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Doped Fountain Coding for Minimum Delay Data
Collection in Circular Networks

Silvija Kokalj-Filipović, Predrag Spasojević, and Emina Soljanin

Abstract—This paper studies decentralized, Fountain and
network-coding based strategies for facilitating data collection in
circular wireless sensor networks, which rely on the stochastic
diversity of data storage. The goal is to allow for a reduced
delay collection by a data collector who accesses the network
at a random position and random time. Data dissemination is
performed by a set of relays which form a circular route to ex-
change source packets. The storage nodes within the transmission
range of the route’s relays linearly combine and store overheard
relay transmissions using random decentralized strategies. An
intelligent data collector first collects a minimum set of coded
packets from a subset of storage nodes in its proximity, which
might be sufficient for recovering the original packets and, by
using a message-passing decoder, attempts recovering all original
source packets from this set. Whenever the decoder stalls, the
source packet which restarts decoding is polled/doped from its
original source node. The random-walk-based analysis of the
decoding/doping process furnishes the collection delay analysis
with a prediction on the number of required doped packets.
The number of doped packets can be surprisingly small when
employed with an Ideal Soliton code degree distribution and,
hence, the doping strategy may have the least collection delay
when the density of source nodes is sufficiently large. Further-
more, we demonstrate that network coding makes dissemination
more efficient at the expense of a larger collection delay. Not
surprisingly, a circular network allows for a significantly more
(analytically and otherwise) tractable strategies relative to a
network whose model is a random geometric graph.

Index Terms—Decentralized Fountain codes, wireless net-
works, network coding, distributed storage, data collection.

I. INTRODUCTION

W IRELESS sensor networks (WSN) monitor and collect
sensor data distributed over large physical areas. Sen-

sor nodes are simple, battery-run devices with limited data
processing, storage, and transmission capabilities. For energy
efficiency reasons, the main data propagation model is hop-
by-hop, where nodes relay other nodes’ data. An important
collection scenario is when a data sink (a collector) appears at
a random position, at random time, and aims to collect all the
k source data packets. The network’s goal is to ensure that the
data packets be efficiently disseminated and stored in a manner
which allows for a low collection delay upon collector’s
arrival. This is achieved by storing data in a compact collection
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area at the fingertips of the data collector, i.e., at a set
of connected (through multiple hops) wireless nodes in its
proximity. There is a fundamental tradeoff between network
storage capacity and the collection delay. If each node across
the network can store all the packets, the data can be collected
in a single hop. On the other extreme, if each node has own
data destined for the collector and no capacity to store other
packets, the collector has to reach out to all the network nodes
to collect the data, which would incur an extreme delay. The
canonical model considered here is when the number of source
nodes k is smaller than the number of network nodes and
where each network node can both relay and store one packet.

Storing data at the fingertips of the randomly positioned
collector implies redundant data storage across the network,
whether it means simply storing source packet replicas, or
random linear combinations thereof, and resulting respectively
in a repetition code, or other linear code, implemented across
a network. More efficient storage codes than the simplest
repetition code require that the collector not only collects the
linear combinations but also is capable of decoding/recovering
the original packets. The two general classes of packet
combining (coding) techniques in [1], [2], [11], [13], and
[14] are: Fountain-type erasure codes [2], [11], [13], [14],
and decentralized erasure codes [1] - a variant of random
linear network codes [6], [7]. The advantage of Fountain
type coding is in the linear complexity of decoding which,
here, corresponds to linear original packet recovery time. The
key difficulty of the Fountain type storage approach is in
devising efficient techniques to disseminate data from multiple
sources to network storage nodes in a manner which ensures
that the required statistics of created linear combinations
is accomplished. Achieving this goal is particularly difficult
when employed with the classic random geographic graph
network models [13], [14].

In this paper we analyze decentralized Fountain-type net-
work coding strategies for facilitating a reduced delay data
collection and network coding schemes for efficient data
dissemination for a planar donut-shaped sensor network (see
Fig. 1) whose nodes lie between two concentric circles. The
network backbone is a circular route of relay nodes which
disseminate data. All network nodes within its transmission
range overhear relay’s transmissions and serve as potential
storage nodes. The storage nodes within a relay’s transmission
range form a squad. The squad size determines the relay’s
one-hop storage capacity. Squad’s storage capacity together
with the source node density and the coding/collection strategy
determine the data collection delay measured in terms of the
number of communication hops required for the collector to
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Fig. 1. Collection of coded symbols: pull phase brings the three squads of
coded packets to the decoder, and then, whenever the decoder gets stalled,
an original symbol is pulled off the network for doping. We here deliberately
omit to show that the squad nodes are overhearing (belonging to) two adjacent
relays in order to highlight the two-phase collection, as opposed to the storage
protocol.

collect and recover all k source data packets. In the proposed
polling (packet doping) scheme, an intelligent data collector
(IDC) first collects a minimum set of coded packets from a
subset of storage squads in its proximity (as in Fig. 1), which
might be sufficient for recovering the original packets and, by
using a message-passing decoder, attempts recovering all orig-
inal source packets from this set. Whenever the decoder stalls,
the source packet which restarts decoding is polled/doped
from its original source node (at an increased delay since
this packet is likely not to be close to the collector). The
random-walk-based analysis of the decoding/doping process
represents the key contribution of this paper. It furnishes the
collection delay analysis with a prediction on the number
of required doped packets. The number of required packet
dopings is surprisingly small and, hence, to reduce the number
of collection hops required to recover the source data, one
should employ the doping collection scheme. The delay gain
due to doping is more significant when the relay squad storage
capacity is smaller. Furthermore, employing network coding
makes dissemination more efficient at the expense of a larger
collection delay.

