numbeows \\e rewrite this as
exponentially fast withM/.

Definition 4: For any coalitiong, a vector(z,, )meg of real > Ryn=1I(Xs;Ys)— Y. Rm (12)
numbers is &-feasible payoff vector if:(G) = >, cg Tm = meg mege
v(G). The S-feasible payoff vector is referred to ademsible > 1(Xg, Xge; Ys) — 1(Xge; Ys|Xg) (13)
payoff profile =I(Xg;Yg, Yge) (14)
Of all possible coglmons that can form, theT coalitions = I(Xg: Yg) + I(Xg: Yo |Ys) (15)
that are stable, that is, those whose member links have no
incentives to leave, are of most interest. The set of sudiiesta > I(Xg;Yg) (16)

coalitions comprises eore, defined formally below. _ where the inequality in (13) follows from (9); (14) resultstin
Definition 5: The core,C(v), of a coalitional game with applying the chain rule for mutual information in (13), and

transferable payoffS, v), is the set of feasible payoff profilesfinally (16) follows from non-negativity of mutual inforrrian.
(zm)mes for which there is no coalitiong C S and a Thus, we have

correspondingG-feasible payoff vectony,,)meg such that

ym>:cpm for%meg. i WmInes ZRmZI(Xg;YQ):U(g) 17)
From definition 5, it follows that the set of feasible payoff meg

profiles in the core satisfy(G) < z(G) for every coalition The above inequality implies that every point on th@minant

G C 8. We claim that this condition is equivalent to definitiorface(sum-rate maximizing face of the capacity polytajg of

5. This is because in a game with transferable payoff if thetlke SIMO-MAC capacity regioilfs corresponds to a feasible

exists a coalitiory with v(G) > z(G) then we can always find rate payoff profile that lies in the core. Thus, the core far th

aG-feasible payoff vectofy,, ).mcg such thay,, > x,,, forall interference channel coalitional game is not only non-gmpt

m € G. Such an assignment can result, for instance, when that is, in general, also non-unique. [ ]

G-feasible payoff vectofy,,)mnecg is constructed by assigning

to each linkm € G, the payoffz,, and then uniformly ] ) o

apportioning the surplus payof{G) — z(G) between links in Since the interference channel coalitional game has a non-

G. We use this equivalent definition of the core in the follogvin ©MPLy, non-unique core, a natural question that arisesvs ho
theorem. the valuewv(S) should be apportioned between the links in

a fair manner. This constitutes, in the context of coalitional

In general, the core of a coalitional game can be empty. \@8Mes [8], a bargaining problem between all the links. For-
now prove that the core of the interference channel corsifio Mally, @ bargaining problem is a coupl@, d) defined as

IV. FAIR ALLOCATIONS

game is non-empty. » asetof linksS = {1,2,..., M'},

Theorem 6:The interference channel coalitional game with « the setQ of payoff vectors(g,,)mes that the players can
receiver cooperation and transferable utility has a noptgm achieve through cooperation (thgreement st
core. « the disagreement payoféectord = (d,,)mes € Q that

Proof: Since the interference channel coalitional game  contains the rate achieved by each of fifelinks when
is superadditive, we need only consider the definition of the it is not a part of any coalition.
core in the context of the grand coalition. Consider a fdasib A bargaining solution is a function that assigns to every
payoff profileRs = (R )mes that lies in the capacity region bargaining problem{Q, d) a unique element of.
of the SIMO-MAC Cs. Cs is the capacity region that results
when all links cooperate to form a grand coalition resulimg  Nash Bargaining Solution Maximizing Rate Gains over
M independent transmitters add cooperating receivers andlnterference Channel: A solution to the bargaining problem
is characterized by the inequalities was proposed by Nash [10] and is referred to as Nash
) bargaining solution This solution has the property that it
WXE:A R < I(X4;Ys|Xa) VACS (9) simplifies the sequential bargaining game between links to a

