
An Interpolation Scheme for Constructing Radio
Frequency Maps from Spatial Samples

Shweta S. Sagari, Larry Greenstein, Wade Trappe
{shsagari,ljg,trappe}@winlab.rutgers.edu

WINLAB, Rutgers University, North Brunswick, NJ, USA.

ABSTRACT
The development of spectrum measurement infrastructure
that can produce real-time geographic maps of spectrum us-
age is important to the deployment of future wireless sys-
tems. Such an infrastructure also provides the basis for cre-
ating a spectrum database in support of dynamic spectrum
access. We are developing algorithms that can aggregate,
classify and geographically map collected RF power mea-
surements so as to support the formation of the spectrum
database. A fundamental building block to creating this data-
base is using a collection of spectrum measurements to infer
the expected power levels at locations where there was no
measurement infrastructure. This project is currently devel-
oping a pathloss-based interpolation scheme that can accu-
rately estimate the power levels at locations bounded by four
spectrum sensors deployed in a rectangular pattern.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless Communica-
tion

Keywords
HetNet, interpolation, path loss, sensors

1. INTRODUCTION
In future wireless systems, multiple radio access tech-

nologies, such as 4G/LTE, WiMAX, WiFi are expected
to be deployed in shared spectrum. For efficient spec-
trum utilization, dynamic spectrum access would re-
quire terrain-specific radio maps with information such
as location, frequency, transmit power at access points
(APs) /base stations (BS), their signal connectivity/
coverage holes, etc. To build such a detailed radio map,
radio power from APs/BSs can be measured by ran-
domly distributed mobile devices in the network. A
dedicated grid of sensors spanning a large urban area
may also be deployed for this purpose, as shown in
Fig. 1. The set of sensor measurements can be processed
in the logically central database and interpolated over
the large area to build the radio map. The use of radio

Figure 1: Deployment scenario of sensors and
virtual points under consideration

maps can be extended to applications such as spectrum
usage policing, network planning and deployment, etc.
Towards the objective of building a radio map, we

focus on a single square of four sensors (red points in
Fig. 1) and explore the problem of estimating the ra-
dio frequency (RF) power level across a square area
bounded by the sensors. We assume initially that there
is a single emitter external to this square area and all
four sensors scan the same band. However, the method
can be scaled and applied to a variety of scenarios.

2. RADIO PATH LOSS MODEL
The received power [dBm] at a sensor placed at an ar-

bitrary position on the terrain is the transmitted power
[dBm] plus the path loss (PL) between that point and
the transmitter. To form accurate radio maps from sen-
sor data, we exploit the fact that PL can be described
using the generic function [1]

PL[dB] = [A+ 10γ log10(d/dr)] + s; d ≥ dr, (1)

where A is an intercept parameter (including antenna
gains), γ is the path loss exponent, d is the distance
between the emitter and an arbitrary point on the ter-
rain, dr is a chosen reference distance (chosen here to
be 1 m), the bracketed term is the median path loss
at distance d, and s is the variation about the median
path loss at distance d. Also, s is Gauss-distributed
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with zero mean and standard deviation σ. We assume
its variability over the terrain can be described by a
spatial correlation function [2]

cab = σ2 exp(−dab
Xc

). (2)

This is the correlation between sa and sb at points a and
b with separation distance dab, and Xc is the shadow
fading correlation distance. The values of both σ and
Xc are environment-specific.

3. PATH LOSS ESTIMATION ALGORITHM
The basis of our approach is founded on the observa-

tion that, in practical settings, shadow-fading is highly
correlated over small to moderate distances and decor-
relates over large distances [3]. Thus, the PL at a par-
ticular point is best estimated using the known (or mea-
sured) PL values from the set of sensors located nearest
to that point. In our study, we propose to use the four
sensors surrounding a point of interest, and the result-
ing local PL model we use is:

PLi = A” + 10γ log di + s”i ,
A” = A+ (s1 + s2 + s3 + s4)/4,
s”i = si − (s1 + s2 + s3 + s4)/4,

(3)

where s1, s2, s3, s4 are shadow fading values at the four
sensors. Note that the four corner values of s” average
to 0, as desired in a model constructed from four sensor
measurements. Assuming knowledge of the emitter and
sensors, we use the following 3-step algorithm:

1. Least-Square Estimation (LSE) is used to estimate
A” and γ from the four corner samples of PL.

2. Using these estimates, we form the estimated me-
dian path loss at each corner and subtract it from
the corresponding measured PL, to obtain esti-
mates of s” at the four corners.

3. A weighted sum of the four estimates of s” is used
to estimate s” at any point within the square (see
the ’virtual points’ in Fig.1.)

In [4], the weights were chosen (from intuitive rea-
soning) to be inverse powers of the sensor-to-virtual-
point distances, scaled so as to sum to 1. In our current
work, we are exploiting the use of multivariate Gaussian
distributions to obtain theoretically optimal weights;
though not obtainable if the correlations among s-values
are unknown, these solutions will help to improve our
intuition on weight selection.

4. EVALUATION
The proposed path loss estimation algorithm is eval-

uated in two steps: (1) error due to the imperfect esti-
mation of A” and γ, and (2) error due to the imperfect
estimation of the measured s”-values. In our work, we
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(a) Comparison of actual and median PL
for D/Xc = 1 and σ = 8.9 dB.
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(b) Median PL error, δm, for σ = 8.9dB.

Figure 2: Evaluation of path loss estimation

study the two errors separately, for the purpose of bet-
ter understanding.
To evaluate the effect of imperfect estimation of A”

and γ, we compare actual and estimated median PL
values as a function of the distance di between emit-
ter and receiver. Results shows that both the values
match as long as di is within the range of minimum
and maximum distances from the emitter to the sen-
sors. Fig. 2(a) is a snapshot of the comparison for a
particular instantiation of [s1, s2, s3, s4]. Furthermore,
the estimation error for median PL, δm, is character-
ized as a function of D/Xc, where D is the side of the
square, and D/Xc is a measure of the sensor density.
As shown in Fig. 2(b), the asymptotic RMS error of δm
(which scales with σ) is only 1.8 dB for high value of
σ = 8.9 dB used here.
Going forward, we are currently in a phase of develop-

ing algorithm to estimate s” and quantifying its error
statistics over the area inside the square. The errors
in median PL and s” will be combined together to get
the overall accuracy for radio mapping. Also, we have
studied the impact of location for emitters outside the
square; a logical extension of our work will be to study
the case of emitters inside the square.
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