Not surprisingly, a circular network allows for a signifi-
cantly more (analytically) tractable strategy relative to a net-
work whose model is a random geometric graph (RGG) [13],
[14]. Besides, the RGG modeling implies that a packet is
forwarded to one of the neighbors in the network graph, while
the fact that all the neighbors are overhearing the same trans-
mission is not considered. In contrast, the proposed approach
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Fig. 2. Close-Up of a Circular Squad Network of k relays. We assume there
is one source per relay on average - the source entrusts its data packet to the
closest relay, hence making it a virtual source. Each relay is overheard by
nodes in its transmission range, referred to as squad nodes.

is aiming to incorporate the wireless multicast advantage [18]
into the dissemination/storage model. In our earlier work [12],
we show how a randomly deployed network can self-organize
into concentric donut-shaped networks. Note that the proposed
topology is an especially good model for sensor networks
deployed to monitor physical phenomena with linear spatial
blueprint, such as road networks, vehicular networks, or border
and pipeline-security sensor nets [4], [8].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an inaccessible static wireless sensor network
(e.g., a disaster recovery network) with network nodes that
are capable of sensing, relaying, and storing data. Nodes are
randomly scattered in a plane according to a Poisson point
process of some intensity μ. The nodes have constrained
memory resources. Without loss of generality, we assume that
most nodes have a unit-size buffer. Each node that senses an
event creates a unit-size description data packet. We refer to
such a node as a data source. We assume that events are
distributed as a Poisson point process of intensity μs < μ.
We define the transmission range as the maximum distance
r from the transmitter at which nodes can reliably receive
a packet. Assuming radially symmetric attenuation (isotropic
propagation), the transmitted packet is reliably received in a
disk of area r2π, illustrated in Figure 2. The expected number
of network nodes in the disk is μr2π and the expected number
of source nodes is μsr

2π.
Within the sensor network, we consider a circular route,

composed of k nodes referred to as relays. The distance
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between adjacent relays is equal to the transmission range
r. Without a loss of generality and for simplicity, we assume
that r is selected so that only a single data source node is
(expected to be) within the transmission range of a relay. That
is, μsr

2π = 1. Source node observes an event and sends
its data packet to the relay, making it a virtual source (see
Figure 2). Thus, k relays form a linear network (route) with
data packet i assigned to relay i, i ∈ [1, . . . , k] . Each sensor
node within the range of a relay is associated with the route
via a one-hop connection to a relay. We refer to the set of
nodes within the range of a relay as a squad, and to a node as
squad-node. Squad nodes can hear transmissions either from
only relay i or from, also relay i + 1 and, thus, belong to
either the own set of squad-nodes Oi, or to the shared set of
squad-nodes, denoted Si(i+1), where, hereafter, any addition
operation will be assumed to be mod k, i.e., (i + 1) mod k,
as shown in Figure 2. By means of associations, the relays
in the circular route together with the squad nodes form a
donut-shaped circular squad network. The expected number
of nodes in the squad is denoted with h = μr2π, while the
expected area of each shared set is E

[
Si(i+1)

]
= h̃ = 0.4h.

We primarily focus on shared squad nodes. In the rest of the
paper, whenever we refer to squad-nodes, we mean shared
nodes, and for simplicity we assume h = h̃. The goal is to
disseminate data from all sources and store them at squad
nodes so that a collector can recover all k original packets
with minimum delay. An IDC collects data via a collection
relay. The data is collected from kT (kd) = ks + kd storage
nodes of which most (ks >> kd) reside in a set of s adjacent
squads, including the collection relay squad. These s squads
form a supersquad (See Figure 1). The number of packets not
collected from the supersquad is denoted kd.

Note that the density of sources μs is dependent on the
spatial characteristics of the monitored physical process, i.e.,
the spatial density of events. A well designed sensor network
will ensure that the spatial density of nodes μ is designed
to properly cover this process. When r is selected to ensure
r2πμs = 1 then h = μ/μs is the coverage redundancy factor.
Furthermore, for a given received signal-to-noise ratio, the
one-hop transmission energy E1 and the single hop delay τ1

are inversely proportional to μs. And, for a given circular route
radius R, the (expected) number of relays is k = R/r. Hence,
for a given transmission range r (or μs), the only degree of
freedom is the coverage redundancy factor h (squad size),
i.e, the network density μ. By reducing μ, we decrease the
average number of nodes in a squad h. This has implications
to the collection (delay and energy) cost. The supersquad
consists of s = �ks/h� squads, and the average number
of hops a packet makes until it is collected by the IDC is
(s−1)/4+1. Hence, the smaller the μ, the larger the average
collection delay τs = ks((s − 1)/4 + 1)τ1 and the energy
Es = ks ((s − 1)/4 + 1)E1 from the supersquad. Henceforth,
we will, without loss of generality, normalize τ1 = 1 and
E1 = 1. The key collection performance measure will be the
average number of collection hops per source packet c, where
c = ks [1 + (s − 1)/4] /k when all collected packets are from
the supersquad, i.e., kT (0) = ks.

We will comparatively consider two classes of stor-
age/encoding strategies: in the first, the IDC collects the

k 1 2 3

Fig. 3. Circular Squad Network: the storage graph.

original packets, while in the second one the collected packets
are linear combinations of the original packets and, hence,
the IDC needs to decode them to recover source packets.
When combining is employed, constrained by the collection
delay, we consider only storage strategies which allow for
decoding methods of linear complexity, i.e., the use of belief
propagation (BP) iterative decoders. Taking as a reference the
case where original packets are encoded into coded packets
whose linear combination degrees follow the Robust Soliton
distribution, as in [14], based on the asymptotic analysis of LT
codes [15], we expect that kT (0) = ks = k +

√
k log2(k/ε)

collected code symbols are required to decode (1−ε)k original
symbols, where ε is a sufficiently small constant. Here the
number of collected packets is significantly larger than k for
small to medium number of sources k. Hence, collection of
this many packets can be expensive, in particular when the
event coverage redundancy factor h is small. Collecting a
smaller number of packets upfront would result in a stalled
decoding process. Here, we take advantage of the availability
of additional replicas of source packets along the circular
network, to pull one such packet off the network in order to
continue the stalled decoding process. See Figure 1. The pull
phase is meant to assist the decoding process using a technique
that we refer to as doping. In the following, encoding describes
the mapping on the source packets employed both while
disseminating and while storing. It is a mapping from the
original k packets to the collected kT (kd) = ks + kd encoded
packets.

