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Abstract

The advances in programmable and reconfigurable radios have rendered feasible
transmitter optimization schemes that can greatly improve the performance of
multiple antenna multiuser systems. Reconfigurable radio platforms are particu-
larly suitable for implementation of transmitter optimization at the base station.
We consider the downlink of a wireless system with multiple transmit antennas at
the base station and a number of mobile terminals (i.e., users) each with a single
receive antenna. Under an average transmit power constraint, we consider the
maximum achievable sum data rates in the case of (1) zero-forcing (ZF) spatial
pre-filter, (2) modified zero-forcing (MZF) spatial pre-filter and (3) triangulariza-
tion spatial pre-filter coupled with dirty paper coding (DPC) transmission scheme.
We show that the triangularization with DPC approaches the closed loop MIMO
rates (upper bound) for higher SNRs. Further, the MZF solution performs very
well for lower SNRs, while for higher SNRs the rates for the ZF solution converge
to the MZF rates. An important impediment that degrades the performance of
such transmitter optimization schemes is the delay in channel state information
(CSI). We characterize the fundamental limits of performance in the presence of
delayed CSI and then propose performance enhancements using a linear MMSE
predictor of the CSI that can be used in conjunction with transmitter optimization
in multiple antenna multiuser systems.

∗This work is supported in part by the National Science Foundation under Grant No. FMF 0429724.
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1 Introduction

For a wide range of emerging wireless data services, the application of multiple antennas appears

to be one of the most promising solutions leading to even higher data rates and/or the ability to

support greater number of users. Multiple-transmit multiple-receive antenna systems represent

an implementation of the MIMO (multiple input multiple output) concept in wireless communi-

cations [1], that can provide high capacity (i.e., spectral efficiency) wireless communications in

rich scattering environments. It has been shown that the theoretical capacity (approximately)

increases linearly as the number of antennas is increased [1, 2].

With the advent of flexible and programmable radio technology, transmitter optimization

techniques used in conjunction with MIMO processing can provide even greater gains in systems

with multiple users. Reconfigurable radio platforms are particularly suitable for implementa-

tion of transmitter optimization at the base station. Such optimization techniques have great

potential to enhance performance on the downlink of multiuser wireless systems. From an infor-

mation theoretic model, the downlink corresponds to the case of a broadcast channel [3]. Recent

studies that have also focussed on multiple antenna systems with multiple users include [4–10]

and the references therein.

In this paper, we study multiple antenna transmitter optimization (i.e, spatial pre-filtering)

schemes that are based on linear preprocessing and transmit power optimization (keeping the

average transmit power conserved). Specifically, we consider the downlink of a wireless system

with multiple transmit antennas at the base station and a number of mobile terminals (i.e.,

users) each with a single receive antenna. We consider the maximum achievable sum data rates

in the case of (1) zero-forcing spatial pre-filter, (2) modified zero-forcing spatial pre-filter and

(3) triangularization spatial pre-filter coupled with dirty paper coding transmission scheme [11].
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We study the relationship between the above schemes as well as the impact of the number of

antennas on performance.

After characterizing the fundamental performance limits, we then study the performance

of the above transmitter optimization schemes with respect to delayed channel state informa-

tion (CSI). The delay in CSI may be attributed to the delay in feeding back this information

from the mobiles to the base station or alternately due to the delays in the ability to repro-

gram/reconfigure the transmitter pre-filter. Without explicitly characterizing the source and

the nature of such delays, we show how the performance of the above transmitter optimization

schemes is degraded by the CSI delay. In order to alleviate this problem, we exploit correlations

in the channel by designing a linear MMSE predictor of the channel state. We then show how

the application of the MMSE predictor can improve performance of transmitter optimization

schemes under delayed CSI.

The paper is organized as follows. In section 2 we describe the system model. In section 3, we

describe the various transmitter optimization schemes including their fundamental performance

limits as well as the effect of delayed CSI. In section 4, a formal channel model capturing channel

correlations and a linear MMSE predictor of the channel state which is used to overcome the

effect of delayed CSI are presented.

