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Abstract— For wireless sensor networks with many location-
unaware nodes, we investigate a protocol, dubbed BeSpoken, that
steers data transmissions along a straight path called a spoke.
The protocol directs data transmissions by randomly selecting
relays to retransmit data packets from crescent-shaped areas
along the spoke axis. The packet retransmission by the selected
relay constitutes a spoke hop. The current spoke direction at
any given hop may deviate from the spoke axis. In this work,
we model the current direction as a Markov Modulated Random
Walk, and offer protocol design guidelines which ensure that the
deviation is limited.

Keywords: Wireless sensor networks, geographic informa-
tion dissemination, Markov modulated random walk, Large
Deviation Principle

I. I NTRODUCTION

In wireless sensor networks, events are observed by data
source nodes. A wireless dissemination protocol uses a se-
quence of wireless transmissions that propagate the informa-
tion from the source to the sinks. Frequently, the data source is
unaware of which sink nodes wish to learn of its observations.
If the source is also unaware of its position, as the nodes in
random sensor networks are, it is unable to send complete
information to the sinks, in terms of both the nature of an event
and its location. This problem is typical of sensor networks,
due to their assumed simplicity and scarce energy resources.
In particular, GPS, the most widely used positioning system, is
a significant power consumer, and infeasible in environments
with clear-sky impediments. Hence, data source localization
would be an attractive complementary feature of a wireless
dissemination protocol.

Flooding is the simplest dissemination strategy, nevertheless
it typically yields excessive communication [1] and can lead
to a “broadcast storm” of redundant transmissions [7], unless a
mitigating technique is employed [11]. The idea of data source
localization enabled by the dissemination protocol properties is
absent from flooding-based dissemination techniques. Several
papers consider spatial properties of the dissemination route.
Different forms of spatially constrained random walk are
discussed in [2], [4], [10], while the idea of a trajectory-
based dissemination is presented in [5], [8]. None of these
dissemination approaches enable unknown source localization.

Motivated by the radial symmetry of isotropic wireless
transmission, we propose a dissemination protocol, dubbed
BeSpoken, that conveys information about an event to the sinks
in an energy efficient manner, and whose spatial properties can
simplify the source-location estimation. This protocol gener-
ates relatively straight-line trajectories called spokes, without
requiring the nodes to have any navigational information. We
envision simple sources while sinks are likely to be more
capable in terms ofdirection-of-arrival (DoA) estimation,
and in being location-aware and application-cognizant. We
examine networks in which the sinks are distributed uniformly
along the perimeter of the network area. Since the exact
positions of interested sinks are not known, we conjecture that
the likelihood of successful data search would increase if both
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Fig. 1. The meaning of the name BeSpoken is twofold: the radial lines extending
from the source form a pattern that resembles spokes of a wheel and, furthermore, spoke
relays bespeak the source message. In this simulation snapshot, source spokes areshown
as a sequence of relay transmissionranges, to illustrate the fact that each spoke is an
ensemble of possible data routes. The sequence of wireless transmissionrelays forming
a productive sink spoke is denoted by tiny circles(see the boxed spoke). Unproductive
sink spokes are represented by dots. The search success is marked by a∗.