III. DATA DISSEMINATION

The nodes within the transmission range of the route relays
together with the relays themselves form a dissemination
network.

The dissemination connectivity graph is a simple circular
graph with k nodes. This graph models connections between
relays, which are bidirectional. The connectivity graph used in
the storage model is expanded with storage nodes, representing
shared squad nodes. In this graph, every storage node is
adjacent to two neighboring relay nodes. Also, edges between
storage and relay nodes are directed, as illustrated in Figure 3.
Every edge in the dissemination graph is of unit capacity. A
single transmission reaches two neighboring relays.

We consider two dissemination methods: no combining in
which each relay sends its own packet and forwards each
received packet until it has seen all k network packets, and
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Fig. 4. Dissemination procedure brings all network data to each relay in half as many hops as it would be needed with simple forwarding scheme: example
for k = 7 follows the exchanges of node 1 where the black circle on the bottom represents the node’s receiver while each gray circle above it represents the
transmitter at the corresponding dissemination round.

degree-two combining, described in Figure 5. For the degree-
two combining dissemination, a relay node combines the
packet received from its left with the packet received from
its right into a single packet by XOR-ing respective bits,
to provide innovative information to both neighboring relays
for the cost of one transmission [19]. Consequently, each
relay performs a total of �(k − 1)/2� first-hop exchanges, as
described in Figure 4 and in [17]. Note that here storage
nodes overhear degree-two packet transmissions. They either
randomly combine those with previously received degree-two
packets, or they first apply the on-line decoding of the packets
(see Figure 4), and then combine obtained degree-one packets
with previously stored linear combinations of degree-one
packets. For further details about degree-two dissemination,
the reader is referred to [11].

IV. DECENTRALIZED SQUAD-BASED STORAGE ENCODING

Under a centralized storage mechanism that would allow
coordination between squad nodes, a unique packet could be
assigned to each of k nodes located within a supersquad of
an approximate size k/h, and the same procedure repeated
around the circular network for each set of k adjacent squad
nodes. This periodic encoding procedure would allow a ran-
domly positioned IDC to collect k original packets from the
set of closest nodes. However, our focus are scalable designs
where centralized solutions are not possible. We resort to
stochastic protocols for storing packet replicas, and apply
random coding to store linear combinations of the packets.
For each dissemination method we distinguish: combining and
non-combining decentralized storage techniques. In both we
assume that the storage squad nodes can hear (receive) any of
the k dissemination transmissions from the neighboring relay
nodes. Hence, either a common timing clock or/and regular
transmission listening is necessary. The reference example
of non-combining (non-coding) methods is coupon collection
storage, in which each squad node randomly selects one of
k packets to store ahead of time. As the coupon collector
is completely random, it requires on average k log k storage
nodes to cover all the original packets. In order to decrease
the probability of many packets not being covered, we apply

combining storage techniques in which one storage node’s
encoded packet contains information that covers many original
packets. The higher this code symbol degree is, the lower is
the likelihood that a packet will stay uncovered. We consider
combining either degree-two or degree-one packets. Each
squad node samples a desired code symbol degree d from
distribution ω(d), d ∈ [1, · · · , k] . The squad node decides
ahead of time which subset of d transmissions it will combine
to generate the stored encoded packet. Choosing a good
distribution ω(d) is not easy, since it needs to satisfy many
contradicting requirements. The high-degree code symbols are
good for decreasing the probability of uncovered packets.
However, other requirements are more important for proper
behavior of the BP decoding process, especially the right
amount of degree one and degree two code symbols. It is
well known that Ideal Soliton’s (IS) expected behavior is close
to ideal for Fountain codes decoded by a BP decoder, but
the large variance may cause a frequent absence of degree-
one symbols (the ripple) in the collected sample of code
symbols, thus stalling the BP process. This is the reason why
Robust Soliton (RS) is used as a choice degree distribution for
rateless erasure codes. For RS, the probability of one-degree
symbols is overdesigned in order to prevent stalling. However,
redistribution of the probability mass from higher degrees to
degree-one increases the likelihood of uncovered packets. In
the next section, we present an analysis of why IS turns out
to be better than RS when BP doping is used.

V. COLLECTION AND DECODING

The collection problem with the coupon collector (and with
similar non-combining storage methods) is straightforward
as it excludes decoding. The focus is simply on providing
coverage redundancy h that minimizes the size of supersquad
containing k log k packets required to recover k source pack-
ets. For the Fountain-based combining methods, the collection
problem is more elaborate, and intricately tied to decoding
strategy, which we study in the following subsections.
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Initialization:
k=1: Relay i sends its own packet pi, and subsequently

receives the packets p(i−1) and p(i+1) originating from
its first-hop neighbors.

k=2: Relay i sends a linear combination (XOR) of the received
packets p(i−1) and p(i+1), and subsequently receives the
packets containing pi XOR-ed with the packets p(i−2)

and p(i+2) originating from its second-hop neighbors,
respectively. Relay i recovers p(i−2) and p(i+2) by
XOR-in the received linear combinations with pi.

For (k = 3, k < (n + 1)/2, k + +)
Online Decoding

The packets received by relay i in the (k − 1)th round
contain linear combination of packets p(i−k+2) and
p(i+k−2) and packets p(i−k+1) and p(i+k−1), originating
from its (k − 1)th hop neighbors. XOR-ing the received
packets with the matching packets p(i−k+2) and
p(i+k−2), the relays recover the packets p(i−k+1) and
p(i+k−1).

Storing
The buffer space is updated with the recovered original
packets p(i−k+1) and p(i+k−1). For k > 3 the buffer
space is updated by overwriting packets p(i−k+4) and
p(i+k−4).

Encoding
In the kth round, relay i linearly combines packets
p(i−k+1) and p(i+k−1), and transmits the linear
combination.

