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ABSTRACT OF THE DISSERTATION

Adaptive Transmission in Fading Environment

by Lang Lin

Dissertation Director: Professor Roy D. Yates and Professor Predrag

Spasojević

Adaptive transmission that varies the parameters at the transmitter using channel state

information is a promising technique for improving bandwidth and/or power efficiency

in time-varying wireless environments. To understand the full potential of adaptive

transmission, the achievable throughput of adaptive transmission systems with practical

constraints needs to be determined.

In this thesis, we formulate and analyze power constrained average reliable through-

put maximization with a finite number of code rates/power levels and with channel un-

certainty. The focus is on communication over slow fading channels where the channel

does not change over the duration of a codeword. Average reliable throughput is based

on the concept of information outage, which can be related to the error performance of

advanced coding designs.

For an adaptive transmission system limited by encoding/decoding only with a finite

choices of code rates, it is necessary to determine the finite set of code rates that enables

the system to achieve maximum throughput. If the transmitted power also varies within

a finite set of values, optimum designs are closely approximated by designs found by

an iterative algorithm that maximizes the throughput by alternatively varying the sets

of power levels and code rates. Numerical evaluations show that systems with ten
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power levels and ten code rates can achieve a performance within one dB of the ergodic

capacity for several fading channels.

If the transmitted power can vary continuously, throughput maximizing designs can

be found by a one-parameter line search algorithm. In this case, the required number

of code rates can be reduced substantially. In addition, throughput maximizing designs

for an arbitrary code rate set can be obtained analytically.

When perfect channel state information is not available at the transmitter, both the

transmitted power and the code rate must be adjusted according to channel estimates.

If the transmitted power and the code rate vary continuously, throughput maximizing

designs must simultaneously satisfy two non-linear criteria and, thus, have an ordered

structure. We propose an algorithm which finds either good or optimum designs. How-

ever, for a finite number of code rates, the throughput maximization can be solved in

the case of a constant outage constraint.

Numerical results show that carefully designed adaptive transmission systems with

a small number of code rates (power levels) or with reasonably good channel state

information can achieve throughput values close to ergodic capacity.
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Chapter 1

Introduction

1.1 Background

For wireless data communication systems [2, 4, 5, 29], adaptive transmission is a com-

munication strategy that varies the parameters at the transmitter according to channel

state information to improve both bandwidth and power efficiency in communicating

over time-varying fading channels [28,34,35]. In practice, a number of parameters can

be adapted, including transmitted power level [1, 25], symbol transmission rate [14],

modulation formats [21], channel coding strategies [20], or any combination of the

above [3,23,27,33,49,58,59].

In this thesis, the primary goal is to explore the maximum throughput that adap-

tive transmission can achieve in a fading environment. When considering the maximum

achievable throughput within a given bandwidth, all of the adaptive transmission tech-

niques can be reduced to the case of adapting only two primary parameters: the code

rate and the transmission power level. Thus, the discussion of the ultimate gain of

adaptive transmission falls into the regime of information theory.

One of the earliest works on improving spectrum efficiency of communications over

time varying channels by employing adaptive transmission is [53]. In [53], Shannon

demonstrated an example where adaptive transmission with channel state information

can achieve higher throughput than non-adaptive transmission. In addition, for time-

varying channels with a finite number of channel states and input/output symbols,

Shannon obtained the ergodic capacity for the case where the perfect CSI is available

at the transmitter (CSIT) but no CSI at the receiver (CSIR). Moreover, in [53], Shannon

stated without proof an explicit ergodic capacity formula corresponding to the scenario

with both perfect CSIT and CSIR.
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Specifically, let the channel state be a stationary and ergodic stochastic process

represented by S(t), which assumes values over a finite set S = {si, i = 0, 1, . . . ,Ns − 1},

where Ns is the cardinality of S. Let Pi be the probability mass function of a particular

channel state si and Ci be the corresponding capacity. Then, the overall capacity is

C =
Ns−1∑
i=0

CiPi. (1.1)

A proof can be found in [60].

Consider a unit bandwidth fading channel modeled by

Y =
√

SX + W, (1.2)

where S, X, Y, and W are the channel state (channel fading gain), the transmitted

signal, the received signal, and a circularly symmetric additive white Gaussian noise

(AWGN) with zero mean and variance N0. The channel state S is a real random

variable of unit mean with probability density function (PDF) f(s), cumulative distri-

bution function (CDF) F (s), and domain S = {s|s ≥ 0}. Given a policy with trans-

mitted power p(s) corresponding to a particular channel state s, the maximum mutual

information is

R(sp(s)) = log
(

1 +
sp(s)
N0

)
, (1.3)

and (1.1) implies

C(p(s)) =
∫

s∈S
R(sp(s))f(s) ds, (1.4)

where C(p(s)) is the capacity corresponding to a particular power allocation scheme.

For systems with average power p, the ergodic capacity is

C = max
p(s):

R
s∈S p(s)f(s) ds≤p

C(p(s)). (1.5)

In [22], it was shown that the ergodic capacity can be achieved by a multiplexing

strategy where messages are coded with a variable code rate and codewords at rate r(s)

are transmitted with a transmitted power p(s) when the channel state is s. In order

to achieve the ergodic capacity, the multiplexing strategy implies that the transmitted
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code rate r(s) must be the same as R(sp(s)). Therefore, it can be shown that the

optimum p(s) is in the following form [22],

p(s) = N0

(
1
s0

− 1
s

)+

, (1.6)

where (·)+ denotes the operator max(·, 0) and s0 is a positive cutoff value such that

∫ ∞

s0

p(s)f(s) ds = p. (1.7)

For time varying systems, the optimum power allocation in (1.6) has the interpretation

of water-filling in time. In addition, it requires that the system allows for adapting the

transmitted power and code rate to an infinite number of channel states.

In [10], it is shown that varying the transmitted power is sufficient to achieve the

ergodic capacity when the codeword is longer than the time required for the channel

to experience ergodicity. In this case, messages are encoded with a code rate equal to

the ergodic capacity and codeword symbols are transmitted with variable power. Even

though such an approach simplifies the overall design by dropping the need for code

rate adaptation, it may incur a severe decoding delay and, thus, unacceptable quality

of service. Therefore, within the scope of this thesis, we allow for varying both the

transmitted power and code rate.

In [22], the authors demonstrated through numerical evaluation that there is a

very large throughput improvement if adaptive transmission is used. However, in [22],

an optimum adaptive transmission system that achieves the ergodic capacity requires

knowledge of the current channel state at the transmitter. In addition, the transmis-

sion parameters, e.g., the transmitted power and/or code rate assignments must vary

continuously. Both of these requirements have been widely adopted in further work on

information theoretic aspects of communication over fading channels [10,57]. Unfortu-

nately, these requirements are very stringent for practical system implementations.

When the parameter space of the transmitted power and/or code rate is a finite set,

it is possible that the transmitted code rate r(s) does not match the mutual information

R(sp(s)). For instance, given a fixed power assignment p(s) = p, since s can be any

non-negative real number, in order to have r(s) = R(sp(s)) for all s ∈ S, arbitrarily
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high code rates r(s) must be employed. When r(s) > R(sp(s)), an information outage

event occurs.

The information outage is an intrinsic characteristic of communication over fading

channels with a decoding delay constraint [24, 45] or, alternatively, with codewords

not long enough to experience ergodic fading. For delay-limited cases, the strict sense

Shannon capacity is zero [45]. The fundamental reason is that, given a codeword with

any positive code rate and transmitted at any positive power level, and a channel state

which can be arbitrarily close to zero, the probability of the event that r(s) > R(sp(s))

is non-zero. Thus, the maximum achievable rate for reliable communication is zero.

During an outage, a transmission is not considered reliable and, thus, it is frequently

convenient to assume that the transmitted data can be ignored [8]. This assumption

leads to the capacity versus outage problem which focuses on the tradeoff between the

outage probability and the supportable rate; see, for example, [10, 26, 51, 52, 55]. The

practice of ignoring data received during an outage is supported by the fact that the

outage probability matches well the error probability of actual codes [30, 42]. In fact,

there is a large class of channel coding schemes achieving the performance predicted

by the channel capacity [6, 18]. Consequently, we characterize the performance of a

system design based on the concept of average reliable throughput (ART), defined as

the average data rate assuming zero rate when the channel is in outage.

The capacity-versus-outage approach or the capacity distribution approach can be

generalized as follows. For a compound channel characterized by θ, the capacity is

denoted by Cθ. Given any rate r, we can define a set Θr that is the largest of all sets{
θ

∣∣∣∣Cθ ≥ r

}
. Then, the outage probability is Pout = Pr[θ /∈ Θr].

Consider the simple case of a flat Rayleigh fading channel f(s) = e−s, with the

perfect CSIR only. For this compound channel, if p(s) = p, the instantaneous channel

capacity with channel state s is given by

C(s) = R(sp(s)) = R(sp). (1.8)

Given a rate r, the outage probability is

Pout = Pr[C(s) < r] = Pr
[
log

(
1 +

sp

N0

)
< r

]
= 1 − exp

(
−N0

sp
(er − 1)

)
. (1.9)
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Thus, Pout = 0 only if r = 0. Therefore, the capacity in the Shannon’s sense is zero.

Channel estimation is another important factor limiting the performance of adaptive

transmission systems. In practice, the channel state can be estimated by a wide range

of estimation techniques including pilot-aided [13], joint pilot-aided and data detection

[50], and blind [61]. A survey of the channel estimation techniques can be found in [17].

Due to complexity and timing constraints, in adaptive transmission systems, it may

not always be possible to have perfect CSIT.

Historically, it has been a challenging problem to determine the capacity without

perfect CSI. In [9, 48], the ergodic capacity for systems with a more general model of

CSI has been studied. Reference [48] generalizes Shannon’s original result [53] to the

case with both uncertain CSIT and CSIR. In [9], a general ergodic capacity formula

for the case when the channel state process has memory and a generalization of several

results for the additive white Gaussian noise (AWGN) channel with fading are provided.

In [44], the loss in the mutual information due to the imperfect CSIR is studied for the

general fading channel models with inter-symbol interference, time-variation, multiple

access, and no feedback (thus, no adaptive transmission). Other relevant references can

be found in the survey [8].

As we noted earlier, the ergodic capacity may impose an undesirable delay. When

there is a delay requirement, since the code rate and the transmitted power level are

based on channel estimates, it is possible that the instantaneous mutual information

corresponding to the channel state is less than the assigned code rate and an information

outage occurs. Therefore, we can again characterize the performance of a system design

by ART.

1.2 Road Map

In this thesis, we try to apply the concept of information outage to provide some

preliminary quantitative answers for the following questions in slow fading channels.

1. What is the performance of an adaptive transmission system with a finite number

of code rates and/or power levels?
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2. What is the performance of an adaptive transmission system with channel state

uncertainty?

In Chapter 2, the throughput maximization of an adaptive transmission system with a

finite number of transmitted power levels and code rates for communication over slow

fading channels is analyzed based on the concept of information outage. Properties of

throughput maximizing policies lead to an iterative algorithm that yields good system

designs. Numerical results show that carefully designed discrete adaptive transmission

systems with a small number of power levels and code rates can achieve throughput

values close to ergodic capacity for several fading channel models.

In Chapter 3, an adaptive transmission system that supports a discrete set of code

rates and continuously variable transmit power is examined. We find that for a large

class of fading channels, the maximum throughput can be obtained by a line search

over a single parameter. Numerical results show that in a Rayleigh fading channel,

there is only a gap of 1 dB between the ergodic capacity and the throughput of a 2-rate

adaptive transmission system when the throughput is less than 4 bits/sec/Hz.

In Chapter 4, for adaptive systems with a finite set of code rates and imperfect CSIT,

we formulate the throughput maximization with both an average power constraint and

an information outage constraint. It is verified that, for the optimal transmission policy,

the transmission only needs to adapt to a sufficient statistic for the channel state.

For a Rayleigh fading channel with a simple training scheme, numerical results show

that, with a reasonable amount of training and a small set of code rates, the adaptive

transmission can achieve a performance close to the ergodic capacity.

In Chapter 5, based on the concept of information outage, the throughput opti-

mization of adaptive transmission with channel state uncertainty is formulated for slow

fading channels. Even without a constraint on the channel state distribution and the

approach to channel estimation, the optimum solution of the problem exhibits a well

ordered structure. We propose an algorithm to find either good or optimum designs.

For a Rayleigh fading channel with a simple training scheme, numerical results show

that with a reasonable amount of training, the adaptive transmission can achieve a

performance very close to the ergodic capacity.
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Chapter 2

Adaptive Transmission with a Finite Set of Code Rates

and Power Levels

2.1 Introduction

In [22], an optimum adaptive transmission system achieving ergodic capacity requires

knowledge of the current channel state at the transmitter. In addition, both transmitted

power and code rate assignments must adapt continuously to changes in the channel

state. Unfortunately, these requirements are hard to satisfy in practice.

To accommodate these practical constraints, in [21], the spectral efficiency of an

adaptive transmission with a variable-rate and variable-power M -ary quadrature am-

plitude modulation (MQAM) scheme is studied. It is shown that when perfect CSIT

and CSIR is available, for Rayleigh and lognormal fading channels [54], a simple subop-

timum adaptive MQAM design with only five or six different QAM constellations can

achieve a performance within 1-2 dB of the maximum spectral efficiency that requires

unlimited constellation sets. In [20], an adaptive trellis coded modulation (TCM) based

MQAM constellations is proposed and it has an effective coding gain of 3 dB relative to

the uncoded MQAM. More recently, an adaptive transmission design based on outdated

channel information and either MQAM or TCM is proposed in [19].

Instead of directly involving any modulation or coding design, this chapter exam-

ines achievable throughput of a discrete adaptive system with a finite number of power

levels and code rates. In this problem, the challenge is twofold. First, the throughput

maximization problem for such a system is hard to formulate, especially when chan-

nel coding is involved. Second, the problem requires joint optimization of multiple

parameters.
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We assume a slow multiplicative fading environment where the channel is constant

during the transmission of a codeword. Although the receiver is assumed to have

knowledge of the exact channel state, the channel state space is partitioned into a finite

number of quantization intervals and the transmitter is assumed to know the current

quantization interval only. Based on the current interval, the transmitter selects a

corresponding pair from a finite set of code rate and power level pairs (rate-power

pairs) to encode and transmit the information message, respectively. It is assumed

that there are multiple codebooks and each is used for its corresponding quantization

interval. Since each codeword experiences an additive white Gaussian noise (AWGN)

channel, random Gaussian codes are employed. With an infinite number of intervals,

the discrete model coincides with the continuous adaptation of [22] for the slow fading

channel model assumed in this chapter.

For the proposed discrete adaptive system, it is possible that the instantaneous

mutual information corresponding to a channel state is less than the assigned code rate.

Consequently, we characterize the performance of a system design based on the concept

of average reliable throughput (ART), defined as the average data rate assuming zero

rate when the channel is in outage. Henceforth, the central topic is maximizing

ART of a discrete adaptive system communicating over a slow fading channel.

The reader may question the necessity of introducing information outage in a dis-

crete adaptive transmission system. Since the throughput during an outage is not

counted towards ART, any transmission (with non-zero power) during an outage is a

waste and, intuitively, should be avoided. It will be shown that zero outage can be

achieved if the zero-rate zero-power pair is included in the set of rate-power pairs.

One may observe that if the zero-rate zero-power pair is not included, it can be

added to the original set of rate-power pairs by introducing little additional complexity

in the circuitry of the codec and the power amplifier. Therefore, such a change seems

advantageous. However, introducing a new rate-power pair increases the number of

quantization intervals and, consequently, may incur significant changes in the system

design.
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One example of a system change is in the feedback channel design required to com-

municate a different number of quantization interval indices in frequency division duplex

(FDD) systems. A second example of a system design change is in the required quality

of channel estimation. Indeed, we assumed perfect channel state information (CSI) at

the receiver and current interval information at the transmitter. For FDD systems, one

explanation for such an assumption is that the estimator at the receiver obtains perfect

CSI instantly and forwards the current interval information to the transmitter through

a noiseless feedback channel instantly. This model is also appropriate when there are

two different estimators at the receiver. One fast estimator uses less received data

and is, thus, less accurate. It can only determine the current interval instantly. The

other estimator uses significantly more data and can determine the exact channel state

reliably for decoding. In such a system, varying the number of intervals changes the

estimation resolution requirement for the fast estimator. Thus, systems with different

numbers of intervals cannot be compared with complete fairness. Similar arguments

apply to time division duplex (TDD) designs.

Given these system design considerations, we only optimize over designs with the

same number of intervals and, furthermore, we do not assume automatic inclusion of

the zero-rate zero-power pair in a design. In this scenario, we will see that designs that

include the zero-rate zero-power pair to achieve zero outage generally do not achieve

the maximum ART. In fact, zero outage represents an additional constraint instead of a

property of the optimal solution. For instance, the zero-outage design for a fixed power

and rate transmission, which is a discrete adaptive transmission design only with one

rate/power interval, simply does not transmit at all. In this context, our work studies

the necessity of information outage within the framework of an adaptive system.

Following the formulation of the discrete adaptive system design problem, we focus

on exploring optimum (ART-maximizing) policies where a policy is defined as an ensem-

ble of the channel state space partition and corresponding power and rate allocations.

In this work, we will show that, for an optimum policy, an outage can occur only for a

set of channel states within the first quantization interval. In other quantization inter-

vals, the assigned rate supports the worst channel state of that interval. An optimum



10

policy can be uniquely characterized by the channel state space partition, first interval

rate assignment, and the power level assignments. The optimum power level allocation

has a water-filling character. When the number of levels approaches infinity, reasonably

designed discrete adaptive transmission schemes with a water-filling power assignment

and an equal probability partition of the channel state space can achieve the ergodic

capacity.

We emphasize that finding an optimum policy is still a challenging non-convex opti-

mization problem. Since brute force search over a space of policies at a high resolution

has complexity that increases exponentially with the number of quantization levels, we

present an iterative algorithm that numerically evaluates the lower bounds of the max-

imum ART and determines corresponding sub-optimum policies. The computational

complexity of the algorithm is linear in the number of levels and the achieved rates can

be very close to the true maximum ART.

2.2 System Model and Problem Formulation

We consider a multiplicative flat fading channel model similar to that in [22]. The

complex received signal

Y =
√

SX + W, (2.1)

where S is the channel (fading) state, X is the complex transmitted signal, and W

is a circularly symmetric additive white Gaussian noise (AWGN) with variance N0.

The channel state S is a real random variable of unit mean with a probability density

function (PDF) f(s), a cumulative distribution function (CDF) F (s), and a domain

S = {s|s ≥ 0}. It is also assumed that the fading is sufficiently slow that the channel

state is constant during the transmission of a codeword.

The proposed adaptive transmission system quantizes any channel state s to one

of L levels v0 < v1 < . . . < vL−1, where v0 = 0. The L channel state quantization

intervals are denoted by Ul = [vl, vl+1) for l = 0, . . . , L − 1, where vL = ∞. Note that

the set {U0, . . . ,UL−1} partitions S. When the channel state s ∈ Ul, the encoder at the

transmitter generates codewords of a code rate rl and the codewords are transmitted
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at a power level pl = E
{
|X|2 |s ∈ Ul

}
, where E {·} denotes expectation.

Since (2.1) describes an AWGN channel for any given s ∈ S, the corresponding

maximum mutual information is given by log(1 + pls/N0). Let R(φ)
�
= log(1 + φ/N0),

the maximum mutual information associated with any state s ∈ Ul is R(pls).

An adaptive transmission policy is defined by a set of quantization levels {vl} and

the corresponding set of power and rate assignment pairs {(pl, rl)}, or equivalently, by

the triple of L by 1 vectors

(p,v, r)=([p0, . . . , pL−1]�, [v0, . . . , vL−1]�, [r0, . . . , rL−1]�). (2.2)

Such a policy is also referred to as an L-level policy when policies with different L’s

are addressed. Throughout this chapter, unless otherwise noted, (p,v, r) indicates an

L-level policy even though it seems more appealing to put parameter L together with

(p,v, r) to specify an L-level policy.

An illustration of the power assignment of an arbitrary policy is in Fig. 2.1, where

the heights of boxes indicate the power levels assigned to their respective quantization

intervals. Within each interval Ul, the shaded region indicates the outage interval where

the channel state does not support reliable communication with the assigned rate rl

given implicitly through ql, as explained in the next section 1.

For any s ∈ Ul, given a power level and code rate assignment pair (pl, rl), it is

guaranteed that the information will be successfully received only if R(pls) ≥ rl. Hence,

following the established outage probability definition [55], we define the conditional

outage probability as

Pout(rl, pl|l) = Pr [R(pls) < rl|s ∈ Ul] . (2.3)

Given a policy (p,v, r), the average reliable throughput (ART) is

RL(p,v, r) =
L−1∑
l=0

Pr [s ∈ Ul] [1 − Pout(rl, pl|l)] rl. (2.4)

Note that this definition hinges on the assumption that no information is successfully

received during an outage. Here, we adopt the following convention: pl = 0 implies that

1q = [q0, . . . , qL−1]
� is defined in the next section, where it is shown that (p,v,q) is sufficient to

specify a policy of interest. So, the illustration shows the full detail of a policy.
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rl = 0 and, consequently, there is no decoding error and no outage when no transmission

is attempted. Let F (s1, s2)
�
= F (s2)−F (s1) = Pr [s1 ≤ S < s2], the average transmitted

power of the policy (p,v, r) is

ρ(p,v, r) =
L−1∑
l=0

F (vl, vl+1)pl. (2.5)

If the average transmitted power is upper bounded by p, the set of feasible L-level

transmission policies is

πL(p) = {(p,v, r)| ρ(p,v, r) ≤ p} . (2.6)

We define the maximum average reliable throughput over all L-level policies to be

CL = max
(p,v,r)∈πL(p)

RL(p,v, r). (2.7)

A corresponding ART-maximizing policy is referred to as an optimum policy (p∗,v∗, r∗).

2.3 Properties of Optimum Policies

In this section, we present sketches of power allocations as a function of the channel

state and illustrate a number of useful properties of optimum policies. These properties

are helpful in simplifying the optimization problem (2.7).

It is intuitive that any outage interval (shaded interval in Fig. 2.1) is contiguous

within its respective quantization interval Ul and would include the left end point vl of

Ul. Specifically, if a channel state s1 ∈ Ul does not support reliable communication at

rate rl, no channel state s < s1 in Ul will support reliable communication at rate rl.

Thus, there can be at most L outage intervals for an L-level policy. In the following,

we develop an implicit characterization of the assigned rates for an optimal policy.

