fitness values for all the existing individuals is then calculated from:
M—1
Sp—l = ZO Fp—l(q) (3)
g=

The mutation point and the crossover point are selected randomly. This
procedure is repeated until the maximum population size is searched.
Step 4: If the number of generation is less than the maximum number of
generations, the process returns to step 1. After the maximum number
of generations, the best chromosome is selected and represents the best
channel allocation for the specified conditions.

Results: In an example of the simulation, a proposed S-UMTS
configuration is chosen with 10 satellites that are distributed into
two planes with five satellites for each plane. The altitude of satellites
is 10355 km. The update interval time is chosen as 15 min and the
sampling time as 1 min.

Experiment 1: We evaluate the traffic capacity per channel for 61, 36
and 19 spotbeams per satellite, respectively. The genetic engine works
with 150 of the population size and 350 of the maximum number of
generation. The mutation probability is chosen to be 0.01 and the
crossover probability is 0.6 as suggested in [4]. The results of the traffic
carried per channel for the genetic DCA and the conventional DCA for
the whole service area assuming a blocking probability of 3% are
summarised in Table 1. From these results, it can be seen that the
genetic DCA outperforms the conventional DCA. The traffic capacity
obtained using the genetic DCA is 1.23, 1.3 and 1.2 times that of the
conventional DCA algorithm for 61, 36 and 19 spotbeams, respectively.
In addition, the genetic DCA strategy is much more adaptable under
conditions of high traffic intensity.

Experiment 2: We evaluate the call blocking probability for a mean
request of 275 calls and 61 spotbeams per satellite, respectively. The
maximum number of generation is chosen to be 500 with 0.01 as the
mutation probability and 0.6 as the crossover probability. In this
experiment, the population size of the genetic DCA is chosen as 50
and 150. The performances of the call blocking probability for the
genetic DCA and the conventional DCA are shown in Fig. 2. The
results show that the call blocking probability of the genetic DCA
model tends to decrease more rapidly as the offered traffic intensity
decreases and the population size increases.
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-

2
n
1

call blocking probability
o
b
1
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100 125 150 176 200 225 250 275
mean request calls

T T
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Fig. 2 Call blocking probability

GDCA with 150 population size
------------  GDCA with 50 population size
+ + + + conventional DCA

Table 1: Traffic carried per channel (Erlang/channel)

Channel allocation model | 61 spotbeams | 36 spotbeams | 19 spotbeams
DCA 4.86 3.21 2.98
Genetic DCA 5.98 4.18 3.59

Conclusions: A new genetic DCA for MSS system networks has been
proposed and evaluated. The results show that, using the new algo-
rithm, the traffic carried per channel and the call blocking probability
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performance can be improved compared with the conventional DCA
scheme. The new algorithm has been shown to be robust to dynamic
variations and will provide resource allocation improvements in DCA
in MSS system networks. :
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Experimental evaluation of unsupervised
channel deconvolution for wireless
multiple-transmitter/multiple-receiver
systems

D. Samardzija, C. Papadias and R. Valenzuela

An over-the-air demonstration of unsupervised (blind) multiple-
input/multiple output (MIMO) channel deconvolution is presented.
The results were obtained in an indoor multiple antenna (BLAST)
context. A suitable unsupervised MIMO technique was used in order
to avoid the effective reduction of spectral efficiency caused by the use
of channel training. To the authors’ knowledge, this may be the first
reported experiment of successful over-the-air unsupervised MIMO
deconvolution.

Introduction: The Bell-labs LAyered Space-Time (BLAST) architec-
ture [1] uses multiple antenna elements at both the transmitter and the
receiver to provide high-capacity wireless communications in a rich
scattering environment. The theoretical multiple-input/multiple
output (MIMO) channel capacity increases roughly linearly with the
number of 7x/Rx antennas [1].