2 System Model

In the following we introduce the system model. We use a MIMO model [1] that corresponds

to a system presented in Figure 1. It consists of M transmit antennas and N mobile terminals

(each with a single receive antenna). In other words each mobile terminal presents a MISO

channel as seen from the base station.

In Figure 1, xn is the information bearing signal intended for mobile terminal n and yn

is the received signal at the corresponding terminal (for n = 1, · · · , N). The received vector
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y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (1)

where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] = Pav IN×N), n is AWGN (E[nnH] =

N0 IN×N), H is the MIMO channel response matrix, and S is a transformation (spatial pre-

filtering) performed at the transmitter. Note that the vectors x and y have the same dimen-

sionality. Further, hnm is the nth row and mth column element of the matrix H corresponding

to a channel between mobile terminal n and transmit antenna m. If not stated otherwise, we

will assume that N ≤ M .

Application of the spatial pre-filtering results in the composite MIMO channel G given as

G = HS, G ∈ CN×N (2)

where gnm is the nth row and mth column element of the composite MIMO channel response

matrix G. The signal received at the nth mobile terminal is

yn = gnnxn
︸ ︷︷ ︸

Desired signal for user n

+
N∑

i=1,i6=n

gnixi

︸ ︷︷ ︸

Interference

+ nn. (3)

In the above representation, the interference is the signal that is intended for other mobile

terminals than terminal n. As said earlier, the matrix S is a spatial pre-filter at the transmitter.

It is determined based on optimization criteria that we address in the next section and has to

satisfy the following constraint

trace
(

SSH
)

≤ N (4)

which keeps the average transmit power conserved. We represent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (5)

where A is a linear transformation and P is a diagonal matrix. P is determined such that the

transmit power remains conserved.
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3 Transmitter Optimization Schemes

Considering different forms of the matrix A we study the following transmitter optimization

schemes.

1. Zero-forcing (ZF) spatial pre-filtering scheme where A is represented by

A = HH(HHH)−1. (6)

As can be seen, for N ≤ M the above linear transformation is zeroing the interference

between the signals dedicated to different mobile terminals, i.e., HA = IN×N . xn are

assumed to be circularly symmetric complex random variables having Gaussian distribu-

tion NC(0, Pav). Consequently, the maximum achievable data rate (capacity) for mobile

terminal n is

RZF
n = log2

(

1 +
Pav|pnn|

2

N0

)

(7)

where pnn is the nth diagonal element of the matrix P defined in (5). In (6) it is assumed

that HHH is invertible, i.e, the rows of H are linearly independent.

2. Modified zero-forcing (MZF) spatial pre-filtering scheme that assumes

A = HH
(

HHH +
N0

Pav

I
)−1

. (8)

In the case of the above transformation, in addition to the knowledge of the channel H the

transmitter has to know the noise variance N0. xn are assumed to be circularly symmet-

ric complex random variables having Gaussian distribution NC(0, Pav). The maximum

achievable data rate (capacity) for mobile terminal n now becomes

RMZF
n = log2

(

1 +
Pav|gnn|

2

Pav

∑N
i=1,i6=n |gni|2 + N0

)

. (9)

While the transformation in (8) appears to be similar in form to a MMSE linear receiver,

the important difference is that the transformation is performed at the transmitter. Using

the virtual uplink approach for transmitter beamforming (introduced in [7,8]) we present

the following proposition.

5



Proposition 1 If the nth diagonal element of P is selected as

pnn =
1

√

aH
n an

(n = 1, · · · , N) (10)

where an is the nth column vector of the matrix A, the constraint in (4) is satisfied with

equality. Consequently, the achievable downlink rate RMZF
n for mobile n is identical to its

corresponding virtual uplink rate when an optimal uplink linear MMSE receiver is applied.

See Appendix A for a definition of the corresponding virtual uplink and a proof of the

above proposition.

3. Triangularization spatial pre-filtering with dirty paper coding (DPC) where the matrix

A assumes the form

A = HHR−1 (11)

where H = (QR)H and Q is unitary and R is upper triangular (see [12] for details on QR

factorization). In general, R−1 is a pseudo inverse of R. The composite MIMO channel

G in (2) becomes G = L = HS, a lower triangular matrix. It permits application of dirty

paper coding designed for single input single output (SISO) systems. We refer the reader

to [4–6, 13–16] for further details on the DPC schemes.

