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Geographic Data Propagation in Location-Unaware
Wireless Sensor Networks: A Two-Dimensional

Random Walk Analysis
Silvija Kokalj-Filipović, Predrag Spasojević, and Roy Yates

Abstract—For wireless sensor networks with many location-
unaware nodes, which can be modeled as a planar Poisson point
process, we investigate a protocol, dubbed BeSpoken, whichsteers
data transmissions along a straight path called a spoke. BeSpoken
implements a simple, spatially recursive process, where a basic set
of control packets and a data packet are exchanged repeatedly
among daisy-chained relays that constitute the spoke. Hence,
a data packet originated by the first relay makes a forward
progress in the direction of the spoke. Despite the simplicity of
the protocol engine, modeling the spoke process is a significant
challenge. Bespoken directs data transmissions by randomly
selecting relays to retransmit data packets from crescent-shaped
areas along the spoke axis. The resulting random walk of the
spoke hop sequence may be modeled as a two dimensional
Markov process. Based on this model, we propose design rules
for protocol parameters that minimize energy consumption while
ensuring that spokes propagate far enough and have a limited
wobble with respect to the spoke axis. The energy efficiency is
demonstrated through simulations of the BeSpoken-based data
search, and a comparison with the energy consumption of a
search based on directed diffusion.

Index Terms—Wireless sensor networks, Poisson point pro-
cess, geographic data propagation, stochastic analysis, location-
unaware, Markov-modulated random walk, energy efficient data
search.

I. I NTRODUCTION

I N RANDOMLY deployed Wireless Sensor Networks
(WSNs)composed of position unaware nodes, data sources

are frequently unaware of which data sinks have interest
in their observations. An example is a network of cheap,
battery-operated sensor nodes scattered over an area, usedfor
environmental monitoring and expected to efficiently deliver
gathered information to a data collector (sink) located at an
arbitrary (and frequently random) position at the network
boundary.

Given the scarce resources and the limited processing power
of WSN nodes, the unknown position of a data sink makes
the task of delivering data especially challenging. Several new
communication paradigms, like geocasting, data dissemina-
tion. and data search, emerged from this problem [7]. In
the geocasting problem [12] data needs to be routed to a
geographic region instead of a destination node specified byan
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address. Flooding the network is a trivial form of geocasting
when sources are unaware of sink locations. Unrestricted
flooding as a dissemination method leads to a “broadcast
storm” of redundant transmissions [13] and consumes more
resources than necessary [6]. Two dissemination techniques
that use flooding selectively are briefly described next. In a
pushapproach [5], a publishing process plants pointers in the
network that can be used by the interested sinks to establish
a path to the correct source. Publishing mechanisms are
largely based on flooding and consequent path reinforcement.
Alternatively, in [3] the authors introduce a data-centricpull
mechanism calleddirected diffusionin which interest requests
(queries) are flooded into the network leaving gradient paths
back to the sink. With location-unaware nodes, a more effi-
cient alternative to flooding is to use landmark-based routing
protocols [4] to store state information in selected nodes
(possibly along a path) to direct the search toward the correct
source [14]. As another closely related example to our work,
Rumor Routing [1] introduces the concept of agents, packets
that advertise source data along a random walk path that
resembles a fairly straight trajectory. The query packet follows
a similar random walk path, and the success of the search is
based on the high probability that the two sufficiently long
lines in a bounded rectangle intersect.

In this work we propose BeSpoken, a wireless commu-
nication protocol that also steers data transmissions along
fairly straight trajectories, and enables energy efficientdata
dissemination and search in networks with location unaware
nodes. In addition, we illustrate the energy efficiency of an
example push-pull dissemination infrastructure, mechanized
using the BeSpoken-enabled trajectories.

The BeSpoken protocol implements a simple, spatially
recursive process controling data transmissions, where a basic
set of control packets and a data packet are exchanged repeat-
edly among daisy-chained relays that constitute a trajectory,
also called aspoke. The barrier-crossing analysis of a Markov-
modulated random walk model for the spoke evolution process
results in design conditions which protocol parameters need
to satisfy to produce sufficiently long and straight trajectories.

Figure 1 illustrates an example of BeSpoken-based push-
pull data dissemination. Here a source disseminates data
advertisements along the source spokes, and a data collector
(sink) sends a query along its own spokes that may intersect
the source spokes. Each intersection represents a successful
search. Successful search is followed by the endorsement ofa
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route along the intersecting spokes, and by the corresponding
data dissemination (see the closeup in Figure 1). In this ex-
ample, the sinks are distributed uniformly along the perimeter
of the network area and their position is unknown in advance.
Hence, we conjecture that the likelihood of successful data
search will increase if both the source and the sinks spawn
several equally spaced radial spokes. Hence the twofold mean-
ing of the name BeSpoken: the radial lines extending from the
source form a pattern that resembles spokes of a wheel and,
furthermore, spoke relaysbespeakthe source message. The
relative direction of spokes allowing for the wheel patternis
controlled byan extension of the BeSpokennot discussed here
due to space considerations.

The taken approach is conceptually closest to geographic
greedy forwarding schemes [8], [16] used for routing to
known destinations, with an important distinction that, instead
of greedily approaching the sink, in our approach the data
is greedily directed away from the source. In the greedy
geographic forwarding scheme a packet is forwarded to a one-
hop neighbor which is closer to the destination than the current
node. The similarity is only conceptual, since the assumptions
are orthogonal to ours: a source node knows the location of
the destination node, and network nodes are location-aware.

