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Geographic Data Propagation in Location-Unaware
Wireless Sensor Networks: A Two-Dimensional
Random Walk Analysis

Silvija Kokalj-Filipovi€, Predrag Spasojevit, and Royntés

Abstract—For wireless sensor networks with many location- address. Flooding the network is a trivial form of geocagtin
unaware nodes, which can be modeled as a planar Poisson pointwhen sources are unaware of sink locations. Unrestricted
process, we investigate a protocol, dubbed BeSpoken, whisteers flooding as a dissemination method leads to a “broadcast

data transmissions along a straight path called a spoke. B@8ken t " of redundant t . 13 d
implements a simple, spatially recursive process, where alsic set storm” of redundant transmissions [13] and consumes more

of control packets and a data packet are exchanged repeatedl resources than necessary [6]. Two dissemination techsique
among daisy-chained relays that constitute the spoke. Hea¢ that use flooding selectively are briefly described next. In a

a data packet originated by the first relay makes a forward pushapproach [5], a publishing process plants pointers in the
progress in the direction of the spoke. Despite the simplity of - ayork that can be used by the interested sinks to establish

the protocol engine, modeling the spoke process is a signiat L .
challenge. Bespoken directs data transmissions by randomnl a path to the correct source. Publishing mechanisms are

selecting relays to retransmit data packets from crescenshaped largely based on flooding and consequent path reinforcement
areas along the spoke axis. The resulting random walk of the Alternatively, in [3] the authors introduce a data-cenpidl

spoke hop sequence may be modeled as a two dimensionafnechanism calledirected diffusiorin which interest requests
Markov process. Based on this model, we propose design rU|eS(queries) are flooded into the network leaving gradient path

for protocol parameters that minimize energy consumption vhile . - . .
ensuring that spokes propagate far enough and have a limited back to the sink. With location-unaware nodes, a more effi-

wobble with respect to the spoke axis. The energy efficiencygi Cient alternative to flooding is to use landmark-based nguti
demonstrated through simulations of the BeSpoken-based ti& protocols [4] to store state information in selected nodes

search, and a comparison with the energy consumption of a (possibly along a path) to direct the search toward the corre
search based on directed diffusion. source [14]. As another closely related example to our work,
Index Terms—Wireless sensor networks, Poisson point pro- Rumor Routing [1] introduces the concept of agents, packets
cess, geographic data propagation, stochastic analysisichtion- that advertise source data along a random walk path that
unaware, Markov-modulated random walk, energy efficient daa resembles a fairly straight trajectory. The query packtibiis
search. o .
a similar random walk path, and the success of the search is
based on the high probability that the two sufficiently long
. INTRODUCTION lines in a bounded rectangle intersect.

N RANDOMLY deployed Wireless Sensor Networks In this work we propose BeSpoken, a wireless commu-
(WSNs)omposed of position unaware nodes, data souragasation protocol that also steers data transmissionsgalon
are frequently unaware of which data sinks have interdsirly straight trajectories, and enables energy efficidata
in their observations. An example is a network of cheapjssemination and search in networks with location unaware
battery-operated sensor nodes scattered over an areafonsedodes. In addition, we illustrate the energy efficiency of an
environmental monitoring and expected to efficiently dmliv example push-pull dissemination infrastructure, mectethi
gathered information to a data collector (sink) located rat ausing the BeSpoken-enabled trajectories.

arbitrary (and frequently random) position at the network The BeSpoken protocol implements a simple, spatially
boundary. recursive process controling data transmissions, wheesia b
Given the scarce resources and the limited processing powef of control packets and a data packet are exchanged-+epeat
of WSN nodes, the unknown position of a data sink makegjly among daisy-chained relays that constitute a trajgcto
the task of delivering data especially challenging. Seévee  a|so called @poke The barrier-crossing analysis of a Markov-
communication paradigms, like geocasting, data dissemingodulated random walk model for the spoke evolution process
tion. and data search, emerged from this problem [7]. Hasults in design conditions which protocol parametersinee
the geocasting problem [12] data needs to be routed togasatisfy to produce sufficiently long and straight trageiets.
geographic region instead of a destination node specifi@hby Figure 1 illustrates an example of BeSpoken-based push-
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route along the intersecting spokes, and by the correspgndi
data dissemination (see the closeup in Figure 1). In this ex-
ample, the sinks are distributed uniformly along the petane

of the network area and their position is unknown in advance.
Hence, we conjecture that the likelihood of successful data
search will increase if both the source and the sinks spawn
several equally spaced radial spokes. Hence the twofoldimea
ing of the name BeSpoken: the radial lines extending from the
source form a pattern that resembles spokes of a wheel and,
furthermore, spoke relaykespeakthe source message. The
relative direction of spokes allowing for the wheel pattégn
controlled byan extension of the BeSpokeot discussed here
due to space considerations.