By applying the transformation in (11), the signal intended for terminal 1 is received

without interference. The signal at terminal 2 suffers from the interference arising from

the signal dedicated to terminal 1. In general, the signal at terminal n suffers from the

interference arising from the signals dedicated to terminals 1 to n − 1. In other words,

y1 = g11x1 + n1,

y2 = g22x2 + g21x1 + n2,

...

yn = gnnxn +
n−1∑

i=1

gnixi + nn,
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...

yN = gNNxN +
N−1∑

i=1

gNixi + nN . (12)

Since the interference is known at the transmitter, DPC can be applied to mitigate the

interference (the details are given in Appendix B). Based on the results in [13], the

achievable rate for mobile terminal n is

RDPC
n = log2

(

1 +
Pav|gnn|2

N0

)

= log2

(

1 +
Pav|rnnpnn|2

N0

)

(13)

where rnn is the nth diagonal element of the matrix R defined in (11). Note that DPC

is applied just in the case of the linear transformation in (11), with corresponding rate

given by (13).

Note that trace(AAH) = N , there by satisfying the constraint in (4). Consequently,

we can select P = IN×N and present the following proposition.

Proposition 2 For high SNR (Pav � N0) and P = IN×N , the achievable sum rate of

the triangularization with DPC scheme is equal to the rate of the equivalent (open loop)

MIMO system. In other words, for Pav � N0

N∑

n=1

RDPC
n = log2

(

det
(

IN×N +
Pav

N0
HHH

))

. (14)

Proof: Starting from right side term in (14) and with HHH = RHR, for Pav � N0

log2

(

det
(

IN×N +
Pav

N0
RHR

))

≈

≈ log2

(

det
(

Pav

N0
RHR

))

=

= log2

(
Pav

N0
|r11|

2 · · ·
Pav

N0
|rNN |

2
)

=

=
N∑

i=1

log2

(
Pav

N0
|rii|

2
)

≈

≈
N∑

i=1

log2

(

1 +
Pav

N0

|rii|
2
)

=
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=
N∑

n=1

RDPC
n (15)

which concludes the proof. 2

The ZF and MZF schemes should be viewed as transmitter beamforming techniques using

conventional channel coding to approach the achievable rates [7,8]. The triangularization with

DPC scheme is necessarily coupled with a non-conventional coding, i.e., the DPC scheme.

Once the matrix A is selected, the elements of the diagonal matrix P are determined such

that the transmit power remains conserved and the sum rate is maximized. The constraint on

the transmit power is

trace
(

APPHAH
)

≤ N. (16)

The elements of the matrix P are selected such that

diag(P) = [p11, · · · , pNN ]T = arg max
trace(APPHAH)≤N

N∑

i=1

Rn. (17)

3.1 Fundamental Limits

To evaluate the performance of the above schemes we consider the following base line solutions.

1. No pre-filtering solution where each mobile terminal is served by one transmit antenna

dedicated to that mobile. This is equivalent to S = I. A transmit antenna is assigned to

a particular terminal corresponding to the best channel (maximum channel magnitude)

among all available transmit antennas and that terminal.

2. Equal resource TDMA and coherent beamforming (denoted as TDMA-CBF) is a solution

where signals for different terminals are sent in different (isolated) time slots. In this case,

there is no interference, and each terminal is using 1/N of the overall resources. When

8



serving a particular mobile, ideal coherent beamforming is applied using all M transmit

antennas.

3. Closed loop MIMO (using the water pouring optimization on eigen modes) is a solution

that is used as an upper bound on the achievable sum rates. In the following it is denoted

as CL-MIMO. This solution would require that multiple terminals act as a joint multiple

antenna receiver. This solution is not practical because the terminals are normally indi-

vidual entities in the network and they do not cooperate when receiving signals on the

downlink.