The focus of this paper is the mathematical model of the
BeSpoken and its analysis for the purpose of spoke design,
as well as demonstrating that the energy consumption of a
BeSpoken based search is much smaller than with the search
based on directed diffusion [3], and that it decreases with
the increasing number of events in the network. The rest of
the paper is organized in the following manner: Section II
introduces BeSpoken - II-A describes the protocol engine,
and II-B depicts the effects of the protocol parameters on the
spoke metrics, expressed through wobblines and propagation
outage constraints; Section III focuses on spoke modeling -
III-A introduces BeSpoken geometry, while III-B and III-C
describe Markov process and Markov chain models of the
spoke; Section IV analyzes the propagation outage constraint,
and Section V provides analysis of the wobbliness constrain;
Section VI presents simulation results for both a single BeSpo-
ken trajectory and an example dissemination infrastructure,
and concludes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a dense wireless network with a uniform spatial
distribution of nodes. TheBeSpokenprotocol organizes a
sequence of fixed-powerrelay transmissions that propagate the
source message hop-by-hop, without positional or directional
information. The hop relays form aspokewhich may deviate
from the radialspoke axis. Each spoke hop is organized using
a sequence of two control message transmissions followed by
the hop data transmission. We define the transmission range
as the maximum distance from the source at which nodes can
reliably receive a packet. We assume that the physical layer
modulation and coding are designed to compensate for short-
scale fading effects and, thus, our transmit power requirements
depend only on distance-dependent propagation path loss.
Even though in a sensor network environment data rates are
low relative to the available bandwidth and interference isnot
a primary issue, still, our protocol mitigates the interference
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Fig. 1. In this simulation snapshot, sink1 is not interested in advertised data
while sink 0 has one productive sink spoke, and selects a data dissemination
route from the ensemble of routes within that spoke, and within the intersect-
ing source spoke1. The sequence of wireless transmissionrelaysforming the
productive sink spoke (the one that hits a source spoke first)is denoted by
tiny circles (see the sink spoke in the closeup). Unproductive sink spokes are
represented by dots. The search success is marked by a∇ with an inscribed
∗.

as it always selects only one node to retransmit. Assuming
radially symmetric attenuation (isotropic propagation),the
area in which the transmitted packet is reliably received is
a disk of a given radius. We use the same transmission power
for both data and control packets, but different coding rate
and/or modulation format, so that the communication rate for
control messages is lower and translates to a longer range.

A. BeSpoken Protocol

The BeSpoken protocol implements a recursive process
illustrated in Figure 2 in the following way:

(a) The leading relay (node1) sends an RTS (request to send)
control packet with rangeR = rq whereq = 2 − ǫ, for
small ǫ.

(b) The pivot (node0) sends a BTS (block to send) control
packet with rangeR.

(c) The leading relay transmits the data packet with ranger
and becomes the new pivot. The region in which nodes
receive this data packet but do not receive the preceding
BTS packet forms the1-st hop crescentC2.

(d) A random node from the crescentC2 becomes the new
leading relay by transmitting a new RTS. The process
returns to (a) with node 1 as the pivot and node 2 as the
leading relay.
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Fig. 2. BeSpoken Protocol: At each protocol stage, the current transmission
range is denoted with the full circle while the previous range is denoted with
a dashed circle.

This recursive process is initialized by assigning the roleof
the pivot to the source node which transmits the data packet
with a ranger. The first node which receives the data packet
and gets access to the medium becomes the first leading relay.
The underlying ALOHA-type Carrier Sense Multiple Access
protocol would resolve any collisions; hence, after a possible
additional delay, only one random node from the crescent
would transmit the RTS packet.

B. Problem Formulation

To describe the effects of the data and control rangesr
andR, we evaluate the spoke behavior with respect to the
constraints:

• Outage: the probability that a spoke dies before reaching
a distanced is small,

• Wobbliness: the deviation of the instantaneous spoke
direction with respect to the spoke axis is within defined
limits.

The vector from node0 to node1 in Figure 2 defines the
spoke axis. The crescent subtending angle determines how
much the spoke may deviate from the spoke axis direction.
The parameterq = R/r determines the maximum crescent
subtending angle. A large subtending angle fosters wobbliness,
yet it implies a larger crescent, which increases chances that
a relay will be found to retransmit data. Fixingq to a small
value that limits wobbliness requires increasingr to generate
a large enough crescent and decrease the outage probability.
Note that the energy per hop grows asrα, whereα ≥ 2 is the
propagation loss coefficient, so that the total energy per spoke
grows asdrα−1. Hence, minimizing the transmission ranger
corresponds to a minimum energy objective.

These competing tendencies illustrate the importance of the
protocol parameters design. In this paper we show that outage
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Fig. 3. (a) At hop k + 1, nodek + 1 is distanceLk+1 from nodek and
the current spoke direction isΘk+1 = Θk + Φk+1. (b) Given Lk = l and
Lk+1 = ρ, the angular hop displacementΦk+1 is constrained to the interval
−β ≤ Φk+1 ≤ β where the maximum angular displacement at hopk +1 is
β = β(l, ρ). The shaded area denotes the interior crescent of areaSIC(l, ρ).

and wobbliness constraints can be decoupled. Consequently,
as a result of the outage constraint analysis, we give the
design guidlines for the parameterr. We demonstrate that
satisfying the wobbliness constraint requires one to find the
minimumq so that the spoke direction is within the limits after
η hops, whereη is a sufficient number of hops to reach the
target distanced, givenr. We develop closed-form expressions
that serve as bounds for the values ofq, ensuring that the
wobbliness constraint is satisfied.

III. SPOKE MODELING

A. BeSpoken Geometry

Figure 3(a) depicts hopsk andk+ 1. At the completion of
hop k, the lengthLk denotes thecurrent hop lengthand the
angleΘk denotes thecurrent spoke direction.