The taken approach is conceptually closest to geographic
greedy forwarding schemes [8], [16] used for routing to
known destinations, with an important distinction thastead
of greedily approaching the sink, in our approach the data
is greedily directed away from the source. In the greedy
geographic forwarding scheme a packet is forwarded to a one-
hop neighbor which is closer to the destination than theeurr
node. The similarity is only conceptual, since the assuongti
are orthogonal to ours: a source node knows the location of
the destination node, and network nodes are location-aware

The focus of this paper is the mathematical model of the
BeSpoken and its analysis for the purpose of spoke design,
as well as demonstrating that the energy consumption o

. . while
BeSpoken based search is much smaller than with the seafg;,h3

1Fi .1
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In this simulation snapshot, sifkis not interested in advertised data
sink 0 has one productive sink spoke, and selects a data dissémninat
from the ensemble of routes within that spoke, andimvittne intersect-

based on directed diffusion [3], and that it decreases wiily source spoke. The sequence of wireless transmissietaysforming the
the increasing number of events in the network. The rest Rgpductive sink spoke (the one that hits a source spoke firfenoted by

the paper is organized in the following manner: Section ﬁ'
introduces BeSpoken - II-A describes the protocol engine,
and 1I-B depicts the effects of the protocol parameters en th
spoke metrics, expressed through wobblines and propagatio

y circles (see the sink spoke in the closeup). Unprodedink spokes are
presented by dots. The search success is marked\byvih an inscribed

outage constraints; Section Il focuses on spoke modelings it 5\ways selects only one node to retransmit. Assuming

[lI-A introduces BeSpoken geometry, while III-B and III-C

radially symmetric attenuation (isotropic propagatiothe

describe Markov process and Markov chain models of thgq, in which the transmitted packet is reliably received is
spoke; Section IV analyzes the propagation outage constraj, jisk of a given radius. We use the same transmission power

and Section V provides analysis of the wobbliness constraid. oth data and control packets, but different coding rate

Section VI presents simulation results for both a singlef@eS 4,

or modulation format, so that the communication rate fo

ken trajectory and an example dissemination infrastréCtug,nirol messages is lower and translates to a longer range.

and concludes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a dense wireless network with a uniform spatial
distribution of nodes. TheBeSpokenprotocol organizes a

A. BeSpoken Protocol

The BeSpoken protocol implements a recursive process

sequence of fixed-poweelay transmissions that propagate thdlustrated in Figure 2 in the following way:

source message hop-by-hop, without positional or direetio (a)
information. The hop relays form spokewhich may deviate
from the radialspoke axisEach spoke hop is organized using

a sequence of two control message transmissions followed (i)
the hop data transmission. We define the transmission range
as the maximum distance from the source at which nodes cér)
reliably receive a packet. We assume that the physical layer
modulation and coding are designed to compensate for short-
scale fading effects and, thus, our transmit power reqLérgm
depend only on distance-dependent propagation path lo&g)
Even though in a sensor network environment data rates are
low relative to the available bandwidth and interferenceas

a primary issue, still, our protocol mitigates the integigce

The leading relay (nodg) sends an RTS (request to send)
control packet with rang& = rq whereq = 2 — ¢, for
smalle.

The pivot (node)) sends a BTS (block to send) control
packet with ranger.

The leading relay transmits the data packet with range
and becomes the new pivot. The region in which nodes
receive this data packet but do not receive the preceding
BTS packet forms th&-st hop crescent’.

A random node from the cresce@b becomes the new
leading relay by transmitting a new RTS. The process
returns to (a) with node 1 as the pivot and node 2 as the
leading relay.
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Fig. 2. BeSpoken Protocol: At each protocol stage, the ntitransmission
range is denoted with the full circle while the previous rag denoted with
a dashed circle.

(©)

This recursive process is initialized by assigning the fle
the pivot to the source node which transmits the data packet
with a ranger. The first node which receives the data packet
and gets access to the medium becomes the first leading relay. (b)

The underlying ALOHA-type Carrier Sense Multiple Access, o

protocol would resolve any collisions; hence, after a fgesi 0 C%rrér?t) Sﬁéﬁgﬂi’fe;ighngii’f J;l@': f';}jiieﬁgjlé:\f’e"; Ezdgj ggg
additional delay, only one random node from the crescent, , = p, the angular hop displacemed , ; is constrained to the interval

would transmit the RTS packet. —B < @y < B where the maximum angular displacement at kep1 is
B8 = B(l, p). The shaded area denotes the interior crescent of Siggd, p).

B. Problem Formulation

To describe the effects of the data and control rangesand wobbliness constraints can be decoupled. Consequently
and R, we evaluate the spoke behavior with respect to thes a result of the outage constraint analysis, we give the

constraints: design guidlines for the parameter We demonstrate that
« Outage:the probability that a spoke dies before reachinggtisfying the wobbliness constraint requires one to firel th
a distancel is small, minimumg so that the spoke direction is within the limits after

« Wobbliness: the deviation of the instantaneous spoke hops,_wheren iS_ a sufficient number of hops to reach_ the
direction with respect to the spoke axis is within definetirget distance, givenr. We develop closed-form expressions
limits. that serve as bounds for the valuesfensuring that the

The vector from nodé to nodel in Figure 2 defines the Wobbliness constraint is satisfied.
spoke axis. The crescent subtending angle determines how
much the spoke may deviate from the spoke axis direction. I1l. SPOKE MODELING
The parameter; = R/r determines the maximum crescen
subtending angle. A large subtending angle fosters wobsdin
yet it implies a larger crescent, which increases chancats th Figure 3(a) depicts hops andk + 1. At the completion of
a relay will be found to retransmit data. Fixingto a small hop k, the lengthL; denotes theurrent hop lengthand the
value that limits wobbliness requires increasingp generate angle©,; denotes theurrent spoke direction
a large enough crescent and decrease the outage probabilitiFrom Figure 3(b) we observe that givép = andLy; =
Note that the energy per hop grows:&s wherea > 2 is the p the control circle of radiusk? centered at nodé — 1 and
propagation loss coefficient, so that the total energy pekesp the circle of radiug centered at nodk specify a radiug arc
grows asdr®~!. Hence, minimizing the transmission range for the possible positions of node+ 1. The endpoints of this
corresponds to a minimum energy objective. radiusp arc constrain thengular hop displacemen;, ; to
These competing tendencies illustrate the importanceeof tthe interval—3 < ®;,; < [ where the maximum angular
protocol parameters design. In this paper we show that eutatisplacement is3 = 3(l, p). Applying the law of cosines to