Lemma 1 For an optimum policy (p∗,v∗, r∗), we have that

r∗l ∈
[

R(p∗l v
∗
l ), R(p∗l v

∗
l+1)

)
. (2.8)
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Figure 2.1: Illustration of an arbitrary power assignment. The rate assignment is
implicitly shown through ql. The shaded regions correspond to channel outage intervals.

This proof, as well as proofs of other lemmas and theorems, can be found in Appendix.

Without loss of generality, we assume that any policy of interest (p,v, r) also satisfies

the condition (2.8). Consequently, for any policy (p,v, r) for which (2.8) holds and

for any quantization interval Ul, strict monotonicity of R(·) implies that we can find

a unique channel state ql ∈ Ul such that rl = R(plql). This defines a one to one

mapping between channel states {q0, . . . , qL−1} and the respective rate assignments

{r0, . . . , rL−1} for a given power policy. In particular, ql is the worst channel state

in Ul that still allows for reliable communication at a rate rl. Therefore, it will be

more convenient to redefine transmission policies of interest as vector triples (p,v,q).

Accordingly, such a policy assignment can be illustrated by using a plot such as Fig. 2.1,

where all vector parameters are depicted.

With the introduction of q, the conditional outage probability in (2.3) can be in-

terpreted as the probability that s ∈ Ul is worse than the worst reliable channel ql,

i.e.,

Pout(rl, pl|l) = Pr [R(pls) < R(plql)|s ∈ Ul] (2.9)

= F (vl, ql)/F (vl, vl+1). (2.10)

With (2.4) and (2.10), the corresponding ART can be expressed in terms of the vector

q as

RL(p,v,q) =
L−1∑
l=0

F (ql, vl+1)R(plql). (2.11)

The next lemma, which follows from the monotonicity of R(plql) with respect to pl, says

that an optimum policy meets the average transmitted power constraint with equality.



14

v4
���
���
���
���
���
���

���
���
���
���
���
���

v0 q0 v  =q    (     )1         1 v  =q    (     )2         2 v  =q    (     )3         3

0 s

p

Figure 2.2: The policy which achieves CL will have q1 = v1 and q3 = v3.

Lemma 2 For an optimum policy (p∗,v∗,q∗), we have that

ρ(p∗,v∗,q∗) =
L∑

l=0

F (v∗l , v
∗
l+1)p

∗
l = p. (2.12)

As clear from (2.11) and Fig. 2.1, an outage interval does not contribute to the

overall average rate. Thus, one could intuitively assume that an optimum policy should

minimize such intervals. An extreme case is ql = vl, which implies that there is no

outage interval.

Theorem 1 Given an arbitrary policy (p,v,q), there exists a policy (p′,v′,q) such

that v′l = ql for all l > 0 and RL(p′,v′,q) ≥ RL(p,v,q).

In the general case of arbitrary power levels, Theorem 1 is due to the concavity

and monotonicity of R(·). In the special case when a policy has an increasing power

allocation as depicted in Fig. 2.2, it is relatively simple to demonstrate Theorem 1.

As noted earlier from (2.11) and Fig. 2.1, if vl+1 < ql+1, then channel states s in the

outage interval [vl+1, ql+1) do not contribute towards ART. Thus, we can increase vl+1

to eliminate the outage interval without changing the value of pl. In this case, ART

increases, while the average transmitted power does not increase. Since this procedure

can be applied to any interval l > 0, for an optimum policy, an outage can occur only

in the U0 interval.

Theorem 1 shows that policies of interest are fully determined by vectors p and q
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with the quantization intervals given by

Ul =

⎧⎨
⎩ [0, q1) l = 0

[ql, ql+1) 1 ≤ l ≤ L − 1
, (2.13)

where we define qL = ∞.

In the following, we assume that the CDF F (s) is a strictly increasing function of

s and, instead of optimizing the policy (p,q), we equivalently optimize a policy (p,a),

where al = F (ql) for all l. Using the shorthand q(a) = F−1(a), ART in terms of the

pair (p,a) has the form:

RL(p,a) =
L−1∑
l=0

(al+1 − al)R(plq(al)). (2.14)

The average transmitted power constraint is

ρ(p,a) = a0p0 +
L−1∑
l=0

(al+1 − al)pl ≤ p. (2.15)

Among the set of L-level policies,

πL(p) = {(p,a)|ρ(p,a) = p} , (2.16)

and a feasible policy from (2.16) is an optimum policy if it achieves the maximum ART

CL = max
(p,a)∈πL(p)

RL(p,a). (2.17)

Hence, Theorem 1 now implies the following corollary.

Corollary 1 For an optimum policy (p∗,a∗), either only U∗
0 includes an outage interval

[0, q(a∗0)) or p∗0 = 0.

With the previous characterization, the form of the functions becomes similar to

those in [15, 32], where the optimization is under bit-error rate constraints for real

constellations.

Although the new optimization problem (2.17) is somewhat simpler than (2.7), it

is still non-convex and difficult to solve in the general case. The following theorem

provides a further characterization of the optimum policies. It shows that, given any

adaptation partition now defined by q, the optimum power assignment is a water-filling

assignment [16].
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Figure 2.3: Illustration of the repartitioning step for L = 6 and m = 3.

Theorem 2 Given a partition a, the optimum power allocation is water-filling,

pl =

⎧⎪⎨
⎪⎩

(
a1−a0
λa1

− N0
q(a0)

)+
l = 0(

1
λ − N0

q(al)

)+
l > 0

, (2.18)

where the water-filling level 1/λ is chosen to satisfy the average power constraint ρ(p,a) =

p.

Note that the powers pl allocated according to Theorem 2 are non-decreasing in l. Also,

given an arbitrary partition a, water-filling may result in a collection of l′ > 1 intervals

{Ul|l ≤ l′} with power pl = 0. However, there is no benefit in terms of ART to design

policies with more than one zero power interval. The following lemma shows that ART

can be increased by subdividing intervals with non-zero power.

Lemma 3 A quantization interval [al, al+1) with pl > 0 can be split into two new quan-

tization intervals, [al, x) and [x, al+1), such that its contribution towards ART strictly

increases while the average transmitted power does not change.

As illustrated in Fig. 2.3, greater efficiency can result from repartitioning an arbitrary
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policy by merging all intervals with zero power into a single interval and subdividing a

non-zero power interval. Thus Lemma 3 yields the following corollary.

Corollary 2 For an optimum policy (p∗,a∗) only p∗0 can be zero.

An important question is whether p∗0 is always zero for an optimal policy (p∗,a∗).

Since the throughput during an outage does not contribute anything towards ART,

transmission during an outage is wasting power. From the policy characterization in

this section, outage happens only if p0 is not zero. So, an intuitively good policy should

set p0 to be zero. However, such a conjecture is not true for L = 1 where p0 = 0

means no transmission for any time. In fact, the intuitively satisfying zero-outage

policy requires at least L = 2. Nevertheless, only for relatively a small p with respect

to N0, the optimal policies have zero outage and outage can not be avoided for ART-

maximizing policies with a relatively large p, even for L = 2. Such an example will be

shown in Section 2.6. For zero-outage policies with L = 2, increasing p1 (and, therefore,

r1) with a fixed p requires to increase the fraction of the time that the transmitter is

off. The best zero-outage policy suffers from this trade-off. Consequently, allowing

non-zero outage offers greater flexibility to trade off the possibility of outage against

the additional efficiency of supporting more than one rate.

2.4 An Asymptotically Optimum Policy

The ergodic capacity of a fading channel [22] can be written as

C =
∫ ∞

s0

log
(

s

s0

)
f(s)ds, (2.19)

where s0 is a cut-off value which is strictly positive for a finite average transmitted

power constraint ∫ ∞

s0

p(s)f(s)ds = p, (2.20)

where p(s) is a continuous water-filling power assignment given by

p(s) = N0

(
1
s0

− 1
s

)+

. (2.21)
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Intuitively, for the discrete adaptive system, when L increases to infinity, the corre-

sponding maximum ART CL should converge to the ergodic capacity. For a reasonably

good policy (p,a), it is expected that the corresponding ART RL(p,a) should also

converge to the ergodic capacity. This property is referred to as asymptotic optimality.

Although we gained some insight on construction of good policies in the previous

section, the design of an optimum partition a∗ remains unknown. Here, we verify the

asymptotic optimality of a policy based on a channel state partition which is uniform

in probability. This design is a building block and the starting point of the iterative

algorithm in the next section. We compare the ergodic capacity with ART of an L-level

policy (p†,a†) with the rate/quantization level assignment

a†l =

⎧⎨
⎩ 1/L, l = 0

l/L, l = 1, 2, . . . , L − 1
, (2.22)

and the water-filling power assignment (2.18). Here, we deliberately set a†0 = a†1 which

leads to p†0 = 0 after water-filling. Although suboptimal, this choice will simplify

subsequent arguments. Based on (2.18), we have that p†l for l �= 0 can be expressed as

follows.

p†l = N0

(
1

λ†N0
− 1

q(a†l )

)+

. (2.23)

Since (p†,a†) is sub-optimum, R†
L = RL(p†,a†) satisfies

R†
L < CL < C. (2.24)

The similarity between the power allocation functions p(s) in (2.21) and p†l in (2.23) is

helpful in demonstrating that R†
L is asymptotically optimal, as verified on in the proof

of the following theorem.

Theorem 3 limL→∞ R†
L = C.

The implication of Theorem 3 is that, for sufficiently large L, the optimization over

the partition q is of less importance. Allocating the power in a water-filling manner

and assigning the corresponding code rates allow for an average throughput which

is close to the ergodic capacity for a given “reasonable” partition a. On the other



19

0 0.5 1 0 0.5 1

q(
a
0
)

q(a0)

R
(q

(a
0
)p

0
)

a0a0

R
1
(a

0
)

Figure 2.4: Local optima (q0 = q(a0)).

hand, an arbitrarily chosen partition a may not lead to an asymptotically optimum

policy. Moreover, arguments given here imply that the joint partition and power-rate

optimization will offer more significant improvement when L is small.

2.5 Iterative Policy Improvement

Finding an optimum policy (p∗,a∗) that achieves the maximum ART is a challenging

optimization problem. The following simple example illustrates that the problem could

be non-convex and that there can be multiple local maxima. In this example, we assume

L = 1 so that the equality in the average transmitted power constraint yields p0 = p̄.

The objective function, ART, is

R1(a0) = (1 − a0)R(q(a0)p0), (2.25)

where q0 = q(a0) and R(q0p0) is a monotonically increasing function shown in Fig. 2.4(a).

Let q0 be as shown in Fig. 2.4(b), then R1(a0) has two local maxima and is not concave

as shown in Fig. 2.4(c).

One way of finding the optimum policy is brute force maximization of (2.17) over a

quantized space of all possible pairs of power and partition assignments. This approach

entails quantization of continuous policy variables p and a and can only be taken for a

very small number of quantization levels L since its complexity increases exponentially

in L. In Fig. 2.5, we present an iterative algorithm that finds a good policy (p‡,a‡) with
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1. k = 0. Choose interval boundaries a
(k)
l = l/L for l = 1, . . . , L and set a

(k)
0 = 1/L.

2. water-filling: Given a(k), find p(k) from the water-filling assignment (2.18).

3. repartitioning: If p
(k)
1 = 0, let n = min{m|p(k)

m > 0}. Define the new policy (p,a)
as

al =

⎧⎪⎨
⎪⎩

a
(k)
n /2, l = 0

a
(k)
l+n−1, l = 1, . . . , L − n

a
(k)
L−1 + (1 − a

(k)
L−1)

l−n
L−n , otherwise

pl =

⎧⎪⎨
⎪⎩

0, l = 0
p
(k)
l+n−1, l = 1, . . . , L − n

p
(k)
L−1, o.w.

Otherwise, p = p(k) and a = a(k).

4. water-spilling: For l = L − 1, L − 2, . . . , 1:

– Using (2.27), let (p′l−1, a
′
l) = arg max(pl−1(al),al) RL(p,a).

– Set

p = [p0, . . . , pl−2, p
′
l−1, p

′
l, . . . , p

′
L−2, pL−1]�

a = [a0, . . . , al−1, a
′
l, a

′
l+1, . . . , a

′
L−1]

�

Let a′0 = arg maxa0 RL(p,a). Set a(k) = [a′0, a
′
1, . . . , a

′
L−1]

� and p(k) = p.

5. If RL(p(k),a(k)) − RL(p(k−1),a(k−1)) < ε let p‡ = p(k) and a‡ = a(k). Define
R‡

L = RL(p‡,a‡) and stop. Otherwise, set a(k+1) = a(k), k = k + 1, and go back
to step 2.

Figure 2.5: The iterative algorithm consisting of water-filling, repartitioning, and water-
spilling.
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Figure 2.6: Illustration of the water-spilling step. As the boundary al moves to the right,
power from interval Ul = [al, al+1) spills over the boundary to fill the interval Ul−1. The
figure on the right depicts the increase in pl−1 as the boundary al is increased.

R‡
L = RL(p‡,a‡). The first two steps initialize the algorithm with the asymptotically

optimum policy (p†,a†) with R†
L. The rest of the algorithm consists of the following

three local optimization techniques:

• Water-filling (Theorem 2) to optimize the power allocation given a partition;

• Water-spilling (described below) to optimize the intervals while satisfying the

power constraint (2.16);

• Repartitioning (Lemma 3) to re-allocate zero power intervals.

The convergence of the algorithm follows from the fact that ART will be nondecreasing

at each step of the algorithm and is upper-bounded by C [22]. Thus,

R†
L ≤ R‡

L ≤ C, (2.26)

Even though the algorithm may not converge to the optimal solution, the difference

between R‡
L and CL typically is very small.

We note that a water-filling step may result in several zero power assignments (pl =

0), which is suboptimal according to Corollary 2. We will see that water-spilling may

not be able to remedy this. Thus we employ repartitioning, as illustrated in Fig. 2.3,

as an intermediate step. Under repartitioning, intervals with zero power are merged to

satisfy Corollary 2 and UL−1 is partitioned following Lemma 3. These two operations

ensure that ART will increase.
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For iterative adjustment of the partitions, we employ a local optimization technique

called water-spilling that varies boundaries al one at a time. Fig. 2.6 depicts a policy

before and after such local optimization. The water-spilling technique is designed to

satisfy the average transmitted power constraint (2.15). Since the quantization intervals

in Fig. 2.6 are represented in terms of a, the average transmitted power assigned to a

given interval is equal to the area of its respective rectangle. To ensure that the power

constraint (2.15) is satisfied with equality regardless of the change in al, the sum of

the areas of the shaded rectangles must remain the same. Consequently, when we shift

al to the right (or, equivalently, increase the rate assignment rl), power spills from the

interval l to raise the power pl−1. Let

pl−1(al) =

⎧⎨
⎩ [p̄l − pl(al+1 − al)] / (al − al−1) , l > 1

[p̄l − pl(al+1 − al)] /al, l = 1
, (2.27)

where p̄l is the average transmitted power over Ul−1 and Ul. The slight difference in

(2.27) for p0(a1) is due to the possibility of outage. Consequently, water-spilling is

max
al: al−1≤al≤al+1

(al − al−1) log(1 + pl−1(al)al−1) + (al+1 − al) log(1 + plal) (2.28)

Determining the family of twice differentiable distributions F (s) for which the water-

spilling objective function in (2.28) is concave in al is straightforward. For such distri-

butions any convex searching algorithm can be used in this step. Nevertheless, since

water-spilling solves a single parameter optimization problem, any line-search algorithm

can be employed over an interval (al−1, al+1) for determining al
2.

2.6 Numerical Results

In this section, we present numerical results for the maximum ART CL and lower

bounds of CL obtained by brute force maximization over a finely quantized space of

all possible policies and by using the proposed iterative algorithm, respectively. We

2It can be shown that there are impulsive PDFs for which the objective function has multiple local
maxima, and for such distribution functions local maximization algorithms would fail to determine the
optimum solution.
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Figure 2.7: CL with L = 1, 2, 3 for Rayleigh fading.

compare CL and lower bounds with the ergodic capacity C for two different fading

models: Rayleigh and log-normal fading.

Following [10], within this section, we assume that N0 = 1 for (2.1) without loss

of generality. Therefore, the system performance is captured by throughput versus

average transmitted power (p) curves.

2.6.1 Rayleigh Fading Channel

For a Rayleigh fading channel, the fading CDF is

FR(s) = 1 − e−s, s ∈ S. (2.29)

In this case, it is easily verified that the water-spilling objective function in (2.28) is

concave. Fig. 2.7 shows there is a 6 to 7 dB gap between the curves of C and C1

for a value around 1 to 2 bits/sec/Hz. As C1 is the maximum ART for the constant-

rate constant-power transmission, the gap indicates potential gains of the adaptive

transmission system. By applying an L = 2 levels adaptive transmission policy, the

required p can be reduced by approximately 3 dB in comparison with that by using

the constant-power and constant-rate policy. In other words, an adaptive system with
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Figure 2.8: A comparison of C, CL, R†
L, R‡

L, and the maximum ART of zero-outage
policies (RL,0) for Rayleigh fading.

L = 2 can eliminate about half of the power requirement gap between the curves of

the ergodic and the non-adaptive maximum ART. Furthermore, increasing L from 2 to

3 yields another 1 dB reduction in the average transmitted power requirement. Note

that C2 and C3 were obtained by brute force maximization (searching).

In Fig. 2.8, for L = 2, we compare CL, R‡
L, R†

L, and the maximum ART of zero-

outage policies (indicated by RL,0). For R†
2, the corresponding policy (p†, q†) has p†0 = 0

owing to a†0 = a†1. In addition, since we force a†1 = 0.5, the transmitter is off half of the

time. With these artificial constraints, (p†, q†) is not a good policy for improving ART

and R†
2 is even worse than C1 for high p’s.

Note that (p†, q†) is also a zero-outage policy. Therefore, R2,0 is always higher than

R†
2. Moreover, since the transmitter is turned off when channel is bad, R2,0 is always

better than C1 as well. Even though R2,0 is an intuitively good design, it only overlaps

with C2 for low p’s and for high p’s, the artificial constraint of zero-outage leads to a

big performance penalty. For instance, at an average transmitted power of 20 dB, 10%

of ART is lost due to this zero-outage constraint. On the other hand, R2,0 is relatively

easy to obtain since only a one parameter optimization is needed.
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Figure 2.9: A comparison of C, CL, R†
L, and R‡

L for Rayleigh fading.

With the proposed iterative algorithm, we can find policies achieves R‡
2 which is

within a fraction of a dB from C2 regardless of the fact that the iterative algorithm

starts from (p†, q†). Thus, the effectiveness of the algorithm is demonstrated.

In Fig. 2.9, results with L = 10 are shown. R‡
10 is within a dB from C when the

throughput is less than 5 bits/second/Hz. Since R‡
L is a lower bound of CL, we are

sure that for L > 10, CL is very close to C. In addition, the difference between R‡
10

and R†
10 is very small and this shows the asymptotic optimality of (p†, q†) for relatively

large L’s.

2.6.2 Nakagami Fading Channel

Generally, a PDF of a Nakagami distribution [46] is

fN(t) =

⎧⎨
⎩

2
Γ(m)

(
m
Ω

)m
t2m−1e−mt2/Ω, t ≥ 0

0, otherwise
. (2.30)
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Figure 2.10: R‡
L with L ≤ 10 for Nakagami (m = 2) fading channel.

where m is a parameter, Ω = E{t2} and t =
√

sΩ. Similarly to [22], we choose the

Nakagami fading channel with m = 2 for which the CDF is

fN(t) =

⎧⎨
⎩ 2

(
2
Ω

)2
t3e−2t2/Ω, t ≥ 0

0, otherwise
. (2.31)

Hence,

fN(s) = 4se−2s, (2.32)

and

FN(s) = 1 − (1 + 2s)e−2s. (2.33)

In this case, (2.28) is also a concave maximization since

e2s

1 + 2s

[
2 +

(1 − 2s)(1 + 2s)
4s2

]
=

e2s

1 + 2s

[
1 +

1
4s2

]
≥ 0. (2.34)

In Fig. 2.10, we use the same iterative algorithm to evaluate R‡
L for a Nakagami

fading channel with m = 2. These curves are very similar to those of the Rayleigh

fading channel. In fact, this is not surprising since the Rayleigh fading channel is the

Nakagami fading channel with m = 1.
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L for log-normal fading (σ = 6).

2.6.3 Log-Normal Fading Channel

With a mean µ and a variance σ, a PDF of a log-normal random variable s [47] is

fLN(s) =
1√
2πσ

10
log 10

1
s
e−

(10 log10 s−µ)2

2σ2 . (2.35)

Fig. 2.11, relates C, R†
L, and R‡

L for the log-normal channel with σ = 6 is shown.

Here, we have similar observations to those of the Rayleigh fading channel. However, it

seems that in comparison to the Rayleigh fading, the log-normal fading channel requires

relatively larger L for an adaptive system in order to achieve a performance close to C.

2.7 Conclusion

Following the pioneering work [22] and the recently introduced concepts of informa-

tion outage and outage probability [8, 45, 55], we define the throughput maximization

problem for discrete adaptive transmission systems. Problem solution is an optimum

policy consisting of a channel state space partition and a power and rate allocation.

Properties of optimum policies aid in understanding and simplifying the throughput

maximization problem.
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No closed form optimum policies have been found, nevertheless, we suggest three

approaches to obtaining good policies. The first approach is to exhaustively search for

good policies over the feasible policy set with a high resolution. Unfortunately, this

approach is only effective for cases where L is relatively small since its computational

complexity increases exponentially in L. Another approach is to design a reasonably

good policy, as shown in Section 2.4, which provides a very good approximation to

an optimum policy when L is large. The third approach is an iterative local search

algorithm which is particularly useful when the first approach is impractical and the

second one is inadequate.

Finally, we have demonstrated that a carefully designed discrete adaptive system

with a small number of power levels and code rates can achieve average throughput

close to the one obtained by optimum continuous adaptive transmission systems in

several slow fading environments.

2.A Proofs

Proof: Lemma 1

When p∗l is zero, (2.8) is obvious. Otherwise, suppose there is an optimum policy

(p,v, r) for which pl > 0 and rl �∈ [R(plvl+1), R(plvl+1)) for some l. We construct

the policy (p,v, r′) with r′ = [r0, . . . , rl−1, r
′
l, rl+1, . . . , rL−1]� with r′l = R(plvl). It

is straightforward to show that (p,v, r′) ∈ πL(p). We consider two cases. First, if

rl > R(plvl+1), then

RL(p,v, r′) − RL(p,v, r) = F (vl, vl+1)r′l > 0, (2.36)

which is a contradiction. Second, if rl < R(plvl),

RL(p,v, r′) − RL(p,v, r) = (r′l − rl)F (vl, vl+1) > 0, (2.37)

which is also a contradiction.