In Figure 2 we present average rates per user versus SNR = 10 log (Pav/N0) for a system con-

sisting of M = 3 transmit antennas and N = 3 terminals. The channel is Rayleigh, i.e., the

elements of the matrix H are complex independent identically distributed Gaussian random

variables with distribution NC(0, 1). From the figure we observe the following. The triangu-

larization with DPC scheme is approaching the closed loop MIMO rates for higher SNR. The

MZF solution is performing very well for lower SNRs (approaching CL-MIMO and DPC rates),

while for higher SNRs the rates for the ZF scheme are converging to the MZF rates. The

TDMA-CBF rates are increasing with SNR, but still significantly lower than the rates of the

proposed optimization schemes. The solution where no pre-filtering is applied clearly exhibits

properties of an interference limited system (i.e., after a certain SNR, the rates are not increas-

ing). Corresponding cumulative distribution functions (cdf) of the sum rates normalized by the

number of users are given in Figure 3, for SNR = 10 dB (see more on the ”capacity versus

outage” approach in [17]).

In Figure 4 we present the behaviour of the average rates per user vs. number of transmit

antennas. The average rates are observed for SNR = 10 dB, N = 3, and variable number of

transmit antenna (M = 3, 6, 12, 24). The rates increase with the number of transmit antennas

and the difference between the rates for different schemes becomes smaller. As the number of

transmit antennas increase, while keeping the number of users N fixed, the spatial channels (i.e.,
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rows of the matrix H) are getting less crosscorrelated (approaching orthogonality for M → ∞).

It can be shown that for orthogonal channels, all three schemes perform identically.

Let us now illustrate a case when the number of available terminals Nt (i.e., users) is equal

or greater than the number of transmit antennas M . Out of Nt terminals, the transmitter

will select N = M terminals and perform the above transmitter optimization schemes for the

selected set. There are Nt!/((Nt − M)!M !) possible sets. Between the transmit antennas and

each terminal there is (1×M)-dimensional spatial channel. For each set of the terminals there

is a matrix channel Hj ∈ CM×M whose each row corresponds to a different spatial channel of

the corresponding terminal in the set. The selected terminals are the ones corresponding to the

set

J = argj min ||HH
j (HjH

H
j )−1|| (18)

where || . || is the Frobenius norm. The above criterion will favor the terminals whose spatial

channels have low crosscorrelation. In Figure 5 we present the average rates per user (the

average sum rates divided by N = M) vs. number of available terminals. The increase in the

rates with the number of available terminals is a result of multiuser diversity (i.e., having more

terminals allows the transmitter to select more favorable channels).

3.2 Effect of CSI Delay

As a motivation for the analysis presented in the following sections, we now present the effects

of imperfect channel state knowledge. In practical communication systems, the channel state

H has to be estimated at the receivers, and then fed to the transmitter. Specifically, mobile

terminal n feeds back the estimate of the nth row of the matrix H, for n = 1, · · · , N . In the

case of a time varying channel, this practical procedure results in noisy and delayed (temporally

mismatched) estimates being available to the transmitter to perform the optimization. As said

earlier, the MIMO channel is time varying. Let Hi−1 and Hi correspond to consecutive block

faded channel responses. The temporal characteristic of the channel is described using the
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correlation

k = E
[

h(i−1)nm h∗
inm

]

/Γ (19)

where Γ = E[hinmh∗
inm], and hinm is a stationary random process (for m = 1, · · · , M and

n = 1, · · · , N , denoting transmit and receive antenna indices, respectively). Low values of

the correlation k correspond to higher mismatch between Hi−1 and Hi. Note that the above

channel is modeled as a first order discrete Markov process. In the case of the Jakes model,

k = J0(2πfdτ), where fd is the maximum Doppler frequency and τ is the time difference

between h(i−1)nm and hinm. In addition, the above simplified model assumes that there is no

spatial correlation.

We assume that the mobile terminals feed back Hi−1 which is used at the base station to

perform the transmitter optimization for the ith block. In other words the downlink transmitter

is ignoring the fact that Hi 6= Hi−1. In Figure 6, we present the average rate per user versus

the temporal channel correlation k in (19). From these results we note very high sensitivity of

the schemes to the channel mismatch. In this particular case the performance of the ZF and

MZF schemes becomes worse than when there is no pre-filtering. See also [18] for a related

study of channel mismatch and achievable data rates for single user MIMO systems. Note that

the above example and the model in (19) is a simplification that we only use to illustrate the

schemes’ sensitivity to imperfect knowledge of the channel state. In the following section we

introduce a detailed channel model incorporating correlations in the channel state information.