From Figure 3(b) we observe that givenLk = l andLk+1 =
ρ the control circle of radiusR centered at nodek − 1 and
the circle of radiusρ centered at nodek specify a radiusρ arc
for the possible positions of nodek+1. The endpoints of this
radiusρ arc constrain theangular hop displacementΦk+1 to
the interval−β ≤ Φk+1 ≤ β where the maximum angular
displacement isβ = β(l, ρ). Applying the law of cosines to
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the complementary angleπ − β(l, ρ) yields

cosβ(l, ρ) =
R2 − ρ2 − l2

2lρ
. (1)

We also observe that the region between the radiusR control
circle and the radiusρ arc defines aninterior crescent, shown
as the shaded area in Figure 3(b). From geometric arguments,
it can be verified that the area of this interior crescent is

SIC(l, ρ) = 2ρ2β(l, ρ) − 2R2α(l, ρ) +Rl sinα(l, ρ) (2)

where α(l, ρ) is found from the law of cosines to satisfy
cosα(l, ρ) = (R2 − ρ2 + l2)/(2lR).

Note thatLk+1 can vary from a minimum value ofR−Lk

to a maximum value ofr. The induced interior crescentCk+1

in Figure 3(a) has an areaSc(Lk) = SIC(Lk, r). We note that
Ck+1, termed thecurrent crescent, is the set of all possible
positions of the nodek + 1.

B. Markov Process Model for Hop Length Evolution

For design purposes we assume that the spatial distribution
of network nodes is a planar Poisson point process of intensity
λ = 1. Thus, a current crescent forms a candidate set for node
k + 1 with cardinality Zk that is, conditionally, a Poisson
random variable with conditional expected value

E[Zk|Lk = lk] = Sc(lk). (3)

A spoke stops at stagek when the crescentCk is empty
and thus spoke generation is a transient process. The outage
constraint depends only on the crescent sizesSc(Lk) but not
on the hop direction processΘk. On the other hand, the
spoke wobbliness depends on theΘk but is meaningful only
as long as each current crescentCk is non-empty. Thus, we
separate the analysis of the outage and wobbliness constraints
by formally defining{Lk} as a fictitious process that never
encounters an empty crescent.

Under the fictitious process model, the position of nodek+1
will be uniformly distributed over the crescentCk+1. From
Figure 3 (b) we see that, given the current hop lengthLk =
lk, the arc of radiusρ has length2ρβ(lk, ρ). The conditional
probability that we find nodek+ 1 in the annular segment of
width dρ along the arc of radiusρ is 2ρβ(lk, ρ)dρ/Sc(lk). It
follows that the conditional pdf of the next hop lengthLk+1

givenLk = lk is

fLk+1|Lk
(ρ|lk) = 2ρβ(lk,ρ)

Sc(lk) R− lk ≤ ρ ≤ r, (4)

and zero otherwise. We note that (4) provides a complete
characterization of the fictitious process{Lk}.

C. Finite State Ergodic Markov Chain Model

Here, we develop a Markov Chain model that approximates
the Markov process described above. We start by quantizing
the Lk process, yielding them-state Markov chain̂Lk. We
first select a chain state set that quantizes the process state
space[R − r, r], then describe a mapping from the process
state space to the chain state set and, last, describe the resulting
chain probability transition matrix. We define{h1, . . . , hm} ⊆
[R− r, r] to be the chain state set. Without loss of generality,
we assume thath0 = R − r < h1 < h2 < . . . < hm = r. As

^
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Fig. 4. Ergodic Finite State Markov Chain: quantization example for a
four-state chain (m = 4): L̂k = h4 = r results in the first crescent̂Ck of
areac4 partitioned into four strips of total areac4 = d41 +d42 +d43 +d44;
Lk+1 ∈ I42, quantized toL̂k+1 = h2, is followed by a crescent̂Ck+1

of areac2 and a hop spanI2 = [R − h2, r] which is (uniformly) quantized
into a crescent of aread23 = c23 (shaded region) and a crescent stripd24 =
c2 − c23 (the unshaded area).

illustrated in Figure 4, whenever thekth hop Markov chain
state isL̂k = hi, the corresponding next process hop length
is Lk+1 ∈ Ii = [R−hi, r], whereIi is thenext hop spanand
its length|Ii| is also the width of the corresponding quantized
crescentĈk of areaci = Sc(hi). Lk+1 is quantized to state
hj wheneverL̂k+1 ∈ Iij where

Iij = Ii ∩ (hj−1, hj ]. (5)

Note that the set{Iij : j = 1, . . . ,m} partitionsIi and serves
as a set of quantization intervals forLk+1 when L̂k = hi.
This quantization mapping is illustrated in Figure 4 where
Lk+1 ∈ I42 is extended to reach the quantized node position
marked with a grey circle at̂Lk+1 = h2. The chain proceeds
by declaring a fictitious node at the quantized position as the
new leading relay. As depicted in Figure 4, a quantization
interval Iij corresponds to the strip of area

dij =

{

∫ hj

R−hi
2ρβ(hi, ρ) dρ, j = j∗(i),

∫ hj

hj−∆
2ρβ(hi, ρ) dρ, j > j∗(i),

(6)

(and zero otherwise), and of width|Iij | within the crescent
Ĉk of areaci =

∑

j dij . Herej∗(i) = min{j : hj > R− hi}
is the index of the leftmost non-empty quantization interval
within Ii.