Fig. 5. Degree-two Dissemination Algorithm

A. Belief Propagation Decoding

Suppose that we have a set of ks code symbols that are
linear combinations of k unique input symbols, indexed by
the set {1, · · · , k}. Let the degrees of linear combinations be
random numbers that follow distribution ω(d) with support
d ∈ {1, · · · , k}. Here, we equivalently use ω(d) and its gen-
erating polynomial Ω(x) =

∑k
d=1 Ωdx

d, where Ωd = ω(d).
Let us denote the graph describing the (BP) decoding process
at time t by Gt (see Figure 6). We start with a decoding matrix
S0 = [sij ]k×ks

, where code symbols are described using
columns, so that sij = 1 iff the jth code symbol contains the
ith input symbol. Number of ones in the column corresponds
to the degree of the associated code symbol. Input symbols
covered by the code symbols with degree one constitute the
ripple. In the first step of the decoding process, one input
symbol in the ripple is processed by being removed from
all neighboring code symbols in the associated graph G0. If
the index of the input symbol is m, this effectively removes
the mth row of the matrix, thus creating the new decoding
matrix S1 = [sij ](k−1)×ks

. We refer to the code symbols
modified by the removal of the processed input symbol as
output symbols. Output symbols of degree one may cover
additional input symbols and thus modify the ripple. Hence,
the distribution of output symbol degrees changes to Ω1(x).
At each subsequent step of the decoding process one input
symbol in the ripple is processed by being removed from all
neighboring output symbols and all such output symbols that
subsequently have exactly one remaining neighbor are released
to cover that neighbor. Consequently, the support of the output
symbol degrees after � input symbols have been processed
is d ∈ {1, · · · , k − �} , and the resulting output degree

distribution is denoted by Ω�(x). Our analysis of the presented
BP decoding process is based on the assumption that the ripple
size relative to the number of higher degree symbols is small
enough throughout the process. Consequently, we can ignore
the presence of defected ripple symbols (redundant degree-
one symbols) [5]. Hence, the number of decoded symbols is
increased by one with each processed ripple symbol. Now,
let us assume that input symbols to be processed are not
taken from the ripple, but instead provided to the decoder as
side information. We refer to this mechanism of processing
input symbols obtained as side information as doping. In
particular, to unlock the belief propagation process stalled at
time (iteration) t, the degree-two doping strategy selects the
doping symbol from the set of input symbols connected to
the degree-two output symbols in graph Gt, as illustrated in
Figure 6. Hence, the ripple evolution is affected in a different
manner, i.e. with doping-enhanced decoding process the ripple
size does not necessarily decrease by one with each processed
input symbol.

The following subsections study the behavior of both vari-
eties of the BP decoding process, first through the evolution of
symbol degrees higher than one, and in particular by demon-
strating the ergodicity of the Ideal Soliton degree distribution,
then by modeling and analyzing the ripple process, resulting
in an unified model for both classical and doping-enhanced
decoding. Based on that model, we analyze the collection cost
of the presented decoding strategies, when the starting ω(d)
is Ideal Soliton.

B. Symbol Degree Evolution

In this subsection, we focus on the evolution of symbol
degrees higher than one (unreleased symbols), and then an-
alyze ripple evolution separately in the next subsection. The
analysis of the evolution of unreleased output symbols is the
same for both classical BP decoding case (without doping),
and the doped BP decoding. We now present the model of
the doping (decoding) process through the column degree
distribution at each decoding/doping round. We model the
�th step of the decoding/doping process by selecting a row
uniformly at random from the set of (k−�) rows in the current
decoding matrix S� = [sij ](k−�)×ks

, and removing it from the
matrix. After � rounds or, equivalently, when there are k − �
rows in the decoding matrix, the number of ones in a column
is denoted by Ak−�. The probability that the column is of
degree d, when its length is k− �− 1, � ∈ {1, · · · , k − 3}, is
described iteratively

P (Ak−�−1 = d) = P (Ak−� = d)
(

1 − d

k − �

)
+ P (Ak−� = d + 1)

d + 1
k − �

(1)

for 2 ≤ d < k − �, and P (Ak−�−1 = k − �) = 0. Let the
starting distribution of the column degrees (for the decoding
matrix S0 = [sij ]k×ks

) be Ideal Soliton, denoted by ρ(d),

ρ(d) =
1

d(d − 1)
for d = 2, · · · , k, (2)

and ρ(1) = 1
k . By construction, for l = 0, P (Ak = d) = ρ(d),

which, together with (1), completely defines the dynamics
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Fig. 7. Density Evolution of IS distribution due to uniform doping. The upper
graph is the distribution of the output symbols after � = 500 decodings,
for initial number of collected code symbols k = 1000; the lower graph
is the IS with support set {1, · · · , (k = 1000 − �)} as if we are starting
with the matrix of the same size (initial number of collected code symbols
k = 1000 − �) as the matrix doped in round �.

of the doping process when the Fountain code is based on
the Ideal Soliton. After rearanging and canceling appropriate
terms, we obtain, for d ≥ 2,

P (Ak−l = d) =

{
k−l
k ρ(d) d = 2, · · · , k − l,

0 d > k − �.
(3)

We assume that ks ≈ k as, by design, we desire to have the
set of upfront collected symbols ks as small as the set of
source symbols. The probability of degree-d symbols among
unreleased symbols n

(�)
u = ks − � can be approximated

with P (Ak−�=d)ks

ks−� ≈ P (Ak−�=d)k
k−� . Hence, the probability

distribution ω�(d) of the unreleased output node degrees at
any time � remains the Ideal Soliton

ω�(d) =
k

k − �
P (Ak−� = d) = ρ(d) for d = 2, · · · , k − �.

