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ABSTRACT

Urban street-parking availability statistics are challenging
to obtain in real-time but would greatly benefit society by
reducing traffic congestion. In this paper we present the de-
sign, implementation and evaluation of ParkNet, a mobile
system comprising vehicles that collect parking space occu-
pancy information while driving by. Each ParkNet vehicle
is equipped with a GPS receiver and a passenger-side-facing
ultrasonic rangefinder to determine parking spot occupancy.
The data is aggregated at a central server, which builds a
real-time map of parking availability and could provide this
information to clients that query the system in search of
parking. Creating a spot-accurate map of parking avail-
ability challenges GPS location accuracy limits. To address
this need, we have devised an environmental fingerprinting
approach to achieve improved location accuracy. Based on
500 miles of road-side parking data collected over 2 months,
we found that parking spot counts are 95% accurate and
occupancy maps can achieve over 90% accuracy. Finally,
we quantify the amount of sensors needed to provide ade-
quate coverage in a city. Using extensive GPS traces from
over 500 San Francisco taxicabs, we show that if ParkNet
were deployed in city taxicabs, the resulting mobile sensors
would provide adequate coverage and be more cost-effective
by an estimated factor of roughly 10-15 when compared to
a sensor network with a dedicated sensor at every parking
space, as is currently being tested in San Francisco.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:

General Terms

Algorithms, Design, Experimentaion, Measurement

1. INTRODUCTION

Automotive traffic congestion imposes significant societal
costs. One study [1] estimated a loss of $78 billion in 2007
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Figure 1: Categorization of urban sensing applica-
tions by required location accuracy and relative dy-
namics of the process being monitored.

in the form of 4.2 billion lost hours and 2.9 billion gallons of
wasted gasoline in the United States alone. Several projects
have recently sought to address this issue through the design
of mobile systems that collect traffic congestion information
to improve route finding and trip planning [2,3]. Unfortu-
nately, a significant portion of traffic congestion is experi-
enced in downtown areas where it is not always possible to
reroute a driver. In these densely populated urban areas,
congestion and travel delays are also due to parking. In a
recent study [4], researchers found in one small business dis-
trict of Los Angeles that, over the course of a year, vehicles
looking for parking created the equivalent of 38 trips around
the world, burning 47,000 gallons of gasoline and producing
730 tons of carbon dioxide. Clearly, addressing the problems
associated with parking in downtown areas would have sig-
nificant societal impact, both economically and ecologically.

Lack of information. One key factor contributing to ex-
cess parking vehicle miles is a lack of information about road-
side parking availability. While occupancy data for parking
garages is relatively straightforward to obtain through en-
try/exit counters, data is generally unavailable for road-side
parking. Detailed parking availability information would al-
low municipal governments to make better decisions about
where to install parking meters and how to set prices. Don-
ald Shoup [5] has argued that road-side parking spots are
commonly underpriced compared to parking garages, and
that this fiscal consideration greatly exacerbates parking
problems. Detailed information would allow travelers to ar-
rive at better decisions on mode of travel or use of parking



garages versus attempting road-side parking. Indeed, several
projects are already underway to monitor road-side park-
ing spaces by detecting the presence of parked vehicles over
parking spots using fized sensors [6-8]. These efforts rely
on sensors installed into the asphalt or in parking meters.
This necessitates a large installation cost and operational
cost in order to adequately monitor the parking spaces at a
city-wide level, or even at the level of a downtown area. For
example, the SF-park project [8] aims to cover only 25% of
the street parking spots in San Francisco, and will have a
cost of several million dollars. Unfortunately, even with such
a starting price tag, the cost of such a system does not scale
well with the number of parking spaces to be monitored,
and is also inherently limited to street-parking with clearly
demarcated spaces. A further drawback of such systems is
that they require that wireless relay nodes be installed sepa-
rately on the road side (e.g. in lamp posts) in all areas where
sensors are installed in the ground. However, projects such
as [8] highlight the magnitude of the problem in large cities
and the government’s dedication to long-term investments
in a smart parking infrastructure.

Drive-by Parking Monitoring. In contrast to such
fixed monitoring systems, this paper presents a mobile sys-
tem that collects road-side parking availability information
at a lower cost. Our sensing platform consists of a low cost
ultrasonic sensor that simply reports the distance to the
nearest obstacle and a GPS receiver that notes the corre-
sponding location. Our sensor network leverages the mobil-
ity of vehicles that regularly comb a city, such as taxicabs
and other government vehicles (parking enforcement, police
cars, etc.) to reduce the number sensors needed. The cost
savings come from the fact that the status of parking spaces
in an urban area does not change very rapidly in time, and
hence continual sensing through fixed sensors is unneces-
sary. Realizing this application, however, requires that sev-
eral unique challenges in mobile systems be overcome that
have not been addressed in prior efforts in mobile sensing.

In order to place our work in a broader context, consider
the diagram presented in Figure 1, where we have placed our
ParkNet system relative to several notable vehicular monitor-
ing efforts in terms of the required location accuracy needed
by the sensing application as well as the underlying rate of
change of the event being monitored. For example, in [9], a
system is presented that monitors the presence of potholes
in road surfaces. This involves monitoring a very slowly
changing quantity with moderate location precision. Traffic
monitoring systems, such as [2] on the other hand moni-
tor a more rapidly changing quantity, but require relatively
low precision. In contrast, ParkNet can be considered to re-
quire significant spatio-temporal accuracy as the occupancy
of parking spaces can vary on the order of minutes and, fur-
ther, some applications in ParkNet might require significant
location accuracy in order to associate cars in specific park-
ing slots.

In our work, we have overcome the underlying challenges
of dynamics and location accuracy associated with parking
monitoring applications, through the careful integration of
ultrasonic measurements with GPS readings that are cor-
rected through environmental fingerprinting. Our ParkNet
system has been tested experimentally, collecting over 500
miles of road-side parking data over two months, and our
results show that such a system could be fitted into vehicles
that frequently roam downtown areas, such as taxicabs, city
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Figure 2: Ultrasonic sensor fitted on the side of a
car detects parked cars and vacant spaces.

buses, or parking enforcement vehicles. Further, we note
that there is the potential to reuse ultrasonic rangefinders
already integrated in some modern vehicles for parking assist
and automated parking applications.