�

Proof: Lemma 2
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Given a policy (p,v,q), with average transmitted power
∑L−1

l=0 F (vl, vl+1)pl = p−ε,

we can construct a new policy (p′,v,q) ∈ πL(p) where p′ = [p0 + ε, . . . , pL−1 + ε]�.

This policy achieves

RL(p′,v,q) =
L−1∑
l=0

F (ql, vl+1)R((pl + ε)ql) (2.38)

> RL(p,v,q). (2.39)

�

Proof: Theorem 1

Given an arbitrary policy (p,v,q) ∈ πL(p), suppose that there is an l such that

vl+1 < ql+1 and 0 ≤ l < L − 1. We will construct a new policy (p′,v′,q) ∈ πL(p) such

that v′l+1 = ql+1 and RL(p′,v′,q) ≥ RL(p,v,q). If such scenarios appear more than

once, we can repeat the same construction for each such l.

Let

p̂ = F (ql+1, vl+2)pl+1 +
∑

i	={l,l+1}
F (vi, vi+1)pi, (2.40)

denote the portion of the average transmitted power ρ(p,v,q) associated with channel

states s /∈ [vl, ql+1). Therefore, we can write

ρ(p,v,q) = p̂ + F (vl, vl+1)pl + F (vl+1, ql+1)pl+1 (2.41)

= p̂ + F (vl, ql+1)p̃, (2.42)

where

p̃ = {F (vl, vl+1)pl + F (vl+1, ql+1)pl+1} /F (vl, ql+1). (2.43)

Based on p̃, we construct a new policy (p′,v′,q) with v′ = [v0, . . . , vl, ql+1, vl+2, . . . , vL−1]�

and p′ = [p0, . . . , pl−1, p̃, pl+1, . . . , pL−1]�. In the policy (p′,v′,q), transmitted power p̃

is used for all states s ∈ [vl, ql+1). Hence,

ρ(p′,v′,q) = p̂ + F (vl, ql+1)p̃. (2.44)

It follows from (2.42) that ρ(p′,v′,q) = ρ(p,v,q). The corresponding ART is

RL(p′,v′,q) = R̂ + F (ql, ql+1)R(qlp̃), (2.45)
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where R̂ =
∑

i	=l F (qi, vi+1)R(qipi) denotes the contributions to RL(p,v,q) from chan-

nel states s /∈ Ul. Defining α = F (ql, vl+1)/F (ql, ql+1), we observe from (2.43) that

p̃ =
plF (vl, ql) + αplF (ql, ql+1) + pl+1F (vl+1, ql+1)

F (vl, ql+1)
(2.46)

≥ plF (vl, ql) + αplF (ql, ql+1)
F (vl, ql+1)

. (2.47)

Since α ≤ 1,

p̃ ≥ αpl(F (vl, ql) + F (ql, ql+1))
F (vl, ql+1)

= αpl. (2.48)

From (2.45), (2.48) and the fact that R(·) is monotonic increasing, we observe that

RL(p′,v′,q)≥R̂ + F (ql, ql+1)R [ql(αpl + 0)] (2.49)
(a)

≥R̂ + F (ql, ql+1) [αR(qlpl) + (1 − α)R(0)] (2.50)

(b)
=R̂ + F (ql, ql+1)αR(qlpl) (2.51)

=R̂ + F (ql, vl+1)R(qlpl) = RL(p,v,q). (2.52)

Note that inequality (a) is due to the concavity of R(·) while (b) holds because R(0) = 0.

�

Proof: Theorem 2

Following the standard Lagrange procedure, we have

J = λp +
L−1∑
l=0

(al+1 − al) [R(plq(al)) − λpl] − λa0p0. (2.53)

For l > 0,
∂J

∂pl
= (al+1 − al)

(
q(al)/N0

1 + plq(al)/N0
− λ

)
= 0. (2.54)

This leads to

pl =
(

1
λ
− N0

q(al)

)+

. (2.55)

Similarly, if a0 > 0, we have

∂J

∂p0
= (a1 − a0)

q(a0)/N0

1 + p0q(a0)/N0
− λa1 = 0, (2.56)

and, thus,

p0 =
(

a1 − a0

λa1
− N0

q(a0)

)+

. (2.57)
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If a0 = 0, then p0 = 0. Based on (2.16), 1/λ can be solved and (2.18) follows immedi-

ately.

�

Proof: Lemma 3

(al − al−1)R (plq(al)) = (al − x)R (plq(al)) + (x − al−1)R (plq(al))

< (al − x)R (plq(x)) + (x − al−1)R (plq(al)) .

�

Proof: Theorem 3

For a sufficiently large L, there exists an l0(L) > 0 such that s0 ∈ U†
l0(L). We use

notation l0
�
= l0(L) and q†l

�
= q(a†l ) in order to simplify the following derivations. In

this case, q†l0 ≤ s0 ≤ q†l0+1. It follows from (2.21) that

p(s) ≥ N0

(
1

q†l0+1

− 1
s

)+

. (2.58)

For s ∈ U†
l , s ≥ q†l , so that

p(s) ≥ N0

(
1

q†l0+1

− 1

q†l

)+

s ∈ U†
l . (2.59)

With the same average transmitted power p for both the discrete power assignment

(2.23) and the continuous policy (2.21), we have

1
L

L−1∑
l=1

N0

(
1

λ†N0
− 1

q†l

)+

=
L−1∑
l=0

∫
U†

l

p(s)f(s) ds (2.60)

≥ 1
L

L−1∑
l=1

N0

(
1

q†l0+1

− 1

q†l

)+

. (2.61)

We observe that the inequality (2.61) implies q†l0+1 > λ†N0. It follows from (2.23) that

p†l ≥ N0

(
1

q†l0+1

− 1

q†l

)+

. (2.62)

Now we derive a lower bound to R†
L.

R†
L =

L−1∑
l=1

1
L

R(p†l q
†
l ) ≥

L−1∑
l=l0+1

1
L

R(p†l q
†
l ). (2.63)
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Applying the lower bound (2.62), we obtain

R†
L ≥ Rlo(L) =

1
L

L−1∑
l=l0+1

log

(
q†l

q†l0+1

)
. (2.64)

Next, we upperbound C by Rlo(L) plus terms that will go to zero with increasing L.

Since s0 ≥ q†l0, we see from (2.19) that

C ≤
∫ ∞

q†l0

log

(
s

q†l0

)
f(s) ds (2.65)

=
L−1∑

l=l0+1

∫
U†

l−1

log

(
s

q†l0

)
f(s) ds + I†L, (2.66)

where I†L denotes the integral

I†L =
∫
U†

L−1

log

(
s

q†l0

)
f(s) ds. (2.67)

Below, we will take some additional care to upperbound I†L. Since s ∈ U†
l−1 implies

s ≤ q†l , we have from (2.66) that

C ≤ 1
L

L−1∑
l=l0+1

log

(
q†l
q†l0

)
+ I†L (2.68)

=
1
L

L−1∑
l=l0+1

log

(
q†l

q†l0+1

q†l0+1

q†l0

)
+ I†L (2.69)

≤ Rlo(L) + log

(
q†l0+1

q†l0

)
+ I†L. (2.70)

Using the shorthand U†
L−1 for the event S ∈ U†

L−1, we employ (2.67) to write

I†L = Pr[U†
L−1]

(
E{log S|U†

L−1} − log q†l0

)
. (2.71)

Since Pr[U†
L−1] = 1/L, and since the log function is concave,

I†L ≤ 1
L

log E{S|U†
L−1} −

log q†l0
L

. (2.72)

The conditional expectation can also be upperbounded as

E{S|U†
L−1} =

1

Pr[U†
L−1]

∫
U†

L−1

sf(s) ds (2.73)

≤ L

∫ ∞

0
sf(s) ds = LE {S} . (2.74)
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From (2.72) and (2.74), we have that

I†L ≤ 1
L

log

(
LE{S}

q†l0

)
. (2.75)

Finally, we observe that q†l0 ≤ s0 ≤ q†l0+1 implies that

F (s0) − F (q†l0) ≤ F (q†l0+1) − F (q†l0) =
1
L

. (2.76)

Continuity of the distribution function F (·) implies that limL→∞ q†l0 = limL→∞ q†l0+1 =

s0. This permits us to conclude that

lim
L→∞

log

(
q†l0+1

q†l0

)
= 0. (2.77)

Similarly, (2.75) implies

lim
L→∞

I†L = 0. (2.78)

Applying (2.77) and (2.78) to (2.70), we see that C ≤ limL→∞ Rlo(L). Since C ≥ R†
L

and (2.64) implies limL→∞ R†
L ≥ limL→∞ Rlo(L), the theorem follows.

�
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Chapter 3

Adaptive Transmission with a Finite Set of Code Rates

3.1 Introduction

In [22], two adaptive transmission policies are compared: (1) the truncated inversion

policy with continuously variable transmitted power but a fixed code rate and (2) fixed

transmitted power with continuously variable code rates. It is shown that the latter is

superior in terms of the maximum average throughput. Both policies represent limiting

cases of practical policies that support a finite set of code rates and power levels.

In Chapter 2, the optimization of a discrete adaptive transmission design based on

information outage has been studied. In this case, the problem formulation was limited

to the scenario where the numbers of code rates and transmitted power levels are the

same. However, this restriction may not necessarily reflect realistic design constraints;

it is common to have significantly fewer code rates than power levels. For instance, in

an IS-95 system [1] which has been available commercially for more than 10 years, the

transmission power adapts on a grid of 1-dB steps over a dynamic range of 60 dB or

more. On the other hand, even for the most recent adaptive system designs [4, 5], the

number of code rates is only around ten.

In this chapter, we examine an extreme case of system design with a finite number

of code rates and a continuously variable transmitted power. Though similar problems

for adaptive MQAM systems have been studied in [21,32], this chapter emphasizes the

optimum system design with the physical constraints of average power and a finite set

of codebooks. The primary design problem will be the selection of code rates and the

corresponding assignments of rate and power based on the channel state.
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We assume additive white Gaussian noise (AWGN) and a slow multiplicative fad-

ing environment with a channel state which is constant during the transmission of a

codeword. It is assumed that the exact current channel state information is known at

both the transmitter and the receiver. The channel state space is partitioned into a

countable number of intervals. Upon each transmission, a message is encoded at a rate

corresponding to the current channel state interval and a power level corresponding to

the current channel state. Since each codeword experiences an additive white Gaussian

noise (AWGN) channel, random Gaussian codes organized in multiple codebooks are

employed.

For the proposed adaptive system, similar to the scenario in Chapter 2, it is also

possible that the instantaneous mutual information corresponding to a channel state

is less than the assigned code rate. In this case, an information outage event occurs.

Consequently, we can still characterize the performance of a system design based on

the concept of average reliable throughput (ART), defined as the average data rate

assuming zero rate when the channel is in outage Chapter 2.

Following the formulation of the finite code rate set problem, we explore optimum

(ART-maximizing) policies where a policy is defined by a channel state space partition

together with the corresponding transmitted power and rate allocation. In this work,

we will show that, for an optimum policy, there is no outage in the sense that the

transmitted power is nonzero only if the transmitter employs a nonzero code rate that

can be successfully decoded at the receiver. Furthermore, the transmitter employs

zero transmitted power only for a subset of worst channel states. We show that an

optimum policy employing L codebooks can be uniquely characterized by a partition of

the channel state space with L+1 intervals: the zero rate/power interval in addition to

L intervals corresponding to L nonzero code rates. In particular, the optimum power

allocation has a water-filling character which is uniquely determined by the channel

state space partition.

Different from the situation in Chapter 2, here we can reduce the throughput max-

imization problem, which is a joint optimization over the space of channel state space
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partitions and the code rate/power assignments, to a one-parameter search. This out-

come is quite surprising since the throughput maximization problem is generally not

a convex optimization problem and can have multiple local maxima for an arbitrary

distribution of the channel state. Within this chapter, the channel state distribution is

only constrained to be continuous and differentiable.

In addition, we have obtained the optimum partition for a given set of rates to be

assigned and an average power constraint. Such a solution is of particular interest to

heuristic practical designs where codes can be selected only from a limited set of good

channel codes before one chooses an optimum channel state partition. Though not

surprisingly, our derivation also shows that a partition of L + 1 channel state intervals

is indeed the optimum choice. As a byproduct, for the MQAM spectral efficiency

maximization problem introduced in [21] and addressed in [19, 32], we provide the

optimum solution.

Finally, numerical results show that, for a Rayleigh fading channel, there is a gap of

only 1 dB between the ergodic capacity and the throughput of a 2-rate adaptive trans-

mission system when the throughput is less than 6 bits/sec/Hz. Thus, in comparison

with the results in Chapter 2,we find that power adaptation can indeed be very helpful

for adaptive transmission with discrete code rates. This agrees with the conclusion for

power adaptation in MQAM systems in [32].

3.2 System Model and Problem Formulation

We consider a multiplicative flat fading channel model similar to that in [22]. The

complex received signal

Y =
√

SX + W, (3.1)

where S is the channel (fading) state, X is the complex transmitted signal, and W

is a circularly symmetric additive white Gaussian noise (AWGN) with variance N0.

The channel state S is a real random variable of unit mean with a probability density

function (PDF) f(s), a cumulative distribution function (CDF) F (s), and a domain

S = {s|s ≥ 0}. Only in Section 3.4 is F (s) assumed to be continuous, differentiable,



37

and strictly increasing in s. In this chapter, fading is assumed to be sufficiently slow so

that the channel state is constant during the transmission of a codeword.

A generalized adaptive transmission system can be modeled as follows. At any

channel state s, the transmitter transmits codewords coded at a rate r(s) with a power

level p(s) = E
{
|X|2 |s

}
, where E {·} denotes expectation. The code rate r(s) is chosen

from a set, R0 = {r0 = 0} ∪ R where R = {r1, . . . , rL}. Without loss of generality, we

assume that rl−1 < rl for l = 1, . . . , L. An adaptive transmission policy can uniquely

be specified by the assigned code rate r(s) and the corresponding allocated power level

p(s). Such a policy is denoted by the tuple (R, r(s), p(s)).

Let

Vl = {s|r(s) = rl} , l = 0, . . . , L, (3.2)

denote the set of channel states in which rate rl is employed. Each policy specifies a

partition of the set of channel states S = ∪L
l=0Vl. In general, Vl can be a countable

union of intervals in S or simply a measurable set of channel states. Since there are L

non-zero code rates, we call (R, r(s), p(s)) an L-level policy.

Since (3.1) is an AWGN channel for any given s ∈ S, the corresponding maximum

mutual information is given by log(1 + p(s)s/N0). Adopting the notation

R(φ) = log(1 + φ/N0), φ ≥ 0, (3.3)

the maximum mutual information associated with any state s is R(p(s)s). For any

s ∈ Vl, given a code rate rl of a capacity achieving Gaussian codebook, and a power

allocation p(s), the information is guaranteed to be successfully received iff R(p(s)s) ≥

rl. We define the binary outage indicator function

Iout(r, s, p(s)) =

⎧⎨
⎩ 1, R(p(s)s) < r,

0, otherwise.
(3.4)

The expected value of Iout(r, s, p(s)) over the channel states S is the information outage

introduced in [55].

Given a policy (R, r(s), p(s)), the average reliable throughput (ART) is

RL(R, r(s), p(s)) =
L∑

l=0

rl

∫
Vl

[1 − Iout(rl, s, p(s))] f(s) ds. (3.5)
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Let

fl(s) =

⎧⎨
⎩ f(s)/Pr [s ∈ Vl] , s ∈ Vl,

0, otherwise,
(3.6)

denote the conditional PDF of the channel state given that it belongs to Vl. The

conditional average power given s ∈ Vl is

Pl =
∫
Vl

p(s)fl(s) ds, (3.7)

Also, the average transmitted power for the policy (R, r(s), p(s)) is

ρL(R, r(s), p(s)) =
L∑

l=0

PlPr [s ∈ Vl] . (3.8)

Throughout this chapter, we only consider the policies with r(s) and p(s) such that

both (3.5) and (3.7) are meaningful, i.e., the integrals are either Riemann or Lebesgue

integrable. For convenience, given a rate set R, we define

R0 = {r0 = 0} ∪ R. (3.9)

The objective will be to maximize ART RL(R, r(s), p(s)) subject to an average power

constraint and a constraint that there are L codebooks of L distinct nonzero rates:

max
R,r(s),p(s)

RL(R, r(s), p(s)), (3.10)

subject to ρL(R, r(s), p(s)) ≤ p, (3.10a)

|R| = L, (3.10b)

r(s) ∈ R0, (3.10c)

p(s) ≥ 0, (3.10d)

r(s) ≥ 0. (3.10e)

In (3.5), for any Vl with either rl = 0 or Pl = 0, there is zero contribution towards

ART and, consequently, it is optimum to assign p(s) = 0 over all such Vl. For a Vl with

nonzero rl and Pl, we observe that an optimum policy must be locally optimum over
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Vl. Local optimality requires that given Vl, Pl, and rl, p(s) must be the solution of

max
p(s)

rl

∫
Vl

[1 − Iout(rl, s, p(s))] fl(s) ds, (3.11)

subject to
∫
Vl

p(s)fl(s) ds ≤ Pl, (3.11a)

p(s) ≥ 0. (3.11b)

Given any non-negative rl, (3.11) is equivalent to the following local outage minimiza-

tion problem

min
p(s)

∫
Vl

Iout(rl, s, p(s))fl(s) ds, (3.12)

subject to
∫
Vl

p(s)fl(s) ds ≤ Pl, (3.12a)

p(s) ≥ 0. (3.12b)

The solution of (3.12) is presented in [10, Proposition 4] and will be summarized here.

We define a channel inversion power allocation

ψ(s, r) =

⎧⎨
⎩

N0
s (er − 1) , s > 0, r > 0

0, r = 0
. (3.13)

which represents the minimum power required to communicate reliably at the rate r

for the channel state s. Let

r†l = max
{

r

∣∣∣∣
∫
Vl

ψ(s, r)fl(s) ds ≤ Pl

}
, (3.14)

denote the largest possible assigned rate over Vl without outage given the average

power allocation Pl over Vl. If rl ≤ r†l , the solution of (3.12) is trivial; we allocate

power ψ(s, rl) and achieve zero outage over Vl. On the other hand, if rl > r†l , outage

within Vl is inevitable and the corresponding optimum power allocation is the truncated

channel inversion

p(s) =

⎧⎨
⎩ 0, s ∈ Vl\V̄l

ψ(s, rl), s ∈ V̄l

, (3.15)

where V̄l ⊂ Vl is a subset of better channel states in Vl, i.e., s1 ∈ Vl\V̄l and s2 ∈ V̄l

implies s1 < s2. Moreover, the set V̄l is chosen to satisfy the average power constraint

Pl =
∫
V̄l

ψ(s, rl)fl(s) ds. (3.16)
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Note that ψ(s, r) is not defined for s = 0 and r > 0. This is due to the fact that, in

the vicinity of s = 0, the channel is too poor to support any positive rate. Thus, the

following must hold: r(0) = 0 and p(0) = 0.

In the optimization problem (3.11), we assume that rl is known. However, for any

Vl, given the conditional average power Pl, we can also choose rl to maximize the

conditional ART. Specifically, local optimality implies that the optimum rate/power

allocation must solve

max
rl

max
p(s)

rl

∫
Vl

[1 − Iout(rl, s, p(s))] fl(s) ds, (3.17)

subject to
∫
Vl

p(s)fl(s) ds ≤ Pl. (3.17a)

p(s) ≥ 0. (3.17b)

Since rate r†l defined by (3.14) is achievable under (3.17), any rate rl < r†l is suboptimal

for (3.17). For any r′l > r†l , the outage probability within Vl is nonzero. Thus, for any

optimum rate rl, the optimum power allocation in (3.17) has the form (3.15). Since

there is no transmission for s ∈ Vl\V̄l, we can incorporate this set of channel states into

the set of zero-power zero-rate channel states V0 = {s|r(s) = 0} and redefine Vl = V̄l.

For the new policy, there is no outage for states s ∈ V0; we reliably and trivially achieve

zero rate by using zero power. Moreover, the assigned rate r(s) and the corresponding

power p(s) satisfy

p(s) = ψ(s, rl), s ∈ Vl, (3.18)

r(s) = log(1 + p(s)s). (3.19)

Note that (3.18) and (3.19) are consistent with the definition of Vl which implies that

s ∈ Vl whenever r(s) = rl. Consequently, it is clearly sufficient to denote any optimum

policy by (R, r(s)). Moreover, (3.19) and (3.10d) imply (3.10e).

From (3.5), (3.7), and (3.8), the corresponding overall average power and ART are

ρL(R, r(s)) =
L∑

l=1

∫
Vl

ψ(s, rl)f(s) ds, (3.20)

RL(R, r(s)) =
L∑

l=1

∫
Vl

rlf(s) ds. (3.21)
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Our objective is to maximize RL(R, r(s)) subject to both the average power constraint

ρL(R, r(s)) ≤ p and the constraint that the rate set {r(s)} has a cardinality L + 1 and

includes the zero rate r0 = 0.

Even though (3.21) is much simpler than (3.5), a simple solution is not available. In

the next two sections, we will obtain necessary and sufficient conditions for optimum

policies by applying the Lagrange multiplier method and the Karush-Kuhn-Tucker con-

ditions [7]. Given these conditions, the optimum policies can be found by a relatively

simple search method.

3.3 Partition Optimization

In this section, we address the subproblem of finding the optimum r(s) given a specific

rate set R0. This problem is of interest since a valid strategy for designing adaptive

transmission systems is to choose a subset of good error control codes before deciding

r(s), i.e., the channel state partition {Vl}. Furthermore, since this subproblem and the

MQAM spectral efficiency maximization problem in [21] (solved only in a suboptimal

manner in [21]) are closely related, the optimum solution presented here is also the

optimum solution of the problem in [21].

For a given rate set R including L distinct positive rates, the throughput maximiza-

tion problem (3.10) becomes

max
r(s)

RL(R, r(s)), (3.22)

subject to ρL(R, r(s)) ≤ p, (3.22a)

r(s) ∈ R0. (3.22b)

In comparison with the problem (3.10), (3.22) has fewer constraints. Specifically, given

R, with (3.22b), (3.10b) and (3.10e) are redundant. In addition, with (3.22a), we

implicitly take p(s) in the form specified in (3.18), which further implies that (3.10d)

is automatically satisfied.