As shown in Figure 4,cij = SIC(hi, hj) is the quantized
interior crescent areaformed by the control circle (of radius
R) centered at thekth hop relay and a circle of radiushj

centered at nodek + 1 at distanceL̂k = hi. Note thatcij <
ci(j+1) · · · < cim, wherecij = 0 for j < j∗(i), cim = ci, and
dij = cij − ci(j−1). The hop-length transition probabilities

Pij = Pr{L̂k+1 = hj |L̂k = hi}

= Pr{Lk+1 ∈ Iij |Lk = hi} = dij/ci (7)
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follow from the uniformity of Poisson spatial distributionof
nodes and since the fictitious process assumes that the crescent
Ĉk is not empty. Intuitively, whenm is sufficiently large,
the ergodic Markov chain will approximate well the ergodic
Markov process. Driven by the modeling criteria of simplicity
and efficiency, we consider Markov chain models with both
uniform and non-uniform quantization of[R − r, r]. With
only m = 2 levels, the uniform quantization lacks accuracy.
However, a carefully chosen two-state chain provides a useful
non-uniform quantization model. The transition matrix for
both two-state systems is

P =

[

0 1
c21/c2 (c2 − c21)/c2

]

, (8)

sincec12 = c1 andc22 = c2.
1) Uniform Quantization Model:In this model, the hop-

length states{hi} uniformly quantize the process state space
[R−r, r] so thathi = R−r+i∆, where∆ = (2r−R)/m is the
quantization interval. Furthermore,j∗(i) = m− i so that the
next-hop quantization intervalsIij satisfyIij = (hj − ∆, hj ]
for j > m − i and are empty forj ≤ m − i. The transition
probabilities are now

Pij =
cij − ci(j−1)

ci
, i+ j > m, (9)

andPij = 0 wheneveri+ j ≤ m follows since, in that case,
(hj−1, hj ] andIi = [R−hi, r] intersect in at most one point.
For example, the uniformly quantizedm = 2 Markov chain
has∆ = r −R/2, h1 = R− r + ∆ = R/2 andh2 = r, and,
accordingly,c1 = Sc(R/2) andc2 = Sc(r).

2) Non-Uniform Quantization Model for the Outage Con-
straint: Non-uniform quantization, being inherently more
complex than uniform, qualifies only if its application renders
a simple two-state model possible. The proposed non-uniform
quantization, two-state Markov chain model has a simpler
definition with c1 = 1, and c2 = Sc(r). The corresponding
set of hop length states includesh2 = r and h1, which
is a solution of c1 = 1 = Sc(h1). Hence, the next hop
partition mapping satisfiesd21 = c21, and d22 = c2 − c21.
Let R/2 > h1 = S−1

c (1) > R − r, and, in this case, we
have thatj∗(1) = 2, d11 = 0, and d12 = c1 = 1. The non-
uniform partitioning differs from the uniform in thatc2 ≫ c1
andc22 ≫ c21 for large enoughr. The rationale behind such
a design follows in the next section.

D. The Spoke Direction Process

Figure 3 (a) indicates that the angular hop displacement
Φk+1 at hopk+1 changes the current spoke direction in that

Θk+1 = Θk + Φk+1 =

k+1
∑

i=1

Φi. (10)

We observe that all points along the radiusρ arc in Figure 3 (b)
are equiprobable locations for nodek + 1. Thus, given the
sequence{Lk}, the angular hop displacements{Φk} form
a sequence of conditionally independent uniform random
variables with the conditional pdf

fΦk+1|Lk,Lk+1
(φ|lk, lk+1) =

1

2β(lk, lk+1)
, (11)

R-r

r

Fig. 5. Spring-coil analogy

for |φ| ≤ β(lk, lk+1), and zero otherwise. This probability
distribution does not change when the conditioning sequence
contains quantized values{L̂k}. The current angle sequence
{Θk} is a random walk process modulated by the Markov
chain{L̂k}, completely described by equations (7), (11).

The transform domain analysis of a Markov Modulated
Random Walk (MMRW) [15] dictates that we first define the
conditional moment generating functions of the incremental
angular displacementΦk+1 from (10)

gij(ω) = E
[

exp (Φk+1ω) |L̂k = hi, L̂k+1 = hj

]

(12)

=
1

2ϕij

∫ ϕi,j

−ϕi,j

exp (φω) dφ = ~ (ϕijω) , (13)

for ω in a convergence region(ω , ω+), where~ (x) = sinhx
x

andϕij = β(hi, hj). We create a matrixΓ(ω) with elements

Γij (ω) = Pijgij(ω). (14)

The Perron-Frobenius theorem (see e.g., [2]) dictates that
its largest eigenvalueσ (ω) is real and positive. The el-
ements of the corresponding right eigenvectorν (ω) =
[ν1 (ω) · · · νm (ω)]T are also real and positive. Next, we define
the product martingale [15]

Mk (ω) =
exp (ωΘk) νi(k) (ω)

σk (ω) νi(0) (ω)
(15)

wherei(k) is the random state index of the chain at timek,
and the random variableνi(k) (ω) is thei(k)-th element of the
right eigenvector.

IV. M ODEL FOR THEOUTAGE CONSTRAINT

Here we evaluate the outage probability for givenq = R/r,
in order to evaluate the associated outage constraint (18).With



6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 7, SEPTEMBER 2009

respect to outage, a spoke stops at hopk when the crescentCk

is empty, i.e.,Zk = 0. Since the nodes obey a planar Poisson
process, it follows from (3) that the conditional probability the
crescentCk is empty is

Pr{Zk = 0|Lk = lk} = e−Sc(lk). (16)

We define
D = min {n : Zn = 0} (17)

as the first time the process encounters an empty crescent.
For analytical tractability, instead of requiring the spoke to

travel distanced with high probability, we require it to travel
η hops with high probability. In particular, we defineη =
⌈d/r⌉ as the number of hops corresponding to an idealized
straight-line spoke extending to the distanced. The design
outage constraint can be formalized as