}\. BeSpoken Geometry
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the complementary angle — 3(l, p) yields

R2_ 2 _ 2
cospll.p) = T )

We also observe that the region between the radicontrol
circle and the radiug arc defines aimterior crescentshown dy
as the shaded area in Figure 3(b). From geometric arguments,
it can be verified that the area of this interior crescent is

Sic(l,p) = 2p°B(1, p) — 2R*a(l, p) + Risina(l,p)  (2)

where «(l, p) is found from the law of cosines to satisfy
cosa(l,p) = (R? — p?> +1?)/(2IR).

Note thatl,; can vary from a minimum value a® — Ly,
to a maximum value of. The induced interior crescet, 1 .
in Figure 3(a) has an are®.(Ly) = Sic(Lg,r). We note that lﬁ@,f’
Cr+1, termed thecurrent crescentis the set of all possible -7
positions of the nodé + 1. -

4
”

B. Markov Process Model for Hop Length Evolution

For design purposes we assume that the spatial distributiafi 4.  Ergodic Finite State Markov Chain: quantization repée for a

of network nodes is a planar Poisson point process of irtiendpur-state chaint = 4): L, = ha = r results in the first crescerd), of

X = 1. Thus, a current crescent forms a candidate set for ndgfigics partitioned into four strips of total area = da; + daz +das + daa;
R . . . . . k+1 € Za2, quantized toLy 1 = ha2, is followed by a crescent’y 1

k + 1 with cardinality Z that is, conditionally, a PoiSsON of areac, and a hop spatiy = [R — ha, ] which is (uniformly) quantized

random variable with conditional expected value into a crescent of aredys = c23 (shaded region) and a crescent stifn =
c2 — c23 (the unshaded area).
E[Zx|Li, = lg] = Sc(lk)- 3)

A spoke stops at stage when the crescen€y, is empty jjystrated in Figure 4, whenever thigh hop Markov chain
and thus spoke generation is a transient process. The outggge isL, = h;, the corresponding next process hop length
constraint depends only on the crescent si#gd.;) but not s 1, ., e 7, = [R— h;,r], whereZ; is thenext hop spaand
on the hop direction proces8. On the other hand, theits |ength|z;| is also the width of the corresponding quantized

spoke wobbliness depends on ¢ but is meaningful only crescentCy, of areac; = S.(h;). L1 is quantized to state
as long as each current crescént is non-empty. Thus, we h; wheneverL,,, € Z;; where

separate the analysis of the outage and wobbliness caontstrai’

by formally defining{L;} as a fictitious process that never Zi; = Zin(hj-1, hyl. )

encounters an empty crescent. - Note that the se{Z;; : j = 1,...,m} partitions/; and serves
Under the fictitious process model, the position of nbdd 55 3 set of quantization intervals fds,.; when Ly = hi.

will be uniformly distributed over the crescef. 1. From Thjs quantization mapping is illustrated in Figure 4 where

Figure 3 (b) we see that, given the current hop lenbih= 1, | ¢ 7,, is extended to reach the quantized node position

I, the arc of rad|u$_) has Iength‘Z;_)ﬁ(lk,p). The conditional yarked with a grey circle aikﬂ — hy. The chain proceeds

probability that we find nodé + 1 in the annular segment of by, geclaring a fictitious node at the quantized position a@s th

width dp along the arc of radiup is 2p5(lx, p)dp/Sc(lk)- It new leading relay. As depicted in Figure 4, a quantization

follows that the conditional pdf of the next hop length 1 interval 7, corresponds to the strip of area

given Ly =l is fh'
L, 208(his p) dp,  j = 57 (i),
l _ 2pB(lk,:p) R0, <p< 4 dii = R—h;
ka+1‘Lk (p| k) Sc(lk) k> p -~ Ta ( ) J f&]iA 2p6(hz,p) dO, j > j*(l),
and zero otherwise. We note that (4) provides a complete . . -
characterization of the fictitious proces, }. (and zero otherwise), and of W.Idllﬁiﬂ.WIt.hln the crescent
C) of areac; = Zj d;;. Herej*(i) = min{j : h; > R — h;}

is the index of the leftmost non-empty quantization intérva
C. Finite State Ergodic Markov Chain Model within I Py q

Here, we develop a Markov Chain model that approximatesaAs shown in Figure 4¢;i = Sic(hs, hy) is the quantized

the Markov process described above. We start by quantizifgerior crescent aredormed by the control circle (of radius
the L, process, yielding then-state Markov chainl,. We R) centered at theith hop relay and a circle of radius;
first select a chain state set that quantizes the process sgatered at nodé + 1 at distancel;, = h;. Note thatc;; <
space[R — r,r], then describe a mapping from the ProCess ;) -« < cim, Wherec;; = 0 for j < j*(i), cim = c;, and
state space to the chain state set and, last, describe théngs 4, — ¢, — ¢i(j—1)- The hop-length transition probabilities
chain probability transition matrix. We defifé;, ..., h,,} C . .

