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ABSTRACT OF THE DISSERTATION

Network Coordination for Spectrally Efficient

Communications in Wireless Networks

by M. Kemal Karakayali

Dissertation Director: Prof. Roy D. Yates and Dr.

Gerard J. Foschini

In conventional cellular systems, each base station transmits signals intended

for users within its cell coverage. Depending on the users’ channel conditions,

interference caused by the neighboring cell transmissions can sharply degrade the

received signal quality. Thus, the downlink capacity of cellular wireless networks

is limited by inter-cell interference. Fortunately, since the base stations can be

connected via a high-speed backbone, there is an opportunity to coordinate the

base antenna transmissions so as to minimize the inter-cell interference, and hence

to increase the downlink system capacity. In this thesis, we study various aspects

of network coordination in cellular downlink systems.

In the first part of the study, we describe various coordination techniques, and

conduct their performance analysis. The performance of each technique is given

in terms of the max-min fair rate achievable subject to per-base power constraints.
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We compare the performance of coordinated transmissions to that of conventional

cellular networks without coordination. It is shown that the coordinated base

station transmissions can help to eliminate inter-cell interference, and result in a

great capacity improvement on the downlink cellular networks.

In the second part of the study, we consider coordinated networks with mul-

tiple antennas. The great advantage of using multiple antennas is that, without

increasing power or bandwidth, the capacity of a point-to-point link scales lin-

early with the minimum of the number of transmit or receive antennas deployed.

The gain, in terms of the marginal increase in rate when an additional antenna is

deployed, is especially large when the signal-to-noise ratio is high. We show that,

without coordination, the link qualities can be very poor because of inter-cell

interference. In this case, the network does not benefit significantly from multiple

antennas. When the coordination is employed, the inter-cell interference is miti-

gated so that the links can operate in the high signal-to-noise ratio regime. This

enables the cellular network to enjoy the great spectral efficiency improvement

associated with using multiple antennas.

In the final part of the study, we investigate linear beamforming design with

per-antenna power constraints. We show that the standard beamforming tech-

niques used mostly in the sum-power constrained systems are suboptimal when

there are per-antenna power constrains. We formulate convex optimization prob-

lems finding the optimum zero-forcing beamforming vectors. We observe that op-

timizing the antenna outputs based on the per-antenna constraints may improve

the rate considerably when the number of transmit antennas is much larger the

number of receive antennas. The network coordination techniques assume the

existence of a high-speed backhaul enabling communications between the base

stations. We conclude the thesis by considering the design of a mesh architecture

providing such a backhaul support in a cellular network.
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Chapter 1

Introduction

As the demand for wireless applications continues to grow, future wireless systems

are engineered to provide high-speed broadband services with quality of service

(QoS) support for a wide range of applications, including voice and multimedia

data. The design of such advanced network architectures is a challenging task.

First of all, radio resources such as power and bandwidth are often scarce. There-

fore, efficient resource allocation and network optimization are vital. Secondly,

the wireless channel has its unique impairments such as fading and multi-path.

Also, the mobiles sharing a common communication medium interfere with each

other. The future wireless system designs are expected to address all these chal-

lenges, and networks with high spectral efficiency is a major design goal.

Traditionally, channel fading and multi-path are thought of as impairments

that have to be dealt with. A breakthrough technique which dramatically changed

this point of view is the use of multiple antennas at the transmitters and/or re-

ceivers [1–3]. The advantage of multiple input-multiple output (MIMO) antenna

arrangements is that, when the wireless channel provides a rich scattering envi-

ronment, multiple independent signal paths can be obtained between two com-

municating units employing multiple antennas. In this case, the link capacity

can scale linearly with the number of antennas deployed, even without increasing

transmit power or bandwidth.
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Figure 1.1: MIMO capacity gains in a point-to-point link.

The tremendous capacity improvement predicted by the multiple antennas

attracted a huge attention within the research community [4–23]. In addition to

the experimental verification and the measurement of these gains [5], multiple

antennas have been successfully employed in a number of commercial products,

especially in short-range wireless local area networks (WLANs); see for example

[24]. However, the deployment of multiple antennas in cellular networks has not

been successful so far. One important reason is that cellular networks suffer from

inter-cell interference. Therefore, the link qualities in cellular networks can be

relatively poor compared to short-range radio links. On the other hand, the

multiple antenna gain, in terms of marginal increase in rate when an additional

antenna is deployed, is especially large when the signal-to-noise ratio (SNR) is

high [6]. This fact can be observed in Figure 1.1 illustrating capacity gains in
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a point-to-point link. The figure shows that the slope of the capacity vs. the

number of antennas curve is small when the received SNR is low. For example,

at 0 dB SNR, adding one more antenna to both the transmitter and the receiver

contributes an additional ≈ 0.65 bits/symbol to the spectral efficiency, while the

capacity improves by about 6.5 bits/symbol when the SNR is 24 dB. In realistic

cellular environments, the received SNR is typically around 18 dB when the mobile

is close to the cell border. On the other hand, when the inter-cell interference is

present, the SINR (signal-to-noise-plus-interference ratio) may drop to 0 dB. In

this case, the improvement due to multiple antennas would be very limited if the

interference is not successfully mitigated, as in the conventional cellular networks.