(4)

C. Doped Ripple Evolution: Random Walk Model

There exist comprehensive and thorough analytical models
for the ripple evolution, characterizing the decoding of LT
codes [3], [9]. However, their comprehensive nature results
in difficult to evaluate complex models. For describing the
dynamics of a doped decoder, we consider a simpler model,
which attempts to capture the ripple evolution for the Ideal
Soliton. Figure 7 and the code symbol degree evolution
analysis illustrate how the Ideal Soliton distribution main-
tains its shape with decoding/doping. This fact, which results
in a tractable ripple analysis and, more importantly, in an
outstanding performance as illustrated in the last section, is
our main motivator for selecting Ideal Soliton Fountain codes
for our doping scheme. We study the number of symbols
decoded between two dopings and, consequently, characterize
the sequence of interdoping yields. The time at which the ith
doping occurs (or, equivalently, the decoding stalls for the
ith time) is a random variable Ti, and so is the interdoping
yield Yi = Ti − Ti−1. Our goal is to obtain the expected
number of times the doping will occur by studying the ripple
evolution. This goal is closely related to (a generalization of)
the traditional studies of the fountain code decoding which
attempt to determine the number of collected symbols ks

required for the decoding to be achieved without a single
doping iteration, i.e., when T1 ≥ k.

Let the number of upfront collected coded symbols be ks =
k (1 + δ) , where δ is a small positive value. At time � the total
number of decoded and doped symbols is �, and the number
of (unreleased) output symbols is n = ks − � = λδ

� (k − �) .
Here, λδ

� = 1 + k
k−�δ is an increasing function of �. The

unreleased output symbol degree distribution polynomial at
time � is Ω�(x) =

∑
Ωd,�x

d, where d = 2, · · · , k − �,
and Ωd,� = ω�(d). In order to describe the ripple process
evolution, in the following we first characterize the ripple
increment when � corresponds to the decoding and, next, when
it corresponds to a doping iteration.

Each decoding iteration processes a random symbol of
degree-one from the ripple. Since the encoded symbols are
constructed by independently combining random input sym-
bols, we can assume that the input symbol covered by the
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degree-one symbol is selected uniformly at random from the
set of undecoded symbols. Released output symbols are its
coded symbol neighbors whose output degree is two. Releas-
ing output symbols by processing a ripple symbol corresponds
to performing, in average, n2 = nΩ2,� independent Bernoulli
experiments with probability of success p2 = 2/(k − �).
Hence, the number of released symbols at any decoding
step � is modeled by a discrete random variable Δ(δ)

� with
Binomial distribution B (nΩ2,�, 2/(k − �)) , which for large
n can be approximated with a (truncated) Poisson distribution
of intensity 2Ω2,�λ

(δ)
�

Pr
{
Δ(δ)

� = r
}

= (
n2
r )(p2)r (1 − p2)

n2−r (5)

≥ (n2)r

r!
(p2)r (1 − p2)

n2−r

≈ (2Ω2,�λ
(δ)
� )r

r!
e−2Ω2,�λ

(δ)
� , r = 0, · · · , n2,

where we have first applied the Stirling approximation to the
Binomial coefficient and, also, assumed that the probabilities
in (5) can be neglected unless n2 is much larger than r.
According to (4), the fraction of degree-two output symbols
for Ideal Soliton based Fountain code is expected to be
n2/n ≈ Ω2,� = ρ(2) = 1/2, for any decoding iteration �.
Hence,

Pr
{
Δ(δ)

� = r
}

= η(r) =

(
λ

(δ)
�

)r

e−λ
(δ)
�

r!
, r = 0, · · · ,

n

2
(6)

or, equivalently, Δ(δ)
� ∼ ℘

(
λ

(δ)
�

)
, where ℘ (·) denotes Pois-

son distribution. For each decoding iteration, one symbol is
taken from the ripple and Δ(δ)

� symbols are added, so that the
increments of the ripple process can be described by random
variables X� = Δ(δ)

� − 1 with the probability distribution
η(r + 1) (for X� = r) characterized by the generating
polynomial I(x) =

∑n/2
d=0 η(d)xd−1 and an expected value

λ
(δ)
� −1. Next we describe the ripple increment for the doping

iteration, where a carefully selected input symbol is revealed
at time Ti = ti when the ripple is empty (random degree-two
doping). The number of degree-two output symbols at time
Ti = ti is n2 = ρ(2)n = n/2, where, n = λ

(δ)
ti

(k − ti) .
Degree-two doping selects uniformly at random a row in the
decoding matrix Sti that has one or more non-zero elements
in columns of degree two. This is equivalent to randomly
selecting a column of degree two to be released, and restarting
the ripple (i.e., same as decoding) with any of its two input
symbols from the decoding matrix whose number of degree-
two columns is now n2 − 1 ≈ n2, for large n2. Hence, the
doping ripple increment can be described by unit increase
in addition to an increase equivalent to the one obtained
through decoding but without the ripple decrement of 1. That
is, statistically, the doping ripple increment XD

ti
is a random

variable described by ID(x) =
∑

η(d)xd+1, corresponding
to the shifted distribution η(r − 1) for XD

ti
= r.

Now if, for the doping instant t = ti−1, we define Xti−1 =
XD

ti−1
− 2, the ripple size for t ∈ [ti−1, ti] can be described

in a unified manner with St,i + 2 where

St,i =
t∑

j=ti−1

Xj (7)

is a random walk modeling the ripple evolution. Note that the
ripple increments X� are not IID random variables, since the
intensity of η(d) changes with each iteration �. However, for
analytical tractability, we study the interdoping time using the
random walk model in (7), by assuming that λ(δ) changes from
doping to doping, but remains constant within the interdoping
interval. Under this assumption, the ripple size St,i + 2 is
a partial sum of IID random variables Xj, of the expected
value λ

(δ)
ti−1

− 1. Note that, when δ = 0, i.e. when ks = k,
St,i is a zero mean random walk. In this special case, we
treat the doping-enhanced BP process as (an approximate)
renewal process, where the process starts all over after each
doping. Modeling and analyzing this particular case is much
easier, resulting in a closed-form expression for the expected
number of dopings. We later refer to this case to provide
some intuition. The expected interdoping yield is the expected
time it takes for the ripple random walk St,i + 2 to become
zero. Using random walk terminology, we are interested in
the statistics of the random-walk stopping time. The stopping
time is the time at which the decoding process stalls, counting
from the previous doping time, where the first decoding round
starts with the 0th doping which occurs at T0 = 0. Hence, the
i-th stopping time (doping) Ti is defined as