[R—r,r] to be the chain state set. Without loss of generality, Py = PH{Liy1 = hj|Lk = hi}

we assume thdigp = R—r < hy <hs <...< hy =71 AS Pr{Li+1 € Z;j|Ly = hi} = dij/ci @)

(6)
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follow from the uniformity of Poisson spatial distributiayf
nodes and since the fictitious process assumes that thentesc
Cy is not empty. Intuitively, whenm is sufficiently large,
the ergodic Markov chain will approximate well the ergodic
Markov process. Driven by the modeling criteria of simplici
and efficiency, we consider Markov chain models with both o—e
uniform and non-uniform quantization diR — r,r]. With
only m = 2 levels, the uniform quantization lacks accuracy.
However, a carefully chosen two-state chain provides aulisef
non-uniform quantization model. The transition matrix for
both two-state systems is
0 1

P= ca1/ca (c2—car)/ca]’ ®
Sinceclg =C and Coo = Co.

1) Uniform Quantization Model:In this model, the hop-
length stateqh;} uniformly quantize the process state space
[R—r,r] sothath, = R—r+iA, whereA = (2r—R)/m is the
quantization interval. Furthermorg; (i) = m — ¢ so that the
next-hop quantization intervals; satisfyZ,; = (h; — A, hy]
for j > m — i and are empty foj < m — ¢. The transition
probabilities are now

Coi— Ciri
L) > m, © _ .
C; Fig. 5. Spring-coil analogy
and P;; = 0 whenever + j < m follows since, in that case,
(hj—1,h;] andZ; = [R — h;, 7| intersect in at most one point.
For example, the uniformly quantized = 2 Markov chain

Py =

for |¢| < B(lk,lk+1), and zero otherwise. This probability
- B - - distribution does not change when the conditioning secqgienc
hasA S R/2, by =R—r+A=R/2andhy =, and, contains quantized valu€d ;. }. The current angle sequence
accordingly,c; = S.(R/2) andca = S.(r). .
: o {©} is a random walk process modulated by the Markov

2) Non-Uniform Quantization Model for the Outage Con-h AP letely d ibed b :
traint: Non-uniform quantization, being inherently moreC ain {Ly}, completely aescribed by equations (7), (11).
S j ' The transform domain analysis of a Markov Modulated

complex than uniform, qualifie§ only if its application remsl_ Random Walk IMRW) [15] dictates that we first define the
a simple two-state model possible. The proposed non'lmlfo(t,onditional moment generating functions of the incremlenta

guantization, two-state Markov chain model has a simplgg1 ular displacemerib from (10)
definition with ¢; = 1, and ¢y = S.(r). The corresponding 9 P kol

set of hop length states includés = r and h;, which gijw) = E [exp(q)kﬂw) |Ly = hi, L = hj} (12)
is a solution ofc; = 1 = S.(hy). Hence, the next hop 1 il
partition mapping satisfieds; = co1, and dos = co — ¢o1. = / exp (¢w) dp = h (pijw), (13)
Let R/2 > hy = S;'(1) > R —r, and, in this case, we 20ij J -, ;

have thatj*(1) = 2, di1 = 0, anddy; = ¢; = 1. The non- for 4, in a convergence regiofw ,w.. ), wheref (z) = sinhz
uniform partitioning differs from the uniform in that > ¢;  gpqg ©i; = B(hi, h;). We create a matrif'(w) with elements
and cos > o1 for large enough. The rationale behind such

a design follows in the next section. Lij(w) = Pijgij(w). (14)
The Perron-Frobenius theorem (see e.g., [2]) dictates that
D. The Spoke Direction Process its largest eigenvaluer (w) is real and positive. The el-

Figure 3 (a) indicates that the angular hop displacemdfifi€nts of the corresponding right eigenveciofw) =

@, at hopk + 1 changes the current spoke direction in that (W) = - ¥m (w)]" are also real and positive. Next, we define
the product martingale [15]

k1
Opr1 =05+ Py = Z P;. (10) M, (w) = exp (w Or) Vigk) (W) (15)
i=1 ok (w) Vi(0) (w)

We observe that all points along the radjuarc in Figure 3 (b) wherei(k) is the random state index of the chain at tile
are equiprobable locations for node+ 1. Thus, given the and the random variable ) () is thei(k)-th element of the
sequence{ Ly}, the angular hop displacement®,} form right eigenvector.

a sequence of conditionally independent uniform random

variables with the conditional pdf IV. MODEL FOR THEOUTAGE CONSTRAINT

b B 1 1 Here we evaluate the outage probability for gives R/r,
Foiaite b (@l lerr) = 28(lks los1)’ (11)"in order to evaluate the associated outage constraint\(ig).
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respect to outage, a spoke stops at haghen the crescerd},

is empty, i.e.,Z, = 0. Since the nodes obey a planar Poisso
process, it follows from (3) that the conditional probatlyithe 0.4
crescentC), is empty is ;e:“l‘ 0.3
Pr{Zk = 0|Lk = lk} = efsc(lk). (16) % 0.2 —e— Simulation
We define o - analysis
D =min{n: Z, =0} (17) 0. -1 larger
as the first time the process encounters an empty crescenti 0 ' '
For analytical tractability, instead of requiring the spak 4 6 8 10 12
travel distancel with high probability, we require it to travel number of hops n