In this dissertation, we propose novel techniques that enable efficient use of

multiple antennas in cellular networks. In particular, we study network coordina-

tion as a means to provide spectrally efficient communications in cellular downlink

systems. When the network coordination is employed, all base antennas act to-

gether as a single network antenna array, and each mobile may receive useful

signals from several nearby base stations. Furthermore, the antenna outputs are

chosen in ways to minimize the out-of-cell interference, and hence to increase

the downlink system capacity. When the out-of-cell interference is mitigated, the

links can operate in the high SNR regime. This enables the cellular network to

enjoy the great spectral efficiency improvement associated with using multiple

antennas.
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1.1 Related Work

The pioneering multiple antenna studies are due to [1–3]. The initial multiple an-

tenna research mainly focused on point-to-point links. In particular, [1,2] showed

that the link capacity scales linearly with the minimum of the number of trans-

mit and receive antennas. This result requires that the wireless channel provides

enough scattering so that each antenna pair would experience an independent

channel fading and the matrix channel between the transmitter and the receiver

becomes full-rank. Also, the channel information must be available at the re-

ceiver. The availability of the channel information at the transmitter enables

optimal water-filling power allocation on the eigen-modes of the channel [2]. A

number of efficient coding/modulation techniques that help to realize the pre-

dicted capacity gains can be found in [6–10].

Multi-user multiple antenna problems are studied in the context of, first,

multi-access channels [11–15], and then broadcast channels [16–21]. The capac-

ity region of the multiple antenna multi-access channel follows easily from the

capacity region of its scalar counterpart [25]. Basically, successive interference

cancelation extends to the multiple antenna system [11]. In this case, each corner

point on the boundary of the capacity region corresponds to a particular user

order, and each user selects its optimal single-user transmit covariance assuming

the existence of interference due to un-canceled interferers in the user order. The

multiple antenna broadcast channel problem is much more difficult because it is

a nondegraded broadcast channel [25]. Recently, there has been progress towards

characterizing its capacity region. Namely, the dirty paper coding [26,27], which

is a technique to cancel the interference causally known to the transmitter with-

out any transmit power penalty, achieves the boundary of the broadcast capacity
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region [19, 20]. The multi-access and the broadcast capacity regions are related

through a duality relationship [18]. The usefulness of this relationship is that rel-

atively simple multi-access problem can be solved to find optimum transmission

policies achieving a particular point on the dual broadcast capacity region. Note

that a sum-power constraint is assumed in the above broadcast channel problems.

Moreover, the above results are derived for single-cell systems.

While multiple antennas have been studied extensively in the context of point-

to-point links and single-cell systems, the effectiveness of multiple antennas in

multi-cell systems is not well-understood. In fact, some of the above results apply

to multi-cell systems. For example, an uplink multi-cell system with base station

cooperation is essentially equivalent to a single cell system with an increased

receive antenna count. However, the downlink multi-cell model is fundamentally

different from the single cell model. This is mainly due to the fact that each

base station/antenna has its own power constraint in a multi-cell system. In this

case, the results and the tools, such as the uplink-downlink duality developed for

broadcast channels with sum-power constraints, can not be used easily for the

multi-cell downlink model. Therefore, new tools and approaches are necessary to

analyze the multiple antenna multi-cell downlink networks.

In this thesis, the objective is to contribute to the understanding of the mul-

tiple antennas in cellular networks. To achieve this goal, we consider coordinated

cellular networks where the base stations can communicate and cooperate via a

high-speed backbone. We study the performance limits of such networks with

and without multiple antennas. We investigate the impact of such cooperation

on the effectiveness of multiple antennas. To the best of our knowledge, this

thesis is the first study proposing network coordination as a means to improve
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the performance of multiple antennas in cellular networks. For earlier studies on

base station cooperation, see [28] for an uplink multi-cell system. We should note

that it is hard to derive analytical expressions in multi-cell formulations since the

results depend heavily on the network topology. Thus, [28] considers a limited

circular network topology to investigate the effect of joint-decoding on the uplink

multi-cell network. For downlink networks, [29] studied the base station coop-

eration. Considering single antenna base stations and mobiles, and assuming a

sum-power constraint relaxation, simple analytical expressions are derived for the

capacity of such networks.

1.2 Overview of Dissertation

The thesis study starts with the analysis of the downlink cellular networks with

single antenna base stations and mobiles. In Chapter 2, we examine coordinated

networks in which a high-speed backbone enables all network antennas to operate

as a single network-wide antenna array. We compare the max-min rate perfor-

mance of practical coordination techniques to that of a conventional network with

power control. We show that the coordinated base antenna transmissions provide

large capacity improvements over the conventional cellular networks.

In Chapter 2, we also study the theoretical performance limits of coordination.

Our system can be modeled as a non-degraded Gaussian broadcast channel for

which the optimal scheme achieving the boundary of the capacity region involves

the dirty paper coding [19, 27]. However, characterizing the max-min rate point

on the capacity region is nontrivial as the dirty paper rate functions are in general

non-concave in transmit covariances [18]. In this case, the optimal policy may
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involve time-sharing, and one may need to specify time-sharing combinations as

well as a user ordering for the dirty paper encoding. This becomes computa-

tionally infeasible for large systems as one needs to search over all possible user

combinations and encoding orders. Our approach is to develop tight upper bounds

on the max-min rate. We show that the rate achievable by a particular form of

zero-forcing dirty paper coding scheme combined with a heuristic user ordering

is very close to the sharpest upper bound obtained. The established bounds not

only help to avoid a huge computational burden, but also they give insights into

the ultimate performance of the system.

Also in Chapter 2, we discuss the impact of sectorization on the downlink

performance. We compare sectorization with coordination, and then consider a

coordinated network architecture with sectorization. While the sectorization by

itself helps to reduce inter-cell interference, employing network coordination with

sectorization gives substantial additional improvements in system capacity. In

this chapter, we also discuss some implementation issues such as availability of

channel information. In particular, we evaluate the system performance when

only a partial channel information is available at the transmitters.