Overview. In Section 2, we provide an overview of the
challenges associated with identifying parking locations and
their occupancy. In Section 3, we detail the system that we
have built for monitoring parking, providing the rationale
for the system choices that we have made. We next explore
in Section 4 the ability of our system to monitor parking
spaces. Since one potential application we envision involves
associating cars with their specific, corresponding parking
slot, in Section 5 we next detail an approach to improve loca-
tion accuracy sufficiently to support such an application. In
Section 6 we turn to exploring how many vehicles should be
part of such a mobile system in order to adequately monitor
parking slots. We summarize the lessons learned in Section
7 and place our work relative to related work in Section 8.
Finally, we conclude the paper in Section 9.

In summary, the key contributions of this paper are:

e Demonstrating the feasibility of a mobile sensing ap-
proach to road-side parking availability detection through
the design, implementation, and evaluation of such a
system. Our experimental evaluation uses over one
month of data from up to three vehicles passing through
the downtown Highland Park, NJ area;

e Proposing and evaluating an improved approach to
GPS positioning using environmental fingerprinting that
allows us to achieve the location accuracies necessary
for precise matching of cars with their associated park-
ing slots;

e Showing through trace-based simulations with a dataset
involving San Francisco taxis that a few hundred taxis
provide adequate spatio-temporal sampling of a down-
town area, which is precisely where parking is most
scarce.

2. THE ROAD-SIDE PARKING CHALLENGE

Finding street-side parking in a crowded urban area is a
problematic task and one that most drivers dread. Finding
a parking space near one’s destination could be much easier
if there were a way to know ahead of time which areas have
available parking spaces. Often times, a street only a few
blocks away might have vacant parking spaces but a driver
looking for parking has no way of knowing this.

One approach to addressing the road-side parking problem
may be a spot reservation system that allows vehicles claim
available spots before they arrive at their destination. This
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Figure 3: A diagram depicting the various scenarios and events involved in the detection of parking space

using mobile sensors.

approach is difficult because it (i) requires exact knowledge
of the available road-side parking spots at any given time,
(ii) requires all other vehicles to be notified of and to obey
reservations, (iii) may lead to inefficiencies if drivers with
reservations do change their plans or experience significant
travel delays. While this approach presents interesting re-
search challenges, we chose to focus on a different approach
that in our opinion has more potential for near-term im-
pact: presenting drivers and municipal governments with
near-real-time information and detailed historical parking
statistics.

Value of Real-time Information. As Donald Shoup
has argued [5] municipalities already posses parking man-
agement tools such as parking meters and pay stations and
a large share of excess vehicle miles due to the search for
parking could be eliminated through basic road-side park-
ing price adjustments. Shoup concludes that prices should
be set to achieve an 85% occupancy rate on each block. This
approach, however, would require detailed occupancy rate
information that allows parking authorities to adjust prices
and to determine which city areas should be included in the
pricing scheme.

Beyond adjusting road-side parking prices, detailed park-
ing availability statistics could be widely disseminated on
web-based maps or navigation systems which would incur
the following further benefits:

e Improve traveler decisions, with respect to mode of
transportation, the choice of road-side parking vs park-
ing garage, and in which area to search for road-side
parking,

e Suggesting parking spaces to users driving on the road
looking for parking, through a navigation device or
cellphone,

e Allow parking garages to adjust their prices dynami-
cally to respond to the availability or non-availability
of parking spaces in the immediate area, and

e Improve efficiency of parking enforcement in systems
that utilize single pay stations for multiple parking
spaces — parking enforcement vehicles can detect the
presence of a parked vehicle in a space that has not
been paid for.

Parking information in slotted and unslotted ar-
eas. To define concrete parking metrics it is helpful to dis-
tinguish areas where vehicles are arranged in slots with de-
marcated parking bays (often separated by lines marked on
the road), which we refer to as slotted areas, from areas
without any marked parking spots, which we will call unslot-
ted. Slotted parking space are typically used where parking
meters or other parking pay stations are installed. This is
arguably the more important case, because parking is usu-
ally slotted and metered in the areas where parking is most
scarce. In such areas it is easier to measure the number of
available parking spaces, because the spacing between cars
is regulated. We consider two types of parking information:

Space Count. The number of parking spaces available on
one given road segment, which is simply the total num-
ber of marked parking spots less the occupied slots.

Occupancy Map. A map showing each parking slot as oc-
cupied or vacant. This is more detailed representation
of the parking scenario which will be of particular in-
terest in assisting parking enforcement.

We expect that periodic per-block space counts are suffi-
cient for many parking information applications. Occupancy
maps are immensely valuable for parking enforcement. A
parking enforcement vehicle with a sensor and connectivity
to a database that keeps track of which slots have been paid
for, would be able to determine whether there is a car parked
in a slot that has not been paid for, or whose time has ex-
pired. This is particularly relevant for street-parking areas
with a single payment machine for a large group of slotted
spaces, since the lack of parking meters for individual spaces
makes the task of finding offending vehicles harder.
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Figure 4: Schematic diagram explaining the overall architecture of the system.

In the case of unslotted street parking, the number of
available slots is not defined a priori and depends on the
length of vehicles. Still some parts of the road might be
marked as no parking zones either explicitly or implicitly by
the presence of driveways or fire hydrants for example. To
define a space count for unslotted areas, we measure the dis-
tances di,dz, . .....d, of all available stretches of valid park-
ing (which are bounded by parked vehicles or no parking
zones) on a given road segment. The number of spots is
then defined as n = 3, [di/dspot |, where dspor is taken to
be the (fixed) size of one parking spot (typically ~ 6 me-
ters). The equivalent of the occupancy map for the unslot-
ted model will be the series of available parking stretches
di,dz, ..., dn, together with the starting latitude/longitude
location stamp of each stretch.

Indeed, some municipalities have already recognized the
value of such detailed parking statistics and are installing
sensing technologies. The city of San Francisco, for example,
is presently installing a stationary sensor network to cover
6000 parking spaces under the SFPark project [8]. This net-
work utilizes a sensor node installed in the asphalt in the
center of each parking spot. This node detects the pres-
ence of a vehicle using a magnetometer among other sensors
and forms a mesh network to deliver the data to a central-
ized parking monitoring system. To ensure connectivity, the
mesh network also requires repeaters and forwarding nodes
on lamp posts and traffic lights.

Installing a dedicated sensor network for monitoring park-
ing information is relatively expensive, due to the installa-
tion and maintenance costs. According to a Department of
Transportation report [10], the installation cost of typical
per spot parking management systems ranges from $250-
$800 per spot. While we do not know the exact cost of the
system used by the SFPark project, the total project volume
including smart parking management functions is 23 million
dollars [8]. Furthermore, fixed sensors are quite difficult to
place in areas without marked parking slots.