n hops with high probability. In particular, we defing =
[d/r] as the number of hops corresponding to an idealiz€@. 6. Outage probability curves
straight-line spoke extending to the distanteThe design

outage constraint can be formalized as
The following asymptotic (large) analysis of the outage prob-
Pr{D<n; < p. (18) ability (20) is based on the two state non—uniformuquaritizat
However, the analysis of (18) is challenging due to theodel (8). LetA; > A; be the two eigenvalues @ in (20)
complex way in which the hop length proce&s,.} evolves based on (8). The eigenvalue describes the rate at which
with time. In particular, a small;, will create a small crescent; the outage probability increases with the number of hops,
this induces a support seR — Ly, 7] for Ly that excludes while the negative eigenvalug describes the oscillatory, self-
small hop lengths in the intervéR—r, R—L;,). As illustrated recovery mechanism depicted in Figure 5. ket> 1 and g
in Figure 5, an imaginary coil is attached between a fixdee close to two. Themay = c2 > ¢; = 1 in (8). Now, \;
pivot and a moving leading relay: when contracted, it puiks t is close to one, while\; one is close to zero. Furthermore,
leading relay’s data circle inside the blocking controkkdy by combining (20) and (18), while expressing the two-siate
exposing only a tiny area with possible relays. Note that tiierough its singular value decomposition, and truncatimg t
next hop length has to be long (close i) if the relay is Taylor expansions ok; and ), to their significant terms, we
found in this tiny area. At the other extreme, when the coil ghow that, for a spoke to reachhops with probabilityp,
completely relaxed to length it exposes the largest possiblegiven g, the range is required to be
area. This reduces the likelihood of an empty crescent yet it -
increases the likelihood of the next hop length being small. r>1/4/exp(l) (1 —(1 —p)ﬁ) (), (21)
This oscillatory effect illustrates the importance of tharkiov
property for the hop length evolution model (4). wheref(q) = S.(r)/r?. Note that (2) implies thaf(q) is the
For them-state Markov chain, let us denote the event thatescent area for unit(the ratioS.(r)/r*> does not depend on
the firstn crescentsCy, k = 1,---,n, are not empty as r). Figure 6 illustrates how well (21) matches the simulation
A, = {ming<, Z, > 0}. The probability that the crescentsresults for larger.
Ch,...,C, are not empty, and that the system is in sta

timen is denotedgg.”) = Pr{ﬁn = h;, An} . Using Markovity V. WOBBLINESS CONSTRAINT MODEL
of L, and conditional independence &, given Ly, it is The spoke goes off-course at hépwhenever the current
straightforward to show that angle©y in (10) exceeds one of the following two thresholds
m ¢, and —¢,. To describe spoke wobbliness, we define
m  _ P 19 .
Rj ;eﬂ i (19) Ty, =min{k : [Og] > ¢o}. (22)

wheree; = 1 — exp(—\c;) is the probability of a non-empty t0 be the first time that the spoke goes off-course. As we
crescent while in statg. Let us define then x m matrix 2 model the angle process evolution only up to that pdli,
where P;; = P,;e; is the conditional probability to transition is thestopping timeof the random wall©,. modulated by the
from statei to statej, and that the resulting crescent of arga €rgodic Markov chairl;.. Following [15, Chapter 7.7],, is

is not empty. Note that (8) implieB;; = P,; = 0. In addition, &IS0 & stopping rule for the martingalé; () relative to the

by defining the vector(” = [Hgn)7 &1, (19) becomes Joint process{]_\/[k (w),Lk;}. Hence, following [15, Lemma
k(M = xK=DP. Recursively, we obtain(W = x(Wpr-1 6] and theoptional sampling theorenfl5, Theorem 6] we
Given the initial staten, we see that:") = 0 for i < m and have

k) = em. Thus, kM = [0 - en] P71, As Pr{4,} =
it " = KO [1 - 1]" the probability that the o (@)™ 1) ()
spoke will stop at or before hop (assuming that the chain

always starts in statd,,) becomes for w € (w_,wy). Since the stopping timé&,, is a random
variable of unknown probability distribution, elaboratatime-

Pr{D<n} = 1-Pr{4,} 5 matical methods must be used to model it. Our methods utilize
= 1-[0--en]P@V1..-1]". (20) (23), which is an extension of th&/ald identityto Markov

exp (w@T%)Vi(T%) (w)

E[Mg, ()] =E —1, (23)
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modulated random walks. The first wobbliness constraintige obtain the overshoot-inclusive form of the numerator

based on the first moment @, , as of (29) for a one-state MMRW
E[T,,] =n. (24) var[Or, | = ¢+ (2/3)pop11 + 11 /6. (30)
The second wobbliness constraint is based orctireulative Note that the second term in (30) contains the half-span
distribution function (CDF)of 7,,,, as follows ¢11 of the uniform pdf. To extend the expression (30)
to m-state Markov-modulated random walk, we replace
Pr{T,, <n} <p:. (25) 411 with a weighted sum of transition-specific angle spans

n
: ., wijvij, Wherew;; = m;P;;. Hence, the angle span
In subsection V-A we demonstrate how to compute the meani/=1_ " Pijs . v g'e sp
. . ssociated with the trivial transition of the one-state MC
E|[T,,]. Subsection V-B describes a bound on the CDF of thg . .
ol < ) IS pow replaced with a stationary average over angle-spans
stopping time. These two approaches together provide a good _ .