In Chapter 3, we study the impact of network coordination on multiple an-

tenna systems. We show that the coordinated transmissions are especially effec-

tive when the base stations and the mobiles are equipped with multiple antennas.

Note that deploying multiple antennas in a cellular network is a challenging task

due to its complexity of implementation and the cost of infrastructure upgrades

in the current cellular architecture. In order to justify the use of multiple anten-

nas in a cellular network, the predicted multiple antenna gains must be realized
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in practice. In this chapter, we show how to design a coordinated network em-

ploying multiple antennas. Our results indicate that the interference mitigation

capability of network coordination enables the cellular network to enjoy the great

spectral efficiency improvement associated with using multiple antennas.

In Chapters 2 and 3, we study coordination techniques that require simple,

practical linear beamforming techniques. While these beamforming methods pro-

vide significant capacity improvements over the conventional cellular networks,

they are not claimed to be the optimal linear coordination techniques. The objec-

tive in Chapter 4 is to find the optimum beamforming vectors. More specifically,

in all problem formulations in the thesis, we consider per-antenna power con-

straints for which well-known beamforming techniques such as the pseudo-inverse

zero-forcing is suboptimal. We show that finding the optimum beamforming vec-

tors requires solving a convex optimization problem. We will see that optimizing

the antenna outputs based on the per-antenna constraints may improve the rate

considerably when the number of transmit antennas is much larger the number

of receive antennas. The reason is that more transmit antennas will give more

degrees of freedom to optimize the antenna outputs. When the number of trans-

mit and receive antennas are close to each other, there are not much room left to

exploit in the signal space.

The network coordination techniques assume the existence of a high-speed

backhaul enabling communications between the base stations. In Chapter 5, we

study the design of such a backhaul in a cellular network. In particular, we con-

sider a mesh backhaul network consisting of fixed base stations (mesh routers)

connected by wireless links. Some of the mesh routers are assumed to have con-

nections to the wired network, and therefore can function as gateways. The
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network has multi-hop capability where the traffic entering the mesh backhaul

through the gateway routers can be carried over multiple wireless links towards

the destination mesh routers. The objective in this chapter is to study the perfor-

mance limits of such networks. Assuming the use of an OFDMA air-interface for

the mesh backhaul network, we formulate a cross-layer optimization problem that

involves power control, channel allocation, link scheduling and routing. We show

that when the radio resources are optimized carefully, OFDM transmissions may

provide tone-diversity advantage in the form of efficient bandwidth utilization by

choosing better channels for transmissions and scheduling, or in the form of im-

proved routing performance by providing more path options to route the traffic.

Our numerical results indicate that OFDMA-based mesh architecture provides

an efficient backhaul solution in cellular networks.
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Chapter 2

Network Coordination for Single Antenna Base

Stations and Mobiles

In conventional cellular systems, each base station transmits signals intended for

users within its cell coverage. Depending on the users’ channel conditions, in-

terference caused by the neighboring cell transmissions can sharply degrade the

received signal quality. Thus, the downlink capacity of cellular wireless networks

is limited by inter-cell interference. Fortunately, since the base stations can be

connected via a high-speed backbone, there is an opportunity to coordinate the

base antenna transmissions so as to minimize the inter-cell interference, and hence

to increase the downlink system capacity. In this chapter, we study various as-

pects of network coordination in cellular downlink systems.

Figure 2.1 shows the basic idea of the network coordination. On the top figure,

the base antenna transmissions are not coordinated, and therefore neighboring

base transmissions are received as inter-cell interference (each color represents a

signal useful for a given mobile). The objective of network coordination is to

enable cooperation between the base stations so that useful signals, as opposed

to the interference, can be received from the neighboring base antennas. In the

following, we will describe the transmission techniques achieving this objective.
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Figure 2.1: Conventional Cellular Networks (top) vs. Coordinated Networks
(bottom).

2.1 System Model

In general, the system model for a downlink network with M single antenna base

stations and N single antenna mobiles is given by

Y = Hx + n (2.1)

where H = [hij]N×M denotes the channel matrix with hij being the complex

channel gain between mobile i and base station j, x = [x1, x2, . . . , xM ]T denotes

the complex antenna outputs, and n = [n1, n2, . . . , nN ]T denotes an additive

white noise vector with covariance σ2I. When coordination is employed, all M

base stations can act together, and each mobile may receive useful signals from

all base stations. Denoting the vector of data symbols by d = [d1, d2, . . . , dN ]T

where di is the ith mobile’s complex data symbol, a linear spatial pre-filter matrix

A ∈ CM×N is used to map the data symbols to the antenna outputs, i.e. x = Ad.



12

Thus, in the case of coordination, the antenna output at the jth base station is a

linear combination of N data symbols, i.e., xj =
∑N

i=1 Ajidi. For the conventional

cellular transmissions, each base station simply transmits the data symbol for the

mobile in its own cell coverage, and the linear pre-filter matrix is not necessary.

In our analysis, we assume that each base is loaded at most with one user, i.e.,

N ≤ M . For example, the system model (2.1) may correspond to the set of

mobiles using a particular orthogonal dimension, i.e., a time slot for TDMA, a tone

for OFDM, an orthogonal spreading code for CDMA etc., in each base station,

and some of the mobiles may be in outage due to their undesirable channel and

interference conditions.