We claim that every feasible payoff profiles that lies in the I?/Ir(()):j)l(e;;nstzfrnmuii)l(iltirg ';'Fg] t\?\z p:(())dggte(;: ’:ITSIL \é(;? :ﬁ?ﬂmigrl"
capacity regiorCs lies in the core. By the equivalent definition 9 . prop 9 g

of the core, in order to prove that the choskg lies in the tion (NBS) to our bargalmr_\g proplem by modeﬁng the ut|I|ty
of each link as the rate gain achieved by receiver cooperatio
core, we need to show that

relative to the rate achieved in the non-cooperative iaterfce

> Rn>v(G) YVGCS (10) channel. The resulting solution is
meg
M
This can be shown as follows. Sin¢&,,)..cs is a feasible RYBS —are  ma H (Rpm — RIC) (18)

X
payoff profile, i.e.,>  .sRm = v(S), we have {Rs:Rm>R[C}

m=1



Topology 1 Topology 2 Topology 3

where now, the agreement s@t is simply the SIMO-MAC s
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The Nash solution maximizes the product of the rate g P rews ] =0 1 T
achieved by each link through cooperation. The produc P om0 B0 R e
maximized over the subset of the agreement set consisting ui
points which are strictly better than the the disagreemant p Fig. 2. Geometric plot of the three topologies

offs for each player, that is?,,, > RLC for all m. We remark

that the Nash bargaining solution [8] satisfies the proesgrti
of Pareto optimality(maximizes sum-rate) and symmetry (the V. ILLUSTRATION OF RESULTS
solution to the bargaining problem is independent of the way

the players are labeled). We illustrate our results using an example of a three-link

Theorem 7:The Nash baraaining solution lies in the COrinterference channel with links labeléd2, and3. We consider
: g 9 $hree network topologies as shown in Fig. 2. The channekgain

of the interference channel coalitional game. : .
] . . f9r the links in each network are modeled as
Proof: This is a simple consequence of the fact tha 4
m,k,i

the core contains all feasible payoff profiles belonginghe t By i = kit (22)
SIMO-MAC capacity regionCs (from Theorem 7) and by o o/2
definition 4 these feasible payoff profiles are Pareto-optim
Since the Nash bargaining solution is always Pareto-oftim
it is a feasible payoff profile that lies in the core. [ ]
Proportional Fair Allocation: The proportional fair allo-

m,k
where « is the path loss exponent. For the purpose of this

ﬁlustration we consider a non-fading channel with, . ; = 1
anda = 3. Further, the transmit-receive distantg ,,, for the

th 15 o o ) : ;
cation [11] is a frequently used fairness criterion for the' link, m = 1,2,3, s fixed at ten units while the distances

. ) s & m # k, are varied over the three topologies. The rate
allocation of shared resources in communication networks"’ .. L .
. PF . .~ dllocations are expressed in bits/channel use and allitbgas
Formally, an allocation of rate®s"™ is proportionally fair

(PF) if and only if for any other feasible allocatioRg, we are computed to the bage

have M p _ pPF In the following, for each of the three topologies, we présen
Z % <0 (20) the rate allocations resulting from the Nash bargaining and
m=1 Ry proportional fair solutions. Note that both solutions ave &

ﬁpalitional game with transferable payoff and thus the Istab
coalition in both cases is the grand coalition of all links,
namely,S = {1, 2, 3}. For the purpose of comparison, we also
present a non-transferable payoff strategy where we apport

It has been shown [11] that (20) above is equivalent
the conditionRL” = argmax 3 log R,, which for the
interference channel coalitional game simplifies as

pr M the value of a coalition equally between its member links; we
Rs™ =arg ( nggé(s} H B, (21)  refer to this strategy as trexjual rate(ER) allocation strategy.
B m=1 Note that this strategy, in general, need not result in adyran

Theorem 8:The proportional fair solution to the bargainingcoalition. In this case, the stable coalition is determitgd
problem lies in the core of the interference channel caalitl ordering the coalitions prefered by each link based on the
game. rate achieved and resolving the individual link preference

The proof follows directly from the fact that the proportadn For M = 3, the total number of coalitions, given by the
fair solution is a special case of the Nash bargaining smiuti corresponding Bell number, &
where the disagreement payoff to each player is identicallyTopology 1
zero. Table | shows the payoff vectors (rate allocations) for the