the source and the sinks spawn several equally spaced radial
spokes. As illustrated in Figure 1, a source disseminates data
advertisements along the source spokes, and a sink sends a
query along its spokes that may intersect the source spokes.
Each intersection represents a successful search. The firstsink
spoke to reach one of the source spokes is calledproductive.
Successful search is to be followed by the reinforcement of
a route along the intersecting spokes and subsequent data
dissemination. A GPS and DoA-enabled sink can determine
the positions of the nodes along the productive sink spoke,
and let them know of their positions. The other part of the
enforced route can be learned based on the known position
of the intersection nodes, provided that the direction of the
source spoke is known. This can be achieved in a variety of
ways, such as joint DoA estimation performed by the nodes
surrounding the intersection, or by a mobile DoA-enabled
sink which can move to the intersection and determine source
spoke direction by polling the spoke nodes. We consider
BeSpoken as both a dissemination protocol, and a tool to build
an infrastructure of relatively straight paths (spokes) whose
direction and length can be learned with moderate effort. A
description on how the spokes would tessellate the sensor
network space, and the implications and possible applications
of such an infrastructure can be found in the companion paper
[6]. The focus of this paper is the mathematical model of
the BeSpoken, with an emphasis on the Markov-modulated
random walk model of a spoke’s direction.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a dense wireless network with a uniform spatial
distribution of nodes. TheBeSpoken protocol organizes a
sequence of fixed-powerrelay transmissions that propagate the
source message hop-by-hop, without positional or directional
information. The hop relays form aspoke which may deviate
from the radialspoke axis. Each spoke hop is organized using
a sequence of two control message transmissions followed by
the hop data transmission. We define the transmission range
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Fig. 2. BeSpoken Protocol:At each protocol stage, the current transmission range
is denoted with the full circle while the previous range is denoted with a dashed circle.

as the maximum distance from the source at which nodes can
reliably receive a packet. We assume that the physical layer
modulation and coding are designed to compensate for short-
scale fading effects and, thus, our transmit power requirements
depend only on distance-dependent propagation path loss.
Even though in a sensor network environment data rates are
low relative to the available bandwidth and interference isnot
a primary issue, still, our protocol mitigates the interference
as it always selects only one node to retransmit. Assuming
radially symmetric attenuation (isotropic propagation),the area
in which the transmitted packet is reliably received is a disk
of a given radius. We use the same transmission power for
both data and control packets, but different coding rate and/or
modulation format, so that the communication rate for control
messages is lower and translates to a longer range.

A. BeSpoken Protocol

The BeSpoken protocol implements a recursive process
illustrated in Figure 2 in the following way:

(a) The leading relay (node1) sends an RTS (request to send)
control packet with rangeR = rq whereq = 2 − ǫ, for
small ǫ.

(b) The pivot (node0) sends a BTS (block to send) control
packet with rangeR.

(c) The leading relay transmits the data packet with ranger
and becomes the new pivot. The region in which nodes
receive this data packet but do not receive the preceding
BTS packet forms the1-st hop crescent C2.

(d) A random node from the crescentC2 becomes the new
leading relay by transmitting a new RTS. The process
returns to (a) with node 1 as the pivot and node 2 as the
leading relay.

This recursive process is initialized by assigning the roleof
the pivot to the source node which transmits the data packet
with a ranger. The first node which receives the data packet
and gets access to the medium becomes the first leading relay.
The underlying ALOHA-type Carrier Sense Multiple Access
protocol would resolve any collisions; hence, after a possible
additional delay, only one random node from the crescent
would transmit the RTS packet.

B. Problem Formulation

To describe the effects of the data and control rangesr
and R, we evaluate the spoke behavior with respect to the
constraints:

• Outage: the probability that a spoke dies before reaching
a distanced is small,
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Fig. 3. (a) At hop k + 1, nodek + 1 is distanceLk+1 from nodek and the
current spoke direction isΘk+1 = Θk + Φk+1. (b) Given Lk = l andLk+1 = ρ,
the angular hop displacementΦk+1 is constrained to the interval−β ≤ Φk+1 ≤ β

where the maximum angular displacement at hopk + 1 is β = β(l, ρ). The shaded
area denotes the interior crescent of areaSIC(l, ρ).

• Wobbliness: the deviation of the instantaneous spoke
direction with respect to the spoke axis is within defined
limits.