describtion of the stobping time. based on which a ran O]assomated withm? transitions of them-state MMRW. Note
P pping ' 9 Othat the third term of (30) is one half of the angle variance
values can be found for each,.

for ®; ~ U (—p11, p11). For them-state MMRW, we replace
this term with another weighted sum whéte;; /2)-weighted
A. Expected Threshold Crossing Time terms are transition specific variancz,e%/& Hence, extended

The random variabl®r,, is either—y, or ¢,, assuming (30), in matrix notation, is

7P

that there is no overshoot. We address the problem of over- 5 _p(a), T Wyl
shoot later. By symmetry arguments, first and second moments V& [Or1,,] = ¢ +2p (WP u ) + =501
of ©r, are (a) (a)
0 pla) — P L and P;;” = P,;jp;;/3. The overshoot-
mXm N

. . . ) . . .
E[O©r1,] = 0, var[Or, | =E {@2@,0} = 2. (26) inclusive variant of (29) for a multi-state chain (31) yield
o ) values that match the simulation results closely and censis
We evaluate the second derivative of (23) with respeabt0 gy Figure 7 (a) illustrates the achieved wobblinessin

atw = 0, and denotq;(w) = v;'(w)/v; (), to obtain the gampie o500 spokes directed eastward, designed to propagate
expected number of hops until the hop angle hits the thréishql; |ength units with the wobble threshold of 4. It is evident

as that a large number of spokes exceed the targeted propagatio
var[Or1, | + E (i, )(w)]|_, — mio)(w)|,_, distance, while the straightness needs to be improved. Such
ET,,] = o (@) - a behavior is due to the fact that the outage constraint is a

(@) |,—0 constraint in probability, while (24) is a constraint in the
(27)  mean, where the pertinent pdf is long-tailed.

One can show that, fon = 2, the denominatof’—;(&“)) ‘ .

B. Probability of threshold crossing before certain time

Motivated by the observations illustrated by Figure 7 (a),
e here analyze the wobbliness model, as defined in (25),
from the point of view ofLarge Deviation Theory (LDT)We
determine a bound for R, < n} based on the Gartner-Ellis

%2]-/3 are transition-specific variances (for uniform angul%eorem [2, Thm 2.3.6] and its application to an empirical

displacement). Direct generalization of (28) to an state . . . : )
model has a form of a stationary average of transition—a‘,ipecirneasure of finite Markov Chains, in pamculqr_ [2, Exercise
3.1.4]. Let pﬁo) denote the Markov probability measure

) N "
variances overn” transitions associated with the transition probability matrix (7), amith
1 . uas 2 . .
g ((w)) — var[f], = 7Py T the initial stateL, = i(0). Precisely,
o (W

1
3 (m2Pasp3y + m1 P11t + M Pragly + o Pa1gy,) , (28)

where w;, ¢« = 1,2 are the elements of the vector o
stationary state probabilities = [m;] ., . Note that terms

w=0 n—1

@fzo) (‘El =Yy, - 7-i/77, = yn) = Pi(O)y1 H Pyiywl
i=1

where, PV} = [Pi@)} with elements P"
J (mxm) J

(Pije3;) /3, andu = [1...1] ;... - Now, it can be shown that, s the probability of a specific Markov chain path, starting
for small crescent subtending angles relative to the tluldshat (), and transitioning through the sequence of states
o, We can ignore the term# [u;cr, )] and pio) i (27), {3} . Now, let us denoteb;; = U (g;;, ¢:;), and thus, the
thus conditional law of{®;} for each realization L, = yi};_,
var[O7, | - Tn

E[T,] = ——d 29) 18 1Limy Yuevu- _

varl(d], Denoting with £ [.] the expected value with respect to
Since (27) neglects the overshoot, we now seek to incluﬂgc)) and the associated];_, 1, ,y,, we further define
the overshoot impact. We start with the overshoot analysls.(nw) = log E[ [e* 2= ®+] . Following a derivation
of the simple random wall®,, = Z?:l ®;, modulated by analogous to [2, Thm 3.1.2], we find that the logarith-
one-state Markov Chain, i.&; ~ U (=11, ¢11). Based on mic moment generating function of the current angle is
the derivation presented in the appendix, which assumes thelated to the largest eigenvalugw) of (14) as A(w) 2
undershoot and overshoot have the same uniform distrifutidim,, .., A, (nw) = log o (w) . According to [2, Thm 3.1.2],

n
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‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 8. Geometric Interpretation of the bound for{Rt,, < 2} (probability
100 50 100 150 200 250 300 350 400 450 to go off-course in two or less steps) Theper subplot corresponds to a
(a) BeSpoken design where the targeted spoke length= 50m; this design
implies a certain maximum subtending angle of the spokecerdgs. The
soor lower plot corresponds to a design where the desired spoke lefgti
1500m, corresponding to smaller maximum subtending angle thardésign
for ds - Consequently, note that the off-course probability afieo thops
should be smaller forl; design; the probability bounds relate in the same
way: exp(—29;) < exp(—20s), whereds = 0.5 is the maximum distance
(atw = w’ as shown in the plot) between the linep,/n and A(w) =
log o (w), which is exactly (32) withe = ¢, /n, evaluated fords design
and forn = 2. Similarly, 6; > 5 is the equivalent fok; design.