Pr{D ≤ η} ≤ p. (18)

However, the analysis of (18) is challenging due to the
complex way in which the hop length process{Lk} evolves
with time. In particular, a smallLk will create a small crescent;
this induces a support set[R− Lk, r] for Lk+1 that excludes
small hop lengths in the interval[R−r,R−Lk). As illustrated
in Figure 5, an imaginary coil is attached between a fixed
pivot and a moving leading relay: when contracted, it pulls the
leading relay’s data circle inside the blocking control circle,
exposing only a tiny area with possible relays. Note that the
next hop length has to be long (close tor), if the relay is
found in this tiny area. At the other extreme, when the coil is
completely relaxed to lengthr, it exposes the largest possible
area. This reduces the likelihood of an empty crescent yet it
increases the likelihood of the next hop length being small.
This oscillatory effect illustrates the importance of the Markov
property for the hop length evolution model (4).

For them-state Markov chain, let us denote the event that
the first η crescentsĈk, k = 1, · · · , η, are not empty as
Aη = {mink≤η Zk > 0} . The probability that the crescents
Ĉ1, . . . , Ĉη are not empty, and that the system is in statej at

timeη is denotedκ(η)
j = Pr

{

L̂η = hj , Aη

}

. Using Markovity

of L̂k and conditional independence ofZk given L̂k, it is
straightforward to show that

κ
(η)
j =

m
∑

i=1

ejPijκ
(η−1)
i (19)

whereej = 1 − exp(−λcj) is the probability of a non-empty
crescent while in statej. Let us define them×m matrix P̆

whereP̆ij = Pijej is the conditional probability to transition
from statei to statej, and that the resulting crescent of areacj
is not empty. Note that (8) impliesP11 = P̆11 = 0. In addition,
by defining the vectorκ(η) = [κ

(η)
1 , · · · , κ

(η)
m ], (19) becomes

κ(η) = κ(η−1)
P̆. Recursively, we obtainκ(η) = κ(1)

P̆
η−1.

Given the initial statem, we see thatκ(1)
i = 0 for i < m and

κ
(1)
m = em. Thus, κ(η) = [0 · · · em] P̆η−1, As Pr{Aη} =

∑

i=1,··· ,m κ
(η)
i = κ(η) [1 · · · 1]

T
, the probability that the

spoke will stop at or before hopη (assuming that the chain
always starts in statehm) becomes

Pr{D ≤ η} = 1 − Pr{Aη}

= 1 − [0 · · · em] P̆(η−1) [1 · · · 1]
T
. (20)

4 6 8 10 12
0

0.1

0.2

0.3

0.4

number of hops η

P
r{

D
≤η

}

simulation
analysis
large r

Fig. 6. Outage probability curves

The following asymptotic (larger) analysis of the outage prob-
ability (20) is based on the two state non-uniform quantization
model (8). Letλ1 > λ2 be the two eigenvalues of̆P in (20)
based on (8). The eigenvalueλ1 describes the rate at which
the outage probability increases with the number of hops,
while the negative eigenvalueλ2 describes the oscillatory, self-
recovery mechanism depicted in Figure 5. Letr ≫ 1 and q
be close to two. Thenc22 = c2 ≫ c1 = 1 in (8). Now, λ1

is close to one, whileλ2 one is close to zero. Furthermore,
by combining (20) and (18), while expressing the two-stateP̆

through its singular value decomposition, and truncating the
Taylor expansions ofλ1 andλ2 to their significant terms, we
show that, for a spoke to reachη hops with probabilityp,
given q, the range is required to be

r ≥ 1/

√

exp(1)
(

1 − (1 − p)
1

η−1

)

f(q), (21)

wheref(q) = Sc(r)/r
2. Note that (2) implies thatf(q) is the

crescent area for unitr (the ratioSc(r)/r
2 does not depend on

r). Figure 6 illustrates how well (21) matches the simulation
results for larger.

V. WOBBLINESS CONSTRAINT MODEL

The spoke goes off-course at hopk whenever the current
angleΘk in (10) exceeds one of the following two thresholds
φo and−φo. To describe spoke wobbliness, we define

Tϕo
= min {k : |Θk| ≥ ϕo} . (22)

to be the first time that the spoke goes off-course. As we
model the angle process evolution only up to that point,Tϕo

is thestopping timeof the random walkΘk modulated by the
ergodic Markov chain̂Lk. Following [15, Chapter 7.7],Tϕo

is
also a stopping rule for the martingaleMk (ω) relative to the
joint process{Mk (ω) , Lk; }. Hence, following [15, Lemma
6] and theoptional sampling theorem[15, Theorem 6] we
have

E
[

MTϕo
(ω)

]

= E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

]

= 1, (23)

for ω ∈ (ω , ω+) . Since the stopping timeTϕo
is a random

variable of unknown probability distribution, elaborate mathe-
matical methods must be used to model it. Our methods utilize
(23), which is an extension of theWald identity to Markov
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modulated random walks. The first wobbliness constraint is
based on the first moment ofTϕo

, as

E [Tϕo
] ≥ η. (24)

The second wobbliness constraint is based on thecumulative
distribution function (CDF)of Tϕo

, as follows

Pr{Tϕo
≤ η} ≤ pt. (25)

In subsection V-A we demonstrate how to compute the mean
E [Tϕo

]. Subsection V-B describes a bound on the CDF of the
stopping time. These two approaches together provide a good
description of the stopping time, based on which a range ofq
values can be found for eachϕo.