What if it were possible to obtain most of the informa-
tion on the occupancy of parking spaces, at a much lower
cost? We believe sensing spaces using a collection of mobile
sensors can provide such a solution because turnover on one
given parking spot is on the order of tens of minutes in the
most expensive downtown areas and hours in many more
residential city areas. Thus the required per-spot sampling
rate is relatively low and the use of one dedicated sensor
per spot appears wasteful. Intuitively, a single mobile sen-

sor can do the work of hundreds of fixed sensors and if we
accept the limitations of a probabilistic system, costs can
be reduced further by mounting the mobile sensors on exist-
ing vehicles that roam the city, albeit perhaps on somewhat
unpredictable paths.

2.1 Design Goals and Requirements

We identify the following design goals and requirements
that constrain our solution:

Provide Parking Statistics. The drive-by monitoring sys-
tem should be able to determine the availability of
road-side parking spaces on at least an hourly basis
with sufficient accuracy to (i) direct drivers to areas
with several available parking spots and to (ii) inform
municipal government parking management decisions.

Assist Parking Enforcement. Given a map of paid-parking
spaces the drive-by sensing system should be able to
identify candidate parking spots occupied by an in-
fringing vehicle. Accuracy should be sufficient to as-
sign human parking enforcement personnel. The sys-
tem is not intended to generate automatic citations.

Low-cost sensors. The system should operate with sen-
sors that are typically used in automobiles for other
applications. This rules out more expensive special-
ized sensors such as laser scanners.

Low vehicle participation rates. While one could envi-
sion that eventually all vehicles simply report their
parking locations as obtained from the Global Posi-
tioning System, this would require the participation
of nearly every vehicle to achieve high data accuracy.
Given vehicle lifetimes of 10+ years in the United States,
full deployment is difficult to achieve without govern-
ment regulation mandating installation in every new
vehicle or retrofitting of vehicles.

3. DRIVE-BY SENSING OF PARKING
AVAILABILITY

The ParkNet architecture employs a mobile sensing ap-
proach with ultrasonic rangefinders and GPS to monitor
road-side parking availability. It also introduces an envi-
ronmental positioning concept to achieve the positioning ac-
curacy necessary to match vehicles to demarcated parking
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Figure 5: (a) An image of the ultrasonic sensor side-mounted on a car (b) The java applet we used for
recording ground truth from images. (c) The map of the data collection area.

slots. As illustrated in Fig. 4, several sensors-equipped ve-
hicles report their sensor readings to centralized parking es-
timation server. This server combines information from a
parking spot map, which may be available in different levels
of detail (as we will discuss in Sec. 4 with the sensor read-
ings from one or multiple vehicles obtained on the same road
segment to create an estimate of road-side parking availabil-
ity. Vehicles can report their data over a cellular uplink but
opportunistic use of Wifi connections is also possible de-
pending on cost/delay tradeoffs. The parking availability
information can then be distributed to navigation systems
or distributed over the Internet, similarly to the various dis-
tribution channels for road traffic congestion information.

3.1 Choice of Ultrasonic Sensors

We chose ultrasonic rangefinders because of their rela-
tively low cost of tens of dollars compared to laser rangefind-
ers and automotive radars, better nighttime operation com-
pared to cameras, and their increasing availability in cars to
support parking assistance and automated parking functions
in modern vehicles. This potentially allows reusing already
present sensors in future vehicles.

Each sensor vehicle in our set-up carries a passenger-side
facing ultrasonic rangefinder to detect the presence or ab-
sence of parked vehicles. It’s range should be equal to at
least half the width of urban roads and the sampling rate
high enough to provide several samples over the length of
a car at maximum city speeds. Figure 5(a) depicts our
prototype incarnation using a Maxbotix WR1 waterproof
rangefinder, magnet-mounted to the side of a vehicle. This
sensor emits sound waves every 50 ms at a frequency of 42
KHz. The sensor provides a single range reading from 12 to
255 inches every cycle, which corresponds to the distance to
the nearest obstacle or the maximum range of 255 if no ob-
stacle is detected. The sensor measurements at each vehicle
are time-stamped and location-stamped with inputs from a
5Hz GPS receiver, producing the following sensor records:

<Kernel-time, range, latitude, longitude, speed>

Vehicles transmit a collection of these measurements to
the parking estimation server where data from mobile sen-
sors is continuously aggregated and processed using prob-

abilistic detection algorithms that we will describe in the
following sections.

3.2 System Specifications

The on-board PC has a 1GHz CPU with 512 MB RAM, 20
GB hard disk space, an Atheros 802.11 a/b/g mini PCI card,
and 6 USB 2.0 ports. We used a Garmin 18-5Hz GPS with
12 channel receiver that provides 5 fresh GPS readings per
second, and a real-time WAAS correction of errors less than
3 meters. Both the sensor and the GPS provide data in serial
format, which can be accessed via an USB serial port on a
computer. Note that while we use an off-the-shelf GPS unit,
in practice, there exists the opportunity to use built in GPS
units in vehicles, which are sometimes wired together with
the vehicle’s odometry to allow for better location accuracy.

3.3 Prototype Deployment

We implemented and deployed this system on three vehi-
cles which collected parking data over a 2 month time frame
during their daily commute. Specifically, data was collected
in three road-side parking areas in Highland Park, New Jer-
sey as depicted in Figure 5(b). One of these areas contained
57 marked slotted parking spots. The two unslotted areas
are 734 m and 616 m in length. During the experiment time
frame, we collected a total of more than ~ 500 miles of data
on streets with parking. All data collected was from roads
with single lanes (see Section 7 for a discussion on multi-lane
roads). The data collection was not controlled in any man-
ner (e.g. speed, traffic conditions, obstacles, etc.) — all data
was collected while drivers went about their daily commutes
at various times of the day, oblivious to the data collection
process.

To obtain ground truth information for system evaluation
purposes and to be able to analyze erroneous readings, we
integrated a Sony PS3 Eye webcam into the passenger-side
sensor mount. To avoid angular and shift errors with respect
to the sensor, we mounted the camera just above the sen-
sor and aligned its orientation to the sensor. A user space
program captures about 20fps and tags each image with a
kernel time stamp. This time stamp links images to the sen-
sor records obtained at approximately the same time. We
then manually inspected each image and entered the ground
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Figure 6: Dips in the sensor reading as a sensing
vehicle drives past (a) two parked cars with some
space between them, and (b) two very closely spaced
parked cars

truth sensor data. For this process we implemented the java
applet depicted in Fig. 5(b). It displays each image together
with a reference line marking the estimated aiming of the
ultrasound sensor and allows the human evaluator to enter
whether the reference line crosses a parked vehicle. Note
that the webcam is not part of the proposed parking sens-
ing system, it is purely used for evaluation and data analysis
purposes.