Receiver algorithms typically require explicit knowledge of the
MIMO channel response, which in turn requires the use of training
or pilot sequences that limit the spectral efficiency of the system. To
avoid the training overhead, unsupervised (blind) alternatives should be
sought. A large number of so-called blind source separation (BSS)
techniques for MIMO channels can be found in the literature [2]. In the
work presented in this Letter, our goal has been to demonstrate
over-the-air the applicability of such techniques to wireless BLAST-
type systems.

Owing to their highly nonlinear objective functions, BSS techniques
may often converge to false (undesired) solutions. For this reason, we
have focused on a recently introduced technique [3], which
was theoretically shown to be globally convergent to a setting that
recovers all the input signals. The technique is called the multi-user
kurtosis (MUK) algorithm and it is based on a deflation-type optimisa-
tion of a cost function that contains the output signals’ fourth-order
cumulants under second-order (whiteness) constraints.

For the purposes of this work, we used a MIMO narrowband wireless
test bed that we have built for verification and performance evaluation
of different algorithms related to BLAST architectures (see [4, 5]).
In this Letter we use bit error rate (BER) as a performance metric, and
we compare the MUK scheme against well-known trained solutions. As
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shown in the following, our experimental results suggest the applic-
ability of BSS techniques to real MIMO systems.

Baseband processing: The baseband received vector is modelled as
r(k) = Ha(k) + n(k) (1)

H is an N x M complex-entry matrix that corresponds to the narrow-
band MIMO channel response. a(k) is a complex input (data) M x 1
vector and n(k) is the N x 1 additive white Gaussian noise (AWGN)
impairment, all corresponding to the kth time sample. To recover input
vector a(k), r(k) is filtered by an N x M ‘spatial equaliser’ W which
results in output vector z(k) = [z,(k). . .zM(k)]T as

z(k) = WTr(k) = GTa(k) + n'(k) )

G is the M x M global response matrix, n/(k) =W n(k) and T denotes
transpose. The MUK algorithm [3] first updates W(k) in the direction of
the MUK criterion’s gradient as

Wk +1) = W(k) — pr* (k) 2Z(k) 3)

where Z(k) =[|z; (k)% . . |zp(%)|*]%, and p is a small step size. A Gram-
Schmidt orthogonalisation of the columns of Wak+1) is then
performed, resulting in W(k+ 1) the columns of which are orthogonal
(see [3]). Note that before the algorithm is run, the received signal r(k)
needs to be pre-whitened (resulting in a unitary H).

The MUK algorithm is executed on a data set which has L symbols,
and corresponds to a frame which is communicated over the air. All the
L symbols are information bearing, i.e. no portion of the frame is
dedicated to a training sequence. To improve the results of the
adaptation in (3), the above algorithm can be re-run several times
using the same data set, i.e. the same frame, before the detection of the
transmitted data is performed. For the particular implementation of the
MUK algorithm in this Letter, we use u =0.04. Also, we perform four
re-runs to obtain the matrix W.

Narrowband MTMR wireless test bed: The radio frequency (RF)
front end of the test bed consists of an antenna array, and the
corresponding array of analogue RF transmitters and receivers. The
carrier is at 1.95 GHz and the signal bandwidth is limited to 30 KHz.
The baseband digital signal processing is executed using a DSP
multiprocessor system, Pentek 4285. It consists of eight Texas
Instrument’s TMS320C40 DSPs, offering a total processing power
of 400MIPS. The interfacing towards the baseband is realised using a
system of multichannel A/D (Pentek 4275) and D/A (Pentek 4253)
converters, respectively. The maximum sampling rate per baseband
channel is 100 KHz.

Experimental results: We present results that correspond to non-line-
of-site indoor over-the-air trials. We use M =4 transmit and N=6
receive antennas and uncoded quaternary phase shift keying (QPSK)
modulation on each antenna. The symbol frames are organised as
follows. Symbols 1 to 16 are used for synchronisation, i.e. frame and
symbol timing recovery (this part of the frame is identical for all sub-
streams). K symbols compose a training sequence, which is used for
estimation of the MIMO channel response (between the sub-streams,
the sequences are mutually orthogonal and with equal transmit
power). No training is used for the MUK, thus increasing its effective
throughput.