The maximization problem (3.22) is a variation of the bit-loading problem in [11].
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Figure 3.1: Illustration of an arbitrary policy satisfying (3.18) and (3.19). Note that
V0 = S\∪4

l=1Vl is not shown. (a) rate assignment, (b) power allocation.

Both problems belong to the general class of Knapsack Problems (KPs) [31]. The tradi-

tional bit-loading problem is to optimize the rate/power allocation over a finite number

of parallel channels where any rate assigned to a channel can only be an integer. In this

work, the rate/power allocation is over S, which is an uncountable set. Furthermore,

elements of R are not necessarily integers.

In [11] (see also [12]), it is proved that a greedy rate/power allocation is the opti-

mum solution for the bit-loading problem in parallel channels. We will show that the

same allocation is indeed optimum for (3.22). Moreover, such a solution implies that

quantization is the optimum partition. The optimum quantization partition boundaries

are also derived.

Fig. 3.1 depicts a policy with an arbitrary, and not particularly intelligent, rate and

partition assignment. The wave-like power assignment in Fig. 3.1(b) is the result of the



43

local optimization in (3.17). The average rate RL(R, r(s)) in (3.21) is the integral of

the rate pulses in Fig. 3.1(a) weighted by the channel state PDF f(s). Similarly, the

average power ρL(R, r(s)) in (3.20) is the integral of wave crests of Fig. 3.1(b) weighted

by f(s). To express these integrals in a more useful form, we introduce the incremental

rate and power functions

r∆
l = rl − rl−1, (3.23)

p∆
l (s) = ψ(s, rl) − ψ(s, rl−1), (3.24)

for l = 1, . . . , L. Since elements in R are a strictly increasing sequence, the incremental

rates r∆
l and power p∆

l (s) are both positive.

At any channel state s, the transmitted code rate and the corresponding required

transmitted power assignments can be expressed as sums of r∆
l and p∆

l (s),

r(s) =
L∑

l=1

Il(s)r∆
l , (3.25)

p(s) =
L∑

l=1

Il(s)p∆
l (s), (3.26)

where the coefficients, {Il(s)| l = 1, . . . , L}, in (3.25) and (3.26) is a set of binary 0/1-

value functions. Since rl ≥ rl′ for l′ = 1, . . . , l, (3.25) implies that

Vl =
{

s

∣∣∣∣Il′(s) = 1, l′ ≤ l, and Il′(s) = 0, l′ > l

}
. (3.27)

A given rate set R specifies the incremental rates
{
r∆
l

}
and the incremental powers{

p∆
l (s)

}
. Thus, given R, I = {Il(s)| l = 1, . . . , L} describes a policy of interest. The

corresponding ART and average power are

RL(I) =
L∑

l=1

∫ ∞

0
Il(s)r∆

l f(s) ds, (3.28)

ρL(I) =
L∑

l=1

∫ ∞

0
Il(s)p∆

l (s)f(s) ds. (3.29)

And the maximization problem (3.22) becomes a problem of searching for the optimum

I. Note that (3.27) requires a valid policy to satisfy the precedence constraint

Il′(s) ≥ Il(s), l′ ≤ l. (3.30)
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The precedence constraint simply says that if Il(s) = 1, then Il′(s) = 1 for all l′ ≤ l. In

addition, if Il(s) = 0, then Il′(s) = 0 for all l′ > l.

In order to identify a policy that provides an optimum solution to the through-

put maximization problem (3.22), we introduce the incremental efficiency (or, simply,

efficiency)

ηl(s) =
r∆
l f(s)

p∆
l (s)f(s)

=
s

N0

rl − rl−1

erl − erl−1
, (3.31)

which is a ratio between an increment in the throughput from rl−1f(s) to rlf(s) at state

s and the corresponding power expenditure p∆
l (s)f(s). For optimization with integer

rates, the efficiency concept may not be necessary [12]. Nevertheless, it is a key for

solving the problem with non-integer code rates.

Lemma 4 The incremental efficiency ηl(s) has the following properties:

(a) ηl(0) = 0 for all l.

(b) For fixed l, ηl(s) increases in s.

(c) For fixed s, ηl(s) decreases in l.

ART can now be expressed as

RL(I) =
L∑

l=1

∫ ∞

0
Il(s)ηl(s)p∆

l (s)f(s) ds. (3.32)

Together with the constraint (3.29), the maximization of RL(I) forms a Knapsack

Problem [31], which is solved by the following policy.

Definition 1 The most power efficient quantization (MPEQ) is a policy I∗ = {I∗l (s)}

where

I∗l (s) =

⎧⎨
⎩ 1, ηl(s) ≥ λM(r),

0, otherwise,
l = 1, . . . , L, (3.33)

and the positive constant λM(r) is determined by the average power constraint ρL(I∗) =

p.
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Note that the uniqueness of the efficiency lower bound λM(r) and MPEQ is an issue

discussed later in the subsection.

For any MPEQ, s ∈ Vl−1 and s′ ∈ Vl imply that for some λM(r) > 0, I∗l (s) = 0

and I∗l (s′) = 1, i.e., ηl(s) < ηl(s′) and, consequently, s < s′. Thus, MPEQ leads to

a quantization in the sense that s ∈ Vl−1 and s′ ∈ Vl imply that s < s′. In addition,

Lemma 4(c) guarantees that MPEQ satisfies the precedence constraint (3.30).

Theorem 4 For any policy I = {Il(s)} satisfying the average power constraint ρL(I) ≤

p,

RL(I) ≤ RL(I∗) (3.34)

We emphasize that Theorem 4 holds regardless of whether the policy Il(s) satisfies the

precedence constraint (3.30) or not.

The MPEQ solution is easy to obtain analytically. An MPEQ policy is fully de-

termined by the efficiency threshold λM(r) where r(s) ≥ rl iff ηl(s) ≥ λM(r). From

Lemma 4 and the continuity of the domain S, there exists ql such that ηl(ql) = λM(r)

and ηl(s) ≥ λM(r) iff s ≥ ql.

Thus, ql is the boundary separating Vl−1 and Vl. It follows from (3.31) and the

equality ηl(ql) = λM(r) that

ql =
λM(r)N0 (erl − erl−1)

rl − rl−1
, l = 1, . . . , L. (3.35)

Since ηl(s) decreases in l for fixed s, (3.35) is an increasing sequence of L boundaries

q1, . . . , qL. Moreover, these boundaries indicate that for a given set of rates R, an

optimum policy is given by a quantization of the channel state set S into exactly L + 1

intervals corresponding to the set of rates R. Thus, an optimum policy for a given R

can be represented by the vector

q = [q1, . . . , qL]�. (3.36)

An MPEQ policy is illustrated in Fig. 3.2, where q0 = 0.

To study the uniqueness of MPEQ, we assume I∗ = {I∗l (s)} and I∗′ =
{

I∗
′

l (s)
}

be two MPEQs corresponding to λM(r) and λ′
M(r), respectively. The corresponding

boundaries of the partition intervals are q and q′ = [q′1, . . . , q
′
L]�.



46

(a)

ra
te

 (
bi

t/s
ec

/H
z)

(b)

po
w

er
 (

W
)

���� ���
���� ���
���� ���
���� ���
����

���� ���� ���� ���� ����
��

��

��

��

��

Figure 3.2: Illustration of an MPEQ policy. (a) rate staircase, (b) power staircase.

Proposition 1 If λM(r) > λ′
M(r), we have

1) if I∗l (s) = 1 then I∗
′

l (s) = 1,

2) ρL(I∗) ≤ ρL(I∗′),

3) q′l < ql for all l = 1, . . . , L,

4) ρL(I∗) = ρ′L(I∗′) if f(s) = 0 for all s ∈ [q′l, ql), l = 1, . . . , L.

The claim 4) in Proposition 1 implies the following theorem.

Theorem 5 MPEQ is unique if f(s) > 0 for s ∈ S\{0}.

3.3.1 MQAM Spectral Efficiency Maximization

Problem (3.22) is closely related to a special case of the spectral efficiency maximization

problem for an adaptive MQAM system [21], which suggests employing a set of L + 1

predetermined MQAM constellations of sizes in M = {M0 = 1,M1, . . . ,ML}. The
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M0 = 1 constellation corresponds to turning off the transmitter. The transmission

scheme requires that given a channel state s in Vl, a transmitter transmits a QAM

symbol constellation of size M(s) = Ml, Ml ∈ M, with power p(s).

Without loss of generality, we assume Ml−1 < Ml for l = 1, . . . , L. To guarantee a

specified bit error rate (BER) Pb for all channel states, the transmitted power is

p(s) =
M(s) − 1

Ks
, (3.37)

where K = −1.5/ log(5Pb) [21].

Let rl = log(Ml), l = 0, . . . , L. Consequently, r(s) = log (1 + p(s)sK). The spectral

efficiency maximization problem for L + 1 QAM signaling and a continuously varying

power is as follows

max
r(s)

RL(R, r(s)), (3.38)

subject to
∫
S

p(s)f(s) ds ≤ p, (3.38a)

r(s) ∈ R0, (3.38b)

p(s) =
er(s) − 1

Ks
=

ψ(s, r(s))
KN0

, (3.38c)

where R0 = {r0} ∪ R and R = {r1, . . . , rL}. Following the procedure derived in this

section, we obtain the optimum partition as a quantization with boundaries

ql =
λ (erl − erl−1)
K(rl − rl−1)

(3.39)

=
Ml − Ml−1

K(log(Ml) − log(Ml−1))
, l = 1, . . . , L, (3.40)

where λ is determined by the average power constraint. Note that ql in (3.40) are

typically not the same as those suboptimal partition boundaries provided in [21] for

any adaptive MQAM systems. An evaluation of this policy in Rayleigh fading is given

in Section 3.5.3.

3.4 Optimum Policies

In the previous sections, we have demonstrated that an ART-maximizing policy, defined

in Section 3.2, with a rate set R0 must be an MPEQ corresponding to R0. More
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specifically, Theorem 4 shows that any candidate ART-maximizing policy with a rate

set R0 must have channel states partitioned into |R0| intervals. Furthermore, we found

that the optimum solution employs rate r(s) = rl ∈ R0 in the interval Ql = [ql, ql+1),

where ql is defined in (3.35) with q0 = 0 and q|R0| = ∞. In addition,

p(s) = ψ(s, rl), s ∈ Ql, l = 0, 1, . . . , |R|. (3.41)

Consequently, any policy of interest can be specified by (r,q) where the vectors

r = [r1, . . . , r|R|]
�, (3.42)

q = [q1, . . . , q|R|]
�, (3.43)

with the corresponding p(s) given by (3.41). An optimum policy is denoted by (r∗,q∗).

Clearly, for a policy specified by (r,q), if the ql are not distinct, the policy degrades

to a policy with a number of distinct rates smaller than |R0|. Consequently, without

loss of generality, we concentrate on q with |R| distinct elements.

For an L = |R| level policy (r,q), the corresponding ART is

RL(r,q) =
L∑

l=1

rlFl, (3.44)

where

Fl = Pr [s ∈ Ql] . (3.45)

The conditional average power in the interval Ql is

Pl(r,q) =
∫
Ql

ψ(s, rl)fl(s) ds, (3.46)

where the conditional PDF of channel state s is

fl(s) =

⎧⎨
⎩ f(s)/Fl, s ∈ Ql

0, otherwise
. (3.47)

For an interval Ql, the conditional average channel quality ωl is defined by

1
ωl

=
∫
Ql

N0

s
fl(s) ds, l = 1, . . . , L. (3.48)
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Here, ωl is normalized by N0 in order to simplify the latter derivations and 0 < w1 <

. . . < wL. Equations (3.13), (3.46), and (3.48) imply

Pl(r,q) =
(erl − 1)

ωl
. (3.49)

The original ART maximization problem (3.10) now becomes

max
r,q

RL(r,q) (3.50)

subject to ρL(r,q) ≤ p, (3.50a)

where

RL(r,q) =
L∑

l=1

Flrl =
L∑

l=1

rl

∫
Ql

f(s) ds, (3.51)

ρL(r,q) =
L∑

l=1

FlPl(r,q) =
L∑

l=1

(erl − 1)
∫
Ql

N0

s
f(s) ds. (3.52)

We note that problem (3.50) can have multiple local maxima. For example, when L = 1,

ρL(r,q) → ρ1(r1, q1) = (er1 − 1)
∫ ∞

q1

N0

s
f(s) ds. (3.53)

Now, since ρ1(r1, q1) = p is necessary to achieve the maximum ART, r1 must be a

function of q1 defined by

r1 = log

(
1 +

p∫∞
q1

N0
s f(s) ds

)
. (3.54)

Consequently,

RL(r,q) → R1(r1, q1) → R1(q1) = log

(
1 +

p∫∞
q1

N0
s f(s) ds

)∫ ∞

q1

f(s) ds. (3.55)

An illustration of R1(q1) with multiple local maxima is shown in Fig. 3.3. Note that in

Fig. 3.3, the f(s) violates the continuity assumption in Section 3.2. However, it is not

very hard to imagine that a continuous f(s) similar to that in Fig. 3.3 will lead to a

similar scenario with multiple local maxima.

3.4.1 Water-Filling Power Allocation

According to (3.49), given a channel state partition q that specifies the conditional

average channel quality ωl, the rate rl is uniquely expressed in terms of the conditional

average power, Pl, in the interval Ql:
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Figure 3.3: A R1(q1) with a simple piecewise linear f(s) has three local maxima. Arrows
show the corresponding local maxima before and after magnification.

rl = log (1 + Plωl) . (3.56)

Given a fixed q, the ART maximization problem (3.50) can be written as

max
P1,...,PL

L∑
l=1

log (1 + Plωl) Fl (3.57)

subject to
L∑

l=1

PlFl ≤ p, (3.57a)

Pl ≥ 0, l = 1, . . . , L. (3.57b)

It is straightforward to show using the Karush-Kuhn-Tucker (KKT) conditions that the

optimum solution of (3.57) for given q is

P ′
l (q) =

(
1

λW(q)
− 1

ωl

)+

, (3.58)
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where 1/λW(q) is the water-filling level which satisfies

p =
L∑

l=1

FlP
′
l (q). (3.59)

We have shown that an optimum policy (r∗,q∗) must have |R| = L. Hence, (3.56)

implies that P ∗
l = P ′

l (q
∗) > 0 for l = 1, . . . , L. That is, for optimum policies, the

operator (·)+ in (3.58) should not have any impact. This in turn enforces the implicit

requirement on q∗ in the form of λW(q∗) < ω∗
l for l = 1, . . . , L, for policies of interest.

Consequently, (3.59) implies

1
λW(q)

=
p +

∫∞
q1

N0
s f(s) ds

1 − F (q1)
. (3.60)

and (3.56) implies that the optimum rates corresponding to q are given by

r′l = log
(

ωl

λW(q)

)
, (3.61)

Since ωl characterizes the channel states of interval Ql, the water-filling result is

analogous to those in both the original continuous adaptive transmission problem [22]

and the parallel Gaussian channel problem [16].

Note that the water-filling power allocation (3.58) is optimum within the set of

policies (r,q) that explicitly require p(s) in the form of (3.41). For a poorly chosen

partition q, (r,q) policies with p(s) given by (3.41) may not be even locally optimum

within the interval Ql. Therefore, the water-filling power allocation (3.58) must be used

with some caution.

Moreover, because RL(r,q) can have multiple local maxima, ascent techniques based

alternating optimization of the partition q and rates r can at best only reach a local

maxima. In the following, we show how the necessary conditions for optimality and

q∗1, the first element of q∗ uniquely specify an optimum policy. Thus, the search for

optimum policies is reduced to a line search over q1.

3.4.2 Necessary Conditions for Optimum Policies

The corresponding Lagrangian function for (3.50) is

L(r,q, λ) = RL(r,q) + λ[p − ρL(r,q)]. (3.62)
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The Lagrangian function has a positive multiplier λ. The unit of the Lagrangian func-

tion is the same as ART.

Given fixed r and variable q, (3.50) becomes the partition optimization problem

studied in Section 3.3. Formally, the partial derivative of the Lagrangian function with

respect to ql is

∂L(r,q, λ)
∂ql

= f(ql)
{
−(rl − rl−1) + λ (erl − erl−1)

N0

ql

}
. (3.63)

Note that it is here where F (s) is required to be continuous and differentiable. How-

ever, this is not required for the MPEQ in Section 3.3. The necessary conditions for

optimality

∂L(r,q, λ)
∂ql

∣∣∣∣
r=r∗,q=q∗,λ=λ∗

= 0, l = 1, . . . , L, (3.64)

imply

λ∗ =
r∗l − r∗l−1

N0
q∗l

(
er∗l − er∗l−1

) = λM(r∗), (3.65)

where the last equality is from (3.35). Therefore, the optimum Lagrange multiplier λ∗

is equal to the incremental efficiency at q∗l defined in (3.31).

On the other hand, a similar optimization problem can be formulated from (3.50)

for given q and variable r. This problem is the power allocation problem studied in

Subsection 3.4.1. The necessary conditions for the optimum policies are

∂L(r,q, λ)
∂rl

∣∣∣∣
r=r∗,q=q∗,λ=λ∗

= Fl

{
1 − λerl

1
ωl

}∣∣∣∣
r=r∗,q=q∗,λ=λ∗

= 0, l = 1, . . . , L,(3.66)

implying

λ∗ = e−r∗l ω∗
l = λW(q∗), (3.67)

where the last equality is due to (3.61). Therefore, the optimum Lagrange multiplier

λ∗ is the reciprocal of the water level of the water-filling power allocation obtained in

Subsection 3.4.1.

Both (3.65) and (3.67) imply that for an optimum policy (r∗,q∗),

λM(r∗) = λW(q∗). (3.68)
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For convenience, we define ω∗
0 = λW(q∗). Although it is inconsistent with (3.48), the

definition is conceptually appealing since P0 = 0 can be obtained from (3.58). This is

in that regardless how bad the channel quality is in the channel state interval [0, q1),

the average channel quality can be always considered as good as λW(q∗) in terms of

optimizing power allocation. Thus, we obtain a set of necessary conditions for optimum

policies as,

q∗l = N0λW(q∗)

⎡
⎣
(
er∗l − er∗l−1

)
r∗l − r∗l−1

⎤
⎦ (3.69)

(a)
= N0

ω∗
l − ω∗

l−1

log
(
ω∗

l

)
− log

(
ω∗

l−1

) , l = 1, 2, . . . , L, (3.70)

by substituting (3.61).

3.4.3 Search for Optimum Policies

Since ω∗
l and λW(q∗) depend on q∗, we have only L unknown q∗ and L equations (3.70).

The only inconvenience is that the equations of (3.70) are nonlinear and the q∗l are limits

of integrals defining ω∗
l and λW(q∗). Therefore, we can not solve for q∗l using direct

substitution. However, in the following, based on the monotonic relationship between

q∗l and ω∗
l , a simple algorithm can be found to search for the optimum solution.

Naturally, the average channel quality ωl becomes better when Ql is enlarged by

adding more good channel states. Such an intuition brings two monotonic relations

below.

Lemma 5 q∗l is strictly increasing in ω∗
l .

Lemma 6 ωl−1 is strictly increasing in ql.

In particular, Lemma 6 follows from the following restatement of (3.48),

1
ωl−1

=
∫ ql

ql−1

N0

s
fl(s) ds, l = 1, . . . , L. (3.71)

These two lemmas are the building blocks of a constructive procedure for finding the

optimum policy given q∗1 described in Fig. 3.4. In particular, in steps 1b and 2b, Lemma
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1) l = 1:
a) Given q∗1, use (3.60) to uniquely solve for λW(q∗) and, thus, obtain w∗

0 =
λW(q∗);
b) Given q∗1 and w∗

0, use (3.70) to uniquely solve for w∗
1 [Lemma 5].

2) l > 1:
a) Given q∗l−1 and ω∗

l−1, use (3.71) to uniquely solve for q∗l [Lemma 6];
b) Given q∗l and ω∗

l−1, use (3.70) to uniquely solve for ω∗
l [Lemma 5].

3) Repeat step 2) from l = 2 to l = L, we will have q∗.

Figure 3.4: An algorithm searching for optimum policies started from q∗1.

5 implies the existence of a unique solution ω∗
l . Further, in step 2a, Lemma 6 implies

the existence of a unique solution q∗l .

Theorem 6 For each value of q∗1, there exists a unique policy (r∗,q∗) that satisfies the

necessary conditions (3.70).

Overall, (3.48) and (3.70) offer 2L equalities. With q∗1, we repeatedly use (3.48)

and (3.70) to uniquely determine other q∗l and all ω∗
l . Indeed, at the step l = L, given

q∗L, ω∗
L can be determined by either (3.70) or by (3.48) with qL+1 = ∞. These two

approaches are distinct and must agree for the optimum policies. In this sense, the

2L equalities (3.48) and (3.70) implicitly restrict q∗1. However, since (3.70) are only

necessary conditions obtained from (3.68), it implies that all local optimum satisfy all

2L equalities, i.e., (3.48) and (3.70). Therefore, the optimum q∗1 will not be unique

when multiple local maxima achieve the same objective value. In this case, there will

be multiple optimum policies (r∗,q∗).

Since there is only one undetermined parameter q∗1, a line search over q1 solves the

problem of maximizing ART subject to a power constraint and a finite code rate set.

Finally, let the maximum ART for any L-level policy be

C̄L = RL(r∗,q∗), (3.72)

where (r∗,q∗) is any L-level optimum policy. The following theorem verifies that in-

creasing the number of levels L yields improved performance.
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Figure 3.5: A comparison of C, CL, R‡
L, and C̄L for Rayleigh fading.

Theorem 7 For all L > 1,

C̄L > C̄L−1. (3.73)

3.5 Numerical Results

In this section, following the approach in [10], we let N0 = 1 and evaluate the system

performance numerically.

3.5.1 Optimum Code Rates and Partition

Theorem 6 suggests that it is possible to perform a line-search on the single parameter

q1 to find (r∗,q∗) and obtain C̄L. In Fig. 3.5, we present a comparison between C̄L and

several known throughputs for a Rayleigh fading channel. C is the ergodic capacity

given in [22]. CL, proposed in Chapter 2,is the maximum ART corresponding to a

discrete adaptive transmission policy with L code rates and L power levels. Fig. 3.5,

C2 requires about 3 dB less average transmitted power than C1 to achieve the same

throughput.