The vector from node0 to node1 in Figure 2 defines the
spoke axis. The crescent subtending angle determines how
much the spoke may deviate from the spoke axis direction.
The parameterq = R/r determines the maximum crescent
subtending angle. A large subtending angle fosters wobble-
ness, yet it implies a larger crescent, which increases chances
that a relay will be found to retransmit data. Fixingq to a small
value that limits wobbleness requires increasingr, to generate
large enough crescent and decrease outage probability. Note
that the energy per hop grows asrα, whereα ≥ 2 is the
propagation loss coefficient, so that the total energy per spoke
grows asdrα−1. Thus, minimizing the transmission ranger
corresponds to a minimum energy objective.

These contending influences illustrate the importance of the
protocol parameters design. In this paper we develop closed-
form expressions that serve as bounds for the values ofq,
ensuring that the wobbliness constraint is satisfied. In our
companion paper [6], we show that outage and wobbliness
constraints can be decoupled. We also show that satisfying
the wobbliness constraint requires that one finds the minimum
q so that the spoke direction is within the limits afterη hops,
where η is a sufficient number of hops to reach the target
distanced.

III. SPOKE MODELING

In this section we develop an analytical model of the spoke.

A. BeSpoken Geometry

Figure 3(a) depicts hopsk andk+ 1. At the completion of
hop k, the lengthLk denotes thecurrent hop length and the
angleΘk denotes thecurrent spoke direction.

From Figure 3(b) we observe that givenLk = l andLk+1 =
ρ the control circle of radiusR centered at nodek − 1 and
the circle of radiusρ centered at nodek specify a radiusρ
arc for the possible positions of nodek+ 1. The endpoints of
this radiusρ arc constrain theangular hop displacement Φk+1

to the interval−β ≤ Φk+1 ≤ β where the maximum angular
displacement isβ = β(l, ρ). Applying the law of cosines to
the complementary angleπ − β(l, ρ) yields

cosβ(l, ρ) =
R2 − ρ2 − l2

2lρ
. (1)



We also observe that the region between the radiusR control
circle and the radiusρ arc defines aninterior crescent, shown
as the shaded area in Figure 3(b). From geometric arguments,
it can be verified that the area of this interior crescent is

SIC(l, ρ) = 2ρ2β(l, ρ) − 2R2α(l, ρ) +Rl sinα(l, ρ) (2)

where α(l, ρ) is found from the law of cosines to satisfy
cosα(l, ρ) = (R2 − ρ2 + l2)/(2lR).
Lk+1 can vary from a minimum value ofR − Lk to a

maximum value ofr. The induced interior crescentCk+1 in
Figure 3(a) has an areaSc(Lk) = SIC(Lk, r). We note that
Ck+1, termed thecurrent crescent, is the set of all possible
positions of the nodek + 1.

B. Markov Process Model for Hop Length Evolution

For design purposes we assume that the spatial distribution
of network nodes is a planar Poisson point process of intensity
λ = 1. Thus, a current crescent yields a candidate set for
nodek+1 with cardinalityZk that is, conditionally, a Poisson
random variable with conditional expected value

E[Zk|Lk = lk] = Sc(lk). (3)

The fact that the current hop length defines the expected sizeof
the candidate set for the next relay illustrates the Markovian
character of the hop length evolution. In particular, a small
Lk will create a small crescent; this induces a support set
[R − Lk, r] for Lk+1, that excludes small hop lengths in the
interval [R− r,R− Lk).

The companion paper [6] shows that the analysis of the out-
age and wobbliness constraints can be decoupled by formally
defining {Lk} as a fictitious process that never encounters
an empty crescent. Under the fictitious process model, the
position of nodek + 1 will be uniformly distributed over the
crescentCk+1. From Figure 3 we see that, given the current
hop lengthLk = lk, the arc of radiusρ has length2ρβ(lk, ρ).
The conditional probability that we find nodek + 1 in the
annular segment of widthdρ along the arc of radiusρ is
2ρβ(lk, ρ)dρ/Sc(lk). It follows that the conditional pdf of the
next hop lengthLk+1 givenLk = lk is

fLk+1|Lk
(ρ|lk) =

2ρβ(lk, ρ)