3.4 GPStrip-boxes for limiting data collection

We limit data collection to the parking regions identified
in Fig. 5(c) due to the relatively small areas of roadside
parking on one commute trip and the large volume of video
data involved. The activation and deactivation of data col-
lection is implemented in our system by using the idea of
a tripbox. Tripboxes are derived from our virtual trip line
concept [3], but represent rectangular areas defined by two
(latitude,longitude) points. Each tripbox is also associate
with an entry and an exit function, which starts and stops
data collection, respectively. The tripbox daemon simply
reads the current GPS coordinates from the GPS receiver
and checks whether it falls inside or outside the tripbox re-
gion. If the current coordinate is the first instance of the
mobile node inside the tripbox, it triggers the entry func-
tion. In case the mobile node is already inside the tripbox
and the next received coordinate is outside this region, it
triggers the exit function. We use tripboxes because it sim-
plifies the handling of vehicle routes, which might enter a
parking zone from an unexpected direction, or the acquisi-
tion of a GPS fix while already inside a trip box.

Since GPS coordinates can oscillate due to positioning er-
rors, the tripbox implementation includes a guard distance
and a guard time to avoid repeatedly triggering the same
tripbox functions. The guard distance is a minimum dis-
tance that must be traveled in between two tripbox bound-
ary crossings. Similarly, the guard time is the minimum
time that must be spent before the next tripbox function
can be triggered. This avoids triggering the start and the
stop functions repeatedly due to GPS errors.

4. DETECTION OF PARKING SPACES

The detection algorithm translates the ultrasound distance-
reading trace into a count of available parking spaces. The
distance-reading trace provides a one-dimensional view of
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Figure 7: An example plot showing the sensor read-
ing (dotted red) and ground truth (dashed blue line,
high = car, low = no car), speed (increased in mag-
nitude by x10 for visual clarity), and the output of
the detection algorithm (purple squares).

the distance to the nearest obstacle as the sensing vehicle
moves forward. Figure 6 (a) shows an example of the trace
produced by our sensor as a sensing vehicle drives past two
parked cars. We will refer to the features in Figure 6(a) as
dips in the sensor reading. The width of a dip is represen-
tative of the length of a parked car, although, as we shall
see, the errors in location estimates obtained from a GPS
receiver can distort the true length of the car in a somewhat
random manner. We assume that maps of areas with street-
parking slots are available from another source (discussed
further in Section 7).

4.1 Challenges

An ultrasonic sensor does not have a perfectly narrow
beam-width, but instead the beam width of the sound waves
emitted widens with distance. This implies that the sen-
sor receives echos not just from objects that are directly in
front but also from objects that are at an angle. This af-
fects how our sensor perceives vehicles that are parked very
close to each another. Instead of clearly sensing the gap be-
tween these vehicles, the 'dips’ in the sensor reading become
merged, as depicted in Figure 6(b). Still, classification of the
spatial width of the dip allows us to determine the number
of cars that a dip corresponds to.

The inaccuracy of latitude and longitude values obtained
from the GPS unit adds another challenge to the detection
problem. The location estimate provided by a commercial
grade GPS receiver suffers from well known errors. Without
a priori knowledge of how the GPS error varies in space and
time, it is possible that GPS errors can make a parked car
appear to be shorter or longer than its true length. Since
the detection of parked vehicles depends upon distinguish-
ing objects that are about the length of a car, from other,
smaller obstacles in the sensors path (such as trees, recycle
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bins, people, etc.), this sometimes leads to false alarms (i.e.
dips caused by objects other than cars to be classified as
parked cars), and missed detections (i.e. parked vehicles to
be classified as something other than a parked car).

4.2 Detection algorithms

Slotted model. Each dip in the sensor trace has depth
and a width, that correspond to the distance from the sensor
of the object causing the dip, and the size of the object in the
direction of motion of the sensing vehicle. The sensor trace
is first pre-processed to remove all dips that have too few
readings (less than 6 sensor readings, assuming a maximum
speed of 37 mph and a car length of 5 meters) and could
not possible have arisen from a parked car. To detect a
parked car, the width and depth of each dip in the sensor
reading is compared against thresholds. We determine these
thresholds using part of our data for training the system.
Figure 8 shows a series of filtering stages that are applied
to each detected dip in the sensor reading. Figure 9, shows
the depth and width of the peaks observed in 19 separate
trips in an area with slotted parking. We used this data
for jointly picking thresholds for the depth and width of a
sensor-reading dip that provide the minimum overall error
rate (i.e. the sum of the false positive rate and the miss
detection rate'). These thresholds were determined to be
89.7 inches for the depth and 2.52 meters for the width,
resulting in an overall error rate of 12.4%.

Finally, all remaining dips are checked for spatial width,
and compared against a threshold representing the typical
length of a car. For this, we convert the interpolated GPS
coordinates belonging to the starting and ending sample of
the dip to UTM (meters) and compute the distance in meters
between the starting and ending sample. Since some dips
correspond to multiple cars parked very close together, we
classify dips of a width greater than twice the threshold for
one car, to belong to two cars, and so on. This allows us to

The overall error rate is minimized when the false positive
rate and the miss detection rate are equal in value [11].

Dip width (meters)

50 100 150
Distance from the sensor (inches)

Figure 9: A plot of the depth and width of most
prominent dips observed in the sensor reading,
caused by parked cars (blue squares) and objects
other than cars (red stars). This data set is taken
from 19 trips in an area with slotted parking and is
used for training the model used for classifying the
rest of the data.

count the number of cars on a stretch of road. Subtracting
this from the total number of slots on the road, as given
by the map, provides an estimate of the number of vacant
spaces.

Unslotted model. For the unslotted parking model, the
number of cars that can be accommodated on a given stretch
of road depends upon the manner in which cars are parked
on it at any given instant of time. Since each successive pair
of parked cars in this model can have a variable amount of
space between them, we must estimate the space between
successive parked cars to determine whether the space is
large enough to accommodate one or more cars. To accom-
plish this, we use the sensor trace to estimate the the spatial
distance between dips that have been classified as parked
cars. The estimated length of the vacant stretch is then
compared against the length of a standard parking space
(which we have taken to be 6 meters).