700 -

600 -

400 -

300 0.5 — T
___simulated cdf of T(p
0.47 _._cdf bound for T
200 <P'J
0.3F
100 L L L L L L L I O 27
0 50 100 150 200 250 300 350 400 .
(b) 0.1
Fig. 7. Sample of spokes directed eastward shows the &fmtist spoke o
angle deviation - design based on the "constraint in the imeatprobability 2

constraint” design.

the empirical mean of the sum of angle deviations modulated. 9.  comparison of the LDT-based CDF bound and CDF obtame
by pﬁo) has a rate function, which is a conjugate function géampling” the underlying m-state Markov Chain.
A(w), i.e the Fenchel-Legendre transform

A () = Sup {wz — Alw)}- (32)  Note that P{ £, } = Pr{E,}, due to the random walk and the
threshold symmetries. Hence, by combining the two bounds

A geometric interpretation of\*(x) is given in Figure 8. we have

Using the fact that\(w) is a convex function, and (w) > 0
for w € (w ,wy), and applying the total probability formula

over the event spac&; = {T,, <1,01, >¢,}, By = Pr{T,, <nj =Pr{Ei}+Pr{f;} =2Pr{L} (34)

{Tp, <1.01,, < —@o}, By = {T,,>n.01,, =0}, < 2 exp (—n(wﬁ - 1og0(w))> g )
Ey = {T,, >n,01,, <—p,} to (23), assumings > 0, n min; v; (w)
we obtain:
4 exp (WO, v, () wherew € (w ,w;). We base (3_5) on the Iar_gest eigenvalue
L N g w0/ i(1,,) Bl PriE o(w) of an m-state Markov Chain, for sufficiently large:.
T |Er | Pr{E} . ;

P oleo (W)vi(o) () We apply numerical methods to obtaitiw) and observe that

v () (35) (with v;(g) (w) / min; v; (w) = 1) tightly bounds the CDF

> F |evO1p, ~Teologo(w) Teo) * "1 | prip,} obtained from the simulations for the relevant range of @8ju

vi(o) (@ as shown by Figure 9. The expression (35) evaluated for some

min; v; (w) desired P{T,, < n} = p; provides an upper bound far as

= oxp(wpo —nlogo(w)) Vi(o) (W) Pr{E}. (39) opposed to the lower bound obtained through (29).
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Fig. 10. Simulation snapshot of the BeSpoken search withipheisources,

randomly positioned across the network, and multiple sirdistributed Fig. 11.  Comparison of the consumed total network transorisenergy

randomly along the network perimeter. The central sourckespare drawn Per sink as a function of network size for a simulated seaaset) on the

as a sequence of circles representing transmission rafigpske relays. The BeSpoken, and another one, dubbed FloodingDD, based anetirdiffusion.

spoke relays of other sources are denoted by diamonds, theileclays of

productive sink spokes are denoted by squares, as in Figure 1 TX Energy per sink — network size 20K
10 ; , ; , ;

Given the desired distanced, and the angle thresholdyp,

n=1,...00
(a) Calculateg™ assumingn = E [T,,] from (29) G\\_
(b) Giveng = ¢* from (a), calculater* from (21) 10° e e %

(c) If d/r* < n, goto (a) else BREAK.

—o—BeSpoken (BS) single source
—+—BS source fraction = 0.0002

VI. RESULTS AND CONCLUSION 10 ——BS source fraction = 0.0004 | 4
. —=—BS source fraction = 0.0006
We propose a protocol that generates spokes, relative —o—flooding DD

straight-line data dissemination trajectories, withaguiring ) \
the nodes to have navigational information. The analysia of'® | N E
Markov-modulated random walk model for the spoke proce: | — |
results in design conditions which protocol parametersine
to satisfy to produce sufficiently long and straight trageiets.  10°; . s s m 2 ” 6
We here summarize the iterative design algorithm for BeSp fraction of sinks X107
ken parameters.

We support our analysis with simulation results. We sineulaf'd: 12-  Comparison of the consumed total network transorissnergy per
sink as a function of the ratio of sink nodes vs. sensor nddes simulated

a stationary WSN of unit-density, V_Vith uniformly distril@at  search based on the BeSpoken, and another one, dubbedrigibatibased
nodes deployed over a square region. on the directed diffusion.

A. Evaluation of BeSpoken Design for Straight-line Data o
Propagation paths (spokes) whose direction and length can be learned

with moderate effort (see [10]), and that serves as an ogverla

dal b ; K oll etwork for easier, more efficient search. Both source and
process, we extend a large number of spokes to follow thg, spokes, utilized to convey the information of an event

same direction (by fixing the first relay to have the SAMEm the source to the sink, may remain active for a relafivel

y coordinate as the source, like in Figure 7), over severg g time period. The spokes tessellate the sensor network

realizations of a random field of p(_)ints representing the WS%‘pace, providing a way to map subsequent events to areas
The protocol parameters are designed for a network0df between the known paths, and to aid efficient navigation

nodes, but the spokes are creatgq over a ten times Iarﬁ)%ard the associated sources. It is not hard to envision
netv.vo.rk to beFter observe the statistics. F!gurg 7(b) PSS v this framework may bootstrap a humber of mechanisms
statistics obtam_ed V\_/hen the protocol design is based on fe energy-efficient dissemination, load balancing andidap
angular constraint (35), and demonsta a data propagation in desired directions. Of course, adtitio

in probability
better control of the spoke direction at the expense of atjig rotocols (outside the scope of this paper) are needed to
anage and control such applications.