56

0 10 20 30
0

2

4

6

8

Average Transmitted Power (dB)
             (a)              

T
hr

ou
gh

pu
t (

bi
t/s

ec
/H

z)

0 10 20 30
0

2

4

6

8

Average Transmitted Power (dB)
             (b)              

T
hr

ou
gh

pu
t (

bi
t/s

ec
/H

z)

0 10 20 30
0

2

4

6

8

Average Transmitted Power (dB)
             (c)              

T
hr

ou
gh

pu
t (

bi
t/s

ec
/H

z)

0 10 20 30
0

2

4

6

8

Average Transmitted Power (dB)
             (d)              

T
hr

ou
gh

pu
t (

bi
t/s

ec
/H

z)

Figure 3.6: A comparison of partitions with r0 = 0 and rl = 2l, l = 1, 2, . . . , L − 1 for
Rayleigh fading. (a) L = 3, (b) L = 4, (c) L = 5, and (d) L = 6. The dotted line
indicates the ergodic capacity C, the solid line corresponds to the optimum partition,
and the dash line corresponds to the suboptimal partition in [21].

Since CL is obtained through exhaustive search, the required computation complex-

ity increases exponentially with respect to L and it is not desirable to evaluate CL for

large L. In Chapter 2, by employing a greedy iterative algorithm initialized with an

asymptotically optimum solution of CL, a good lower bound R‡
L of CL is found. In

Fig. 3.5, R‡
10 is about 1 dB away from C.

We observed that C̄2 > R‡
10, which suggests employing adaptive systems with a

small number of code rates and a large number of power levels. Finally, it can be

shown that C̄4 is only a fraction of a dB away from C for throughput values less than

8 bits/sec/Hz.

3.5.2 Optimum Partition for Preset Code Rates

Here, we have a comparison between the performance of the optimum partition and

that of a partition motivated by the design in [21]. Given a code rate set r with r0 = 0,
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a suboptimal partition is

ql =

⎧⎨
⎩ 0, l = 0

qerl , l = 1, 2, . . . , L − 1
, (3.74)

where q is a parameter tuned to satisfy the power constraint (3.22a) since p(s) =

ψ(s, rl), s ∈ Ql.

Fig. 3.6 shows the results of two partition methods for

rl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, l = 0

1, l = 1

2(l − 1), l = 2, 3, . . . , L − 1

. (3.75)

Using the optimum partition can reduce the transmitted power requirement by as

much as 0.5 dB in comparison with using the other suboptimal partition for L = 5.

However, for a small L, there is only a negligible difference in the performance of

optimum and suboptimal partitions.

3.5.3 Spectral Efficiency

In Fig. 3.8, we show the results of spectral efficiency of adaptive MQAM systems with

a Pb = 10−6. The results show that for 3 regions (L = 3), there is a negligible differ-

ence between the spectral efficiency corresponding to the optimum partition and the

suboptimal partition [21]. The difference becomes distinguishable when there are more

regions (larger L).

3.6 Conclusion

In this chapter, the average reliable throughput maximization problem for adaptive

transmission systems with a finite number of code rates and continuously varying power

level is formulated. By exploring the properties of the optimum policies, we can obtain

C̄L through a simple line-search algorithm over one parameter q1.

Moreover, while studying the properties of the optimum policies, we discovered the

optimum partition given an increasing rate assignment. This is particularly useful for

designing adaptive systems with the channel codes selected from a limited set of good
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Figure 3.7: Comparison of spectral efficiency obtained by the optimum partition and
the suboptimal partition in [21] for Pb = 10−3.

codes. The approach used in solving our maximization problem can be applied to solve

a spectrum efficiency maximization problem formulated in [21].

3.A Proofs

Proof: Lemma 4

Claim (a) is straightforward since, regardless how much the transmitted power is,

we cannot have non-zero rate for reliable communication when s = 0.

Combining (3.13), (3.24), (3.23), and (3.31), we have

ηl(s) =
s

N0

rl − rl−1

erl − erl−1
. (3.76)

Hence, claim (b) follows.

For claim (c), we notice that erl is strictly convex in rl. For any strictly convex

function g(x), we have for x2 > x1

∂g(x)
∂x

∣∣∣∣
x=x1

<
g(x2) − g(x1)

x2 − x1
<

∂g(x)
∂x

∣∣∣∣
x=x2

. (3.77)
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Figure 3.8: Comparison of spectral efficiency obtained by the optimum partition and
the suboptimal partition in [21] for Pb = 10−6.

Consequently, for any x1 < x2 < x3,

g(x2) − g(x1)
x2 − x1

<
∂g(x)
∂x

∣∣∣∣
x=x2

<
g(x3) − g(x2)

x3 − x2
. (3.78)

Therefore, with g(x) = ex, it follows from (3.76)

s

N0ηl(s)
=

erl − erl−1

rl − rl−1
<

erl+1 − erl

rl+1 − rl
=

s

N0ηl+1(s)
. (3.79)

Since ηl(s) is positive, we have (c).

�

Proof: Theorem 4

Given an arbitrary power allocation Il(s) and the MPEQ allocation I∗l (s), we observe

that

I∗l (s) = I∗l (s)Il(s) + I∗l (s) [1 − Il(s)] , (3.80)

For ρL (I) given by (3.29),

ρL (I∗) = ρL ({I∗l (s)}) = ρL ({I∗l (s)Il(s)}) + ρL ({I∗l (s) [1 − Il(s)]}) . (3.81)
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It follows from (3.32) and (3.80) that the MPEQ policy achieves ART

RL(I∗) =
L∑

l=1

∫ ∞

0
I∗l (s)ηl(s)p∆

l (s)f(s) ds (3.82)

= κ +
L∑

l=1

∫ ∞

0
I∗l (s) [1 − Il(s)] ηl(s)p∆

l (s)f(s) ds (3.83)

where

κ =
L∑

l=1

∫ ∞

0
I∗l (s)Il(s)ηl(s)p∆

l (s)f(s)ds. (3.84)

Consequently,

RL(I∗)
(a)

≥ κ +
L∑

l=1

∫ ∞

0
I∗l (s) [1 − Il(s)]λM(r)p∆

l (s)f(s) ds (3.85)

(b)
= κ + λM(r) (ρL (I∗) − ρL ({I∗l (s)Il(s)})) (3.86)
(c)

≥ κ + λM(r) (ρL (I) − ρL ({Il(s)I∗l (s)})) (3.87)

(d)
= κ +

L∑
l=1

∫ ∞

0
Il(s) [1 − I∗l (s)]λM(r)p∆

l (s)f(s) ds (3.88)

(e)

≥ κ +
L∑

l=1

∫ ∞

0
Il(s) [1 − I∗l (s)] ηl(s)p∆

l (s)f(s) ds (3.89)

(f)
=

L∑
l=1

∫ ∞

0
Il(s)ηl(s)p∆

l (s)f(s) ds (3.90)

= RL(I), (3.91)

where

(a) for channel states s with I∗l (s) = 1, ηl(s) ≥ λM(r);

(b) is due to (3.29) and (3.81);

(c) is from p = ρL(I∗) ≥ ρL(I);

(d) we apply (3.81) on I instead of I∗;

(e) for the channel states with [1 − I∗l (s)] = 1, ηl(s) < λM(r);

(f) we substitute κ from (3.84) and apply the relation of (3.80) on I again.

�

Proof: Proposition 1
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The claim 1) is a direct consequence of Definition 1. Specifically, Definition 1 implies

that I∗
′

l (s) = 1 wherever I∗l (s) = 1 if λM(r) > λ′
M(r). Therefore,

I∗l (s) = I∗
′

l (s)I∗l (s). (3.92)

Consequently,

ρL(I∗) =
L∑

l=1

∫ ∞

0
I∗l (s)p∆

l (s)f(s) ds (3.93)

=
L∑

l=1

∫ ∞

0
I∗

′
l (s)I∗l (s)p∆

l (s)f(s) ds (3.94)

≤
L∑

l=1

∫ ∞

0
I∗

′
l (s)I∗l (s)p∆

l (s)f(s) ds (3.95)

+
L∑

l=1

∫ ∞

0
I∗

′
l (s)(1 − I∗l (s))p∆

l (s)f(s) ds (3.96)

=
L∑

l=1

∫ ∞

0
I∗

′
l (s)p∆

l (s)f(s) ds (3.97)

= ρL(I∗′), (3.98)

where (3.95) is due to that the second term on the right hand side is the non-negative.

Hence, the claim 2) holds.

Note that (3.35) implies

ql =
λM(r)N0 (erl − erl−1)

rl − rl−1
>

λ′
M(r)N0 (erl − erl−1)

rl − rl−1
= q′l. (3.99)

This leads to the claim 3).

For λM(r) > λ′
M(r), if ρL(I∗) = ρL(I∗′) = p, according to (3.95), we have

L∑
l=1

∫ ∞

0
I∗

′
l (s)(1 − I∗l (s))p∆

l (s)f(s) ds = 0. (3.100)

Since p∆
l (s) > 0, we have

L∑
l=1

∫ ∞

0
I∗

′
l (s)(1 − I∗l (s))f(s) ds = 0. (3.101)

For s ∈ [q′l, ql), I∗
′

l (s) = 1 and I∗l (s) = 0. Therefore, (3.101) implies

f(s) = 0, s ∈ [q′l, ql), l = 1, . . . , L. (3.102)
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Consequently, the claim 4) holds.

Proof: Lemma 5

Note that x
ex−1 decreases in x for x ≥ 0.

Let x = [log (ωl) − log (ωl−1)], (3.70) can be written as

ql = N0
ex − 1

x
ωl−1. (3.103)

Since x strictly increases in ωl, the proof arrives.

�

Proof: Lemma 6

From (3.48), let g(ql) = ωl−1 = 1R
Ql−1

fl−1(s)/s ds
.

dg(ql)
dql

=
f(ql)[∫

Ql−1
f(s)/s ds

]2

[∫
Ql−1

(
1
s
− 1

ql

)
f(s) ds

]
> 0, (3.104)

since F (s) strictly increases in s.

Therefore, ωl−1 strictly increases in ql.

�

Proof: Theorem 7

An optimum (r∗,q∗) policy with L − 1 distinct non-zero q∗l can be expanded to a

(r,q) policy with L distinct non-zero ql by splitting any of its L intervals (including

zero-power interval [0, q∗1)) into two intervals.

If the first interval [0, q∗1) is split, without changing p(s), the new (r,q) policy will

have the same ART as the original one.

On the other hand, we can split any intervals of the original (r∗,q∗) policy with

non-zero power and re-allocate power according to (3.58). The newly split intervals

will increase their contribution to ART while the contribution from the other intervals

stays the same. Therefore, the new (r,q) policy has a higher ART than that one

corresponding to the original (r∗,q∗) policy. We have

C̄L ≥ RL(r,q) > RL−1(r∗,q∗) = C̄L−1. (3.105)

�
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Chapter 4

Adaptive Transmission with a Finite Set of Code Rates

and Channel Uncertainty

4.1 Introduction

In Chapter 2 and Chapter 3, we have studied the performance of adaptive transmission

systems with a finite set of code rates and/or transmitted power levels. However, the

results are only applicable for the case where both CSIT and CSIR are perfect. In this

chapter, we investigate the performance of adaptive transmission systems with a finite

set of code rates and channel uncertainty at the transmitter side.

We assume a slow multiplicative fading environment with additive white Gaussian

noise (AWGN). The channel response is constant during the transmission of a codeword.

Perfect CSI and a channel measurement are available at the receiver and the transmitter,

respectively. The joint distribution of the channel measurement and the current channel

state is assumed to be known. For each transmission, a message is encoded at a rate

selected from a finite rate set based on the channel measurement and the resulting

codeword is transmitted at a power level based on the same channel estimate. Since

each codeword experiences an additive white Gaussian noise (AWGN) channel, random

Gaussian codes with multiple codebooks are employed.

For the proposed discrete adaptive system, it is possible that the instantaneous mu-

tual information corresponding to a channel state is less than the assigned code rate.

Since typical communication services must sustain a certain QoS requirement in terms

of the error performance, we introduce a constant information outage constraint to the

traditional power constrained throughput maximization. In this chapter, we demon-

strate that the posed constrained throughput maximization problem can be solved in

a general case.
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In this chapter, the throughput maximization is solved by the similar techniques

used in Chapter 3. Moreover, with the introduction of the model of imperfect channel

state information at the transmitter, this chapter serves as a transition to the more

general approach of Chapter 5.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a multiplicative flat fading channel model similar to that in [22]. The

complex received signal

Y =
√

SX + W, (4.1)

where S is the channel (fading) state, X is the complex transmitted signal, and W

is a circularly symmetric additive white Gaussian noise (AWGN) with variance N0.

The channel state S is a real random variable of unit mean with a probability density

function (PDF) fS(s), a cumulative distribution function (CDF) FS(s), and a domain

S = {s|s ≥ 0}. It is also assumed that the fading is sufficiently slow that the channel

state is constant during transmission of a codeword.

The transmission is designed in such a way that before transmitting a data message,

the transmitter obtains a channel measurement vector u = [u0, . . . , uM−1]�, where M is

the number of measurements. U is the corresponding random vector with a domain U .

We assume that S and U have a joint PDF fS,U(s,u) = fS|U(s|u)fU(u). In addition,

all corresponding CDFs are continuous and differentiable. Our assumption is rather

general. For example, in a block fading channel, U may be based on the observation

corresponding to training symbols transmitted during a finite set of past channel states.

Furthermore, measurements can be a function of the stochastic process that describes

the channel state evolution.

Given a measurement u, the transmitter selects a code rate r(u) from R = {r0 =

0, r1, . . . , rL} and a power level p(u) = E
{
|X|2 |u

}
, where E {·} denotes expectation,

to transmit the data message. It is assumed that perfect CSI is available at the receiver

side. Here, without loss of generality, we assume that rl ≤ rl+1 for l = 0, . . . , L − 1.
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4.2.2 Outage, Policy, and Average Reliable Throughput

Since u is only a measurement, it is possible that the corresponding channel state does

not support the assigned transmitted rate r(u) given p(u) and, thus, an outage occurs.

The corresponding conditional outage probability is

Pout(u) = Pr
[
log

(
1 +

p(u)S
N0

)
< r(u)

]
= Pr

[
S <

N0

p(u)

(
er(u) − 1

)]
, (4.2)

and the worst channel state that supports the rate r(u) is

q(u) =
N0

p(u)

(
er(u) − 1

)
. (4.3)

Note that (4.3) is only meaningful when p(u) > 0 and, thus, a meaningful q(u) is

strictly positive. Consequently,

Pout(u) = FS|U(q(u)|u), (4.4)

where FS|U(s|u) denotes the conditional CDF of S = s given U = u and is assumed to

be strictly increasing in s for all u.

An adaptive transmission policy is uniquely identified by (p(u), r(u)) or equivalently,

(p(u), q(u)), where q(u) is the worst channel state s that still allows for r(u) to be

achieved given u. The system throughput is

R̄ (p(·), q(·)) =
∫
U

log
(

1 +
p(u)q(u)

N0

)
fU(u) du. (4.5)

The corresponding average power is

ρ (p(·), q(·)) =
∫
U

p(u)fU(u) du. (4.6)

Since communication in a wireless system is typically power limited, we consider

the average transmitted power constraint

ρ (p(·), q(·)) ≤ p. (4.7)

In addition to (4.7), we also assume an equality outage constraint,

Pout(u) = Pout, u ∈ {u′|p(u′) > 0}, (4.8)
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where Pout is the positive outage probability requirement. Note that the equality (4.8)

is a simplification of the practical QoS requirement in terms of the error performance.

For instance, it is normally assumed that voice communication with an error probability

up to 1% is acceptable. Note that (4.8) is an instantaneous constraint in the sense that

it is for each channel measurement u. However, (4.8) can b e interpreted as an average

constraint since the outage probability corresponding to each measurement u is an

average effect over the true channel states.

In this chapter, we try to maximize the throughput in (4.5) over a discrete rate set

R and a continuously varying power allocation subject to both the average transmitted

power constraint (4.7) and the outage constraint (4.8). The throughput-maximizing

policies are referred as optimum policies.

4.3 Properties of Optimum Policies

4.3.1 Local Properties

Due to the outage constraint (4.8), the worst supportable channel state satisfies

Pout = FS|U(q(u)|u), u ∈ U . (4.9)

Within the scope of this chapter, we assume that Pr [S = 0|U = u] ≤ Pout, for any

u ∈ U . Thus, since FS|U(s|u) is strictly increasing in s, q(u) is uniquely specified by

Pout and FS|U(s|u). Let Gu(s) = FS|U(s|u) and, then, we have

q(u) = G−1
u (Pout). (4.10)

Thus, with (4.3), p(u) and r(u) have a one-to-one relationship.

In order to understand the structure of our problem, we define the incremental

efficiency or efficiency

ηl(u) =
rl − rl−1

N0
q(u)(e

rl − 1) − N0
q(u)(e

rl−1 − 1)
(4.11)

=
rl − rl−1

N0
q(u)(e

rl − erl−1)
(4.12)

=
(

rl − rl−1

erl−rl−1 − 1

)
q(u)

erl−1N0
, (4.13)
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where l = 1, . . . , L. The efficiency is the ratio of the rate increment of the adjacent

rates over the corresponding increment in the transmitted power required to sustain

the rate increment.

Proposition 2 The efficiency has the following properties.

(a) ηl(u) is non-negative;

(b) ηl(u) decreases in l.

From Proposition 2, it is clear that we pay a heavier penalty in terms of power to

transmit at a higher rate regardless of the measurement u. Consequently, it is intuitive

that reducing the average power dictates that lower rates should be transmitted.

4.3.2 Global Properties

We define the most power efficient allocation (MPEA) as a policy with r(u) = rl if and

only if ηl(u) ≥ λ and ηl+1(u) < λ for some λ > 0 and l = 1, . . . , L.

Theorem 8 For some λ > 0, MPEA is an optimum policy.

Due to the constant outage constraint (4.8), q(u) is directly determined by FS|U(s|u).

Consequently, considering the definition of both ηl(u) and MPEA, we have the following

following corollary.

Corollary 3 An optimum policy has the same rate/power allocation at u1 and u2 if

fS|U(s|u1) = fS|U(s|u2).

Let T (u) be a sufficient statistic for s. Then [56],

fU|S(u|s) = fT (U)|S(T (u)|s)h(u), h(u) ≥ 0, (4.14)

where h(u) is a deterministic function which is independent of s and

fS|U(s|u) =
fT (U)|S(T (u)|s)fS(s)∫∞

0 fT (U)|S(T (u)|s)fS(s) ds
. (4.15)
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Corollary 3 and (4.15) imply that for any measurements u1 and u2 with T (u1) = T (u2),

an optimum policy has

r(u1) = r(u2), p(u1) = p(u2). (4.16)

Therefore, in the rest of this chapter, we will concentrate on rate/power allocations

over values of T (U) instead of U. In particular, let

V = T (U), (4.17)

where V is a random variable with a domain V. It is sufficient to specify policies

of interest by (r(v), p(v)), where r(v) and p(v) are the rate and power allocations

corresponding to any measurement u satisfying v = T (u). Equivalently, v indicates a

set of measurements, {u|T (u) = v} which share the same rate r(v) and power p(v).

Accordingly, the following functions are re-defined accordingly,

q(v) =
N0

p(v)

(
er(v) − 1

)
, (4.18)

R̄ (p(·), q(·)) =
∫
V

log
(

1 +
p(v)q(v)

N0

)
fV (v) dv, (4.19)

ρ (p(·), q(·)) =
∫
V

p(v)fV (v) dv, (4.20)

ηl(v) =
(

rl − rl−1

erl−rl−1 − 1

)
q(v)

erl−1N0
. (4.21)

We assume that the upper limit of V is the same as that of S which is infinity.

Let Vl = {v|r(v) = rl} , l = 0, . . . , L, be a non-overlapping partition of V. Then,

the average power allocated over Vl is

Pl =
∫
Vl

p(v)fl(v)dv (4.22)

=
∫
Vl

N0

q(v)
(erl − 1)fl(v)dv (4.23)

=
N0

ωl
(erl − 1). (4.24)

where

1
ωl

=
∫
Vl

1
q(v)

fl(v)dv, (4.25)

fl(v) =
fV (v)

Fl
, (4.26)

Fl =
∫
Vl

fV (v)dv. (4.27)
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Note that ωl can be regarded as the average channel quality.

Clearly, if Vl is known, an optimum policy solves

max
Pl

L∑
l=1

log
(
1 + Plωl

N0

)
Fl (4.28)

subject to
L∑

l=1

PlFl ≤ p. (4.29)

The optimization (4.28) is identical to the well-known rate maximization in the parallel

Gaussian channel [16] and the following theorem can be obtained by directly applying

the Karush-Kuhn-Tucker conditions.

Theorem 9 The optimum power allocation is in the water-filling form

Pl = N0

[
K0 −

1
ωl

]+

, (4.30)

where K0 is a constant ensuring the power constraint
∑L

l=1 PlFl = p. The corresponding

optimum rates are

rl = log
(
1 + [K0ωl − 1]+

)
. (4.31)

In addition, it can be shown that the allocated power is zero only for v ∈ V0. This

means that if the water-filling allocation results in Pl = 0 for l > 0, an inefficient set of

rates R has been chosen.

Proposition 3 For optimum policies,

Pl > 0, l = 1, . . . , L, (4.32)

and

rl = log (K0ωl) , (4.33)

where

K0 =
p/N0 +

∑L
l=1 Fl/ωl∑L

l=1 Fl

. (4.34)

=
p/N0 +

∫∞
v1

1
q(v)fV (v) dv∫∞

v1
fV (v) dv

(4.35)
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4.3.3 Sufficient Statistic with Stochastic Ordering

In this subsection, we concentrate on a special class of problems with a sufficient statistic

V such that FS|V (s|v) is a collection of distributions with stochastic ordering [36].

Moreover, we concentrate on the case of stochastically increasing scenarios where v < v′

implies FS|V (s|v) > FS|V (s|v′) for all s ∈ S. This condition states that the channel

state s corresponding to v < v′ is statistically worse than that corresponding to v′. The

stochastic ordering assumption implies the following properties.

Lemma 7 q(v) is strictly increasing in v.

Proposition 4 The efficiency corresponding to a sufficient statistic v satisfies

(a) ηl(v) is non-negative;

(b) ηl(v) decreases in l;

(c) ηl(v) increases in v.

The claim (c) of Proposition 4 is a direct consequence of Lemma 7 and can be observed

directly from (4.21). Moreover, the claim (c) of Proposition 4 and Theorem 8 directly

implies the following proposition.

Proposition 5 The optimum Vl’s are

Vl = [vl, vl+1), l = 0, . . . , L − 1, (4.36)

where vL+1 = ∞ and vl < vl+1, l = 0, . . . , L.