4.3 Metrics

We will deal with the slotted and unslotted street-parking
models separately and will assume that it is easy to obtain
information about which streets have which type of parking
as prior knowledge. For the slotted model, we are interested
in detecting how many of the parking spaces on a road seg-
ment are vacant.

Let us assume that a street segment with the slotted park-
ing model is known to have N parking slots and that at a
given instant of time, n of these slots are vacant. A sensing
vehicle that drives through this street determines that n of
the slots are vacant. The value of # can differ from n due
to missed detections as well as false positives. We are inter-
ested in the missed detection rate p,,, i.e. the probability
that a parked car is not detected, and the false positive rate
py, i.e. the probability that there is no parked car in a given
slot but the detection algorithm detects one.

The ratio /n captures the performance of the detection
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Figure 10: (a) Detection rate versus false positive
rate for the slotted parking model. (b) A scatter
plot showing the number of vehicles detected against
the actual number of vehicles parked for the slotted
parking model. Each data point represents a sepa-
rate run

algorithm in estimating the number of vacant spaces. This
ratio can be smaller or larger than 1, for a given run, depend-
ing on whether there are greater number of missed detections
or false positives. Since our thresholds for dip classification
are chosen from our training data to minimize the overall
error rate, and this is known to occur when the probability
of false alarm equals the missed detection probability [11],
we expect that the ratio 71/n to have a mean close to 1.

For the unslotted model, the appropriate metric of interest
is: ‘How many more cars can be accommodated on a given
road segment, given the cars that are presently parked on
it?". As explained in Section 4.2, estimating this number
requires estimation of the space between parked cars. As
in the slotted parking model, we will assume that we have
available to us, the locations of stretches where unslotted
parking spaces are available and we will run our detection
algorithm only over such stretches. Whenever the detection
algorithm ascertains that a space between two parked cars is
large enough to accommodate another car, it records the es-
timated space d. Suppose the actual space between the cars
is d, then d can be larger or smaller than d and as before, we
will take the measure of accuracy to be d/d. Further, we are
interested in the miss detection rate p.,, i.e. the probability
that our algorithm decides that there isn’t enough space for
a single car, when there actually is, and the false positive
rate py, i.e. the probability that the detection algorithm
declares that one or more cars can be accommodated in a
space between two parked cars, whereas in reality there is
not enough space for a single car. In our evaluation, we will
assume a vehicle of length 5 meters and at least half meter
on either side for parking, for a minimum of 6 meters to
qualify for a parking space.

4.4 Evaluation

To evaluate our detection algorithm, we utilize the images
recorded by the webcam in our set-up. Since the camera
records images at a rate of 21 frames per second, it matches
the rate at which sensor readings are recorded fairly well.
Each image is manually labelled based on whether the cen-
ter of the image has a car in front or not. The time stamp
associated with each image allows us to interpolate a loca-
tion stamp for each image. This provides the ground truth
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Figure 11: (a) Scatter plot showing the estimate
of the space between cars Vs. the true space as ob-
tained from video measurements. (b) Detection rate
versus false positive rate for the unslotted parking
model, assuming at least 6 meters for a car to park.

for both our training data-set and the evaluation data-set.
Figure 7 shows an example of a typical trace of the sensor
reading along with the ground truth. Also shown in the im-
age are the speed of the car and the cars detected as output
of our detection algorithm. Figure 10(a) shows the trade-
off between detection rate and false positives for the slotted
model, as the threshold for the width of a dip (i.e. corre-
sponding to the length of a car) is varied. We found that
a threshold of 2.5 meters provides the best tradeoff in the
minimum probability of error sense. Figure 10(b) shows the
number of detected parked vehicles on a road with 57 park-
ing slots, against the true number of parked cars. We found
that on average, the ratio of the estimated number of cars
to the true number of cars is 1.036, indicating a fairly good
estimator of the availability of free spaces.

For the unslotted model, we compare our estimate of space
between two successive cars with the true value as computed
using the ground truth generated by our tagged video im-
ages. The plot in Figure 11(a) shows this comparison as a
scatterplot. The estimates space is on average 96% of the
true space. Further, the estimated space is compared with
the length of a typical parking slot (usually about 6 meters)
to determine whether an additional car can be accommo-
dated. The result of this detection leads to false positives
and missed opportunities, and the trade-off between the cor-
responding false positive rate and missed detection rate is
shown in Figure 11(b), as the threshold for the width of
a dip is varied. Figure 12 shows two examples of cases, as
captured by our webcam, where the detection algorithm was
fooled into making false alarm decisions.

Given that our estimate for the number of cars parked in
the slotted model and the amount of space between succes-
sive cars are 1.036 times and 0.963 times the true number
of cars and the true space respectively, we can say that the
system is approximately 95% accurate in terms of obtaining
parking counts. In the following section, we will address the
problem of trying to assign detected cars to specific slots in
the slotted model.
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Figure 12: (a) A moving bicyclist, and (b) a flower-
pot, both objects that produced dips in the sensor
trace that were classified incorrectly as parked cars
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Figure 13: The locations of 8 objects along a road
shown for 29 different runs.

5. OCCUPANCY MAP CREATION WITH
ENVIRONMENTAL POSITIONING
CORRECTION

While counting of available parking spaces did not re-
quire high absolute position accuracy, creating an occupancy
map of parking increases accuracy requirements since a de-
tected car has to be matched to a spot on a reference map.
The location coordinates provided by a GPS receiver are
only typically accurate to 3m (standard deviation) when the
Wide Area Augmentation System (WAAS) service is avail-
able [12,13]. Given a parking spot length of about 7m, one
can expect a significant rate of errors—any error greater
than 3.5m could lead to matching a vehicle to an incorrect
adjacent spot.

To address the occupancy map challenge, we develop a
occupancy map creation algorithm that exploits both pat-
terns in the sequence of parking spots as well as an Envi-
ronmental GPS position correction method to improve lo-
cation accuracy with respect to the parking spot map. We
first study how the error in GPS coordinates behaves as a
function of distance. The positioning accuracy of a GPS
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Figure 14: Correlation in the error (with respect to
centroid) of the GPS location estimates correspond-
ing to fixed points along a road, as a function of
distance along the road.

receiver is affected by several factors including ionospheric
effects, satellite orbit shifts, clock errors, and multipath.
Tonospheric effect typically dominate the other error sources,
except for errors that experience satellite occlusion (e.g., in
urban canyons). Ionospheric effects remain similar over dis-
tances of several 10s of kilometers and they contain signif-
icant components whose rate of change is on the order of
~10s of minutes or longer. GPS errors can therefore be ex-
pected to be correlated in time and space. However, the
Wide Area Augmentation System was designed to reduce
these ionospheric and some other errors, raising the question
whether the resulting GPS errors with WAAS still exhibit
strong spatio-temporal correlation.