Thus, the Nash bargaining and proportional fair solutiorsgrategies of Nash bargaining and proportional fairnebeseé
in (18) and (21) respectively can be computed by limitingvo strategies assume transferable payoff, and hencerdhe g
the search space to just the dominant face of the capadbalition is the stable coalition for both strategies. Qts¢hat
region Cs. Further, limiting the search space in (21) to théhe solution for the proportional fair strategy is not theialq
constant sum-rate face implies that, for the proportionat f rate point since this point does not lie @. In the same
ness strategy, the payoff vector with equal rates is theymtodtable, we also enumerate the payoffs achieved by the links fo
maximizing solution provided the equal rate point lies oa ththe different coalition structures under the equal ratategy
dominant face ofCs. where the payoffs for a coalitiog result from distributing the



Coalition Structure] R; | Ro | R3 | Sum-rate Coalition Structure| R; | R2 | R3 | Sum-rate
Transferrable Payoff Allocation Strategies (NBS and PF) Transferrable Payoff Allocation Strategies (NBS and PF)
1,2,3}NBs 1.4391 | 1.4346 | 1.0671 | 3.9408 1,2,3}NBs 0.9868 | 0.9868 | 1.0246 | 2.9982
1,2,3}pr 1.4372 | 1.4365 | 1.0671 | 3.9408 1,2,3}pr 0.9994 | 0.9994 | 0.9994 | 2.9982
Non-Transferrable Payoff Strategy (ER Non-Transferrable Payoff Strategy (ER
1,2,3} 1.3136 | 1.3136 | 1.3136 | 3.9408 1,2,3} 0.9994 | 0.9994 | 0.9994 | 2.9982
1,2}, {3 1.4174 | 1.4174 | 0.9355 | 3.7703 1,2}, {3 0.9774 | 0.9774 | 0.9758 | 2.9306
2,3}, {1 0.4170 | 0.2055 | 0.2055 | 0.8280 2,3}, {1 0.9230 | 0.9209 | 0.9209 | 2.7648
3,1}, {2 0.2115 | 0.4129 | 0.2115 | 0.8359 3,1}, {2 0.9210 | 0.9231 | 0.9210 | 2.7651
1}, {2}, {3} 0.4170 | 0.4129 | 0.9355 | 1.7654 1}, {2}, {3} 0.9230 | 0.9231 | 0.9758 | 2.8219
Stable ER Coalition{1, 2}, {3} Stable ER Coalition{1, 2, 3}
TABLE | TABLE IlI
RATE ALLOCATION FOR THE THREE STRATEGIES FOR OPOLOGY1 RATE ALLOCATION FOR THE THREE STRATEGIES FOR OPOLOGY3

channel using coalitional game theory. We showed that for

Coalition Structure] R | Ro | R3 | Sum-rate ] o
Transferrable Payoff Allocation Strategies (NBS and PF) such networks, under the assumption of transferable yytilit
1,2,3}NBsS 0.9988 | 0.9988 | 0.9988 | 2.9964 the grand coalition maximizes spectrum utilization and the
1,2, 3}pr 0.9988 | 0.9988 | 0.9988 | 2.9964 resulting coalitional game has a non-empty core. The Nash
Non-Transferrable Payoff Strategy (ER . g 9 . . . Pty ) .

193 0.9988 1 0.9988 | 0.9988 T 2.9964 bargaining and proportional fair solutions proposed alfair
1,2}, {3 0.9671 | 0.9671 | 0.9673 | 2.9015 allocation of rates to the members of a coalition. The NBS
;2),? , ; 8-33;? 8'32;;, 8-32?1 g-gg}g particularly captures the advantage of receiver cooperati
VREIRED 09673 T 09673 T 0.9673 T 2.9019 via th_e ch0|ce of t_h_e link ut_|I|ty modeleq as the rate_ gained
Stable ER Coalition]1, 2, 3} by being in a coalition relative that achieved in the interfe

TABLE Il ence channel. Receiver cooperation as studied here applies

to practical networks with receivers connected either via a
spectrum server or a backbone network; it is certainly afrieit
interest to understand the coalitions formed and the ratesga
achievable when the transmitters in the interference atlann
cooperate.