Sc(lk)
R− lk ≤ ρ ≤ r, (4)

and zero otherwise. We note that (4) provides a complete
characterization of the fictitious process{Lk}, representing
a Markov process model for the evolution of hop length.
C. Finite State Ergodic Markov Chain Model

Here, we develop a Markov Chain model that approximates
the Markov process described above. We start by quantizing
the Lk process, yielding them-state Markov chain̂Lk. We
first select a chain state set that quantizes the process state
space[R − r, r], then describe a mapping from the process
state space to the chain state set and, last, describe the resulting
chain probability transition matrix. We define{h1, . . . , hm} ⊆
[R− r, r] to be the chain state set. Without loss of generality,
we assume thath0 = R − r < h1 < h2 < . . . < hm = r. As
illustrated in Figure 4, whenever thekth hop Markov chain

state isL̂k = hi, the corresponding next process hop length
is Lk+1 ∈ Ii = [R−hi, r], whereIi is thenext hop span and
its length|Ii| is also the width of the corresponding quantized
crescentĈk of areaci = Sc(hi). Lk+1 is quantized to state
hj wheneverL̂k+1 ∈ Iij where

Iij = Ii ∩ (hj−1, hj ]. (5)

Note that the set{Iij : j = 1, . . . ,m} partitionsIi and serves
as a set of quantization intervals forLk+1 when L̂k = hi.
This quantization mapping is illustrated in Figure 4 where
Lk+1 ∈ I42 is extended to reach the quantized node position
marked with a grey circle at̂Lk+1 = h2. The chain proceeds
by declaring a fictitious node at the quantized position as the
new leading relay. As depicted in Figure 4, a quantization
interval Iij corresponds to the strip of area

dij =

{

∫ hj

R−hi
2ρβ(hi, ρ) dρ, j = j∗(i),

∫ hj

hj−∆
2ρβ(hi, ρ) dρ, j > j∗(i),

(6)

(and zero otherwise), and of width|Iij | within the crescent
Ĉk of areaci =

∑

j dij . Herej∗(i) = min{j : hj > R− hi}
is the index of the leftmost non-empty quantization interval
within Ii.

As shown in Figure 4,cij = SIC(hi, hj) is the quantized
interior crescent area formed by the control circle (of radius
R) centered at thekth hop relay and a circle of radiushj

centered at nodek + 1 at distanceL̂k = hi. Note thatcij <
ci(j+1) · · · < cim, wherecij = 0 for j < j∗(i), cim = ci, and
dij = cij − ci(j−1). The hop-length transition probabilities

Pij = Pr{L̂k+1 = hj |L̂k = hi}

= Pr{Lk+1 ∈ Iij |Lk = hi} = dij/ci (7)

follow from the uniformity of Poisson spatial distributionof
nodes and since the fictitious process assumes that the crescent
Ĉk is not empty. Intuitively, whenm is sufficiently large,
the ergodic Markov chain will approximate well the ergodic
Markov process. We consider Markov chain models with both
uniform and non-uniform quantization of[R − r, r]. In this
paper we focus on the uniform quantization model for the
purpose of modeling the current spoke direction.

D. Spoke Direction Process

Figure 3 (a) indicates that the angular hop displacement
Φk+1 at hopk+1 changes the current spoke direction in that

Θk+1 = Θk + Φk+1 =

k+1
∑

i=1

Φi. (8)

We observe that all points along the radiusρ arc in Figure 3 (b)
are equiprobable locations for nodek + 1. Thus, given the
sequence{Lk}, the angular hop displacements{Φk} form
a sequence of conditionally independent uniform random
variables with the conditional pdf

fΦk+1|Lk,Lk+1
(φ|lk, lk+1) =

1

2β(lk, lk+1)
, (9)
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Fig. 4. Ergodic Finite State Markov Chain: quantization example for a four-statechain
(m = 4): L̂k = h4 = r results in the first crescent̂Ck of areac4 partitioned into
four strips of total areac4 = d41 + d42 + d43 + d44; Lk+1 ∈ I42, quantized
to L̂k+1 = h2, is followed by a crescent̂Ck+1 of areac2 and a hop spanI2 =