4 Channel State Prediction for Performance Enhance-

ment

In the following we first address the temporal aspects of the channel H. For each mobile

terminal there is a (1 × M)-dimensional channel between its receive antenna and M transmit

antennas at the base station. The MISO channel hn = [hn1 · · ·hnM ] for mobile terminal n

(n = 1, · · · , N) corresponds to the nth row of the channel matrix H, and we assume that it is
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independent from other channels (i.e., rows of the channel matrix). The temporal evolution of

the MISO channel hn may be represented as [19, 20]

hn(t) = [1 · · ·1] Dn Nn , Dn ∈ CNf×Nf , Nn ∈ CNf×M (20)

where Nn is a Nf ×M dimensional matrix with elements corresponding to complex iid random

variables with distribution NC(0, 1/Nf). Dn is a Nf × Nf diagonal Doppler shift matrix with

diagonal elements

dii = ejωit (21)

representing the Doppler shifts that affect Nf plane waves and

ωi =
2π

λ
vn cos (γi), for i = 1, · · · , Nf (22)

where vn is the velocity of mobile terminal n and the angle of arrival of the ith plane wave at

the terminal is γi (generated as U [0 2π]).

It can be shown that the model in (20) strictly conforms to the Jakes model for Nf → ∞.

This model assumes that at the mobile terminal the plane waves are coming from all directions

with equal probability. Further, note that each diagonal element of Dn corresponds to one

Doppler shift. Dn and Nn are independently generated. With minor modifications, the above

model can be modified to capture the spatial correlations as well (see [21]).

Let us assume that the transmitter has a set of previous channel responses (for mobile

terminal n) hn(t) where t = kTch and k = 0,−1, · · · − (L − 1). The time interval Tch may

correspond to a period when a new CSI is sent from the mobile terminal to the base station.

Knowing that the wireless channel has correlations, based on previous channel responses the

transmitter may perform a prediction of the channel response hn(τ) at the time moment τ . In

this paper we assume that the prediction is linear and that it minimizes the mean square error

(MMSE) between true and predicted channel state. The MMSE predictor Wn is

Wn = min
T

arg E|THhun − hn(τ)H|2 (23)
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where hun is a vector defined as

hun = [hn(0) hn(−Tch) · · ·hn(−(L − 1)Tch)]
T. (24)

In other words, the vector is constructed by stacking up the previous channel responses available

to the transmitter. Let us define the following matrices

Un = E
[

hunh
H
un

]

(25)

and

Vn = E [hunhn(τ)] . (26)

It can be shown that the linear MMSE predictor Wn is [22]

Wn = U−1
n Vn. (27)

The above predictor exploits the correlations of the MISO channel. Note that different linear

predictors are needed for different mobile terminals.

A practical implementation of the above prediction can use sample estimates of Un and Vn

as

Ûn =
1

Nw

−1∑

i=−Nw

hun(iTch)hun(iTch)
H (28)

V̂n =
1

Nw

−1∑

i=−Nw

hun(iTch)hn(τ + iTch). (29)

Underlying assumption in using the above estimates is that the channel is stationary over the

integration window NwTch. Further, if the update of the CSI is performed at discrete time

moments kTch (k = 0,−1, · · ·), the update period Tch should be such that

Tch <
1

2fdoppler

. (30)

In Figure 7 we present the average rates per user versus the delay τ of the CSI. The system

consists of M = 3 transmit antennas and N = 3 terminals. The channel is modeled based on

(20) (assuming that the carrier frequency is 2 GHz and the velocity of each mobile terminal is

30 kmph and setting the number of plane waves Nf = 100). Because the ideal channel state
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H(t + τ) is not available at the transmitter, we assume that H(t) is used instead to perform

the transmitter optimization at the moment t + τ . Figures 7 presents average rates for the