In the following sections, we will present different transmission techniques,

and explain the methodology for their performance evaluations. The metric for

comparison will be the max-min rate achievable subject to per-base power con-

straints. The max-min rate objective is motivated by the fairness concern, i.e.,

the need to guarantee a quality of service (QoS) for a large number of users spread

over many cells.

2.2 Conventional Cellular Network

The baseline for comparison with the coordinated networks is the conventional

cellular systems without network coordination. In this case, each base station

transmits signals intended for the user within its cell coverage, and neighboring

base transmissions cause inter-cell interference. Given the model (2.1), the an-

tenna output at the ith base antenna is the data symbol for its associated mobile,
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i.e., xi = di. Denoting the power of the ith data symbol by pi, the signal-to-

interference-plus-noise ratio (SINR) for mobile i is given by

ρi =
pi|hii|2∑

j 6=i pj|hij|2 + σ2
. (2.2)

and the corresponding Shannon rate is given by log2(1 + ρi) bits/symbol/Hz.

The following optimization problem formulates the max-min rate problem for an

uncoordinated network subject to per-base power constraints:

max r (2.3)

s.t. log2

(
1 +

pi|hii|2∑
j 6=i pj|hij|2 + σ2

)
≥ r (2.3a)

0 ≤ pi ≤ pmax, i = 1, . . . , N (2.3b)

r ∈ <+, pi ∈ <+ (2.3c)

where pmax is the maximum transmit power of a base station antenna, and r

can be interpreted as the minimum rate to be maximized, i.e., r = mini log2(1 +

ρi). The max-min rate can be found in an iterative fashion by solving a series

of linear feasibility problems. One can initially start with a small target rate

r, and can solve a simple linear system of equations to find if there exists a

feasible power allocations (either as a centralized LP or using distributed power

control algorithms). The target rate is improved further as long as the power

constraints are satisfied. We note that channel phase knowledge is not needed for

uncoordinated transmissions.
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2.3 Coordinated Network by Zero-Forcing Transmission

A simple form of coordination is obtained by zero-forcing transmission where each

mobile’s signal vectors are projected away from other users. This can be achieved

when a pseudo-inverse pre-filter matrix

A = H†(HH†)−1 (2.4)

is used to map the data symbols to the antenna outputs, i.e.,

x = H†(HH†)−1d. (2.5)

Notice that each column of the pseudo-inverse matrix is an M -dimensional weight

vector mapping a data symbol to M network antennas. In this case, the received

signal is given by

Y = Hx + n = HH†(HH†)−1d + n = d + n (2.6)

and the ith mobile receives yi = di +ni. Thus, the channel has been diagonalized;

all network antennas in range can help the transmission of each message, but

the message is received only by the intended user with no interference. Given the

received signal (2.6), mobile i can achieve the rate log2(1+pi/σ
2) bits/symbol/Hz

where

pi = E[|di|2] (2.7)

is the symbol power.
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To formulate the max-min rate optimization problem, one has to specify per-

base power constraints. Notice that each base antenna is subject to an average

power constraint given by E[|xm|2] ≤ pmax, m = 1, . . . , M . These constraints can

be transformed into a set of linear constraints in terms of the power of the data

symbols pi, i = 1, . . . , N . Note that base antenna powers are on the diagonals of

the following transmit covariance matrix

E[xx†] = AE[dd†]A† = A




p1

. . .

pN




A†, (2.8)

where x = Ad, and assuming independent data symbols, the constraints on the

diagonals can be expressed in matrix form as




|A11|2 . . . |A1N |2
...

...

|AM1|2 . . . |AMN |2







p1

...

...

pN




≤ pmax1 (2.9)

where 1 = [1, 1, . . . , 1]T is an M-dimensional column vector of 1s. The problem

of maximizing the minimum rate subject to per-base power constraints can be
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written follows:

max r (2.10)

s.t. log2

(
1 +

pi

σ2

)
≥ r, i = 1, . . . , N (2.10a)




|A11|2 . . . |A1N |2
...

...

|AM1|2 . . . |AMN |2







p1

...

...

pN




≤ pmax1 (2.10b)

r ∈ <+, pi ∈ <+ (2.10c)

In the above problem definition, r can be interpreted as the minimum rate

to be maximized, i.e., r = mini log2 (1 + pi/σ
2). Notice that each constraint in

(2.10a) defines a convex set, which is the region underneath a concave logarithm

function intersected with the region above the hyperplane defined by r. More-

over, the power constraints are linear, and therefore the max-min rate problem

becomes a convex optimization problem [30]. Note that the max-min rate cannot

be increased any further when any of the M constraints in (2.10b) becomes active,

i.e., when pmax is attained at one of the base stations.

The above convex optimization formulation holds for any pre-filter matrix

A. For the particular choice of the pseudo-inverse matrix, the max-min rate

can actually be obtained in closed-form by enforcing users to have equal rate

assignments, i.e., by solving the maximum common rate problem. Notice that

any mobile achieving a larger rate than the max-min rate can give up some of

its transmit power to make its rate equal to the max-min rate, and this would



17

actually help the power constraints. Under the equal rate constraint, each user’s

received power would be the same p. In this case, the covariance matrix simply

becomes E[xx†] = pAA†. Similarly, the base antenna power constraints on the

diagonals of the covariance matrix can be written as

p[AA†](j,j) = p

N∑
i=1

|Aji|2 ≤ pmax, j = 1, . . . , M, (2.11)

where [.](j,j) denotes the jth diagonal element of the matrix. Maximizing the

common rate is equivalent to maximizing the common received power p, which

occurs at p∗ = pmax/ maxj

∑N
i=1 |Aji|2. It follows that the maximum common rate

is given by r∗ = log2(1 + p∗/σ2), which is also equivalent to the max-min rate.