We find that the GPS error is in fact highly correlated at
short distances, and the correlation tapers off with distance.
Motivated by this observation, we propose a method to im-
prove absolute location precision by an environmental fin-
gerprinting approach. In particular, we use the sensor read-
ing to detect certain fixed objects that persistently appear
in our ultrasound sensor traces, and utilize these to correct
the error in the GPS trace. To validate the approach, we
test it on the slot-matching problem described above. We
expect that our environmental fingerprinting approach will
benefit any mobile sensing application that requires precise
estimates of location or distance between two points, as is
the case in some of the scenarios in our sensing application.

5.1 GPS Error Correlation

We began our study by location-tagging certain fixed ob-
jects (such as trees, recycle bins, the edges of street signs,
etc. which would also be picked up by our sensor) in our
video traces on a given street over multiple different runs
from different days. We tagged the data with the same video
tagging application we developed for evaluating our detec-
tion algorithm (see Figure 5(c)). We found, as expected that
the tagged coordinates for a given object from multiple runs
varied significantly. Using 29 different runs and 8 objects
on a street, we found the standard deviation of error to be
4.6 m in the X-direction and 5.2 meters in the Y-direction.
We note here that the error due to variation in the lateral
position of the sensing vehicle was not corrected for because
the street chosen for this was narrow enough to allow the
lateral variation to be within +1/2 meter. Also this street
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Figure 15: Using the first object in a series of 8
objects to correct the error of the remaining 7 ob-
jects. The plots are arranged in increasing order of
distance from object 1, from left to right and top to
bottom. The colors match those of objects in Figure
13 (axes are in m). Location error builds up with
increasing distance from the object 1.

was almost parallel to the X axis and so we expected to ob-
serve an larger error in the Y direction to slight variaions in
the sensing vehicle’s lateral position.

We also found that the error between GPS coordinates
is correlated from one object to the next. Figure 13 shows
the locations of the 8 objects along the street. We chose
the centroid of the 29 tagged locations for each object as
the reference location and subtracted each tagged location
coordinate to compute the error. Figure 14 shows the cor-
relation between the error in the X and Y directions as a
function of distance along the street, using the 8 objects we
selected. It is worth noting that the correlation in the error
is fairly high for a distance of up to ~ 250 meters.

5.2 Environmental Fingerprinting

The above investigation suggests that if the GPS error is
corrected at a given point, then it is likely to remain cor-
rected for an appreciable distance. In Figure 15, we utilize
the location-stamp of the first object on the street (lower
left corner in Figure 13) to correct the errors in the loca-
tion of the remaining 7 objects. As Figure 15 illustrates, the
residual error in the error-corrected location-stamp for the
7 objects increases with increasing distance from object 1.

Fingerprinting the environment by relying on features in
the sensor trace that are produced by fixed objects in the
environment, provides a possible means to improve location
accuracy beyond that provided by GPS alone. However, fin-
gerprinting a street requires multiple traces from that street,
from which the locations of objects that are very likely fixed
can be determined.

Estimating the GPS error using the sensor trace involves
a simple task — comparing the reported location of the pat-
tern (dips) produced by a series of fixed objects to the a
priori known location of this pattern (as determined from
multiple previous traces from the same road segment). The
offset between the two gives an estimate of the error in the
reported location.

For example, to detect the dips corresponding to two suc-
cessive fixed objects from an experimental trace, we first
identify a set of candidate dips for each object from the
dips that are not classified as vehicles — each candidate set
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Figure 16: A comparison of the error rates in assign-
ing parked cars to the correct slots with and without
error correction using fingerprinting.

consists of dips within a radius of 20 meters of the known
mean location of the fixed object (mean computed from past
traces). We then select one dip from each candidate set so
that the distance between the successive selected dips best
matches the known distance between the mean locations of
the objects to which they correspond. The vector offset be-
tween the known locations and the reported locations of the
objects is the GPS error estimate. The correction procedure
must be repeated with another set of objects once the vehicle
travel distance has exceeded the correlation distance.

For n such objects, ¢« = 1,...n, we recorded the loca-
tion stamps l;(z,y) of the dips corresponding to each object
and subtracted it from the known true location of the ob-
ject ti(x,y) (assuming the centroid of the 29 locations as
above), giving an estimate of the error vector e;(z,y) =
ti(z,y) —li(x,y). Next, this error vector from a given object
is added to the location estimates of all detected cars that
are detected to be within 100 meters of this object.

5.3 Slot-matching

Motivated by our observation of correlation between GPS
error in space, we studied the specific application of match-
ing detected parked cars to their respective slots on a street
with slotted parking. To accomplish this, the output of the
algorithm for detecting cars in the slotted model (see Fig-
ure 8) was augmented with the estimated location of each
detected car. The locations of 57 slots on a street were de-
termined using a satellite picture from Google Earth. The
matching of cars to slots is an instance of the assignment
problem [14] on bipartite graphs and can be solved efficiently
using the Hungarian algorithm [15]. The problem involves
assigning each detected parked car with specified location
coordinates in the set of detected cars, to a valid slot from
among the set of 57 slots available. The criterion for the
assignment is the minimization of the cumulative distance
between each car and its assigned slot. We used a MATLAB
implementation of the Hungarian algorithm to solve for the
slot-matching of detected parked cars.

Figure 16 shows the error-performance of the slot-matching
algorithm, when using plain uncorrected traces and with
traces that have been corrected using the fingerprinting al-
gorithm described above. We find that the fingerprinting ap-
proach described in the previous section segnificantly lowers
the error rate in slot assignments.
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Figure 17: (a) Two areas of San Francisco (one larger and the other, a smaller downtown area) in which we
monitored the movements of 536 taxicabs over a stretch of one month (b) Location trace of a single taxicab
in San Francisco area over a span of 30 days. The areas with highest presence are also the busiest areas with

most street-parking.