RATE ALLOCATION FOR THE THREE STRATEGIES FOR OPOLOGY2

valuev(G) equally between the links ié . With knowledge of
the payoffs for the different coalitions, each link chootes
coalition where it achieves the largest rate. We see froneTab
that links1 and2 prefer the coalition structurgl,2},{3} while

3 prefers the grand coalition. Since there is no rate incentiv REFERENCES

for 1 and 2_ t_O bre_ak away from_the" coalition _and form th_e 1] A.B. Carleial, “Interference channeldEEE Trans. Inform. Th.vol. 24,
grand coalition with3, the resulting stable coalition (core) is no. 1, pp. 6070, Jan. 1978.

{1,2},{3}. Thus despite the grand coalition maximizing thel2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperatiiversity -
sum-rate, it is not the stable coalition; this result is aas Egg{lsgy?)séeﬂo‘iesz%g’é'on"EEE Trans. Communvol. 51, no. 11, pp.
consequence of the fact that the equal rate vector does ngf J. N. Laneman, D. N. C. Tse, and G. Wornell, “Cooperatineersity in

lie on the dominant sum-rate maximizing face of the three- wireless networks: efficient protocols and outage behAMBEE Trans.
link capgcity regionCs. This Fopology demonstrat_eS cle_arly 4 IF?. f(ﬂ;ménzh\‘io,iynéﬁ'{hi?ﬁii éaﬁi-igiféﬁg?géklﬁhgogm multi-
how optimal spectrum utilization need not be achieved in the™ access channelAdvances in Network Information Theory, Proceedings

absence of transferable payoff in an interference channel. of the March 2003 DIMACS workshop on Network Informationofie
TOpOlOgieSZ & 3 DIMACS series in Discrete Mathematics and Theoretical Qaep

. . . Science vol. 66, pp. 37-42, Nov. 2003.
For topology 2 with a symmetric placement of links, as showns] c. Raman, R. D. Yates, and N. B. Mandayam, “Schedulingatse rate

in 1l and as expected, the NBS, PF, and ER strategies allocate links via a spectrum server,” ifFEEE Symp. New Frontiers in Dynamic

identical rates to all the links. In topology 3, links and ffg‘:tr”m Access NetworiBaltimore, Maryland, Nov. 2005, pp. 110-

2 are brought closer together compared to their positions ig] o. lleri, D. Samardzjia, T. Sizer, and N. B. Mandayam, fand
topology 2, while link3 is in the same position. As shown in responsive pricing and competitive spectrum allocaticen avispectrum

: : L server,” in IEEE Symp. New Frontiers in Dynamic Spectrum Access
Tab!e 1, all three strategies result in the grand coatitamd _ Networks Baltimore, Maryland, Nov, 2005, pp. 194-202.
achieve the same sum-rate. Further, the ER and PF strategigSe. Telatar, “Capacity of multi-antenna Gaussian chésjheEuropean
are identical as a direct consequence of the fact that thal equ  Trans. Telecommunicationgol. 10, pp. 585-595, Nov. 1999.
rate point lies on the dominant face 6%. The NBS, on the [8] M. Osborne and A. Rubenstei, Course in Game ThearyMIT Press,
other hand, allocates a greater rate to lihkelative to the [9] T. Sandholm, K. Larson, M. Anderson, O. Shehory, and Fhrife,
equal rate allocated tb and2. This skew in rates is because “Coalition structure generation with worst case guaras)teArtificial

: : : Intelligence vol. 10, pp. 209-238, July 1999.
the receivers of linkd and 2 now experience greater mutual[lo] 3. F. Nash. “The bargaining problemEconometricavol. 18, no. 2, pp.

interference as compared to topology 2. 155-162, Apr. 1950.
[11] F. Kelly, “Charging and rate control for elastic trafficEuro. Trans.
VI. CONCLUDING REMARKS Telecommunvol. 8, pp. 33-37, Jan. 1997.

We analyzed the formation of stable rate-maximizing coali-
tions between cooperating receivers in a Gaussian inesréer