Ti = min {min {ti : St,i + 2 ≤ 0} , k} . (8)

We study the Markov Chain model of the random walk St,i.
Each possible value of the random walk represents a state of
the Markov Chain (MC) described by the probability transition
matrix Pi. State v, v ∈ {1, · · · , k} corresponds to the ripple of
size v−1. State 1 is the trapping state, with the (auto)transition
probability Pi,11 = 1 and models the stopped random walk.
Hence, based on (6), we have the state transition probabilities

Pi,11 = 1 (9)

Pi,v(v+b) = η(1 + b),
v = 2, · · · , k, b = −1, · · · , min

(⌈
n
2

⌉
, k − v

)
,

and Pi,vw = 0 otherwise, resulting in a transition probability
matrix of the following almost Toeplitz form

Pi =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0

η(0) η(1) η(2) · · · 0
0 η(0) η(1) · · · 0
...

...
...

...
...

0 0 · · · η(0) η(1)

⎤⎥⎥⎥⎥⎥⎦
k×k

, (10)

with η (·) ≡ ℘
(
λ

(δ)
ti

)
. The start of the decoding process is

modeled by the MC being in the initial state v = 3 (equivalent
to the ripple of size two). Based on that, the probability of
being in the trapping state, while at time t > Ti, is

p
(Ti)
t = [0 0 1 0 · · · 0]P(t−Ti)

i [1 0 0 · · · 0]T . (11)
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Hence, the probability of entering the trapping state at time t
is

pTi(u) = p
(Ti)
Ti+u − p

(Ti)
Ti+u−1 (12)

= [0 0 1 0 · · · 0]
(
Pu

i − P(u−1)
i

)
[1 0 0 · · · 0]T ,

where u = t − Ti. {Ti} is a sequence of stopping-time
random variables where index i identifies a doping round.
Yi = Ti −Ti−1, i > 1 is a stopping time interval of a random
walk of (truncated) Poisson IID random variables of intensity
λ

(δ)
Ti−1

= 1+δ k
k−Ti−1

, and can be evaluated using the following
recursive probability expression

Pr {Yi = 0} = Pr {Yi = 1} = 0 (13)

Pr {Yi = t + 1} = η(0)Rη (t) 1 ≤ t < k,

Rη (t) = ℵ(t)(t − 1) −
t−1∑
i=1

Pr {Yi = t − i}ℵ(i)(1 + i)

obtained from (12) after a series of matrix transformations.
Here, η(0) is Poisson pdf of intensity λ

(δ)
Ti−1

evaluated at 0,

and ℵ(s)(d) is the s-tupple convolution of η(·) evaluated at d,

resulting in a Poisson pdf of intensity sλ
(δ)
Ti−1

evaluated at d.
The complete derivation of (13) is given in the Appendix. Note
that the intensity sλ

(δ)
Ti−1

is, in general, a random variable and
that the sequence of doping times Ti is a Markov chain. Hence,
the number of decoded symbols after hth doping, a partial sum
Dh =

∑h
i=1 Yi of interdoping yields, is a Markov-modulated

random walk.
The expected number of dopings sufficient for complete

decoding is the stopping time of the random walk Dh, where
the stopping threshold is k − uδ

k. Here, based on the coupon
collection model, uδ

k is the expected number of uncovered
symbols (which, necessarily, have to be doped) when ks coded
symbols are collected

uδ
k = k

(
1 − 1

k

)[k(1+δ) log k]

≈ ke−(1+δ) log k. (14)

The total number od dopings is the stopping time random
variable D defined as

D = min
{
h : Dh + uδ

k ≥ k
}

. (15)

Our model can further be simplified by replacing Ti−1 with
li =

∑i−1
t=1 E [Yt|Tt−1 = lt] in the intensity λ

(δ)
Ti−1

(13) and
thus allowing for a direct recursive computation in (13).
Hence,

E [Yi|Ti−1 = li] ≈
k−li∑
t=1

tPr {Yi = t} (16)

+

(
1 −

k−li∑
t=1

Pr {Yi = t}
)

(k − li) .

Furthermore, we can approximate Dh ≈ lh+1 =∑h
i=1 E [Yi|Ti−1 = li] and use an algorithm in Figure 16

(based on (15)) to calculate expected number of dopings.
In special case when δ = 0, further simplifying assumptions

lead to the approximation that all interdoping yields are

Dissemination and Storage:
degree-one/two dissemination of k source packets; each
storage node stores a random linear combination of d
disseminated packets; d is drawn from IS ρ(d).

Upfront collection:
IDC collects ks encoded packets from s closest storage
squads.

Belief propagation decoding and doping-collection:
l = 0: number of processed source packets
kr,l: number of packets in the ripple
kd = 0: number of doped packets.

For (l = 0, l ≤ k, l + +)
while kr,l = 0
Collect(from the source relay) and dope the decoder with
a source packet contributing to a randomly selected
degree-two (or larger) output packet.
kd + +; l + +;
endwhile
Process a symbol from the ripple; kr,l −−;

endfor

Fig. 8. Proposed dissemination, storage, and doping collection

described by a single random variable Y whose pdf is given
by the following recursive expression, based on (13),

Pr {Y = t + 1} = (17)

η(0)

(
℘(t)(t − 1) −

t−1∑
i=1

Pr {t − i}℘(i)(1 + i)

)
,

where ℘(s)(d) denotes Poisson distribution of intensity s,
evaluated at d, and t ∈ [0, k− 1]. The range of t varies from
doping to doping, i.e. if Ti−1 = li, then Yi would have support
t ∈ [li, k − 1], and, hence, this single variable approximation
is accurate for the case when both the ripple size is small and
when li � k. We now approximate the expected value of the
interdoping yield Y as

E [Y ] ≈
k∑

t=1

tPr {Y = t} −
(

1 −
k∑

t=1

Pr {Y = t}
)

k. (18)

Now, the doping process Dh is a renewal process, and thus,
the Wald Equality [16] implies that the mean stopping time is
E [D] = k/E [Y ] .