For the trained receivers, we observe the performance for training
lengths K= 10 and 20 symbols. The frame length is set to L =100 or
200 symbols, i.e. 4 or 8 ms, respectively. The channel estimation is
performed at the beginning of the frame, and no channel tracking is
executed later, i.e. it is assumed that the channel is static during the
frame period. This assumption is valid for indoor MIMO channels
(mostly pedestrian speeds). The MUK adaptive algorithm uses all 100
or 200 symbols for the adaptation and, as stated earlier, it does not use a
training sequence (K. =0).

Fig. 1 shows the eye diagram per sub-stream after the fourth re-run of
the MUK. We also present the squared error between z, (output of the
MUK algorithm for L =200) and transmitted data a, (p=1,...,4),
after the outputs are properly re-ordered. From the results we observe
the ability of the MUK scheme to perform fully blind channel
deconvolution and source separation. Fig. 2 shows the CDF of the
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BER estimate (measured per frame) obtained from our over-the-air
indoor trials. Measured signal-to-noise ratio (SNR) is =~ 12 dB. From
the results, it is clear that the MUK algorithm does not fail during these
real communication sessions. The trained receivers (linear minimum
mean squared error (MMSE) and nonlinear V-BLAST [4]) do perform
better at this SNR, but the MUK algorithm is able to follow the
performance of the MMSE detector. Note that the MUK algorithm
increases the throughput by 20% (for L =100 and X = 20) and/or 10%
(for L=100 and K=10), at the price of somewhat higher BER. We
have also run the system for lower SNRs: both linear solutions (MUK
and MMSE) outperformed the uncoded V-BLAST receiver at SNRs
below 2 dB.

third sub-stream
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Do
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first sub-stream

second sub-stream fourth sub-stream

100 200 100 200 100 200
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Fig. 1 Eye diagram and squared error per sub-stream, after fourth re-run
(L=200, M=4, N=6, over-the-air trials, SNR~12 dB)
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Fig. 2 CDF of BER, M =4, N=6, over-the-air trials, SNR~12 dB

Conclusion: We have validated the excellent performance of the
MUK algorithm in an over-the-air wireless MIMO environment.
Based on the results, we believe that blind approaches can be
successfully used in true MIMO wireless systems.
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Modified GSC for hybrid satellite
constellation

M. Asvial, R. Tafazolli and B.G. Evans

A modified genetic satellite constellation (GSC) design is proposed for
hybrid satellite constellations. The novelty of the proposed model is
the automatic determination of satellite constellation parameters for
hybrid LEO/MEO constellations. Illustrative results of satellite
constellation parameters and dual satellite diversity statistics for
hybrid LEO/MEO are presented.

Introduction: The genetic algorithm (GA) has been introduced as a
robust technique to solve many multivariable problems [1]. Simulated
annealing and genetic algorithms for satellite constellation design
have been proposed to achieve the optimal discontinuous coverage
and satellite constellation geometries in [2]. The discrete time step
coverage in different designs providing the same value of maximum
revisit time have been evaluated. Genetic satellite constellation (GSC)
design for non-GEO inclined circular orbits with dual satellite
diversity was additionally introduced in [3]. Here, GA for LEO and
MEQO constellation design is proposed to minimise the total number of
satellites while minimising the maximum satellite’s altitude. This
algorithm is also applicable to optimise various parameters of the
satellite constellation simultaneously.

In this Letter, a modified GSC is proposed for the design of hybrid
satellite constellations with prescribed satellite diversity. The constella-
tion chosen to demonstrate the technique is a hybrid LEO (lower layer)
plus MEO (upper layer) constellation. The objective of the algorithm is
to jointly optimise parameters of the constellation in both of the lower
and the upper layers. The optimised parameters include the total
number of satellites, the maximum satellite’s altitude, the angle shift
between satellites, the angle between planes and the inclination angle.