6. MOBILITY STUDY

The viability of ParkNet and its desirability over static
sensor systems that monitor parking is intimately tied to the
number of mobile sensors that must be deployed in order to
adequately monitor street-parking spaces. In particular, it
is important to determine how often, statistically speaking,
a ParkNet mobile node would pass by on a randomly picked
street, and how this quantity varies as the number of mobile
nodes in ParkNet is varied. This relationship could them
be used to determine whether the underlying tradeoff allows
for significantly fewer (mobile) sensors to be employed in
ParkNet than a system with stationary sensors, and if so,
what level of cost savings can be expected.

In order to realistically explore this question, we con-
ducted a study of the mobility patterns of taxicabs using a
public dataset of 536 taxicabs in San Francisco collected over
a span of roughly one month during 2008 [16]. The dataset
contains time-stamped location traces for each taxicab with
successive location updates being recorded 60 seconds apart.
Figure 17(b) shows the locations of a single taxicab in this
data-set over a span of 30 days. We approximated the inter-
mediate locations of each taxicab by linearly interpolating
locations between successive GPS updates.

We considered two geographical areas, shown in Figure
17(a): (i) the greater San Francisco area, and (ii) the busi-
est portion of San Francisco where the business districts and
tourist attractions are concentrated. The latter is also hap-
pens to contain all the installations of the SFpark project [8].
We conjecture that areas with a greater amount of street
parking utilization are also the areas with a greatest pres-
ence of taxicabs since both are driven by large concentrations
of people. This hypothesis is supported by the observation

that all present pilot installations of fixed parking sensors
under the SFpark project are in the smaller area in Figure
17(a) (see [8] for a map) and that the taxicab trace also
reveals that cabs spend most time in this area (see Figure
17(b)).

We divided each area into a grid of cells that were 175x190
meters in size, and computed for each cell, the mean time
between successive visits by a taxicab in the fleet. We chose
the size of a cell so that is most cases, only a single road
segment is contained within a cell. Our findings are summa-
rized in Figure 18(a) for the larger area and in Figure 18(b)
for the smaller, busier area. We find, even with roughly 500
cabs deployed in the greater San Francisco area, the mean
time between visits to a cell is on the order of hundreds of
minutes. On the other hand, the sampling provided by these
same cabs in the smaller, downtown area of San Francisco
more than adequately covers the smaller area, with 80% of
the cells visited on average with an inter-visit interval of
under 10 minutes with just 536 cabs. Using this trace as
a guideline for other urban areas, one can extrapolate to
estimate the number of taxicabs that must be fitted with a
sensor in order to provide a sufficiently small inter-visit time
between successive visits to a randomly chosen street.
Cost analysis: A rough analysis of our system reveals
that the basic components in our system cost approximately
~ $400 for one sensing vehicle (a light-weight PC platform:
$170, sensor: $20, GPS unit: $100, and $100 for wiring and
connecting components including labor). In comparison, [10]
estimates a cost of $250-$800 per space for a ‘smart park-
ing system’. Even taking a conservative estimate of $250
per spot, a system consisting of fixed sensors, covering 6000
parking spaces in the upper left corner of San Francisco (as
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Figure 18: The cumulative distribution function of the mean time between successive taxicabs visiting a
street in (a) greater San Francisco (b) smaller, busier downtown area, as the number of cabs being considered
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a pilot, the SFpark project has installed 6000 sensors in this
area of San Francisco at the time of this writing), this would
incur a cost of $1.5M for the fixed sensor system. On the
other hand, with only 300 cabs (see Figure 18(b)), which
provide an average inter-polling time of ~ 25 minutes for
80% of the cells, the corresponding cost is roughly $120,000,
giving a equipment cost saving factor of 12.5. Note that
this number represents a conservative estimate of the cost
savings, since (i) in practice, the cost of the mobile sens-
ing system per mobile node can be brought down below our
estimate of $400 with aggressive engineering and mass pro-
duction, and (ii) we have chosen the lower end of the cost
estimate per spot for the fixed sensor system. Note fur-
ther, that San Francisco city is estimated to have 281, 364
road-side parking spaces, of which 24,464 are estimated to
be metered spaces [17]. While only 6000 spots considered
‘high-value’ spots by the city of San Francisco have been
fitted with fixed sensors, we do not know how many of the
total 24, 464 metered spots are within the downtown area we
have considered. The cost saving factor is therefore likely
to be larger when the actual number of spots in this area is
considered.

The operational running cost of each system comprises
maintenance and communications costs. We expect the to-
tal operational cost of ParkNet to be less than that of a
fixed sensor system. Communications in ParkNet can be
done over opportunistic WiFi connections in urban environ-
ments, making it almost free, and maintenance is expected
to be more easily manageable than a fixed system because
the number of mobile nodes is much smaller than the num-
ber of fixed sensors, and taxicabs are regularly taken in for
maintenance into garages.

We note however, that the cost benefit that mobile sens-
ing provides comes from the fact that it provides a non-
guaranteed, random sampling of the parking process, whereas
fixed sensor provide continuous monitoring wherever they
are installed. Hence, the cost associated with our system
does increase as we require that a higher fraction of cells be
covered (for e.g. extrapolation shows that requiring 95% of
the cells be sampled with a mean inter-sampling period of

25 minutes would necessitate that our system be deployed
in roughly 2000 cabs). Even so, the cost benefits associated
with ParkNet are still significant as it is not necessary to
have continual sampling of parking space occupancy.

7. DISCUSSION AND LESSONS LEARNED

Apart from the challenges faced while meeting real-time
localization of vacant parking spots, the gathering and pro-
cessing of reliable sensor data poses its own set of difficulties.
We discuss the details of the most challenging issues we en-
countered below.

Power source. One unexpected difficulty turned out to
be noisy sensor data affected by the power source for the
in-car nodes. Initially, we used a power inverter to convert
the 12 volt DC vehicle power supply to AC power suitable
for a standard PC power supply. Although this setup sup-
plied adequate power, it lead to very noisy sensor data. The
ultrasound transducer may have been affected by the mod-
ified sine wave output of the inverter, which is known to
affect sensitive electronic equipment. To address this is-
sue, we installed DC to DC power supplies in each car node
and connected them directly to the fuse box. This solution
worked in some vehicles, but in vehicles with weaker battery,
turn-on of the vehicle node was unreliable.