VI. COMPARATIVE COST ANALYSIS

The summary of the proposed approach to dissemination,
storage, and collection with doping, based on IS combining
for storage, and a random degree-two doping for collection
strategy, is given in Figure 8. We here analyze the performance
of this approach in terms of data collection cost. The cost
of the upfront collection from the nearby nodes in the super
squad 1+(s−1)/4 is significantly smaller than the collection
cost when the packets are polled from their original source
relays, which is in average k/4. Nevertheless, in this section,
we show that the number of doped packets kd will be
sufficiently smaller than the residual number of undecoded
symbols when the belief propagation process first stalls, so
that their collection cost is offset, and the overall collection
cost is reduced relative to the original strategy.

We quantify the performance of the decoding process
through the doping ratio kd/k. Figure 9 illustrates the dramatic
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Fig. 9. Overhead (doping) percentage: we define kT (kd) = ks + kd as
the number of symbols collected in both collection phases, and the collection
overhead ratio as (kT (kd)− k)/k, which alows us to compare the overhead
for the simulated LT decoding of k original symbols and the simulated
degree-two doped belief-propagation decoding of k coded symbols with
IS degree distribution. The LT overhead bound is the analytical bound by
Luby [15]. The IS doping bound is the analytical bound based on the algorithm
given in Figure 16.
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Fig. 10. Doping percentage with initial IS code symbol degree distribution
vs RS. Both mean and variance are much smaller for Ideal Soliton.

overhead (kT (kd) − k) /k reduction when employing doping
with an IS distribution relative to the overhead of RS encoding
without doping. Figure 10 demonstrates that RS with doping
performs markedly worse than IS encoding. In particular, it
illustrates that IS with doping demonstrates a very low vari-
ance, which is surprisingly different from the results without
doping.

In Section II we characterized a circular squad network
by its node density μ and its source density μs so that
network scaling can be expressed through the scaling of the
coverage redundancy factor h = μ/μs. Figure 11 illustrates
the importance of considering coverage redundancy when
selecting storage/ collection strategy: in the case of degree-two
dissemination, when the size of the supersquad s increases the
fountain code strategy improves (in terms of a reduced doping
kd/k required for decoding) due to an increase in mixing. As
a result of the mechanism described in Figures 4 and 5, the
degree-two combinations in adjacent squads have a significant
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Fig. 11. Doping percentage as a function of supersquad size when code
symbols are linear combinations of degree-two packets: for a fixed number
of upfront collected symbols ks = 1000, encoded by degree-two IS method,
the squad size (node density) is changed, so that the supersquad contains
1, 2, 5, and 10 squads. The more squads there are, the more intense is the
data mixing, decreasing the probability of non-covered original symbols.
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Fig. 12. The encoding process emulates supersquads with fixed squad size
h = 200 and the degree-two input symbols overheard within the superquad:
the resulting doping percentage for IS degree distribution of stored code
symbols.

number of common packets. Hence, when forming code
symbols by combining degree-two packets, we encounter a
higher code symbol dependency and an increased number
of redundant symbols in the ripple, which increases the
probability of uncovered input symbols. Our doping overhead
accounts for uncovered symbols, since ultimately they need
to be pulled off the original sources for the complete data
recovery. With increased supersquad size s (or, equivalently, a
decreased h) the mixing of input symbols is improved and this
negative effect is alleviated. This dependency is not present
in the case of degree-one dissemination. Figure 12 gives the
corresponding required doping kd/k as a function k for a fixed
squad size h = 200.

The cost minimization problem for any encoding scheme
with (and without) doping is described as follows. Let, the
pair (ks, kd) be the feasible number of encoded and doped
packets when sufficient for decoding the original k packets.
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Fig. 14. Collection delay (hop count) above minimum per input symbol for
different values of coverage redundancy h as a function of δ. Note that there
is an optimal δ for each h in which the delay is minimized: for h = 10 δ is
one percent, for h = 15 it is 3% percent, for h = 30 δ = 4%

The per-source packet collection cost for this pair is

cT (h) = [cs(h)ks + cdkd] /k (19)

where cs(h) = 1+ (s(h)+1)/4 is the average collection cost
from the supersquad of size s(h) = �ks/h� and cd = �k/4�
is the average collection doping cost when polling doped
packets from the original source relays. Examples of (ks, kd)
pairs are (0, k) for the pure polling mechanism with cost
cT (h) = cd = �k/4� and (ks = k +

√
(k) log2(k/δ), 0)

in average for degree-one dissemination and RS fountain
encoding with average per-packet cost cT = cs(h)ks/k.
For any given encoding mechanism and the set of feasible
pairs (ks, kd), the minimum per-packet collection cost is
cmin(h) = min(ks,kd) cT (h).

The effect on the doping percentage of increasing the
number of upfront collected symbols ks above k (described
by our general model of interdoping times) is illustrated in
Figure 13. Figure 14 illustrates per-packet collection cost
above minimum, based on (19), as a function of the number
of packets (ks−k)/k collected from the supersquad in excess
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Fig. 15. Collection Delay for various collection techniques, normalized with
respect to the polling cost, as a function of 1/h. Note that the proposed
doping strategy is inferior to polling only when there are no other nodes
but relays. For very large squads (> 1000), the proposed doped IS code
induces a sufficiently large polling cost (usually to start the process as the IS
sample is likely not to have degree-one symbols) which offsets (and exceeds)
the cost due to overhead packets solicited from the supersquad with the RS-
based strategy without doping. The coupon collection (non-coding) strategy
is consistently worse by an order of magnitude than the RS-based fountain
encoding and is worse than polling for high source densities (small squads
with tens of nodes).

of k, for different values of coverage redundancy h, and IS
encoding. For the range of coverage redundancies that may
be of practical value (up to 50), the minimum collection cost
is obtained for ks,min/k ∈ (1, 1.05). Figure 15 illustrates
the per-packet cost cT (h)/(k/4) normalized to the reference
polling cost as a function of λs/λ = 1/h, the relative
density of source nodes for a network with k = 2000 source
packets. Four strategies are included all based on degree-one
packet dissemination: reference polling, degree-one coupon
collection, RS with no doping, and the IS encoding with a
feasible doping pair (ks, kd). Note that the proposed scheme
is inferior to the RS-based scheme only for very low density
of events, i.e. when h > 1000.