Following Proposition 3 and Proposition 5, the policy of interest can uniquely be

specified by (r,v), where

r = {r1, . . . , rL} , (4.37)

v = {v1, . . . , vL} . (4.38)
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The corresponding throughput and the average power are

R(r,v) =
L∑

l=1

rl

∫
Vl

fV (v) dv, (4.39)

ρ(r,v) =
L∑

l=1

(erl − 1)
∫
Vl

N0

q(v)
fV (v) dv. (4.40)

Then, the throughput maximization problem is

max
r,v

R(r,v) (4.41)

subject to ρL(r,v) ≤ p, (4.41a)

and an optimum policy (r∗,v∗) achieves the maximum ART. The Lagrangian function

for (4.41) is

L(r,v, µ) = R(r,v) + µ(p − ρL(r,v)). (4.42)

The necessary conditions for an optimum policy (r∗,v∗) are

∂L(r,v, µ)
∂rl

∣∣∣∣
r=r∗,v=v∗,µ=µ∗

= 0, (4.43)

and

∂L(r,v, µ)
∂vl

∣∣∣∣
r=r∗,v=v∗,µ=µ∗

= 0. (4.44)

Here, (4.43) implies

µ∗ =
ω∗

l

er∗l
=

1
K∗

0

, (4.45)

where the last equality is from (4.33) since clearly, any optimum policy (r∗,v∗) must

satisfy the optimum solution of (4.28). In addition, (4.44) implies

µ∗ =
r∗l − r∗l−1

er∗l − er∗l−1

q(v∗l )
N0

. (4.46)

Therefore,

r∗l − r∗l−1

er∗l − er∗l−1

q(v∗l )
N0

=
1

K∗
0

. (4.47)
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1) l = 1:
a) Given v∗1, use (4.34) to uniquely solve for K∗

0 and, thus, obtain w∗
0 = 1/K∗

0 ;
b) Given v∗1 and w∗

0, use (4.49) to uniquely solve for w∗
1 [Lemma 8].

2) l > 1:
a) Given v∗l−1 and ω∗

l−1, use (4.50) to uniquely solve for v∗l [Lemma 9];
b) Given v∗l and ω∗

l−1, use (4.49) to uniquely solve for ω∗
l [Lemma 8].

3) Repeat step 2) from l = 2 to l = L, we will have v∗.

Figure 4.1: An algorithm searching for optimum policies started from v∗1.

Hence,

q(v∗l ) =
N0

K∗
0

er∗l − er∗l−1

r∗l − r∗l−1

(4.48)

= N0

ω∗
l − ω∗

l−1

log
(
ω∗

l

)
− log

(
ω∗

l−1

) , (4.49)

where ω∗
0 = 1/K∗

0 . Note that (4.49) is meaningful since q(v∗l ) is positive.

Due to the stochastic ordering requirement, q(v) is strictly increasing in v. There-

fore, the average channel quality ωl becomes better when Vl is enlarged by adding more

good channel states corresponding to large v. Then, we will have the following two

lemmas and construct an algorithm to find the optimum policies.

Lemma 8 v∗l is strictly increasing in ω∗
l .

Lemma 9 ωl−1 is strictly increasing in vl.

In particular, Lemma 9 follows from the following restatement of (4.25),

1
ωl−1

=
∫ vl

vl−1

1
q(v)

fl(s) ds, l = 2, . . . , L. (4.50)

With Lemma 8 and Lemma 9, we derive the algorithm for finding the optimum

policy given v∗1 described in Fig. 4.1. Particularly, in steps 1b and 2b, Lemma 8 implies

the existence of a unique solution ω∗
l and in the step 2a, Lemma 9 implies the existence

of the unique solutions v∗l . Hence, the following theorem arrives.

Theorem 10 An optimum policy can be uniquely specified by v∗1.
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Figure 4.2: Sample performance in a Rayleigh fading channel with γT = 1000.

4.4 Training Based Adaptive Transmission

The transmission is designed in such a manner that, before transmitting a data message,

the channel is probed by a training sequence consisting of M identical symbols with

an amplitude xT =
√
ET. Note that ET is the transmitted energy corresponding to a

training symbol. Based on the corresponding M received symbols u = [u0, . . . , uM−1]�,

the transmitter selects a code rate r(u) to encode and a power level p(u) to transmit

the data message. The signal-to-noise ratio (SNR) for the training sequence is

γT = M
E{ETS}

N0
. (4.51)

For simplicity, we assume that the training symbols experience the same channel s

as the transmitted information (payload) (4.1). In addition, we assume that the phase

of the received signals is accurately known at the receiver. In this case,

fU|S(u|s) = (πN0)
−M exp

{
−||u −√

sxT||2
N0

}
, (4.52)

where

xT = [xT, . . . , xT] . (4.53)
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Figure 4.3: Sample performance in a Rayleigh fading channel with various γT.

A sufficient statistic for s given u is

T (u) = 
(u†xT). (4.54)

Hence, with (4.17), we have

fV |S(v|s) = (πMETN0)
− 1

2 exp

[
−(v − MET

√
s)2

METN0

]
. (4.55)

For a Rayleigh fading channel with

fS(s) = e−s, (4.56)

we have

fS,V (s, v) = c
− 1

2
a [πN0cb]

− 1
2 exp

[
(cac

2
b − 1)v2

N0MET

]
exp

[
−(

√
s − cbv)2

N0cb

]

where ca = MET(MET + N0) and cb = MET/ca.

Then, we can find

fV (v) = c
− 1

2
a exp

[
(cac

2
b − 1)v2

N0MET

][
cbv erfc

(
−
√

cb

N0
v

)
+

√
N0cb

π
exp

(
− cb

N0
v2

)]
,
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where

erfc (φ) =
2√
π

∫ ∞

φ
e−t2dt,

and

1 − FS|V (q|v) =

√
cbv erfc

(√
q

N0cb
−

√
cb
N0

v
)

+
√

N0
π exp

(
−

(√
q

N0cb
−

√
cb
N0

v
)2

)
√

cbv erfc
(
−
√

cb
N0

v
)

+
√

N0
π exp

(
− cb

N0
v2

) .

It is straightforward to verify that V is a sufficient statistic satisfying the stochastic

ordering requirement.

Note that in the throughput maximization problem (4.5), we have not considered

the expense of the power used in training. Therefore, our results are a good reference

for systems with small training overhead.

4.5 Sample Result

In Fig. 4.2, we present a sample numerical result for a Rayleigh fading channel. Here,

following [10], we let N0 = 1 in order to evaluate the system performance numerically.

The ergodic capacity curve is reproduced according to [22]. For the rest of the

curves, we fix γT = 1000. When there is an infinite number of rate levels (L = ∞), the

throughput is within 1 dB of the ergodic capacity.

The last four curves correspond to L = 2 and various values of Pout. From these

curves, we can see that reducing Pout makes the constraint more stringent and, thus,

lowers the overall throughput. Particularly, the results with Pout = 10−6 and L = 2 is

about 1 to 1.5 dB worse than the results with L = ∞.

In Fig. 4.3, it is shown that for high γT, the results with L = 2 and Pout = 10−2 are

very close to those with L = ∞. However, when γT = 10, there is a large gap between

the curves corresponding to L = 2 with Pout = 10−2 and L = ∞. Therefore, it may

require systems to have a large L to offset the loss due to low quality channel estimates.

In addition, even when L = ∞, there is a 3 to 4 dB gap between the curves with

γT = 1000 and those with γT = 10. Consequently, for systems with a constraint on

the overall power budget including both the training and the payload power expense,
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increasing γT implies decreasing the average transmitted power for the payload and,

thus, there is a tradeoff in choosing γT.

4.A Proofs

Proof: Proposition 2

The claim (a) is straightforward since rl − rl−1, rl−1, q(u) are all non-negative in

(4.13).

For the claim (b), we notice that erl is strictly convex in rl. For any strictly convex

function g(x), we have for x2 > x1

∂g(x)
∂x

∣∣∣∣
x=x1

<
g(x2) − g(x1)

x2 − x1
<

∂g(x)
∂x

∣∣∣∣
x=x2

. (4.57)

Consequently, for any x1 < x2 < x3,

g(x2) − g(x1)
x2 − x1

<
∂g(x)
∂x

∣∣∣∣
x=x2

<
g(x3) − g(x2)

x3 − x2
. (4.58)

Therefore, with g(x) = ex, it follows from (3.76)

q(u)
N0ηl(u)

=
erl − erl−1

rl − rl−1
<

erl+1 − erl

rl+1 − rl
=

q(u)
N0ηl+1(u)

. (4.59)

Hence, we have the claim (b).

�

Proof: Theorem 8

Let

p0(u) = 0, (4.60)

pl(u) =
N0

q(u)
(erl − 1), l = 1, . . . , L. (4.61)

Then, we have

p(u) =
L∑

l=1

[pl(u) − pl−1(u)] Il(u), (4.62)

where {Il(u)|l = 1, . . . , L} is a set of binary 0/1-value functions. In addition,

r(u) =
L∑

l=1

[rl − rl−1] Il(u). (4.63)
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Since given p(u), r(u) and q(u) have a one-to-one mapping, any p(u) and q(u) pair can

be described by the corresponding {Il(u)|l = 1, . . . , L} and vice versa. Note that such

mapping implies a constraint

Il(u) ≥ Il+1(u), l = 1, . . . , L − 1. (4.64)

Consequently, any (p(u), q(u)) policy can be described by the corresponding I =

{Il(u)|u ∈ U , l = 1, . . . , L} and vice versa. Then, for any policy I, the average power

and the average throughput are given by

ρ(I) =
∫
U

L∑
l=1

[pl(u) − pl−1(u)] Il(u)fU(u) du, (4.65)

R̄(I) =
∫
U

L∑
l=1

[rl − rl−1] Il(u)fU(u) du (4.66)

=
∫
U

L∑
l=1

ηl(u) [pl(u) − pl−1(u)] Il(u)fU(u) du (4.67)

We use I∗ to denote an MPEA with ρ(I∗) = p from some λ > 0. Here, the claim

(b) of Proposition 2 guarantees that (4.64) is satisfied by I∗. On the other hand,

for any arbitrary I, which may not necessarily satisfy (4.64), Theorem 8 claims that

R̄(I∗) ≥ R̄(I) for any I with ρ(I) ≤ p.

Given an arbitrary power allocation Il(u) and the MPEA allocation I∗l (u), we ob-

serve that

I∗l (u) = I∗l (u)Il(u) + I∗l (u) [1 − Il(u)] , (4.68)

Therefore,

ρ (I∗) = ρ ({I∗l (u)}) = ρ ({I∗l (u)Il(u)}) + ρL ({I∗l (u) [1 − Il(u)]}) . (4.69)

It follows (4.68) that the MPEA policy achieves ART

R̄(I∗) =
L∑

l=1

∫ ∞

0
I∗l (u)ηl(u)pl(u)f(u) du (4.70)

= κ +
L∑

l=1

∫ ∞

0
I∗l (u) [1 − Il(u)] ηl(u)pl(u)f(u) du, (4.71)

where

κ =
L∑

l=1

∫ ∞

0
I∗l (u)Il(u)ηl(u)pl(u)f(u) du. (4.72)
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Consequently,

R̄(I∗)
(a)

≥ κ +
L∑

l=1

∫ ∞

0
I∗l (u) [1 − Il(u)]λpl(u)f(u) du (4.73)

(b)
= κ + λ (ρ (I∗) − ρ ({I∗l (u)Il(u)})) (4.74)
(c)

≥ κ + λ (ρ (I)− ρ ({I∗l (u)Il(u)})) (4.75)

(d)
= κ +

L∑
l=1

∫ ∞

0
Il(u) [1 − I∗l (u)]λpl(u)f(u) du (4.76)

(e)

≥ κ +
L∑

l=1

∫ ∞

0
Il(u) [1 − I∗l (u)] ηl(u)pl(u)f(u) du (4.77)

(f)
=

L∑
l=1

∫ ∞

0
Il(u)ηl(u)pl(u)f(u) du (4.78)

= R̄(I), (4.79)

where

(a) for any measurement u with I∗l (u) = 1, ηl(u) ≥ λ;

(b) is due to (4.69);

(c) is from p = ρ(I∗) ≥ ρ(I);

(d) we apply (4.69) on I instead of I∗;

(e) for the channel states with [1 − I∗l (u)] = 1, ηl(u) < λ;

(f) we substitute κ from (4.72) and apply the relation of (4.68) on I again.

�

Proof: Lemma 7

Due to the stochastic ordering, for any v < v′, we have FS|V (q(v)|v) > FS|V (q(v)|v′).

This together with the constant outage constraint (4.8) implies

FS|V (q(v′)|v′) = Pout = FS|V (q(v)|v) > FS|V (q(v)|v′). (4.80)

Thus, q(v) < q(v′) since FS|V (s|v) is strictly increasing in s. Hence, q(v) is strictly

increasing in v.

�

Proof: Lemma 8
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In Lemma 7, we show that q(v) is strictly increasing in v. On the other hand, we

observe that x
ex−1 decreases in x for x ≥ 0. Let x =

[
log (ω∗

l ) − log
(
ω∗

l−1

)]
, (4.49) can

be written as

q(v∗l ) =
ex − 1

x
ω∗

l−1. (4.81)

Since x is strictly increasing in ω∗
l , we have q(v∗l ) is strictly increasing in ω∗

l .

Finally, q(v∗l ) is strictly increasing in both v∗l and ω∗
l . The lemma holds.

�

Proof: Lemma 9

Shown in Lemma 7, q(v) is strictly increasing in v. Therefore, we only need to

consider how ωl−1 changes according to q(vl).

From (4.25), let g(q(vl)) = ωl−1 = 1R vl
vl−1

fl−1(v)/q(v) dv
.

dg(q(vl))
dq(vl)

=
f(q(vl))[∫ vl

vl−1
f(v)/q(v) dv

]2

[∫
Vl−1

(
1

q(v)
− 1

q(vl)

)
f(v) dv

]
> 0, (4.82)

since q(v) < q(vl) for any v ∈ [vl−1, vl) due to Lemma 7.

Therefore, ωl−1 is strictly increasing in q(vl). This together with that q(v) is strictly

increasing in v clarifies the lemma.

�
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Chapter 5

Adaptive Transmission with Channel State Uncertainty

5.1 Introduction

A key element in the realization of adaptive transmission is the advance of channel

estimation techniques. However, since channel estimation techniques cannot provide the

exact channel state information (CSI), it is very important to examine the achievable

performance with uncertain CSI.

In this chapter, we assume a slow multiplicative fading environment with additive

white Gaussian noise (AWGN). The channel response is constant during the trans-

mission of a codeword. We assume perfect CSIR and general CSIT that is a channel

measurement/estimate. The joint distribution of the channel measurement and current

channel state is assumed to be known. For each transmission, a message is both encoded

at a rate and transmitted at a power level corresponding to the channel measurement.

Since each codeword experiences an additive white Gaussian noise (AWGN) channel,

random Gaussian codes organized in multiple codebooks are employed.

Since the code rate and the transmitted power level are based on channel estimates,

it is possible that the instantaneous mutual information corresponding to the channel

state is less than the assigned code rate. Consequently, we characterize the performance

of a system design based on the concept of average reliable throughput (ART), defined as

the average data rate assuming zero rate when the channel is in outage Chapter

2.

In general, the results in [9,48] are not suitable for the delay-limited scenario, where

there is a delay-limited constraint or the codewords are not long enough to experience

the ergodicity of the slow fading channel. On the other hand, the solution proposed in
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[22], which is to multiplex codewords with various rates according to CSI, is meaningful

for the delay-limited scenario. However, the multiplexing is only limited to the case with

the perfect channel information at both the transmitter and the receiver. Therefore,

an important question is how to relax the limitation on the perfect CSI assumption.

When we try to implement an adaptive transmission system, the problems related

to channel estimation become even more challenging since there are two distinct types

of channel estimation,

• pre-estimation: channel estimation used as a basis for adjusting the transmission

parameters, e.g. the transmitted power and the encoded rates;

• post-estimation: channel estimation used for the purpose of coherence detection.

Here, we do not specify where the pre- or the post-estimation is performed and this

enables the following arguments suitable for both frequency division duplex (FDD) and

time division duplex (TDD) structures. Note that both pre- and post-estimation can

be the same and can be performed at either the transmitter or the receiver if desired.

However, it is very important to realize that pre-estimation and post-estimation

differ in their timing requirements. Since pre-estimation is the basis for adjusting the

transmission parameters, it is preferable to have the estimate of the pre-estimation

available as soon as possible. On the other hand, the post-estimation does not have

a very stringent timing requirement. These distinct timing requirements can lead to

different algorithmic realizations. For pre-estimation, the algorithm must be fast and,

thus, typically simple. It results in coarse estimates. In particular, since the transmitter

can exploit only pre-estimation, the transmitter adaptatio must be done in the presence

of channel uncertainty. For post-estimation, complex iterative algorithms that combine

channel estimation and coded bit detection can be used to produce accurate estimates.

Thus, we make the idealized assumption that the receiver has perfect CSI.

In this chapter, a valid policy consists of a space of channel measurements/estimates

together with the transmitted power and the encoded code rates or the worst channel

states support the code rates corresponding to each channel measurement/estimate.

For an ART-maximizing (optimum) policy, it is necessary to be optimum either given
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the transmitted power or given the worst channel states. This requirement leads to a

set of characteristics of the candidates of the optimum policies. One of the important

observation is that when increasing the transmitted power, even though the throughput

increases accordingly, the assigned code rate decreases. This phenomenon is quite

different from the scenario of the adaptive transmission with perfect CSIT that the

assigned code rate is strictly increasing in the transmitted power.

For an optimum policy, given a measurement, there may be only a finite number

of choices of transmitted power/rate. If this number is less than three, we derived in

this chapter an algorithm to search for the optimum policy denoted by the most power

efficient allocation (MPEA). In this case, even though we assume that the transmitted

power and encoded rates are functions of channel measurements, it turns out that they

are only functions of the sufficient statistic for the channel states corresponding to the

measurements.

Given a measurement, if there are more than three choices of transmitted power/rate,

MPEA may still be the optimum as long as the incremental efficiency, defined as the

ratio of the throughput increment over the corresponding power increment, is strictly

decreasing. This condition can be simply interpreted as that the throughput gain is

diminishing when the transmitted power increases.

The condition for MPEA to be optimum may not be able to hold if there is no con-

straint over the joint distribution between the channel states and the measurements. An

example is constructed in the appendix. For such cases, some approximation techniques

are proposed.

5.2 System Model and Problem Formulation

5.2.1 System Model

We consider a multiplicative flat fading channel model similar to that in [22]. The

complex received signal

Y =
√

SX + W, (5.1)
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where S is the channel (fading) state, X is the complex transmitted signal, and W

is a circularly symmetric additive white Gaussian noise (AWGN) with variance N0.

The channel state S is a real random variable of unit mean with a probability density

function (PDF) fS(s), a cumulative distribution function (CDF) FS(s), and a domain

S = {s|s ≥ 0}. It is also assumed that the fading is sufficiently slow that the channel

state is constant during transmission of a codeword.

The transmission is designed in such a way that before transmitting a data message,

the transmitter obtains a channel measurement vector u = [u0, . . . , uM−1]�. U is the

corresponding random vector and we assume that S and U have a joint PDF fS,U(s,u)

and the marginal PDF fU(u) exists. Our assumption is rather general. For example,

in a block fading channel, U may be based on the observation of training symbols

transmitted over some finite set of past channel states. Of course, when U employs

measurements outside the current fading block, fS,U(s,u) will depend on the stochastic

process that describes the channel state evolution.

Given a measurement U = u, the transmitter selects a code rate r(u) to encode

and a power level p(u) = E
{
|X|2|u

}
, where E {·} denotes expectation, to transmit the

data message. It is assumed that perfect CSI is available at the receiver side.

5.2.2 Outage, Policy, and Average Reliable Throughput

Given a measurement vector u and the corresponding allocated p(u) > 0, it is possible

the corresponding channel state s does not support the assigned code rate r(u) > 0

and, thus, an outage occurs. The corresponding outage probability is

Pout(u) = Pr
[
log

(
1 +

p(u)S
N0

)
< r(u)

∣∣∣∣u
]

= Pr
[
S <

N0

p(u)

(
er(u) − 1

) ∣∣∣∣u
]

. (5.2)

In addition, the worst channel state that supports the rate r(u) is

q(u) =
N0

p(u)

(
er(u) − 1

)
. (5.3)

Consequently,

Pout(u) = FS|U(q(u)|u), (5.4)

where FS|U(·|u) is the conditional CDF of S given U = u.
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In this case, a simple rate assignment [22] which is completely determined by the

power allocation does not exist. We have to jointly optimize the power allocation

p(u) and the rate assignment r(u) when the perfect channel state information is not

available.

An adaptive transmission policy is uniquely identified by (p(u), r(u)) or equivalently,

(p(u), q(u)), where q(u) is the preset worst channel state given u. Assuming that

information is successful received only if the channel is not in outage, we define the

reliable throughput given u

R(u) =
[
1 − FS|U(q(u)|u)

]
log

(
1 +

p(u)q(u)
N0

)
, (5.5)

and the average reliable throughput (ART) Chapter 2

R̄ (p(·), q(·)) =
∫
U

R(u)f(u) du (5.6)

where U is the domain of u. The corresponding average power

ρ (p(·), q(·)) =
∫
U

p(u)f(u)du. (5.7)

Within the scope of this chapter, we study the problem of ART-maximization subject

to a power constraint:

max
p(u),q(u)

R̄ (p(·), q(·)) (5.8)

subject to ρ (p(·), q(·)) ≤ p, (5.8a)

A corresponding ART-maximizing policy is referred to as an optimum policy and is

denoted by (p∗(u), q∗(u)).

5.3 Properties of Optimum Policies

5.3.1 Subproblems

Since FS|U(q(u)|u) is not specified, it is relatively difficult to pursue the optimum result

directly. Therefore, two relatively easy subproblems are solved in this subsection and,

then, further characterization of optimum policies is made.
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With (5.6), given an arbitrary power allocation p(u), the local optimality guarantees

that there are R̄-maximizing q(u)’s. Therefore, the first subproblem is

max
q(u)

R̄ (p(·), q(·)) (5.9)

subject to ρ (p(·), q(·)) ≤ p. (5.9a)

Note that (5.9a) is a redundant constraint since p(u) is set and, thus, varying q(u)

will not result any policy violating (5.9a) if the preset p(u) is feasible. With the non-

negativity of f(u) in (5.6), the local optimality is stated in the following theorem.

Theorem 11 Given an arbitrary p(u), the corresponding R̄-maximizing worst channel

state satisfies

q‡(u, p(u)) = arg max
q

[
1 − FS|U(q|u)

]
log

(
1 +

qp(u)
N0

)
, (5.10)

and the corresponding reliable throughput is R‡(u, p(u)).