ZF and MZF scheme, for SNR = 10 dB. Results depicted by the solid lines correspond to the

application of the delayed CSI H(t) instead of the true channel state H(t+τ). The dashed lines

depict results when the MMSE predicted channel state Hmmse(t+ τ) is used instead of the true

channel state H(t + τ). Without any particular effort to optimally select the implementation

parameters, in this particular example, we use L = 10 previous channel responses to construct

the vectors in (24). Further, the length of the integration window in (28) and (29) is selected to

be Nw = 100. The results clearly point to improvements in the performance of the schemes when

the MMSE channel state prediction is used. The results suggest that the temporal correlations

in the channel alone are significant enough to support the application of the MMSE prediction.

The presence of spatial correlations in the channel model will further improve the benefits of

such channel state prediction schemes used in conjunction with transmitter optimization.

For the above assumptions, in Figure 8 we present the average rates per user versus the

terminal velocity with the CSI delay τ = 2 msec. From the results, we can see that the

prediction scheme significantly extends the gains of the transmitter optimization even for higher

terminal velocities.

5 Conclusion

The advances in programmable and reconfigurable radios have rendered feasible transmitter

optimization schemes that can greatly improve the performance of multiple antenna multiuser

systems. In this paper, we presented a study on multiple antenna transmitter optimization

schemes for multiuser systems that are based on linear transformations and transmit power

optimization. We considered the maximum achievable sum data rates in the case of the zero-

forcing, the modified zero-forcing and the triangularization spatial pre-filtering coupled with

the dirty paper coding transmission scheme. We showed that the triangularization with DPC
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approaches the closed loop MIMO rates (upper bound) for higher SNR. Further, the MZF

solution performed very well for lower SNRs (approaching closed-loop MIMO and DPC rates),

while for higher SNRs the rates for the ZF scheme converged to that of the MZF rates. A

key impediment to the successful deployment of transmitter optimization schemes is the delay

in the channel state information (CSI) that is used to accomplish this. We characterized the

degradation in the performance of transmitter optimization schemes with respect to the delayed

CSI. A linear MMSE predictor of the channel state was introduced which then improved the

performance in all cases. The results have suggested that the temporal correlations in the

channel alone are significant enough to support the application of the MMSE prediction. In

the presence of additional spatial correlations, the usefulness of such prediction schemes will be

even greater.

A Appendix

We now describe the corresponding virtual uplink for the system in Figure 1. Let x̄n be the

uplink information bearing signal transmitted from mobile terminal n (n = 1, · · · , N) and ȳm

be the received signal at the mth base station antenna (m = 1, · · · , M). x̄n are assumed to

be circularly symmetric complex random variables having Gaussian distribution NC(0, Pav).

Further, the received vector ȳ = [ȳ1, · · · , ȳM ]T is

ȳ = H̄x̄ + n̄ = HHx̄ + n̄,

ȳ ∈ CM , x̄ ∈ CN , n̄ ∈ CM , H̄ ∈ CM×N (31)

where x̄ = [x̄1, · · · , x̄N ]T is the transmitted vector (E[x̄x̄H] = Pav IN×N), n̄ is AWGN (E[n̄n̄H] =

N0 IM×M) and H̄ = HH is the uplink MIMO channel response matrix.

It is well known that the MMSE receiver is the optimal linear receiver for the uplink (multiple

access channel) [23,24]. It maximizes the received SINR (and rate) for each user. The decision

statistic is obtained after the receiver MMSE filtering as

x̄dec = WHȳ (32)
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where the MMSE receiver is

W =

((

HHH +
N0

Pav

I
)−1

H

)H

= HH
(

HHH +
N0

Pav

I
)−1

. (33)

Proof of Proposition 1

Note that W = A in (8), for the MZF transmitter spatial pre-filtering. Let us normalize

the column vectors of the matrix W in (33) as

Wnor = WP (34)

where P is defined in (10). In other words the nth diagonal element of P is selected as

pnn =
1

√

wH
n wn

(n = 1, · · · , N) (35)

where wn is the nth column vector of the matrix W (where wn = an, which is the column

vector of A for n = 1, · · · , N). It is well known that any normalization of the columns of the