A. Expected Threshold Crossing Time

The random variableΘTϕo
is either−ϕo or ϕo, assuming

that there is no overshoot. We address the problem of over-
shoot later. By symmetry arguments, first and second moments
of ΘTϕo

are

E
[

ΘTϕo

]

= 0, var
[

ΘTϕo

]

= E
[

Θ2
Tϕo

]

= ϕ2
o. (26)

We evaluate the second derivative of (23) with respect toω
at ω = 0, and denoteµi(ω) = ν′′i (ω)/νi (ω) , to obtain the
expected number of hops until the hop angle hits the threshold
as

E [Tϕo
] =

var
[

ΘTϕo

]

+ E
[

µi(Tϕo )(ω)
]∣

∣

ω=0
− µi(0)(ω)

∣

∣

ω=0

σ′′(ω)
σ(ω)

∣

∣

∣

ω=0

.

(27)
One can show that, form = 2, the denominatorσ

′′(ω)
σ(ω)

∣

∣

∣

ω=0
=

1

3

(

π2P22ϕ
2
22 + π1P11ϕ

2
11 + π1P12ϕ

2
12 + π2P21ϕ

2
21

)

, (28)

where πi, i = 1, 2 are the elements of the vector of
stationary state probabilitiesπ = [πi](1×m) . Note that terms
ϕ2

ij/3 are transition-specific variances (for uniform angular
displacement). Direct generalization of (28) to anm state
model has a form of a stationary average of transition-specific
variances overm2 transitions

σ′′ (ω)

σ (ω)

∣

∣

∣

∣

ω=0

= var[θ]p = πP (v)uT ,

where, P (v) =
[

P
(v)
ij

]

(m×m)
with elements P (v)

ij =
(

Pijϕ
2
ij

)

/3, andu = [1...1](1×m) . Now, it can be shown that,
for small crescent subtending angles relative to the threshold
ϕo, we can ignore the termsE

[

µi(Tϕo )

]

and µi(0) in (27),
thus

E [Tϕo
] =

var
[

ΘTϕo

]

var[θ]p
. (29)

Since (27) neglects the overshoot, we now seek to include
the overshoot impact. We start with the overshoot analysis
of the simple random walkΘn =

∑n

i=1 Φi, modulated by
one-state Markov Chain, i.e.Φi ∼ U (−ϕ11, ϕ11). Based on
the derivation presented in the appendix, which assumes that
undershoot and overshoot have the same uniform distribution,

we obtain the overshoot-inclusive form of the numerator
of (29) for a one-state MMRW

var
[

ΘTϕo

]

= ϕ2
o + (2/3)ϕoϕ11 + ϕ2

11/6. (30)

Note that the second term in (30) contains the half-span
ϕ11 of the uniform pdf. To extend the expression (30)
to m-state Markov-modulated random walk, we replace
ϕ11 with a weighted sum of transition-specific angle spans
∑n

i,j=1 wijϕij , wherewij = πiPij . Hence, the angle span
associated with the trivial transition of the one-state MC
is now replaced with a stationary average over angle-spans
associated withm2 transitions of them-state MMRW. Note
that the third term of (30) is one half of the angle variance
for Φi ∼ U (−ϕ11, ϕ11). For them-state MMRW, we replace
this term with another weighted sum where(wij/2)-weighted
terms are transition specific variancesϕ2

ij/3. Hence, extended
(30), in matrix notation, is

var
[

ΘTϕo

]

= ϕ2
o + 2ϕo

(

πP (a)uT
)

+
πP (v)uT

2
,(31)

P (a) =
[

P
(a)
ij

]

(m×m)
andP (a)

ij = Pijϕij/3. The overshoot-

inclusive variant of (29) for a multi-state chain (31) yields
values that match the simulation results closely and consis-
tently. Figure 7 (a) illustrates the achieved wobbliness ina
sample of500 spokes directed eastward, designed to propagate
160 length units with the wobble threshold ofπ/4. It is evident
that a large number of spokes exceed the targeted propagation
distance, while the straightness needs to be improved. Such
a behavior is due to the fact that the outage constraint is a
constraint in probability, while (24) is a constraint in the
mean, where the pertinent pdf is long-tailed.

B. Probability of threshold crossing before certain time

Motivated by the observations illustrated by Figure 7 (a),
we here analyze the wobbliness model, as defined in (25),
from the point of view ofLarge Deviation Theory (LDT). We
determine a bound for Pr{Tϕo

≤ η} based on the Gärtner-Ellis
theorem [2, Thm 2.3.6] and its application to an empirical
measure of finite Markov Chains, in particular [2, Exercise
3.1.4]. Let ℘P

i(0) denote the Markov probability measure
associated with the transition probability matrix (7), andwith
the initial stateL̂0 = i(0). Precisely,

℘P
i(0)

(

L̂1 = y1, · · · , L̂n = yn

)

= Pi(0)y1

n−1
∏

i=1

Pyiyi+1

is the probability of a specific Markov chain path, starting
at i(0), and transitioning through the sequence of states
{yi}

n

i=1. Now, let us denoteψij = U (ϕij , ϕij), and thus, the
conditional law of{Φk} for each realization{Lk = yk}

n
k=1

is
∏n

i=1 ψyk−1yk
.