We mention that an MMSE pre-filter is also possible [31, 32], which should

have a performance beyond that of the zero-forcing scheme. However, as we will

see in the numerical examples section, the typical cellular network setup that we

are interested in will have a relatively high SNR, and therefore we expect the

performance improvement due to MMSE pre-filter to be small. Also, complete

channel knowledge (including phase and magnitude) is needed for the zero-forcing

technique, as well as for the zero-forcing dirty paper coding technique of the next

section.

2.4 Coordinated Network by Zero-Forcing Dirty Paper

Coding

Zero-forcing comes with a penalty in the sense that a mobile’s transmissions are

constrained to a smaller subspace after projecting away from the other mobiles’
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channels. An improved form of coordination is obtained when a limited form of

zero-forcing is combined with dirty paper coding [20,29]. Dirty paper coding can

be employed when the interference is known causally at the transmitter, which

is possible for downlink transmissions. First, mobiles are indexed according to

some order π = [π(1), π(2), . . . , π(N)]. By dirty paper encoding, a mobile can be

made invisible interference-wise to other mobiles with higher indices in the user

ordering [27]. When dirty paper coding is combined with a limited form of zero

forcing, the visible interference is nulled out due to the zero forcing.

The combined zero-forcing dirty paper coding scheme assumes a linear pre-

filter matrix A obtained through LQ decomposition of the channel matrix H, and

is given by A = Q† where H = LQ, L ∈ CN×N is lower triangular, and Q ∈ CN×M

is a unitary matrix with QQ† = I [20,29]. We should note that while this scheme

is shown to be sum-rate optimal at high SNR regime subject to a sum power

constraint, the same scheme is not claimed to be optimal for the max-min rate

problem subject to per-base power constraints. The corresponding system model

(2.1) is given by

Y = Hx + n = HAd + n = LQQ†d + n = Ld + n. (2.12)

Therefore the ith user receives the signal

yi = Liidi +
∑
j<i

Lijdj + ni. (2.13)

The particular choice of spatial filter matrix A = Q† nulls the interference

from users with indices j > i, and the remaining part of the interference due to
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users with indices j < i (causally known to the transmitter) is taken care of by

the dirty paper coding [27]. In this case, the ith user experiences a single user

channel, and can achieve the following rate

ri = log2

(
1 +

|Lii|2pi

σ2

)
(2.14)

where pi = E[|di|2]. Each base station antenna is subject to an average power

constraint given by

E[|xm|2] ≤ Pmax, m = 1, . . . ,M. (2.15)

Next, the base antenna power constraints are transformed into a set of linear

constraints in terms of power of the data symbols pi, i = 1, . . . , N . Note that base

antenna powers are on the diagonals of the following transmit covariance matrix

E[xx†] = Q†E[dd†]Q = Q†




p1

. . .

pN




Q. (2.16)

The constraints on the diagonals can be expressed in matrix form as




|Q11|2 . . . |QN1|2
...

...

|Q1M |2 . . . |QNM |2







p1

...

...

pN




≤ pmax1 (2.17)

where 1 = [1, 1, . . . , 1]T is an N-dimensional column vector of 1s. The problem
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Input : hi = [hi1, hi2, . . . , hiM ], i = 1, 2, . . . , N (channel responses).
Output : π = [π(1), π(2), . . . , π(N)], (π(i) projects away from π(j) where i > j).
Initialization : S = {1, 2, . . . , N}.
for i = 1 : N

π(i) = arg mini∈S |hi|2,
S = S− π(i),

eπ(i) =
hπ(i)

|hπ(i)| ,

hj = hj − (h†jeπ(i))eπ(i), ∀j ∈ S.
end

Figure 2.2: The heuristic user-ordering algorithm.

of maximizing the minimum rate subject to per-base power constraints can be

written follows:

max r (2.18)

s.t. log2

(
1 +

|Lii|2pi

σ2

)
≥ r, i = 1, . . . , N (2.18a)




|Q11|2 . . . |QN1|2
...

...

|Q1M |2 . . . |QNM |2







p1

...

...

pN




≤ pmax1 (2.18b)

r ∈ <+, pi ∈ <+ (2.18c)

In the above problem definition, r can be interpreted as the minimum rate

to be maximized, i.e. r = mini log2 (1 + |Lii|2pi/σ
2). Similar to the zero-forcing

scheme, the base antenna power constraints are linear, the rate functions are

concave in symbol powers and therefore (2.18a) defines a convex set. As in the

zero-forcing, the max-min rate optimization becomes a convex programming prob-

lem [30].
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The above combined zero-forcing dirty paper coding scheme assumes a user

ordering. Notice that when a particular user i’s transmission becomes invisi-

ble to some others due to dirty paper encoding, those users who do not receive

interference from user i do not have to project away from this particular user.

Moreover, dirty paper encoding does not induce any power penalty [27], and

therefore comes for free (except the complexity of its practical implementation).

On the other hand, zero-forcing incurs a penalty in the sense that a user pro-

jecting its signals away from others would give up some part of its signal space.

Since the objective is fairness, we propose a heuristic user ordering based on the

idea that the price should be paid by the users with good channels. In this case,

a user with a good channel “owes a favor” to users with relatively bad channels,

and therefore projects away form those disadvantageous users. In turn, the users

with bad channels “pay the favor back” by being invisible via the dirty paper

encoding. The heuristic user ordering algorithm is shown in Figure 2.2. We will

see in the numerical examples section that the algorithm performs quite well in

our cellular network setup.