According to Theorem 11, p(u) is the least power sufficient to achieve R‡(u, p(u)).

When CSIT is perfect, u → s and FS|U(q|u) → U(q − s) where U(x) is the step

function defined as

U(x) =

⎧⎨
⎩ 0, x ≤ 0,

1, x > 0.
(5.11)

Hence,

R‡(s, p(s)) = max
q≤s

log
(

1 +
qp(s)
N0

)
. (5.12)

Since both q and p(s) are non-negative,

q‡(s, p(s)) = s, (5.13)

R‡(s, p(s)) = log
(

1 +
sp(s)
N0

)
. (5.14)

On the other hand, the second subproblem is to optimize the power allocation p(u)

given q(u) to maximize R̄ (p(·), q(·)). Mathematically, this problem is

max
p(u)

R̄ (p(·), q(·)) (5.15)

subject to ρ (p(·), q(·)) ≤ p. (5.15a)
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This problem can be solved by directly applying the standard Kuhn-Karush-Tacker

conditions.

Theorem 12 Given an arbitrary worst channel state assignment q(u), the optimum

power is a water-filling solution given by

p‡(λ,u, q(u)) =
[
1 − FS|U(q(u)|u)

λ
− N0

q(u)

]+

, (5.16)

where the Lagrange multiplier λ is a positive parameter chosen to satisfy

∫
U

p‡(λ,u, q(u))fU(u)du = p. (5.17)

In (5.16), to increase λ without changing q(u) leads to a pointwise reduction in

p‡(λ,u, q(u)) for each u where p‡(λ,u, q(u)) > 0. Consequently, the average power is

also decreased.

Proposition 6 For policies with an arbitrary q(u) and the corresponding p‡(λ,u, q(u)),

the total power ρ(p‡(λ, ·, q(·)), q(·)) strictly decreases in λ.

Corollary 4 For policies with an arbitrary q(u) and the corresponding p‡(λ,u, q(u)),

the average reliable throughput R̄(p‡(λ, ·, q(·)), q(·)) strictly decreases in λ.

When CSIT is perfect, (5.13), (5.14), and (5.16) imply

p‡(λ, s, q‡(s, p(s))) =
[

1
λ
− N0

s

]+

. (5.18)

Clearly, (5.13), (5.14), and (5.18) agree with the results for perfect CSIT shown in [22].

Neither Theorem 11 nor Theorem 12 explicitly reveals much information except

they both agree that for a given q(u), the throughput will increase in p(u). However,

we have observed that some confusing scenarios are possible. Particularly, for Theorem

12, due to the fact that FS|U(s|u) is arbitrary and increases in s, it seems possible that

for q(u) �= q′(u), (5.16) allows p‡(λ,u, q(u)) = p‡(λ,u, q′(u)). Similarly, according to

Theorem 11, for q(u) �= q′(u), there might be two choices of the transmitted code rates,

log(1 + p‡(λ,u, q(u))q(u)/N0) �= log(1 + p‡(λ,u, q′(u))q′(u)/N0), which enable us to

achieve the same R‡(u, p‡(λ,u, q(u))).
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5.3.2 Pointwise Property

Since each policy must decide its own Lagrange multiplier λ and the rate/power allo-

cation given any u ∈ U , we assume that λ is known and derive the relations of the

possible optimum solutions at any specific u.

Since we are only interested in the optimum policies, we only need to concentrate

on the polices satisfy both Theorem 11 and Theorem 12, Thus, a police of interest

(p(·), q(·)) satisfies

p(u) = p‡(λ,u, q(u)), (5.19)

q(u) ∈
{

q‡(u, p(u))
}

. (5.20)

Let the transmitted code rate corresponding to p(u) and q(u) be

r(u) = log
(

1 +
p(u)q(u)

N0

)
. (5.21)

According to (5.10), for p(u) > 0,

1 − FS|U(q(u)|u) =
R‡(u, p(u))

r(u)
=

R‡(u, p(u))
log (1 + p(u)q(u)/N0)

. (5.22)

On the other hand, according to (5.16), for p(u) > 0,

1 − FS|U(q(u)|u) = λ

(
p(u) +

N0

q(u)

)
= λ

er(u)

q(u)
= λ

p(u)
1 − e−r(u)

. (5.23)

From (5.22) and (5.23), we will show that there are no two q(u)’s sharing the same

p(u) for any u in the following lemma.

Lemma 10 Give a policy satisfying (5.19) and (5.20), for any u and λ, there is a

unique q(u) corresponding to p(u) > 0 for any u. When p(u) = 0, it is not of interest

to decide the corresponding q(u)’s.

The pointwise uniqueness between p(u) and q(u) (pointwise in the sense of u) reduces

the number of elements in the feasible set for searching for the optimum solutions since

the policies of interest can be uniquely specified by either p(u) or q(u).

A serious issue within our characterization is that the number of feasible p(u) or q(u)

solutions, which satisfy both (5.10) and (5.16), at any u is unknown. For perfect CSIT,
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Figure 5.1: An example of two solutions satisfying both (5.10) and (5.16). The corre-
sponding q’s are indicated by arrows. Both curves in the top figure are throughputs
corresponding to p‡(λ,u, q) which is the optimum given q. However, the solid line is
the throughput maximized over all possible q and the dash line is the one obtained by
simply choosing q as the worst channel state. Clearly, in this example, q‡(u, p‡(λ,u, q))
is not q typically.

(5.13), (5.14), and (5.18) imply that there is only one candidate optimum solution.

However, the number of feasible solutions can be multiple. In Fig. 5.1, we have an

example of two solutions. Since we do not constrain the related PDFs, the number of

feasible p(u) or q(u) could be as many as uncountable.

However, without loss of generality, we limit our scope only to a countable number

of feasible solutions at each u. Consequently, we can add index to identify the possible

solutions by pi(u) or qi(u). Moreover, with Lemma 10, it is possible to rank the

solutions, which satisfy both (5.16) and (5.10), according to the allocated power p(u)

for each u given λ and preserves the order of allocated power. Hence, pi1(u) < pi2(u)

for i1 < i2. On the other hand, it is also possible that the numbers of potential p(u)
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definition claim 1) claim 2) claim 3) claim 4) claim 5)
i ↑ pi(u) ↑ Ri(u) ↑ Ri(u)/pi(u) ↓ ri(u) ↓ qi(u) ↓ FS|U(qi(u)|u) ↓

Table 5.1: Monotonic relations for fixed u

or q(u) solutions differ for different u. Therefore, we denote the number of solutions

by N(u). Consequently, at each u, the possible values of an optimum policy can be

enumerated by {(pi(u), qi(u)), i ≤ N(u)}.

Let

ri(u) = log
(

1 +
pi(u)qi(u)

N0

)
, (5.24)

Ri(u) = [1 − FS|U(qi(u)|u)]ri(u). (5.25)

Here, Ri(u) = R‡(u, pi(u)). In order to simplify our further discussions, we introduce

r′i(u, p) = log
(

1 +
pqi(u)

N0

)
, (5.26)

R′
i(u, p) = [1 − FS|U(qi(u)|u)]r′i(u, p). (5.27)

So, ri(u) = r′i(u, pi(u)) and Ri(u) = R′
i(u, pi(u)). We observe that both r′i(u, p) and

R′
i(u, p) are strictly concave with respect to p. This concavity together with the (5.10)

and (5.16) leads to the following theorem.

Theorem 13 Given u and λ, the optimum policies have the following characteristics.

1) Ri(u) strictly increases in i,

2) Ri(u)/pi(u) strictly decreases in i,

3) ri(u) strictly decreases in i,

4) qi(u) strictly decreases in i,

5) FS|U(qi(u)|u) strictly decreases in i.

The claims in Theorem 13 are also listed in Table 5.1.

Since FS|U(s|u) ≤ 1, the claim 1) and 3) in Theorem 13 suggest the following chain

rule.

r1(u) > r2(u) > · · · > rN(u)(u) > RN(u)(u) > · · · > R2(u) > R1(u). (5.28)
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The meaning of the chain rule is that in order to increase the throughput return Ri(u),

it is required to reduce the assigned transmitted code rate ri(u). This result is very

counter intuitive since it is quite different from those obtained with perfect CSIT where

the assigned transmitted code rate is strictly increasing in the allocated transmitted

power.

In practice, N(u) may be a large number. This leads to high complexity in searching

for {(pi(u), qi(u))} as well as the policy design. However, (5.28) suggests that if there

is an L such that rL(u) is very close to RL(u), we can upper bound the searching range

of i by L with very little overall loss.

5.3.3 Pointwise Efficient Policy

It is shown that for any policy of interest, given u and λ, R(u) and p(u) can be chosen

from {Ri(u)|i = 0, . . . ,N(u)} and {pi(u)|i = 0, . . . ,N(u)}, respectively. Assuming that

both {Ri(u)|i = 0, . . . ,N(u)} and {pi(u)|i = 0, . . . ,N(u)} are known for any u and λ,

we want to find what the ART-maximizing policy is.

With the previous development in Subsection 5.3.2, we have

R(u) =
N(u)∑
i=1

[Ri(u) − Ri−1(u)] Ii(u), (5.29)

p(u) =
N(u)∑
i=1

[pi(u) − pi−1(u)] Ii(u), (5.30)

where the coefficients, {Ii(u)|i = 1, . . . ,N(u)} is a set of binary 0/1-valued functions.

Thus, given λ, I = {Ii(u)|u ∈ U , i = 1, . . . ,N(u)} describes a policy of interest. The

corresponding ART and average power are

R̄ (I) =
∫
U

⎧⎨
⎩

N(u)∑
i=1

[Ri(u) − Ri−1(u)] Ii(u)

⎫⎬
⎭ fU(u)du, (5.31)

ρ (I) =
∫
U

⎧⎨
⎩

N(u)∑
i=1

[pi(u) − pi−1(u)] Ii(u)

⎫⎬
⎭ fU(u)du. (5.32)

Consequently, (5.8) can be rewritten as

max
I

R̄ (I) (5.33)

subject to ρ (I) ≤ p, (5.33a)
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Since both Ri(u) and pi(u) strictly increase in i, a valid policy is required to satisfy a

precedence constraint

Ii′(u) ≥ Ii(u), i′ ≤ i. (5.34)

The precedence constraint simply says that if Ii(u) = 1, then Ii′(u) = 1 for all i′ ≤ i.

In addition, if Ii(u) = 0, then Ii′(u) = 0 for all i′ > i.

Here, we can introduce a pointwise incremental efficiency or simply efficiency

ηi(u) =
Ri(u) − Ri−1(u)
pi(u) − pi−1(u)

, (5.35)

which is a ratio between an increment in the throughput from Ri−1(u) to Ri(u) given u

and the corresponding power expenditure pi(u)− pi−1(u). Note that ηi(u) is a concept

depending on the fading model and channel estimate techniques. Later, we will give an

algorithm which searching for the optimum policies based on ηi(u).

The definition of ηi(u) requires at least two solutions for satisfying both (5.16) and

(5.10). It is clear that there is at least one such solution with p0(u) = 0 and r0(u) = 0.

For some u, given λ, it is possible that there is no feasible solutions with pi(u) > 0.

However, we will see that for these u’s, the optimum power allocated is zero.

Lemma 11 Given any u and λ, we have

1) ηi(u) is non-negative,

2) η2(u) < η1(u).

Note that the claim 2) in Lemma 11 can be generalized to

Ri2(u) − Ri1(u)
pi2(u) − pi1(u)

<
Ri1(u)
pi1(u)

, i2 > i1. (5.36)

And the proof stays the same.

With the definition of ηi(u),

R̄ (I) =
∫
U

⎧⎨
⎩

N(u)∑
i=1

[pi(u) − pi−1(u)] ηi(u)Ii(u)

⎫⎬
⎭ fU(u) du, (5.37)
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Definition 2 The most power efficient allocation (MPEA) is a policy I∗ =
{
I∗i (u)

}
where

I∗i (u) =

⎧⎨
⎩ 1 ηi(u) ≥ ηlo

0 otherwise
. (5.38)

where the positive constant ηlo is determined by the average power constraint ρL(I∗) ≤

p.

A very important remark about the definition of MPEA is that even though MPEA is

unique with respect to ηlo, it may not be necessary that MPEA is unique with respect

to p.

Theorem 14 If ηi(u) is strictly decreasing in i, for any policy I = {Ii(u)} meeting

the average constraint ρ(I) ≤ p,

R̄(I) ≤ R̄(I∗) (5.39)

Therefore, MPEA is the solution of our ART maximization (5.33) if ηi(u) is strictly

decreasing in i. Moreover, we emphasize that Theorem 14 holds whether the policy

Ii(u) satisfies the precedence constraint. Due to the claim 2) in Lemma 11, MPEA is

optimum for any distributions and estimation techniques such that N(u) < 3 for all

u ∈ U . Indeed, this condition can be satisfied. For instance, if the estimation is close

to the perfect, N(u) will be close to 1 given the fact that with perfect CSIT, N(u) = 1.

On the other hand, it is possible that ηi(u) is not strictly decreasing in i as described

in Section 5.B. In this case, some dynamic programming techniques may be required to

search for the optimum solutions. However, such cases are not covered in this chapter.

5.3.4 Approximation of the Maximum ART

If ηi(u) is not strictly decreasing in i, we can still obtain some approximations of the

maximum ART.

Regardless of u and λ, due to (5.28), for an optimum policy I∗, the non-zero R(u)

satisfies

r1(u) > R(u) ≥ R1(u). (5.40)
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Then, we can construct a suboptimum MPEA policy I ′ with R′(u) ∈ {0, R1(u)} and

the policy has an efficiency lower bound η′lo. Let

U∗ = {u|R(u) > 0} , (5.41)

U ′ =
{
u|R′(u) > 0

}
. (5.42)

We can find that U∗ is contained within U ′.

Proposition 7

U∗ ⊂ U ′. (5.43)

Therefore, since R̄(I∗) =
∫
u∈U R(u)f(u) du =

∫
u∈U∗ R(u)f(u) du,

∫
u∈U ′

r1(u)f(u) du >

∫
u∈U∗

r1(u)f(u) du > R̄(I∗) ≥ R̄(I ′) =
∫
u∈U ′

R1(u)f(u) du,(5.44)

Clearly, the bounds given in (5.44) is tight if F (q1(u)|u) or F (q1(u)|u)f(u) is small.

On the other hand, the bounds in (5.44) can be improved by considering more

Ri(u)’s. For instance, if R2(u) and r2(u) are known, we can find R′′(u) given by

MPEA determined by limiting R′′(u) ∈ {0, R1(u), R2(u)}. Then,

R̄(I∗) ≥
∫
u∈U

R′′(u)f(u) du. (5.45)

In addition, since

r2(u) > R(u), (5.46)

from the chain rule (5.28) and (5.43), we have

∫
u∈U ′

r2(u)f(u) du > R̄(I∗) ≥
∫
u∈U

R′′(u)f(u) du. (5.47)

Surely, the tightest upper bound in this analogy is given by

∫
u∈U ′

RN(u)(u)f(u) du > R̄(I∗). (5.48)
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5.3.5 Searching for Optimum Policies

The concept of MPEA indeed shows a mean to search for the optimum solution of

(5.33) if ηi(u) is strictly decreasing in i. However, the complexity of such a search is

extremely high due to the fact that the measurement u is a vector instead of a scalar.

An observation from (5.10) and (5.16) is that both p(u) and q(u) of interest are

determined by fS|U(s|u) or FS|U(s|u) given λ. So, in the following, we will apply

the concept of sufficient statistic to simplify out derivation solution. When T (u) is a

sufficient statistic for s, according to [56]

fU|S(u|s) = fT (U)|S(T (u)|s)h(u), h(u) ≥ 0, (5.49)

where h(u) is a deterministic function which is independent of s, and

fS|U(s|u) =
fT (U)|S(T (u)|s)fS(s)∫∞

0 fT (U)|S(T (u)|s)fS(s)ds
. (5.50)

Proposition 8 If ηi(u) is strictly decreasing in i, for an optimum policy (p∗(u), q∗(u)),

the power allocation p∗(u) and the worst state assignment q∗(u) are determined by T (u),

which is the sufficient statistic for s.

This theorem is the consequence of that for any u with the same fU|S(u|s), MPEA

has the same set of {(p(u), q(u))} satisfying both (5.19) and (5.20). Therefore, given

λ, the search for MPEA can be simplified from a search of u over U to a search of v

where v is a value of a random variable V = T (U) with a domain V = (−∞,+∞).

Equivalently, v indicates a set of measurements, {u|T (u) = v}, which share the same

p(v) and q(v).
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And a series of functions are re-defined accordingly,

p(v) = p(u), {u|T (u) = v} , (5.51)

r(v) = r(u), {u|T (u) = v} , (5.52)

q(v) =
N0

p(v)

(
er(v) − 1

)
, (5.53)

R̄ (p(·), q(·)) =
∫
V

[
1 − FS|V (q(v)|v)

]
log

(
1 +

p(v)q(v)
N0

)
fV (v) dv, (5.54)

ρ (p(·), q(·)) =
∫
V

p(v)fV (v) dv, (5.55)

ηi(v) =
Ri(v) − Ri−1(v)
pi(v) − pi−1(v)

, (5.56)

where Ri(v), ri(v), qi(v), and pi(v) are the i-th candidate solution given v.

An algorithm for finding optimum policies, if ηi(u) < ηi−1(u) for all i ≤ N(v), is

shown in Fig. 5.2. The domain Sλ is not easy to decide. However, due to (5.16), we

have

p(v) <
1
λ

. (5.57)

Therefore, λ ∈ Sλ must satisfy ∫
v∈V

1
λ

fV ( dv) ≥ p. (5.58)

So, the upper bound of Sλ can be set to the value when (5.58) achieves equality. On

the other hand, due to the continuity of all functions, the lower bound of Sλ can

be determined by reducing the lower bound progressively until the increment in the

corresponding R̄(I∗) is fractional.

Normally, we may not able to fully search over V and all possible λ for optimum

R̄(I∗) since given each v and λ, we need to find p(v) and q(v). In practice, a search

with a good resolution is assumed.

5.4 Training Based Adaptation for Rayleigh Fading

The transmission is designed in such a manner that, before transmitting a data message,

the channel is probed by a training sequence consisting of M identical symbols xT.

Based on the corresponding M received symbols u = [u0, . . . , uM−1]�, the transmitter
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0. Let R̄ = 0, l = 0, and I = Φ;

1. Specify a domain Ve such that 1 − Pr [v ∈ Ve] is negligible;

2. Specify a domain Sλ for possible λ’s;

3. Choose a λ ∈ Sλ and let Sλ = Sλ\ {λ};

4. Find the number of candidate solutions N(v) and {(pi(v), qi(v))} for all v ∈ Ve;

5. Find MPEA I∗ and corresponding maximum ART R̄(I∗);

6. If R̄(I∗) > R̄, let R̄ = R̄(I∗), l = λ, and I = I∗;

7. Repeat 3, 4, 5, and 6 until Sλ = Φ.

Figure 5.2: An algorithm searching for optimum policies if ηi(v) < ηi−1(v) for all
i ≤ N(v).

selects a code rate r(u) to encode and a power level p(u) to transmit the data message.

In this context, we have

xT = [xT, . . . , xT] , (5.59)

and without a loss of generality, we assume xT =
√
ET. Note that ET is an amount of

energy and the signal-to-noise ratio (SNR) for the training sequence is

γT = M
E{ETS}

N0
. (5.60)

5.4.1 Coherent Model

When the phase of the received signals is accurately known at the receiver, we can

assume that the training symbols experience the same channel s as the transmitted

information (payload), we have

fU|S(u|s) = (πN0)
−M exp

{
−||u −√

sxT||2
N0

}
. (5.61)

A sufficient statistic for s is

v = 
(u†xT). (5.62)
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Hence, we have

fV |S(v|s) = (πMETN0)−
1
2 exp

[
−(v − MET

√
s)2

METN0

]
. (5.63)

For a Rayleigh fading channel with

fS(s) = e−s, (5.64)

we have

fS,V (s, v) = c
− 1

2
a [πN0cb]

− 1
2 exp

[
(cac

2
b − 1)v2

N0MET

]
exp

[
−(

√
s − cbv)2

N0cb

]
(5.65)

where ca = MET(MET + N0) and cb = MET/ca.

Then,

fV (v) = c
− 1

2
a exp

[
(cac

2
b − 1)v2

N0MET

][
cbv erfc

(
−
√

cb

N0
v

)
+

√
N0cb

π
exp

(
− cb

N0
v2

)]
,(5.66)

1 − FS|V (q|v) =

√
cbv erfc

(√
q

N0cb
−

√
cb
N0

v
)

+
√

N0
π exp

(
−

(√
q

N0cb
−

√
cb
N0

v
)2

)
√

cbv erfc
(
−
√

cb
N0

v
)

+
√

N0
π exp

(
− cb

N0
v2

) ,(5.67)

where

erfc (φ) =
2√
π

∫ ∞

φ
e−t2dt. (5.68)

Here, we first numerically search for pi(v) and qi(v). It turns out that given any

v and λ within the range of interest, N(v) = 1. Then, we numerically search for

the optimum policies using the algorithm in the previous section. In Fig. 5.3, we

compare the maximum R̄ corresponding to different γT with the ergodic capacity C [22]

and C1, which is the capacity for non-adaptive transmission Chapter 2.For γT = 0

dB, the maximum R̄ is about 1 dB better than C1. Increasing γT by 10 or 20 dB,

the performance gap between C and the maximum R̄ can be reduced by 2 or 4 dB,

respectively. In order to achieve any the maximum R̄ within 1 dB from C, we need to

have a substantially large γT.

5.4.2 Non-coherent Model

In general, the knowledge of the phase of the received signals is with uncertainty. In

this subsection, we assume the worst scenario that the phase is uniformly distributed.
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Figure 5.3: Sample performance for coherent model in Rayleigh fading.

However, to alleviate the difficulty, we also assume that all received training symbols

are with the same phase Θ, which is a random variable uniformly distributed over

[0, 2π), and experience the same channel state as the transmitted information (payload).