Denoting withEP
i(0) [.] the expected value with respect to

℘P
i(0) and the associated

∏n

i=1 ψyk−1yk
, we further define

Λn(nω) = logEP
i(0)

[

eω
P

n
k=1

Φk
]

. Following a derivation
analogous to [2, Thm 3.1.2], we find that the logarith-
mic moment generating function of the current angle is
related to the largest eigenvalueσ(ω) of (14) as Λ(ω)

∆
=

limn→∞
1
n
Λn(nω) = log σ (ω) . According to [2, Thm 3.1.2],
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Fig. 7. Sample of spokes directed eastward shows the statistics of spoke
angle deviation - design based on the ”constraint in the mean” vs.”probability
constraint” design.

the empirical mean of the sum of angle deviations modulated
by ℘P

i(0) has a rate function, which is a conjugate function of
Λ(ω), i.e the Fenchel-Legendre transform

Λ⋆(x) = sup
ω

{ωx− Λ(ω)} . (32)

A geometric interpretation ofΛ⋆(x) is given in Figure 8.
Using the fact thatΛ(ω) is a convex function, andΛ(ω) ≥ 0
for ω ∈ (ω , ω+) , and applying the total probability formula
over the event spaceE1 =

{

Tϕo
≤ η,ΘTϕo

≥ ϕo

}

, E2 =
{

Tϕo
≤ η,ΘTϕo

≤ −ϕo

}

, E3 =
{

Tϕo
> η,ΘTϕo

≥ ϕo

}

,
E4 =

{

Tϕo
> η,ΘTϕo

≤ −ϕo

}

to (23), assumingω > 0,
we obtain:

1 =

4
∑

k=1

E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σTϕo (ω)νi(0) (ω)
|Ek

]

Pr{Ek}

≥ E

[

eωΘTϕo
−Tϕo log σ(ω)

ν
i(Tϕo )

(ω)

νi(0) (ω)
|E1

]

Pr{E1}

≥ exp (ωϕo − η log σ(ω))
minj νj (ω)

νi(0) (ω)
Pr{E1} . (33)
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Fig. 8. Geometric Interpretation of the bound for Pr{Tϕo ≤ 2} (probability
to go off-course in two or less steps) Theupper subplot corresponds to a
BeSpoken design where the targeted spoke lengthds ≈ 50m; this design
implies a certain maximum subtending angle of the spoke crescents. The
lower plot corresponds to a design where the desired spoke lengthdl ≈
1500m, corresponding to smaller maximum subtending angle than the design
for ds - Consequently, note that the off-course probability after two hops
should be smaller fordl design; the probability bounds relate in the same
way: exp(−2δl) < exp(−2δs), whereδs = 0.5 is the maximum distance
(at ω = ω

′

as shown in the plot) between the lineωϕo/n and Λ(ω) =
log σ (ω), which is exactly (32) withx = ϕo/n, evaluated fords design
and for n = 2. Similarly, δl > 5 is the equivalent fordl design.
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Fig. 9. Comparison of the LDT-based CDF bound and CDF obtained by
”sampling” the underlying m-state Markov Chain.

Note that Pr{E1} = Pr{E2} , due to the random walk and the
threshold symmetries. Hence, by combining the two bounds
we have

Pr{Tϕo
≤ η} = Pr{E1} + Pr{E2} = 2Pr{E1} (34)

≤ 2 exp

(

−η(ω
ϕo

η
− log σ(ω))

)

νi(0) (ω)

minj νj (ω)
,

whereω ∈ (ω , ω+) . We base (35) on the largest eigenvalue
σ(ω) of an m-state Markov Chain, for sufficiently largem.
We apply numerical methods to obtainσ(ω) and observe that
(35) (withνi(0) (ω) /minj νj (ω) = 1) tightly bounds the CDF
obtained from the simulations for the relevant range of values,
as shown by Figure 9. The expression (35) evaluated for some
desired Pr{Tϕo

≤ η} = pt provides an upper bound forq, as
opposed to the lower bound obtained through (29).
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Fig. 10. Simulation snapshot of the BeSpoken search with multiple sources,
randomly positioned across the network, and multiple sinks, distributed
randomly along the network perimeter. The central source spokes are drawn
as a sequence of circles representing transmission ranges of spoke relays. The
spoke relays of other sources are denoted by diamonds, whilethe relays of
productive sink spokes are denoted by squares, as in Figure 1.

Given the desired distanced, and the angle thresholdϕo

n = 1, . . .∞
(a) Calculateq∗ assumingn = E [Tϕo ] from (29)
(b) Given q = q∗ from (a), calculater∗ from (21)
(c) If d/r∗ < n, goto (a) else BREAK.

VI. RESULTS AND CONCLUSION

We propose a protocol that generates spokes, relatively
straight-line data dissemination trajectories, without requiring
the nodes to have navigational information. The analysis ofa
Markov-modulated random walk model for the spoke process
results in design conditions which protocol parameters need
to satisfy to produce sufficiently long and straight trajectories.
We here summarize the iterative design algorithm for BeSpo-
ken parameters.
We support our analysis with simulation results. We simulate
a stationary WSN of unit-density, with uniformly distributed
nodes deployed over a square region.

A. Evaluation of BeSpoken Design for Straight-line Data
Propagation

To empirically present the statistics of the spoke direction
process, we extend a large number of spokes to follow the
same direction (by fixing the first relay to have the same
y coordinate as the source, like in Figure 7), over several
realizations of a random field of points representing the WSN.
The protocol parameters are designed for a network of20K
nodes, but the spokes are created over a ten times larger
network to better observe the statistics. Figure 7 (b) presents
statistics obtained when the protocol design is based on the
angular constraint ”‘in probability”’ (35), and demonstrates a
better control of the spoke direction at the expense of a slightly
increased rate of prematurely stopped spokes due to outage.

B. Evaluation of BeSpoken Infrastructure for Efficient Data
Search

We consider BeSpoken as both a dissemination protocol,
and a tool to build an infrastructure of relatively straight

Fig. 11. Comparison of the consumed total network transmission energy
per sink as a function of network size for a simulated search based on the
BeSpoken, and another one, dubbed FloodingDD, based on directed diffusion.