[R − h2, r] which is (uniformly) quantized into a crescent of aread23 = c23 (shaded
region) and a crescent stripd24 = c2 − c23 (the unshaded area).

for |φ| ≤ β(lk, lk+1), and zero otherwise. This probability
distribution does not change when the conditioning sequence
contains quantized values{L̂k}. The current angle sequence
{Θk} is a random walk process modulated by the Markov
chain{L̂k}, completely described by equations (7)-(9).

The transform domain analysis of Markov Modulated Ran-
dom Walks (MMRW) [9] dictates that we first define the
conditional moment generating functions of the incremental
angular displacementΦk+1 from (8)

gij(ω) = E
[

exp (Φk+1ω) |L̂k = hi, L̂k+1 = hj

]

(10)

=
1

2ϕij

∫ ϕi,j

−ϕi,j

exp (φω) dφ = ~ (ϕijω) , (11)

for ω in a convergence region(ω , ω+), where~ (x) = sinh x
x

andϕij = β(hi, hj). We create a matrixΓ(ω) with elements

Γij (ω) = Pijgij(ω). (12)

The Perron-Frobenius theorem (see e.g., [3]) dictates that
its largest eigenvalueσ (ω) is real and positive. The el-
ements of the corresponding right eigenvectorν (ω) =
[ν1 (ω) · · · νm (ω)]T are also real and positive. Next, we define
the product martingale [9]

Mk (ω) =
exp (ωΘk) νi(k) (ω)

σk (ω) νi(0) (ω)
(13)

wherei(k) is the random state index of the chain at timek,
and the random variableνi(k) (ω) is thei(k)-th element of the
right eigenvector.

IV. WOBBLINESSCONSTRAINT MODEL

The spoke goes off-course at hopk whenever the current
angleΘk in (8) exceeds one of the following two thresholds
φo and−φo. To describe spoke wobbliness, we define

Tϕo
= min {k : |Θk| ≥ ϕo} . (14)

to be the first time that the spoke goes off-course. As we
model the angle process evolution only up to that point,Tϕo

is thestopping time of the random walkΘk modulated by the

ergodic Markov chain̂Lk. Following [9, Chapter 7.7],Tϕo
is

also a stopping rule for the martingaleMk (ω) relative to the
joint process{Mk (ω) , Lk; }. Hence, following [9, Lemma 6]
and theoptional sampling theorem [9, Theorem 6] we have

E
[

MTϕo
(ω)

]

= E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

]

= 1, (15)

for ω ∈ (ω , ω+) . Since the stopping timeTϕo
is a random

variable of unknown probability distribution, elaborate mathe-
matical methods must be used to model it. Our methods utilize
(15), which is an extension of theWald identity to Markov
modulated random walks. First, the wobbliness constraint is
based on the first moment ofTϕo

, as

E [Tϕo
] ≥ η. (16)

Second wobbliness constraint is based on thecumulative
distribution function (CDF) of Tϕo

, as follows

Pr{Tϕo
≤ η} ≤ pt. (17)

In subsection IV-A we demonstrate how to compute the mean
E [Tϕo

]. Subsection IV-B describes a bound on the CDF of
the stopping time. These two approaches together provide a
good description of the stopping time, based on which a range
of q values can be found for eachϕo.

A. Expected Threshold Crossing Time

The random variableΘTϕo
is either−ϕo or ϕo, assuming

that there is no overshoot. We address the problem of over-
shoot later. By symmetry arguments, first and second moments
of ΘTϕo

are

E
[

ΘTϕo

]

= 0, var
[

ΘTϕo

]

= E
[

ΘTϕo

2
]

= ϕ2
o. (18)

We evaluate the second derivative of (15) with respect to
ω at ω = 0, and denoteµi(ω) = ν′′i (ω)/νi (ω) , to obtain the
expected number of hops until the hop angle hits the threshold
as

E [Tϕo
] =

var
[

ΘTϕo

]

+ E
[

µi(Tϕo )(ω)
]
∣

∣

ω=0
− µi(0)(ω)

∣

∣

ω=0

σ′′(ω)
σ(ω)

∣

∣

∣

ω=0

.