2.5 Performance Limits of Network Coordination

Thus far, we have considered coordination techniques that involve practical linear

filtering operations, and thus are analytically tractable. In this section, our ob-

jective is to study the ultimate performance limits of network coordination, and

see how far the techniques of the previous sections are from the ultimate limits.

The system model described in (2.1) is an example of a non-degraded Gaussian

broadcast channel with M geographically separated but perfectly cooperating



22

transmitters, and N non-cooperating receivers. Finding the capacity region for

such channels has been a major research challenge for a long time. Recently,

it has been shown that subject to sum power constraint E[|x|2] ≤ pmax, the

optimal scheme achieving the boundary of the capacity region involves dirty paper

coding [19,20], where the transmitter encodes N data symbols in an order given by

[π(1), . . . , π(N)] such that a user with index π(i) does not suffer any interference

from users with lower indices, i.e., π(j) with j < i. Moreover, the optimal policy

may involve time-sharing, as the dirty paper rate functions are in general non-

concave in transmit covariances [18].

Notice that, unique to our multiple base coordinated network model, we have

a set of constraints and assumptions that adds a new dimension to the classical

broadcast channel problems. First, instead of a sum-power constraint, we are

concerned with per-base (or per-antenna) power constraints as the transmit power

cannot be transferred from one base station to the other. Second, we have a

large number of users spread over many cells, and therefore we would like to

guarantee a quality of service (QoS) for each user. Hence, our objective is to

maximize the minimum rate in the network, instead of a more common sum-rate

objective. The classical approach to solve this problem would be to characterize

the capacity region with per-base power constraints, and then determine the

policy maximizing the minimum of all rates. The difficulty is that even with

the duality results [18], it is computationally hard to derive policies, i.e., an

encoding order and corresponding transmit covariances etc., achieving a specific

point (max-min point in our case) on the broadcast capacity region. Moreover,

when the optimal policy involves time-sharing, one may need to specify time-

sharing combinations as well. This becomes computationally infeasible for large
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systems as one needs to search over all possible user combinations and encoding

orders. Therefore, our approach is to develop tight upper bounds on the max-min

rate. These bounds not only help to avoid a huge computational burden, but also

they give insights into the ultimate performance of the system.

2.5.1 Upper Bounds on the Max-Min Rate of a Coordi-

nated Network

In this section, we derive upper bounds on the max-min rate achievable in a co-

ordinated network. From the first upper bound to the last, each upper bound

improves the tightness of the previous upper bounds at the expense of an in-

creased computational complexity. The common context of all the derivations

is a configuration that has no user suffering interference. Although, at the first

sight this may seem to be too drastic a departure, we will establish its usefulness.

Recall that the optimum transmission scheme involves some form of dirty paper

coding, with which users causing significant interference can be made invisible to

others. Because of the no-interference assumption, each user enjoys a single user

channel with M transmit antennas. However, multiple users are coupled through

power sharing, i.e., each of them competes for a portion of the total available

power.

The interference-free assumption will enable us to work with concave rate

functions in user covariances so that the standard convex optimization techniques

can be easily employed. On the other hand, for any transmission policy, the set of

rates calculated based on no interference will be an upper bound on the actual user

rates. Importantly, the bounds are valid even when the optimal policy involves
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time sharing. The reason is that, without interference, we are left with single

user channels in which it is better not to do time sharing due to concavity of the

logarithm function. In other words, time sharing rates, which are already upper

bounded by ignoring the interference, will be further bounded when we restrict our

attention to simpler transmission policies. Also, when users do not interfere with

each other, the issue of dirty paper encoding order becomes irrelevant. Therefore,

the bounds are valid for all encoding orders when the optimal transmission policy

involves the dirty paper coding. In short, by being reasonably optimistic, we

greatly simplify a complex problem as we do not have to deal with all permutations

of dirty paper encoding order, or time-sharing combinations.

Single-User Bound

Our first upper bound is based on a single-user argument that the network does

its best for one of the users by granting him exclusive use of all network re-

sources. In other words, the network operator lets all M base station antennas

serve the user at full power, and produce a coherently reinforced signal at the

user’s antenna. Let us consider user i, and assume that the antenna at the

mth base transmits a voltage vim =
√

pimejφim to this user, where pim is the

transmit power and φim is the phase. In this case, the transmit voltage vector

is given by vi = [vi1, vi2, . . . , viM ]T . Given the ith user’s complex vector chan-

nel hi = [hi1, hi2, . . . , hiM ]T , the maximum received signal power is obtained by

having phase matched transmit voltages, and coherent voltage addition at the

receiver side. In this case, the ith user achieves the single user rate given by

ri = log2

(
1 +

(√
pi1|hi1|+ · · ·+√

piM |hiM |
)2

σ2

)
. (2.19)
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Given that all base antennas transmit at full power, i.e. pim = pmax for

m = 1, . . . , M , (2.19) can be written as ri = log2(1 + pmax‖hi‖2
1/σ

2), where ‖hi‖1

denotes L1 norm of the vector channel hi. The first upper bound is based on the

fact that max-min rate of N users cannot exceed the single user Shannon rate of

any user (2.19). Therefore, denoting the max-min rate by r, it follows that

r ≤ min
i∈{1,...,N}

log2

(
1 +

pmax‖hi‖2
1

σ2

)
(2.20)