Therefore, we have a channel model

Y =
√

SejΘX + W, (5.69)

and, so,

fU|S,Θ(u|s, θ) = (πN0)
−M exp

{
−||u −

√
sejθxT||2
N0

}
. (5.70)

Since fΘ(θ) = 1/2π,

fU|S(u|s) = (πN0)
−M exp

{
−||u||2 + METs

N0

}
I0

(√
s

σ2
|u†xT|

)
. (5.71)

A sufficient statistic for s is

v = |u†xT|. (5.72)

Hence, we have

fV |S(v|s) =
v

Σ2
e−(M2E2

Ts+v2)/2Σ2
I0

(√
sv

σ2

)
, (5.73)
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Figure 5.4: Sample performance for non-coherent model in Rayleigh fading.

where

Σ2 = METσ2. (5.74)

For a Rayleigh fading channel with

fS(s) = e−s, (5.75)

we have

fS,V (s, v) =
v

Σ2
e−((M2E2

T+2Σ2)s+v2)/2Σ2
I0

(√
sv

σ2

)
. (5.76)

Unfortunately, we are not able to obtain the close form of either fV (v) or fS|V (s|v).

However, it is still possible for us to evaluate the maximum R̄ numerically for this

case as shown in Fig. 5.4. Similar to the coherent model, given v and λ within the

range of interest, N(v) = 1. In comparison with Fig. 5.3, we notice that there is a

loss on the capacity when the phase of the received training signals is unknown. The

loss is extremely large for small γT. For instance, if γT = 1 (0dB), there is only a

negligible difference between the capacity of adaptive transmission and non-adaptive

one. The difference between Fig. 5.3 and Fig. 5.4 suggests whether phase information
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is important or not. It is shown that with phase information, the maximum R̄ can be

improved by 0.5 dB to 1 dB for γT ≤ 20 dB. For high γT, the phase information is not

that important.

5.5 Discussion

Note that the maximum ART is a meaningful measurement of capacity only when a

training sequence consumes a negligible fraction of both the communication bandwidth

and power. Therefore, the meaning of the results in Fig. 5.3 is twofold. Firstly, it

implies that some types of decision feedback channel estimation techniques must be

used in order to achieve ART close to C since it may not be possible to have a training

sequence with very high power/energy or as many as thousands of symbols of small

symbol energy. On the other hand, these results also imply that there is a good reason

for not using a training sequence with fixed energy/power. A possible approach is to

adapt the training energy/power based on a predicted CSI.

There are still a lot of unknowns within the framework of this chapter. For instant,

we do not know the exact N(u), and how to find {pi(u)} and {qi(u)} efficiently. In

addition, we do not have an algorithm to find optimum policies for arbitrary fS|U(s,u).

5.A Proofs

Proof: Lemma 10

Given u and λ, let (p, q) and (p, q’) be two pairs satisfy both (5.16) and (5.10)

though q �= q′. Let

r = log
(

1 +
pq

N0

)
, (5.77)

r′ = log
(

1 +
pq′

N0

)
. (5.78)

Since (5.10) is satisfied by both (p, q) and (p, q’),

R‡(u, p) =
[
1 − FS|U(q|u)

]
r =

[
1 − FS|U(q′|u)

]
r′. (5.79)
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On the other hand, according to (5.23),

1 − FS|U(q|u) = λ

[
p +

N0

q

]
= λ

p

1 − e−r
, (5.80)

1 − FS|U(q′|u) = λ

[
p +

N0

q′

]
= λ

p

1 − e−r′ . (5.81)

Hence, (5.79) implies

r

1 − e−r
=

r′

1 − e−r′
. (5.82)

Since x/(1 − exp(−x)) strictly increases in x when x > 0, we have

r = r′. (5.83)

Therefore, (5.79) implies

FS|U(q|u) = FS|U(q′|u). (5.84)

Since FS|U(s|u) is assumed to strictly increase in s, q′ = q. This controdicts the original

assumption and the lemma holds.

�

Proof: Theorem 13

The claim 1) is straightforward from the definition of pi(u).

Given u and i1 < i2,

pi1(u) < pi2(u), (5.85)

and

Ri1(u)
(a)
< r′i1(u, pi2(u))

(b)
< Ri2(u), (5.86)

where (a) results from the monotonicity of the logrithm function and (b) is due to

(5.10). Therefore, the claim 2) holds.

Due to (5.10), R′
i1

(u, p) achieves Ri1(u) by spending the minimum amount of power

pi1(u). Therefore,

Ri1(u)
pi1(u)

=
R′

i1
(u, pi1(u))
pi1(u)

>
R′

i2
(u, pi1(u))
pi1(u)

. (5.87)
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Since log(1 + αx)/x is strictly decreasing in x for α > 0 and x > 0, we have

R′
i2

(u, pi1(u))
pi1(u)

>
R′

i2
(u, pi2(u))
pi2(u)

. (5.88)

Since Ri2(u) = R′
i2

(u, pi2(u)), (5.87) and (5.88) implies

Ri1(u)
pi1(u)

>
Ri2(u)
pi2(u)

, i1 < i2 (5.89)

and, thus, the claim 3) holds.

According to (5.23),

pi(u) =
[1 − FS|U(qi(u)|u)]

λ

{
1 − e−ri (u)

}
. (5.90)

Therefore, (5.25) implies

Ri(u)
pi(u)

=
[1 − FS|U(qi(u)|u)]ri(u)

pi(u)
= λ

ri(u)
1 − exp(−ri(u))

. (5.91)

Since x/(1−exp(−x)) strictly increases in x for any x > 0, (5.91) implies that Ri(u)/pi(u)

increases in ri(u). Consequently, the claim 3) leads to the claim 4).

With (5.3),

qi(u) = N0
eri (u) − 1

pi(u)
. (5.92)

Hence, the claim 1) and 4) imply the claim 5).

With (5.23), the claim 6) results from the claim 1) and 5). On the other hand, the

claim 6) can also be directly obtained from claim 5) and the monotonicity of FS|U(s|u).

�

Proof: Lemma 11

The claim 1) is trivial since we know both pi(u) and Ri(u) strictly increases in i

stated by the claim 1) and 2) in Theorem 13.

Let

α =
R1(u)
p1(u)

, (5.93)

β =
R2(u)
p2(u)

. (5.94)
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According to the claim 3) in Theorem 13, α > β.

η2(u) =
R2(u) − R1(u)
p2(u) − p1(u)

(5.95)

=
βp2(u) − αp1(u)
p2(u) − p1(u)

(5.96)

=
(β − α)p2(u)
p2(u) − p1(u)

+ α (5.97)

(a)
< α, (5.98)

where (a) is due to α > β and p2(u) > p1(u) implied by the claim 1) in Theorem 13.

Therefore, the claim 2) holds.

�

Proof: Theorem 14

Given an arbitrary power allocation I and the MPEA allocation I∗, we observe that

I∗i (u) = I∗i (u)Ii(u) + I∗i (u) [1 − Ii(u)] , (5.99)

For ρL (I) given by (5.32),

ρL (I∗) = ρL

({
I∗i (u)

})
= ρL

({
I∗i (u)Ii(u)

})
+ ρL

({
I∗i (u) [1 − Ii(u)]

})
. (5.100)

It follows from (5.31) and (5.99) that the MPEA policy achieves ART

RL(I∗) =
∫
U

N(u)∑
i=1

I∗i (u)ηi(u) (pi(u) − pi−1(u)) f(u) du (5.101)

= κ +
∫
U

N(u)∑
i=1

I∗i (u) [1 − Ii(u)] ηi(u) (pi(u) − pi−1(u)) f(u) du (5.102)

where

κ =
∫
U

N(u)∑
i=1

I∗i (u)Ii(u)ηi(u) (pi(u) − pi−1(u)) f(u) du. (5.103)
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Consequently,

RL(I∗)
(a)

≥ κ +
∫
U

N(u)∑
i=1

I∗i (u) [1 − Ii(u)] ηlo (pi(u) − pi−1(u)) f(u) du (5.104)

(b)
= κ + ηlo

(
ρL (I∗) − ρL

({
I∗i (u)Ii(u)

}))
(5.105)

(c)

≥ κ + ηlo

(
ρL (I)− ρL

({
Ii(u)I∗i (u)

}))
(5.106)

(d)
= κ +

∫
U

N(u)∑
i=1

Ii(u)
[
1 − I∗i (u)

]
ηlo (pi(u) − pi−1(u)) f(u) du (5.107)

(e)

≥ κ +
∫
U

N(u)∑
i=1

Ii(u) [1 − Ii(u)] ηi(u) (pi(u) − pi−1(u)) f(u) du (5.108)

(f)
=

∫
U

N(u)∑
i=1

Ii(u)ηi(u) (pi(u) − pi−1(u)) f(u) du (5.109)

= RL(I), (5.110)

where

(a) for u with I∗i (u) = 1, ηi(u) ≥ ηlo;

(b) is due to (5.32) and (5.100);

(c) is from p = ρL(I∗) ≥ ρL(I);

(d) we apply (5.100) on I instead of I∗;

(e) for the channel states with [1 − I∗i (u)] = 1, ηi(u) < ηlo;

(f) we substitute κ from (5.103) and apply the relation of (5.99) on I again.

�

Proof: Proposition 7

Let

A = U∗ ∩ U ′, (5.111)

B = U∗\A, (5.112)

C = U ′\A. (5.113)

Given a set of channel states Φ, define

ρ∗(Φ) =
∫
u∈Φ

p(u) du, (5.114)

ρ′(Φ) =
∫
u∈Φ

p′(u) du, (5.115)
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where p′(u) is the power allocation for the policy I ′.

Since for any u ∈ A, R(u) ≥ R′(u), due to the claim 1) in Theorem 13, we have

p(u) ≥ p′(u). Thus,

ρ∗(A) ≥ ρ′(A). (5.116)

In addition, since both I∗ and I ′ have the same average power p,

ρ∗(B) = p − ρ∗(A) ≤ p − ρ′(A) = ρ′(C). (5.117)

Hence, it is always possible to find a subset C′ ⊂ C such that

ρ′(C′) = ρ∗(B). (5.118)

On the other hand, given a set of channel states Φ, we can define

R̄∗(Φ) =
∫
u∈Φ

R(u) du, (5.119)

R̄′(Φ) =
∫
u∈Φ

R′(u) du. (5.120)

Hence, we have

R̄∗(B) =
∫
u∈B

R(u) du (5.121)

=
∫
u∈B

R(u)
p(u)

p(u) du (5.122)

(a)

≤
∫
u∈B

R1(u)
p1(u)

p(u) du (5.123)

(b)
<

∫
u∈B

η′lop(u) du (5.124)

(c)
=

∫
u∈C′

η′lop1(u) du (5.125)

(d)

≤
∫
u∈C′

R1(u)
p1(u)

p1(u) du (5.126)

=
∫
u∈C′

R1(u) du (5.127)

= R̄′(C′), (5.128)

where

(a) is due to the claim 3) of Theorem 13;

(b) is from the fact that due to I ′ is an MPEA with the efficiency lower bound η′lo, U ′
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includes all u such that R1(u)/p1(u) ≥ η′lo and B ∩ U ′ is the empty set;

(c) results from ρ∗(B) = ρ′(C);

(d) is again due to that I ′ is a MPEA.

Consequently, we demonstrate that

R̄∗(I∗) < R̄∗(A) + R̄′(C′), (5.129)

where the throughput on the right hand side can be achieved by using the average

power p = ρ∗(A) + ρ′(C′). Thus, I∗ is not an optimum policy and this contradicts the

assumption. Hence, the proposition holds.

�

Proof: Proposition 8

For two different measurements, u and u′, if f(u|s) ≡ f(u′|s), the set of policies of

interest {(pi(u), qi(u))} is the same as {(pi(u′), qi(u′))} since these policies must satisfy

both (5.19) and (5.20). Consequently, the set of incremental efficiencies {ηi(u)} is the

same as {ηi(u′)}. From (3.33), we know that the power/rate allocations for u and u′

are the same.

�

5.B When MPEA is not Optimum

We only prove the optimality of MPEA when ηi(u) is strictly decreasing in i. How-

ever, in this subsection, we will demonstrate by some geometric constructions that since

we do not limit the distribution of f(s,u), ηi(u) may not be always decreasing in i. An

example is shown in Fig. 5.5 and we will explain this example in the following.

Here, we still assume that u and λ are given. Let us take a close look at R′
i(u, p)

defined in (5.27) and consider

Di(x) =
∂R′

i(u, p)
∂p

=
1 − FS|U(qi(u)|u)

p + N0
qi(u)

. (5.130)

Clearly, with (5.23),

Di(0) =
qi(u)
N0

[
1 − FS|U(qi(u)|u)

]
=

λ

N0
eri(u), (5.131)
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Figure 5.5: An example has η3(u) > η2(u) given u and λ. For simplicity, (u) is omitted
for functions depending on u. The area of the shaded region between p′1(u) and p2(u)
is R2(u) − R1(u). Similarly, the area of the other shaded region is R3(u) − R2(u).

Therefore, Di(0) > Di+1(0) for any i < N(u) due to the claim 3) in Theorem 13.

Similarly,

Di(pi(u)) =
1 − FS|U(qi(u)|u)

pi(u) + N0
qi(u)

= λ. (5.132)

Hence, Di(pi(u)) = Di+1(pi+1(u)) for any i < N(u). In addition,

Ri(u) = R′
i(u, pi(u)) =

∫ pi(u)

0
Di(x)dx. (5.133)

Consequently, {Di(x)} are a set of N(u) convex curves starting from {Di(0)} and

ending, within our interests, at {Di(pi(u))}. The areas under these curves are the

corresponding rates {Ri(u)}.

Since Di(pi(u)) = Di+1(pi+1(u)), due to the monotonicity of Di(x), we have Di(pi(u)) <

Di+1(pi(u)). In addition, since Di(0) > Di+1(0), there exist at least a crossing point

px
i+1(u) ∈ (0, pi(u)) such that

Di(px
i+1(u)) = Di+1(px

i+1(u)). (5.134)
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Moreover, it is straightforward to obtain that px
i+1(u) is unique by checking Di(x)/Di+1(x)

and, therefore,

Di(x) > Di+1(x), x ∈ [0, px
i+1(u)), (5.135)

Di(x) < Di+1(x), x ∈ (px
i+1(u),∞). (5.136)

So, any pair of curves within the set {Di(x)} will cross over each other once and once

only.

Let p′i−1(u) satisfy

R′
i(u, p′i−1(u)) = Ri−1(u). (5.137)

Note that due to (5.10) and the uniqueness of pi−1(u) and qi−1(u) pair, p′i−1(u) >

pi−1(u). In addition, since R′
i(u, p) is strictly increasing in p, p′i−1(u) < pi(u) due to

R′
i(u, p′i(u)) = Ri−1(u) < Ri(u) = R′

i(u, pi(u)). Overall, we have

pi−1(u) < p′i−1(u) < pi(u). (5.138)

Then, according to (5.35),

ηi(u) =
Ri(u) − Ri−1(u)
pi(u) − pi−1(u)

=
R′

i(u, pi(u)) − R′
i(u, p′i−1(u))

pi(u) − pi−1(u)
=

∫ pi(u)
p′i−1(u)

Di(x)dx

pi(u) − pi−1(u)
.(5.139)

So, ηi(u) is the ratio of the area under the curve Di(x) between p′i−1(u) and pi(u) over

the difference between pi−1(u) and pi(u).

Similarly, let p′′i−1(u) and p′′i (u) satisfy

R′
i+1(u, p′′i−1(u)) = Ri−1(u). (5.140)

R′
i+1(u, p′′i (u)) = Ri(u). (5.141)

respectively. Then, we have

pi−1(u) < p′′i−1(u) < p′′i (u) < pi+1(u), (5.142)

and

ηi(u) =

∫ p′′i (u)

p′′i−1(u) Di(x)dx

pi(u) − pi−1(u)
, (5.143)

ηi+1(u) =

∫ pi+1(u)
p′′i (u)

Di(x)dx

pi+1(u) − pi(u)
, (5.144)
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Note that pi(u) < p′′i (u) due to (5.10). Also, we can show that p′i−1(u) < p′′i−1(u).

Otherwise, we must have px
i+1(u) < p′i−1(u) and, thus, p′′i (u) < pi(u) which contradicts

(5.10).

With the knowledge of the curves {Di(x)}, we will try to construct an example with

N(u) = 3 and η3(u) > η2(u). Specifically, we want to construct a scenario satisfying

1) p3(u) → ∞ and, thus, η3(u) > λ;

2) p′1(u) > p1(u), p2(u)=̃p′1(u), and, therefore, η2(u) → 0 < λ.

Hence, η3(u) > η2(u).

Given any r2(u) and p2(u), if

r3(u) < log

(
r2(u)[

1 − e−r2(u)
]
)

, (5.145)

we have

R′
2(u, p2(u)) = [1 − FS|U(q3(u)|u)] log

(
1 +

p2(u)q3(u)
N0

)
(5.146)

= λ
p3(u)

1 − e−r3(u)
log

(
1 +

p2(u)
[
er3(u) − 1

]
p3(u)

)
(5.147)

= λ
p2(u)

(
er3(u) − 1

)
p3(u)

(1 − e−r3(u))p2(u)
[
er3(u) − 1

] log

(
1 +

p2(u)
[
er3(u) − 1

]
p3(u)

)
(5.148)

(a)
< λp2(u)er3(u) (5.149)

< λp2(u)
r2(u)[

1 − e−r2(u)
] (5.150)

= R2(u). (5.151)

where (a) results from that x log(1 + 1/x) is strictly increasing in x and upperbounded

by 1 for any x > 0. Consequently, (5.10) is satisfied and p3(u) is allowed to approaching

∞. Thus, if p3(u) → ∞ and p′′2(u) = (1 + δ)p2(u) for any finite δ > 0,

η3(u) =

∫ p3(u)
p′′2 (u)

D3(x)dx

p3(u) − p2(u)
→

∫ p3(u)
p′′2 (u)

D3(x)dx

p3(u) − p′′2(u)
> λ, (5.152)

where the last term is due to Di(x) ≥ λ for all x ∈ [0, pi(u)].

On the other hand, given p1(u), let p′1(u) = (1 + ∆)p1(u) for any ∆ > 0 and

p2(u) = (1 + ∆′)p′1(u) for any ∆′ > 0. Here, with (5.23), r2(u) is determined by

R1(u) = R′
2(u, p′1(u)) = λ

p2(u)
1 − e−r2(u)

log

(
1 +

p′2(u)(er2(u) − 1)
p2(u)N0

)
. (5.153)
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In order to have a reasonable r2(u), R1(u) must satisfy

R1(u) ≥ min
r>0

λ
p2(u)

1 − e−r
log

(
1 +

p′2(u)(er − 1)
p2(u)N0

)
. (5.154)

Indeed, any R1(u) > 0 is feasible given any p1(u) > 0 since we can always find r1(u)

satisfying

R1(u) = λ
p1(u)r1(u)
1 − e−r1(u)

, (5.155)

due to the fact that the range of r1(u)/(1 − exp(−r1(u))) is (0,∞) for r1(u) > 0.

In addition, we observe that R′
2(u, p) is strictly and continuously increasing in p2(u).

Therefore, R2(u) is strictly and continuously increasing in p2(u). Hence, if we fix r2(u)

and reduce p2(u), R2(u) will decrease accordingly. Then, we can keep reducing p2(u)

until

R2(u) − R1(u) =
∫ p2(u)

p′1(u)
D2(x)dx < ∆′′p1(u), (5.156)

where ∆′′ << ∆. Consequently, we have

η2(u) =
R2(u) − R1(u)
p2(u) − p1(u)

<
∆′′p1(u)
∆p1(u)

→ 0. (5.157)

In summary, the construction procedure starts from specifying p1(u), ∆, and ∆′.

Then, R1(u) needs to satisfy (5.154). Hence, r1(u) and r2(u) can be determined by

(5.155) and (5.153), respectively. Further, after deciding ∆′′ such that ∆′′p1(u) << ∆,

p′1(u) and p2(u) are set based on (5.156). So, (5.157) can be obtained. In order to have

(5.152), we only need to choose any r3(u) satisfying (5.145) and let p3(u) → ∞.

In Fig. 5.5, a set of {Di(x), i = 1, 2, 3} satisfying all the requirements discussed

within this subsection are shown. For this case, η2(u) is below λ and η3(u) is clearly

larger than λ. A question is how to generate the distribution f(s,u) leading to the

scenario in Fig. 5.5. Indeed, given {pi(u)} and {ri(u)}, {qi(u)} and
{
FS|U(qi(u)|u)

}
are specified according to (5.24) and (5.23). Then, since only few points are determined,

FS|U(s|u) and, hence, f(s,u) can have a wide range of choices.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

When there is a constraint on the decoding delay, information outage can occur. Based

on the concept of information outage, we have studied the problems of the through-

put maximization of adaptive transmission system with practical considerations, e.g.

channel uncertainty and a finite set of code rates and/or power levels.

Given a flat fading channel, it is shown that in order to achieve the throughput

performance within one dB from the ergodic capacity, it is sufficient to have transceivers

which are capable of adjusting to any of ten code rates and power levels if the number

of code rates and power levels are the same. In addition, if continuous power control

is available, the number of required code rates can be reduced substantially. For a

Rayleigh flat fading channel, transceivers with two non-zero code rates can achieve a

throughput within one dB of the ergodic capacity. Therefore, for adaptive transmission

systems, it is desirable to have good power control ability to offset the complexity of

channel codecs.

A natural generalization of this work is to investigate the throughput maximiza-

tion with a finite number of code rates and/or power levels and imperfect channel

information at the transmitter. We have studied a variation of the problem with an

additional equality outage constraint, implementing a quality-of-service requirement.

The optimum policies can be found by a simple one-parameter line search.

Moreover, regardless of the channel state distribution and the statistical estimation

technique, it can be shown that the candidate solutions to maximize the throughput

when the transmitter does not have the perfect channel information have a well ordered
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structure. For instance, we have derived that increasing the throughput requires more

transmitted power and a reduction in the code rate. The structure can be used to

obtain good approximations of the optimum policies with less complexity.

Throughout the thesis, a simple flat fading channel is assumed. This choice simplifies

our derivations and enables further insight into the problems. In addition, the flat fading

channel model can be considered an instance of a block fading channel model [8,10,43].

The results in the thesis have been presented in [37–41].

6.2 Future Work

In this thesis, we have not carefully studied the effect of reducing the complexity of

the algorithms. Therefore, the results may be limited to off-line scenarios where the

transmission policies are not determined in real time. However, due to the popularity

of wireless local area networks and ad hoc networks, it is possible that there is a need

to determine the transmission polices in real time. In this case, how to simplify the

algorithms and how to estimate parameters may become important problems. Surely,

we assume that models of channels are known.

An underlying assumption in this thesis is that there is always some message ready

to be encoded and transmitted. In reality, this may not be necessarily the case. Based

on models of the message arrival process, predictions of future state of the queue at

the transmitter can be made. Therefore, extending the work on channel uncertainty to

the scenario with both channel uncertainty and the future queue state uncertainty is a

possible future research direction.
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