(19)
One can show that, form = 2, the denominatorσ

′′(ω)
σ(ω)

∣

∣

∣

ω=0
=

1

3

(

π2P22ϕ
2
22 + π1P11ϕ

2
11 + π1P12ϕ

2
12 + π2P21ϕ

2
21

)

, (20)

whereπi, i = 1, 2 are the elements of the vector of stationary
state probabilitiesπ = [πi](1×m) . Note that termsϕ2

ij/3 are
transition-specific variances. Direct generalization of (20) to an
m state model has a form of a stationary average of transition-
specific variances overm2 transitions

σ′′ (ω)

σ (ω)

∣

∣

∣

∣

ω=0

= var[θ]p = πP (v)uT ,

where, P (v) =
[

P
(v)
ij

]

(m×m)
with elements P (v)

ij =
(

Pijϕ
2
ij

)

/3, andu = [1...1](1×m) . It can be shown that, for



small crescent subtending angles relative to the thresholdϕo,
we can ignore the termsE

[

µi(Tϕo )

]

andµi(0) in (19), thus

E [Tϕo
] =

var
[

ΘTϕo

]

var[θ]p
. (21)

Since (19) neglects the overshoot, we now seek to include
the overshoot impact. We start with the overshoot analysis
of the simple random walkΘn =

∑n
i=1 Φi, modulated by

one-state Markov Chain, i.e.Φi ∼ U (−ϕ11, ϕ11). Based on
the derivation presented in the appendix, which assumes that
undershoot and overshoot have the same uniform distribution,
we obtain the overshoot-inclusive form of the numerator
of (21) for a one-state MMRW

var
[

ΘTϕo

]

= ϕ2
o + (2/3)ϕoϕ11 + ϕ2

11/6. (22)

Note that the second
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Fig. 5. Sample of spokes directed eastward
- ”constraint in the mean” vs.”probability con-
straint” design.

term in (22) contains
the half-spanϕ11 of the
uniform pdf. To extend
the expression (22) tom-
state Markov-modulated
random walk, we replace
ϕ11 with a weighted sum
of transition-specific angle
spans

∑n
i,j=1 wijϕij ,

where wij = πiPij .
Hence, the angle span
associated with the trivial
transition of the one-state
MC is now replaced with
a stationary average over
angle-spans associated
with m2 transitions of the
m-state MMRW. Note that
the third term of (22) is one
half of the angle variance
for Φi ∼ U (−ϕ11, ϕ11).
For the m-state MMRW,
we replace this term with
another weighted sum where(1/2)wij-weighted terms are
transition specific variancesϕ2

ij/3. Hence, extended (22), in
matrix notation, is

var
[

ΘTϕo

]

= ϕ2
o + 2ϕo

(

πP (a)uT
)

+ 1/2
(

πP (v)uT
)

,

(23)

P (a) =
[

P
(a)
ij

]

(m×m)
andP (a)

ij = Pijϕij/3. The overshoot-

inclusive variant of (21) for a multi-state chain (23) yields
values that match the simulation results closely and consis-
tently. Note that (21) expresses the expected stopping time
as a function ofq only. Figure 5 (a) illustrates the achieved
wobbliness in a sample of500 spokes directed eastward, de-
signed to propagate160 length units with the wobble threshold
of π/4. It is evident that a large number of spokes exceed
the targeted propagation distance, while the straightnessneeds

to be improved. Such a behavior is due to the fact that the
outage constraint is a constraint in probability, while (16) is
a constraint in the mean, where the pertinent pdf is long-tailed.