Maultilane roads. Detecting parked cars on a multi-lane
road requires lane-detection so that vehicles being passed or
passing the sensing car in a different lane are not classified
as parked cars. GPS accuracy is unlikely to be sufficient for
lane detection. The data collected and reported upon in the
paper was taken entirely on single-lane roads. We found,
however, through preliminary trials that it is often possible
to distinguish moving vehicles in the neighboring lane from
parked vehicles by the length of sensor dips. A car moving
at similar speeds as the sensing vehicle, for example, will
generate a very long dip. Another promising approach is to
use a sensor with a much larger range — this can greatly help
lane detection.

Speed limitations. A limitation of using an ultrasonic
sensor is that we are limited by the speed of sound. Our
sensor provides a maximum range of 6.45 meters, and since



it must wait for a return echo before sending out the next
pulse, the sensor provide only 20 distance readings per sec-
ond. This implies that if the sensing vehicle is driving too
fast, it will not be able to sense a parked vehicle. For ex-
ample, at a speed of 15 meters per second (roughly 33 miles
per hour), a 5 meter long parked car should produce about
~ 6 distance readings from the sensor. However, the speed
limit in areas with street parking is usually in the range of
35— 40 miles per hour and so our choice of sensor should not
be a limiting problem.

Obtaining parking spot maps. One issue that may
seem to limit large deployments is the effort to obtain park-
ing spot maps, particularly when complicated time-dependent
parking rules are in place. Beyond manual construction from
satellite imagery, as in our project, maps may be available to
some extend at city authorities. We believe, however, that
maps can also be automatically generated through aggrega-
tion of sensor data over time periods of weeks to months.
The intuition behind this idea is simple: spaces that al-
most never have cars parked are likely to be invalid parking
spaces (driveways, storefronts, illegal parking spots such as
fire-hydrants, etc., or simply portions where parking is not
allowed), while spaces that always have a car parked are very
likely not parked cars, but some other immovable object.

8. RELATED WORK

A number of approaches have been tested for the moni-
toring of parking spaces in recent times. Parking garages
have been using in/out counters at the entry and exit points
to count the number of additional vehicles they can accom-
modate at any given time [18]. This information is often
displayed on prominent electronic signs-boards near such
garages or on nearby roadways, allowing drivers to decide
which way to go to find parking. Airports and rail stations
have been using similar parking management systems in re-
cent times [18]. A somewhat newer approach to finding and
reserving parking spaces in urban areas, albeit with very
limited success, has been tested by web-based markets such
as those in [19,20] that allow users to buy and sell parking
spaces on the internet for specified times. Such an inter-
net marketplace allows for owners of private spots (such as
residential spaces) and parking garages to offer reservations
to users looking for parking, and for people occupying pub-
lic metered spaces to broadcast the time at which they will
be vacating the parking spot. Needless to say, no reserva-
tion mechanism is possible for metered public spaces. Other
web-based systems such as [21,22] allows travellers to access
information about the availability of spaces at airports or
rail stations and make prior reservations. In the academic
literature, [23] demonstrated a toy system that monitors
individual parking spaces using web cameras, allows users
to query the system for vacant spaces on a web front-end
and provides the user with the closest vacant parking space
that meets the constraints entered by the user. Metered
parking in the city of Chicago recently went through major
changes [24] — individual parking meters were replaced with
pay stations that handle a large number of parking spaces.
Doing away with individual parking meters makes the detec-
tion of offending vehicles parked in unpaid spots by parking
enforcement authorities harder. Using the slot-matching ap-
proach described in this paper, such detection can be greatly
simplified. SFPark [8] is the only system in our knowledge
that specifically monitors street-side parking spaces, albeit,

at fairly high cost of operation and only for metered spaces
and garages. In contrast, the mobile sensing approach pro-
posed in this paper provides a probabilistic alternative at a
potentially much lower cost, and can work for both metered
slotted spaces as well as unslotted spaces.

Another line of work related to ours is the estimation of
traffic conditions on roadways using mobile sensing. The au-
thors in [2] propose techniques to mine location trace data
reported by vehicles on streets reporting their locations in-
frequently over a cellular uplink, to characterize traffic pat-
terns on road segments. VTrack [25] explores the use of com-
modity smartphones for localization using cellular and WiFi
signals in addition to GPS for localization to estimate traf-
fic delays on roadways with fine spatio-temporal granularity.
Their work focuses on the challenges associated with energy
consumption and the unreliability of sensors. Nericell [26]
also utilizes sensors available on smartphones to detect road
and traffic conditions in a city, using microphones to detect
the level of honking and accelerometers to detect bumps and
braking. Other work in mobile sensing includes [9] which
uses the mobility of participating vehicles to detect potholes
in roads using accelerometers, and aggregate this data over
time to obtain the locations of the roads that are most in
need of repair. [3] uses the concept of virtual triplines to
address the privacy problems in traffic monitoring systems
based on the reporting of GPS coordinates by individual
users.

Prior work on getting location information in mobile sys-
tems has focussed heavily on the use of GPS receivers. Re-
cent research on localization has also explored the use of
GSM cellular signals for triangulation of cellphones [27]. Al-
though cellular signals provide much lower location preci-
sion, they have also been used for traffic monitoring appli-
cations [25,28,29]. Finally, our work on improving location
accuracy using the sensor in addition to the GPS, may be
thought of as a locationing system with the fusion of infor-
mation from multiple sensors, on which there exists exten-
sive past literature (see for e.g. the location stack [30, 31]
built by Hightower and Fox).

9. CONCLUSIONS

We have presented the ParkNet system, a mobile approach
to collecting road-side parking availability information, which
introduced more challenging location accuracy and sampling
frequency requirements than earlier vehicular sensing appli-
cations. Based on over 500 miles of data collected over 2
months with our prototype vehicles, we showed that ultra-
sound sensors combined with GPS can achieve about 95%
accurate parking space counts and can generate over 90%
accurate parking occupancy maps. To create occupancy
maps, we corrected GPS errors using environmental refer-
ences points, since we found that GPS error were correlated
over time and space even with WAAS support. Using trace-
driven simulations from San Francisco taxicabs we showed
that equipping only 536 vehicles with sensors would lead to
a mean inter-sampling interval of about 25min in 85% of the
downtown area, or about 10 min in 80% of the area. Fur-
ther, we expect that the density of taxicabs in an urban area
to be strongly correlated with the presence of street parking
spaces, since both are driven by the presence of a large num-
ber of people. With the small number of sensors required,
the mobile sensing approach therefore promises significant
cost benefits over current stationary sensing approaches—



by an estimated factor of 10-15. We expect that the en-
vironmental positioning approach and the taxicab coverage
analysis will also benefit other mobile sensing applications.
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