Multi-User Bound with Sum-Power Constraint

We can improve the previous upper bound by considering presence of multiple

users in the system. Similar to the first bound, we assume that users do not

suffer any interference, but they are coupled through power sharing. Given the

ith user’s transmit voltage vector vi = [vi1, vi2, . . . , viM ]T , and the channel hi =

[hi1, hi2, . . . , hiM ]T , the received signal power is |vi · hi|2, which is by coherent

voltage addition. In this case, each user achieves the following rate

ri = log2

(
1 +

|vi · hi|2
Ii + σ2

)
i = 1, . . . , N (2.21)

where Ii denotes the total interference power user i would actually suffer. An

upper bound on the max-min rate r can be written as

r ≤ ri = log2

(
1 +

|vi · hi|2
Ii + σ2

)
(a)

≤ log2

(
1 +

|vi · hi|2
σ2

)

(b)

≤ log2

(
1 +

‖vi‖2‖hi‖2

σ2

)
, (2.22)
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where (a) is obtained by ignoring the interference term Ii, and (b) is due to

the Cauchy-Schwartz inequality. In the inequality (2.22), the magnitude squared

voltage term ‖vi‖2 represents the total power allocated to the ith user across all

base stations; we denote it by Pi = ‖vi‖2. It follows from (b) that

(2r − 1)σ2

|hi‖2
≤ Pi. (2.23)

The sum-power of all users must be smaller than the total available power in

the network implying
N∑

i=1

Pi ≤ Mpmax. (2.24)

This is a relaxation to per-base power constraints, which will be analyzed in

the following subsection, and will lead to a better upper bound. It follows that

(2r − 1)
N∑

i=1

σ2

‖hi‖2
≤

N∑
i=1

Pi ≤ Mpmax (2.25)

The second upper bound follows easily from (2.25):

r ≤ log2

(
1 +

Mpmax∑N
i=1

σ2

‖hi‖2

)
. (2.26)

Multi-User Bound with Per-Base Power Constraint

A tighter upper bound is obtained by considering per-base power constraints, in-

stead of the previous section’s constraint relaxation in the form of a sum-power

constraint. Note in the previous section that Pi represents the sum of contribu-

tions of each antenna power for user i, i.e., Pi =
∑M

m=1 pim. Here, we will choose,
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for each user, transmit powers at each base so as to satisfy per base power con-

straints given by
N∑

i=1

pim ≤ pmax, m = 1, . . . , M (2.27)

Consider the following optimization problem:

max r
′

(2.28)

s.t. (2r
′
− 1)

σ2

‖hi‖2
−

M∑
m=1

pim ≤ 0, i = 1, . . . , N (2.28a)

N∑
i=1

pim ≤ pmax, m = 1, . . . , M (2.28b)

r
′ ∈ <+, pim ∈ <+ (2.28c)

where the constraint (2.28a) expresses the bound (2.22b) using the definition of

Pi in this section. The solution to the optimization problem, say r∗, is an upper

bound on the max-min rate, i.e., r ≤ r∗. The argument is that, for r
′

= r,

the optimum power, and phase allocations maximizing the minimum rate, i.e.,

achieving r, would satisfy (2.22b), and therefore (2.28a) as well. Moreover, the

optimum power allocations are feasible, and therefore the constraint (2.28b) is also

satisfied. Thus, we would at least obtain r by solving the optimization problem

(2.28), and possibly overshoot r due to the constraint relaxation (2.28a). The

optimization problem can easily be solved as a convex program, or as a linear

program (LP) by defining an auxiliary variable t = 2r
′ − 1, and maximizing t

subject to the constraints (2.28a)-(2.28c). Since t is an increasing function of r
′
,

maximizing t would maximize r
′

as well. If the solution occurs at t∗, then r∗

simply follows as r∗ = log2 (1 + t∗).
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Multiple User Bound

In this section, we solve the max-min rate problem subject to per-base power

constraints when each user’s rate is calculated as if no interference is present in the

system. Note that the received signal power is maximized when the transmitted

signals are in-phase with the channel, and add up coherently at the receiver,

i.e., |vi · hi|2 ≤
(√

pi1|hi1|+√
pi2|hi2|+ · · ·+√

piM |hiM |
)2

. It follows that the

optimum power allocations achieving r would satisfy

r ≤ log2

(
1 +

(√
pi1|hi1|+ · · ·+√

piM |hiM |
)2

σ2

)
(2.29)

We obtain our last upper bound by solving the following optimization problem:

max r
′

(2.30)

s.t. log2

(
1 +

(√
pi1|hi1|+ · · ·+√

piM |hiM |
)2

σ2

)
≥ r

′
(2.30a)

N∑
i=1

pim ≤ pmax, m = 1, . . . , M (2.30b)

r
′ ∈ <+, pim ∈ <+, i = 1, . . . , N. (2.30c)

The optimization problem can be solved using convex optimization techniques.

We find it useful to make the following change of variables to better observe the

convex structure of the problem. First, we rewrite (2.30a) as

√
(2r

′ − 1)σ2 − (
√

pi1|hi1|+ · · ·+√
piM |hiM |) ≤ 0. (2.31)

Then, we define an auxiliary variable t =
√

2r
′ − 1, and maximize t within



29

the constraints (2.30a)-(2.30c). Since t is an increasing function of r
′
, maximizing

t would maximize r
′
as well. Also, we define yim =

√
pim, and solve the following

optimization problem:

max t (2.32)

s.t. tσ − (yi1|hi1|+ · · ·+ yiM |hiM |) ≤ 0, (2.32a)

N∑
i=1

y2
im ≤ pmax, m = 1, . . . , M, (2.32b)

t ∈ <+, yim ∈ <+, i = 1, . . . , N. (2.32c)

The first set of constraints (2.32a) is linear in optimization variables, and

therefore defines a convex region. The second set of constraints (2.32b) defines

an intersection of spheres, which is also convex. Thus, the problem is a convex

optimization problem with linear and non-linear constraints. The solution of such

a convex optimization problem is well-known [30].