B. Probability of threshold crossing before time Tϕo

Motivated by the observations illustrated by Figure 5 (a),
we here analyze the wobbliness model, as defined in (17),
from the point of view ofLarge Deviation Theory (LDT).
We determine a bound for Pr{Tϕo

≤ η} based on the
Gärtner-Ellis theorem [3, Thm 2.3.6] and its application to
an empirical measure of finite Markov Chains, in particu-
lar [3, Exercise 3.1.4]. Let℘P

i(0) denote the Markov proba-
bility measure associated with the transition probabilityma-
trix (7), and with the initial stateL̂0 = i(0). Precisely,

℘P
i(0)

(

L̂1 = y1, · · · , L̂n = yn

)

=Pi(0)y1

∏n−1
i=1 Pyiyi+1

is the

probability of a specific Markov chain path, starting ati(0),
and transitioning through the sequence of states{yi}

n
i=1. Now,

let us denoteψij = U (ϕij , ϕij), and thus, the conditional law
of {Φk} for each realization{Lk = yk}

n
k=1 is

∏n
i=1 ψyk−1yk

.
Denoting withEP

i(0) [.] the expected value with respect to℘P
i(0)

and the associated
∏n

i=1 ψyk−1yk
, we further defineΛn(nω) =

logEP
i(0)

[

eω
Pn

k=1
Φk

]

. Following a derivation analogous to
[3, Thm 3.1.2], we find that the logarithmic moment gener-
ating function of the current angle is related to the largest
eigenvalueσ(ω) of (12) as Λ(ω)

∆
= limn→∞

1
nΛn(nω) =

log σ (ω) . According to [3, Thm 3.1.2], the empirical mean
of the sum of angle deviations modulated by℘P

i(0) has a
rate function, which is a conjugate function ofΛ(ω), i.e the
Fenchel-Legendre transformΛ⋆(x) = supω {ωx− Λ(ω)} . A
geometric interpretation ofΛ⋆(x) is given in Figure 6. Using
the fact thatΛ(ω) is a convex function, andΛ(ω) ≥ 0 for
ω ∈ (ω , ω+) , and applying the total probability formula
over the event spaceE1 =

{

Tϕo
≤ η,ΘTϕo

≥ ϕo

}

, E2 =
{

Tϕo
≤ η,ΘTϕo

≤ −ϕo

}

, E3 =
{

Tϕo
> η,ΘTϕo

≥ ϕo

}

,
E4 =

{

Tϕo
> η,ΘTϕo

≤ −ϕo

}

to (15), assumingω > 0,
we obtain:

1 = E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

|E1

]

Pr{E1}

+E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

|E3

]

Pr{E3}

+E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

|E2

]

Pr{E2}

+E

[

exp (ωΘTϕo
)ν

i(Tϕo )
(ω)

σ(ω)
Tϕo νi(0) (ω)

|E4

]

Pr{E4}

≥ E

[

exp (ωΘTϕo
− Tϕo

log σ(ω))
ν

i(Tϕo )
(ω)

νi(0) (ω)
|E1

]

Pr{E1}

≥ exp (ωϕo − n log σ(ω))
minj νj (ω)

νi(0) (ω)
Pr{E1} , (24)
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Fig. 6. Geometric Interpretation of the Bound for Pr{Tϕo ≤ 2}: the upper subplot
corresponds to a BeSpoken design where the targeted spoke lengthds ≈ 50m. The
lower plot corresponds to a design where the spoke lengthdl ≈ 1500m, corresponding
to smaller crescent subtending angles than theds design -the crossing probability after
two hops is smaller for dl; the probability bounds relate in the same way: exp(−2δl) <

exp(−2δs), δs = 0.5 is the distance Λ∗(ϕo/n) = ωϕo/n − Λ(ω), evaluated for
n = 2, ω = ω

′

, for ds design, and δl > 50 is the equivalent for dl design.

then usingω < 0 we get the similar result for eventE2, and,
combining the two, we obtain a CDF bound

Pr{Tϕo
≤ η} ≤ exp

(

−η(ω
ϕo

η
− log σ(ω))

)

νi(0) (ω)

minj νj (ω)
.