Fig. 12. Comparison of the consumed total network transmission energy per
sink as a function of the ratio of sink nodes vs. sensor nodes,for a simulated
search based on the BeSpoken, and another one, dubbed FloodingDD, based
on the directed diffusion.

paths (spokes) whose direction and length can be learned
with moderate effort (see [10]), and that serves as an overlay
network for easier, more efficient search. Both source and
sink spokes, utilized to convey the information of an event
from the source to the sink, may remain active for a relatively
long time period. The spokes tessellate the sensor network
space, providing a way to map subsequent events to areas
between the known paths, and to aid efficient navigation
toward the associated sources. It is not hard to envision
how this framework may bootstrap a number of mechanisms
for energy-efficient dissemination, load balancing and rapid
data propagation in desired directions. Of course, additional
protocols (outside the scope of this paper) are needed to
manage and control such applications.

For energy efficiency statistics, we simulate a data search
where several data collectors, randomly distributed alongthe
network perimeter, use BeSpoken to create search trajectories
for specific events (characterized by some descriptors), while
a number of sources, distributed randomly across the network
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Fig. 13. Search based on directed diffusion: a simulation snapshot showing
the area covered by the flooding process as the first random sink searched
for data, and also the reinforced (most-efficient) path of the forwarding relays
that lead to the source. Observe the beginning of another flooding process in
the lower left corner.

area, advertise their events along equally spaced source spokes
extended radially away from the source, as shown in Figure 10.
These simulations simultaneously evaluate BeSpoken in its
capacity of a spoke-infrastructure building tool. The nodes
located at the intersections of source spokes hold data descrip-
tors propagated along all the incoming spokes and practically
serve as hash hubs that allow for easy discovery of any
advertised event. The successful search is when the sink spoke
hits any spoke of the interconnected infrastructure. Hence,
with increasing number of data sources (producers), the energy
efficiency of data search per source improves. In the simulation
snapshot in Figure 10, central source spokes are shown as a
sequence of relay transmissionranges, to illustrate the fact
that the spoke is not only a sequence of forwarded relays, but
includes all the overhearing nodes that may be used to replace
the current relays, which makes each spoke anensemble of
possible data routes. Note that new events (marked by two
disks, Gray and Cyan) that occur on other source’s spokes do
not need to extend their own spokes as they are immediately
connected to the advertising infrastructure. Even for a single
source, this turns out to be a better approach than a reference
search strategy based on directed diffusion [3], as shown in
Figures 11 and 12. In both approaches, we calculate per hop
cost as free-space energy consumptionCr2, where coefficient
C is normalized to one, andr is the designed data transmission
range. For BeSpoken strategy, we account for every hop
performed by both source and sink spokes, while for directed
diffusion we count every flooding transmission but leave out
the reinforcing packets, and for both we normalize the energy
consumption per sink. Also, the simulations are designed in
favor of the directed diffusion search, as the search order
corresponds to geographic proximity, i.e. the sinks on other
sides of the network do not start searching for data until all
sinks on one side are done, which makes flooding processes
much shorter due to the proximity of already reinforced
paths. For the visualization of the directed diffusion based
search, we present two consecutive snapshots of a simulation
in Figures 13 and 14. The efficiency of this approach also

Fig. 14. Search based on directed diffusion: a simulation snapshot showing
the area covered by the flooding processes of 10 random sinks,and the
reinforced (most-efficient) paths leading from those sinksto the source
pointers.

increases with the number of searches. However, if the sinks
are searching for different sources, the efficiency does not
improve since the reinforced paths are not interconnected as
in the case of BeSpoken infrastructure. In general, the losses
are large even though each node forwards only once, since the
innovative coverage area of each retransmission is small due
to high overlap of transmission ranges (note how the flooded
area in Figure 13 is almost uniformly green, even though each
transmission is represented by one green circle, visible onthe
edges of the covered area).

Overall, the simulation results confirm the validity of our
design, and prove that data search strategies based on the
BeSpoken are a scalable and efficient alternative to the existing
approaches to search in randomly deployed lightweight WSNs.

APPENDIX

MMRW Overshoot Analysis

The one-state Markov Chain modulated random walkΘn =
∑n

i=1 Φi is in fact the IID random walk. This random walk
stops if the condition in (22) is satisfied. We define the
undershoot asX = ϕo − ΘTϕo−1, while the overshoot is
defined asY = ΘTϕo

− ϕo. As the IID Φi is uniform over
{−ϕ11, ϕ11} , and as atTϕo

Φi assumes a positive value, we
conjecture that random variablesX and Y have the same
pdfsfX(x) = fY (x) (or at least the first two moments), both
uniform, with support set{0, ϕ11} . We define random variable
Z = X + Y s.t.Z|Y ∼ U (Y, ϕ11).

As E [Z] = E [Y ] + E [X ] = 2E [Y ] = 2m andE [Z] =
EY {E [Z|Y ]} = EY {(Y + ϕ11)/2} = (m + ϕ11)/2, we
obtain the first moment of the overshoot asE [Y ] = m =
ϕ11/3. Further, we establish

E
[

Y 2
]

= m2, E
[

Z2
]

= 2m2 + 2E [XY ] = m2 +mϕ11

E
[

Z2
]

= EY E
[

Z2|Y
]

= (1/3)(m2 +mϕ11 + ϕ2
11) (35)

Solving the system of equations (35) we obtain the second
moment of the overshootE

[

Y 2
]

= ϕ2
11/6. For symmetry

reasons the variance of the random walk at overshoot is equal
at bothϕo and−ϕo. Thus, as both overshoot occurrences are
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equiprobable,

var
[

ΘTϕo

]

= 0.5
(

2E
[

(ϕo + Y )2
])

= ϕ2
o + (2/3)ϕoϕ11 + ϕ2

11/6. (36)
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