Satellite constellation type: For the example, the constellation is
assumed to be an inclined circular orbit where all satellites have the
same inclination angle and altitude. Each orbit contains an equal
number of satellites. This constellation is proposed as it offers high
diversity global coverage with a trade-off between diversity and
number of satellites or minimum elevation angle. The contiguous
coverage for the same altitude is provided by the dynamic overlap
between the satellites in different planes. The lower and upper layers
of the satellite constellation are designed for a resonant orbit with
repetitive ground track and also to avoid the Van Allen radiation belts.

Genetic algorithm: The parameters of the satellite constellation are
represented as hybrid chromosome structures in the genetic algo-
rithms process. The parameters include the number of satellites, the
altitude of satellite’s orbit, the angle between planes, the angle shift
between satellites, and the inclination angle for both layers of satellite
constellation. In simulation, the same length of each chromosome for
each variable is applied. The individual is represented by the total
chromosome length and used in further steps of the genetic algorithm,
such as selection, crossover and mutation. The chromosome structure
of the GA for hybrid satellite constellation design is shown in Fig. 1.

A fitness function for all parameters as an element of dual satellite
diversity is evaluated for each generation. The interpolation between the
best and the worst Pareto rank is then examined for each fitness value.
The same weighting factor (w) for all objective functions is determined
to control the optimal solution. The fitness function of this algorithm
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can be expressed as:
1
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where j is the generation number, /=1, ..., N is the identification index
for each individual, £ is the number of layer for hybrid constellation,
and a is the scaling factor. Satellite parameters for both LEOs and
MEOs are represented as s, &, 6, ¢ and i for the number of satellites, the
altitude of satellite, the angle shift between satellites, the angle between
planes and the inclination angle. Exin,(-) and Emay (-) are the expecta-
tion operators of parameters with minimising and maximising value. A
different scaling factor is examined to increase the robustness of
generation to map the fitness values in the range 0 and 1. All parameters
retain the satellite diversity condition (SatDiv).
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Fig. 1 Chromosome structure

The fitness of the two offspring individuals depends on the parents
through the crossover and the mutation processes. The best fitness for
each chromosome according to the satellite diversity for all parameters
is then calculated. Multipoint crossover and non-uniform mutation
processes are used in the algorithm. The best chromosome fitness can
be written as:

max

chromosome fitness = Y F| )
j=

The process is carried out on a group of the fittest individuals that
represent all parameters of the satellite constellation. The chromosome
matrix output of the genes of the satellite constellations can be written
as:

c=[P}s o PPyl form=(1,..om) . (3)

where pT,,, are the parameters of satellite constellations that are
proposed in the GA. The genetic algorithm process can be stopped
after an optimum number of generations. The best fitness is then chosen
by ranking them from 1 to the maximum number of generations and
thence stopping the process of selection, crossover and mutation.

Results: For the example genetic hybrid satellite constellation, popu-
lation size is chosen as 350 with 550 of the maximum number of
generation. The value of crossover probability and mutation prob-
ability are chosen as 0.6 and 0.025 as suggested in [1]. The constraint
of the satellite’s altitude parameter is chosen as 700-1700 km for LEO
and 8000-17000 km for MEO.

In this simulation, dual satellite diversity is employed for both LEO
and MEO orbits. Simulation results for the satellite parameters are
shown in Table 1. The hybrid LEO and MEO constellation have 30
satellites for LEO (5 planes x 6 satellites per plane) and six satellites for
MEO (2 planes x 3 satellites per plane). Compared to previous results
[3], the number of satellites is seen to be reduced. Also the maximum
satellite altitude for the hybrid constellation for both LEO and MEO are
lower than for the single layer of satellite constellation presented in [3].
This will result in less delay and thus improved QoS for some services.
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