(25)

We base (25) on the largest eigenvalueσ(ω) of an m-
state Markov Chain, for sufficiently largem. We apply nu-
merical methods to obtainσ(ω) and observe that (25) (with
νi(0) (ω) /minj νj (ω) = 1) tightly bounds the CDF obtained
from the simulations, as shown by Figure 7.

The expression (25) evaluated for some desired
Pr{Tϕo

≤ η} = pt provides an upper bound forq,
as opposed to the lower bound obtained through (21).
Figure 5 (b) illustrates the achieved wobbliness in another
sample of500 spokes directed eastward, designed according
to (25).

V. RESULTS AND CONCLUSION

We propose a protocol that generates spokes, relatively
straight-line data dissemination trajectories, without requiring
the nodes to have navigational information. Analysis of a
Markov-modulated random walk model for the spoke results
in a design for protocol parameters, necessary to produce
sufficiently long and straight enough trajectories.

We support

0 5 10 15 20
0

0.5

1

n

simulated cdf of Tφ
o

cdf bound for Tφ
o

Fig. 7. Comparison of the LDT-based CDF
bound and CDF obtained by ”sampling” the un-
derlying m-state Markov Chain.

our analysis with
simulation results. We
simulate a stationary
network of unit-
density, with uniformly
distributed nodes
deployed over a square
region. Simulation
statistics are generated

by extending a large number of spokes to follow the same
direction (as in Figure 5), over several network realizations.
The collected averages for the spokes going off-course
confirm the validity of the design with respect to the imposed

constraint ”in the mean”. We also suggest a constraint based
on the probability bound of the hop count before spoke goes
off-course. For a given data ranger, the statistics obtained
from the simulations of the BeSpoken designed according to
this constraint show a better control of the spoke direction
at the expense of a slightly increased rate of prematurely
stopped spokes due to outage (Figure 5 (b)).
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VI. A PPENDIX

MMRW Overshoot Analysis

The one-state Markov Chain modulated random walkΘn =
∑n

i=1 Φi is in fact the IID random walk. This random walk
stops if the condition in (14) is satisfied. We define the
undershoot asX = ϕo − ΘTϕo−1, while the overshoot is
defined asY = ΘTϕo

− ϕo. As the IID Φi is uniform over
{−ϕ11, ϕ11} , and as atTϕo

Φi assumes a positive value, we
conjecture that random variablesX and Y have the same
pdfs fX(x) = fY (x) (or at least the first two moments), both
uniform, with support set{0, ϕ11} . We define random variable
Z = X + Y s.t.Z|Y ∼ U (Y, ϕ11).

As E [Z] = E [Y ] + E [X] = 2E [Y ] = 2m andE [Z] =
EY {E [Z|Y ]} = EY {(Y + ϕ11)/2} = (m + ϕ11)/2, we
obtain the first moment of the overshoot asE [Y ] = m =
ϕ11/3. Further, we establish

E
[

Y 2
]

= m2, E
[

Z2
]

= 2m2 + 2E [XY ] = m2 +mϕ11

E
[

Z2
]

= EY E
[

Z2|Y
]

= (1/3)(m2 +mϕ11 + ϕ2
11) (26)

Solving the system of equations (26) we obtain the second
moment of the overshootE

[

Y 2
]

= ϕ2
11/6. For symmetry

reasons the variance of the random walk at overshoot is equal
at bothϕo and−ϕo. Thus, as both overshoot occurrences are
equiprobable,

var
[

ΘTϕo

]

= 0.5
(

2E
[

(ϕo + Y )2
])

= ϕ2
o + (2/3)ϕoϕ11 + ϕ2

11/6. (27)