MMSE receiver in (33) does not change the SINRs. In other words, the SINR for the nth uplink

user (n = 1, · · · , N) is

SINR UL
n =

Pav|wH
n h̄n|2

Pav

∑N
i=1,i6=n |w

H
n h̄i|2 + N0wH

n wn

=
Pav|wH

n h̄n|2/(wH
n wn)

Pav

∑N
i=1,i6=n |w

H
n h̄i|2/(wH

n wn) + N0

(36)

where h̄n is the nth column vector of the matrix H̄. Note that h̄H
n = hn which is the nth row

vector of the downlink MIMO channel H. The corresponding downlink SINR when the MZF

spatial per-filtering is used (with P defined in (10)) is

SINR MZF
n =

Pav|hnan|2/(aH
nan)

Pav

∑N
i=1,i6=n |hiai|2/(aH

nan) + N0

. (37)

As said earlier, wn = an and h̄H
n = hn. Thus, SINR MZF

n = SINR UL
n for n = 1, · · · , N leading

to identical rates which concludes the proof.

B Appendix

One practical, but suboptimal single-dimensional DPC solution is described in [14,15]. Starting

from that solution we introduce the DPC scheme.
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The transmitted signal in (1) intended for terminal n is

xn = fmod (x̂n − In) (38)

where x̂n is the information bearing signal for terminal n and fmod(.) is a modulo operation

(i.e., a uniform scalar quantizer). For a real variable x, fmod(x) is defined as

fmod(x) = ((x + Z) mod (2Z)) − Z (39)

and in the case of a complex variable a + jb, fmod(a + jb) = fmod(a) + jfmod(b). The constant

Z is selected such that E[xnx∗
n] = Pav. Further, from (12), In is the normalized interference at

terminal n

In =
n−1∑

i=1

gnixi/gnn (40)

assuming that gnn 6= 0. Note that In is only known at the transmitter. At terminal n the

following operation is performed

fmod (yn/gnn) = x̂n + n∗
n (41)

where n∗
n is a wrapped-around AWGN (due to the nonlinear operation fmod(.)). For high SNR

and with x̂n being uniformly distributed over the single-dimensional region, the achievable rate

is approximately 1.53 dB away from the rate in (13) [14, 15].

To further approach the rate in (13), based on [14], the following modifications of the

suboptimal scheme in (38) are needed. The transmitted signal intended for terminal n is now

xn = fk (x̂n − ξn In + dn) (42)

where fk(.) is a modulo operation over a k-dimensional region. ξn is a parameter to be optimized

(0 < ξn ≤ 1) and dn is a dither (uniformly distributed pseudo noise over the k-dimensional

region). At terminal n the following operation is performed,

fk (yn/gnn) = x̂n + (1 − ξn)un + ξnn∗
n (43)

where n∗
n is a wrapped-around AWGN (due to the nonlinear operation fk(.)) and un is uniformly

distributed over the k-dimensional region. For k → ∞ and x̂n being uniformly distributed over

17



the k-dimensional region, the rate in (13) can be achieved [14]. Further details on selecting ξn

and dn are beyond the scope of this paper. We refer the reader to [14] and references there in.
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Figure 1: System model consisting of M transmit antennas and N mobile terminals.
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Figure 2: Average rate per user vs. SNR, M = 3, N = 3, Rayleigh channel.
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Figure 4: Average rate per user vs. M/N , SNR = 10 dB, N = 3, variable number of transmit

antenna M = 3, 6, 12, 24, Rayleigh channel.
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Figure 5: Average rate per user vs. number of available terminals, SNR = 10 dB, M = 3,

Rayleigh channel.
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Figure 6: Average rate per user vs. temporal channel correlation k, SNR = 10 dB, M = 3

(solid lines), M = 6 (dashed lines), N = 3, Rayleigh channel.
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without MMSE prediction (solid lines), SNR = 10 dB, M = 3, N = 3, channel based on model
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Figure 8: Average rate per user vs. terminal velocity, with MMSE prediction (dashed lines)

and without MMSE prediction (solid lines), SNR = 10 dB, M = 3, N = 3, channel based on

model in (20), fc = 2 GHz, τ = 2 msec.
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