increased rate of prematurely stopped spokes due to outa
For energy efficiency statistics, we simulate a data search

B. Evaluation of BeSpoken Infrastructure for Efficient Dat§nere several data collectors, randomly distributed akbeg

Search network perimeter, use BeSpoken to create search traigstor
We consider BeSpoken as both a dissemination protocfaly specific events (characterized by some descriptorsijewh

and a tool to build an infrastructure of relatively straigh4 number of sources, distributed randomly across the nktwor

To empirically present the statistics of the spoke directi
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Fig. 13. Search based on directed diffusion: a simulati@pshot showing Fig. 14.  Search based on directed diffusion: a simulatiapshot showing
the area covered by the flooding process as the first randdmssirched the area covered by the flooding processes of 10 random samks,the
for data, and also the reinforced (most-efficient) path efftrwarding relays reinforced (most-efficient) paths leading from those sitésthe source
that lead to the source. Observe the beginning of anothedifiggorocess in  pointers.

the lower left corner.

increases with the number of searches. However, if the sinks
are searching for different sources, the efficiency does not
{gpprove since the reinforced paths are not interconnecied a

These simulations simultaneously evaluate BeSpoken in fisthe case of BeSpoken infrastructure. In general, theetoss
capacity of a spoke-infrastructure building tool. The redé'® Iarge even though each node forwards qnly once, since the
located at the intersections of source spokes hold dataigescnnovative coverage area of each retransmission is small du
tors propagated along all the incoming spokes and pralg/ticatlo hlgh oyerlap of. transmlssmp ranges (note how the flooded
serve as hash hubs that allow for easy discovery of afjf@ in Figure 13 is aimost uniformly green, even though each
advertised event. The successful search is when the sitkle sph@nsSmission is represented by one green circle, visiblgen

hits any spoke of the interconnected infrastructure. Henceéjges of the COYered grea). ! .

with increasing number of data sources (producers), theygne Qverall, the simulation results confirm the_valldlty of our
efficiency of data search per source improves. In the sifionlat 98Si9n, and prove that data search strategies based on the

snapshot in Figure 10, central source spokes are shown a2€sPoken are a scalable and efficient alternative to théirexis
sequence of relay transmissioanges to illustrate the fact @PProaches to search in randomly deployed lightweight WSNs

that the spoke is not only a sequence of forwarded relays, but
includes all the overhearing nodes that may be used to ®eplac
the current relays, which makes each spokeeasemble of MMRW Overshoot Analysis

possible data routesNote that new events (marked by tWo The gne-state Markov Chain modulated random VEK=

disks, Gray and Cyan) that occur on other source’s spokes » | ®; is in fact the 11D random walk. This random walk
not need to extend their own spokes as they are immediat ps if the condition in (22) is satisfied. We define the

connected to the advertising infrastructure. Even for glsin |, qershoot asty — ¢o — Or,. 1, While the overshoot is

source, this turns out to be a better approach than a refereggsined asy — Or. — ¢o. As the IID ®; is uniform over
t] @Yo or 3

search strategy based on directed diffusion [3], as shown{ig(p11 o}, and as af,, ®; assumes a positive value, we
. 9 9 Po ) ’

Figures 11 and 12. In both approaches, we calculate per hoRyiectyre that random variableg and Y have the same

cost as free-space energy consumptivri, where coefficient pdfs fx () = fy (x) (or at least the first two moments), both

C is normalized to one, andis the designed data transmission, nitorm. with support sef0, o1 } . We define random variable
range. For BeSpoken strategy, we account for every hgp_ X;_Y st Z|Y ~ U(7Y o11).

performed by both source and sink spokes, while for directed¢ (Z] = E[Y] + E[X] = 2E[Y] = 2m and E[Z] =
diffusion we count every flooding transmission but leave oyt (E[Z|Y]} = By {(Y +¢11)/2} = (m + ¢11)/2, we

the reinforcing packets, and for both we normalize the &NerGpiain the first moment of the overshoot BYY] = m =
consumption per sink. Also, the simulations are designed siﬁn/& Further. we establish

favor of the directed diffusion search, as the search order

corresponds to geographic proximity, i.e. the sinks onmwthe E [Y?| = my, E [Z%] = 2mo + 2E [XY] = ma + men

s!des of the nthork do not start searching for Qata until all [22] = By E[22|Y] = (1/3)(ma + me11 + ¢%) (35)
sinks on one side are done, which makes flooding processes

much shorter due to the proximity of already reinforce8olving the system of equations (35) we obtain the second
paths. For the visualization of the directed diffusion lhsenoment of the overshoak [Y?] = %, /6. For symmetry
search, we present two consecutive snapshots of a simulatieasons the variance of the random walk at overshoot is equal
in Figures 13 and 14. The efficiency of this approach alsd bothy, and—¢,. Thus, as both overshoot occurrences are

area, advertise their events along equally spaced souokesp
extended radially away from the source, as shown in Figure

APPENDIX
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equiprobable,

(1]

(2]
(3]
(4]

(5]
(6]

(7]

(8]
El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

var[Or, | = 0.5 (2E [(vo +Y)?])
=02+ (2/3)potpr1 + ¢11 /6. (36)
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