In conclusion, in this paper we showed that, for the circular
squad network, the total collection cost could be reduced
by applying a packet combining degree distribution that is
congruous to doping, applying a good doping mechanism, and
by balancing the cost of upfront collection and doping, given
coverage redundancy factor. The proposed network model that
includes a route of relays and the nodes overhearing relays’
transmissions is chosen based on a range of sensor network
applications that monitor physical phenomena with linear
spatial blueprint, such as road networks and border-security
sensor nets. In order to limit the scope of the paper, we here
omit describing a more general setup in which our network
model can be used. However, we argue that networks of
different (non-linear) topology may use dissemination mech-
anisms that produce shortest routing paths from data sources
to the collection node, suggesting a cost collection analysis
based on these ”linear route networks” and, hence, similar to
the one presented here. This is one of the reasons we treat
data dissemination separately from data collecting in our cost
analysis.



KOKALJ-FILIPOVIĆet al.: DOPED FOUNTAIN CODING FOR MINIMUM DELAY DATA COLLECTION IN CIRCULAR NETWORKS 11

Initialization:
li = 0, D = 0

For (i = 1, D < k, i + +)
Calculate λ(δ) (li)
Using (13), calculate Pr {Yi = t} for t ≤ k − li
Using (16), calculate E [Yi]
D = D + E [Yi]
li = D

kd = i, pd = 100kd/k

Fig. 16. Calculation of the expected doping percentage pd based on the
number of upfront collected symbols

APPENDIX

Random Walk Ripple Evolution: The Stopping Time Probabil-
ity

Recall that for the Markov Chain model of the ripple
evolution, described by (9) and (10), its trapping state cor-
responds to the empty ripple. The probability of entering
the trapping state at time t, where t > Ti, is given in
(12), where u = t − Ti. The probability of being in the
trapping state at Ti + u can also be expressed as p

(Ti)
Ti+u =

[0 0 1 0 · · · 0]P(u−1)
i [1 η(0) 0 · · · 0]T . Hence, we can refor-

mulate (12) as

pTi(u) = [0 0 1 0 · · · 0]Pu−1
i [0 η(0) 0 · · · 0]T . (20)

Note that both [0 0 1 0 · · · 0] and [0 η(0) 0 · · · 0]T have zero-
valued first elements, which means that the first row and the
first column of the transition probability matrix Pi do not
contribute to the value of (20). Hence, we introduce a new
matrix P̃i which contains the significant elements of Pi as

P̃� =

⎡⎢⎢⎢⎢⎢⎣
η(1) η(2) η(3) · · · 0
η(0) η(1) η(2) · · · 0
0 η(0) η(1) · · · 0
...

...
...

...
...

0 0 · · · η(0) η(1)

⎤⎥⎥⎥⎥⎥⎦
k−1×k−1

,(21)

whith η (·) ≡ ℘
(
λ

(δ)
�

)
. Now,

pTi(u) = η(0) [0 1 0 · · · 0] P̃(u−1)
i [1 0 0 · · · 0]T . (22)

Assuming n is large, we can approximately express the
uth power of the matrix P̃i through a matrix that contains
elements ℵ(u)() of the uth convolution of the pdf array η =
[η(0) η(1) · · · ] . Let us define η as degree-one convolution.
For order-two convolution, we convolve η with itself, and
uth convolution of η is obtained by recursively convolving
(u − 1)th convolution with η. By multiplying the matrix

P̃C
i =

⎡⎢⎢⎢⎣
η(0) η(1) η(2) · · ·
0 η(0) η(1) · · ·
...

...
...

...
0 · · · η(0) η(1)

⎤⎥⎥⎥⎦ , (23)

which was obtained by adding the column [η(0) 0 0 · · · ]T in
front of P̃i, and another matrix

P̃R
i =

⎡⎢⎢⎢⎢⎢⎣
η(2) η(3) η(4) · · ·
η(1) η(2) η(3) · · ·
η(0) η(1) η(2) · · ·
0 η(0) · · · · · ·
...

...
...

...

⎤⎥⎥⎥⎥⎥⎦ , (24)

which was obtained by adding the row [η(2) η(3) η(4) · · · ]
above P̃i, we obtain

P̃C
i P̃R

i =

⎡⎢⎢⎣
ℵ(2)(2) ℵ(2)(3) · · ·
ℵ(2)(1) ℵ(2)(2) · · ·
ℵ(2)(0) ℵ(2)(2) · · ·
· · · · · · · · · · · ·

⎤⎥⎥⎦ (25)

= D̃(2), (26)

where ℵ(s)(d) is the s-th convolution of η(·) evaluated at d,
and D̃(2) is what we refer to as second convolution matrix of
η, for η (·) ≡ ℘

(
λ

(δ)
ti

)
. Hence, (27).

P̃2
i = D̃(2) − η(0)

⎡⎢⎣η(2) η(3) · · ·
0 0 · · ·
...

...
...

⎤⎥⎦ (27)

= D̃(2) − [η(0) 0 0 · · · ]T
[
ℵ(1)(2) ℵ(1)(3) ℵ(1)(4) · · ·

]
By induction, [28].

P̃3
i = D̃(3) − [η(0) 0 0 · · · ]T

[
ℵ(2)(3) ℵ(2)(4) · · ·

]
(28)

− P̃i [η(0) 0 · · · ]T
[
ℵ(1)(2) ℵ(1)(3) · · ·

]
,

P̃u
i = D̃(u) −

u∑
z=2

S̃u
i (z)

S̃u
i (z) = P̃(u−z)

i [η(0) 0 · · · ]T
[
ℵ(z−1)(z) ℵ(z−1)(z + 1) · · ·

]
Replacing (27) in (22), we obtain (13).
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