2.6 Coordination vs. Sectorization

Another effective method for downlink interference mitigation is the use of sector-

ized antennas at the base station. Sectorization can be interpreted as spatial/fixed

beamforming where directional narrow-beam antennas are used to separate inter-

fering users spatially. On the other hand, the coordination provides user-specific

beamforming, and therefore is more flexible than sectorization. For example, in

our numerical examples, we will present results for a 36 base network with 6 sec-

tors in each cell, and one user per antenna. In this case, when the mobiles are
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uniformly distributed across the cell area, each sector might have only one user,

and the sectorization can effectively mitigate the intra-cell interference. On the

other hand, if there are more than one user in a sector area, sectorized anten-

nas cannot separate these users while the coordinated antennas can effectively

separate them through zero-forcing or dirty paper coding. We will see in our

numerical examples that while the sectorization by itself helps to reduce inter-cell

interference, employing network coordination with sectorization gives substantial

additional improvements in system capacity.

2.7 Limited Coordination: Partial Channel Information

The coordinated transmission methods require the channel information at the

base station. This could be achieved in practice by using channel estimates on

the uplink in the time division duplexing (TDD) mode, or by a channel feedback

from the mobiles in the frequency division duplexing mode (FDD). However, there

will be channel estimation errors and feedback delays, and therefore availability

of an accurate channel information is a challenge. Here, we consider a limited co-

ordination scenario where only partial information is available about the channel

matrix H. In particular, we assume that, for each mobile antenna, only the chan-

nels of those base antennas with strong enough links can be reliably estimated.

Figure 2.4 shows a sample scenario where only the channel information for the

two base station antennas with the strongest links is available for each mobile

antenna. Here, the partial channel matrix is denoted by Hp. As a case study, we

will consider the zero-forcing coordination where the precoding matrix is chosen

to be A = H†
p(HpH

†
p)
−1 based on the partial channel matrix. In this case, the
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channel output becomes

Y = Hx + n = HH†
p(HpH

†
p)−1d + n. (2.33)

Thus, the received signal for the ith mobile antenna includes both the data

signal and the interference. Notice that, in the signal model (2.33), the matrix

HH†
p(HpH

†
p)
−1 defines an effective channel matrix whose input is the data vector

d. In this case, denoting the effective channel matrix by W = HH†
p(HpH

†
p)
−1,

and the power of the ith data symbol di by pi, the SINR for mobile i is given by

ρi =
pi|wii|2∑

j 6=i pj|wij|2 + σ2
. (2.34)

where wij is the (i, j)th entry of the effective channel matrix W, and the cor-

responding Shannon rate is given by log2(1 + ρi) bits/symbol/Hz. In this case,

the following optimization problem formulates the max-min rate problem for the

partial coordination case:

max r (2.35)

s.t. log2

(
1 +

pi|wii|2∑
j 6=i pj|wij|2 + σ2

)
≥ r (2.35a)




|A11|2 . . . |A1N |2
...

...

|AM1|2 . . . |AMN |2







p1

...

...

pN




≤ pmax1 (2.35b)

r ∈ <+, pi ∈ <+, i = 1, 2, . . . , N (2.35c)
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BS

Figure 2.3: Layout for a 64 cells cellular network with a base at the center of
each hexagon. A cell with two concentric hexagonal rings of surrounding cells is
highlighted.

where the power constraint (2.35b) follows from (2.10b) with the precoding matrix

given by A = H†
p(HpH

†
p)
−1 based on the partial channel.

As in Section 2.2, the max-min rate can be found in an iterative fashion by

solving a series of linear feasibility problems. Notice that the power constraints

(2.35b) are linear. In this case, one can start with a small target rate r, and

can solve a linear system of equations to find if there exists a feasible power

allocations. The target rate is improved further as long as the power constraints

are satisfied.
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Figure 2.4: For each mobile antenna, only the channel information for the two
base station antennas with the strongest links is available.

2.8 Performance Evaluation

In this section, we will present results for a 64 base cellular network. We assume

that each base station is located at the center of an hexagonal cell shown in

Figure 2.3. A flat torus is formed to avoid the boundary effects. From the

base antenna i to the mobile antenna j at a distance of d meters, the channel

propagation characteristic is a triple product, i.e., hij ∝ αijs
1/2
ij d−ε/2 where in

addition to path-loss with a propagation exponent of ε = 3.8, the channels are

affected by log-normal shadowing sij with 0 mean and 8 dB standard deviation,

and 0 mean unit variance complex Gaussian component αij (Rayleigh piece). We

assume a maximum base power of 10 W, a mean power loss of 134 dB at the
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Figure 2.5: Empirical max-min rate CDFs for a 64 base network with 18 dB
reference SNR at the cell border.

reference distance of 1.6 km from the base (distance from the base station to

any corner of the hexagon), a receiver noise figure of 5 dB, a vertical antenna

gain of 10.3 dBi, a channel bandwidth of 5 MHz, and a receiver temperature of

300oK. Thus, accounting only for path loss and ignoring shadowing and Raleigh

fading, SNR at the reference distance is 18 dB. However, because of inter-cell

interference, the SINR can be much smaller than 18 dB (can even be negative) in

our cellular network setup. In Figure 2.3, two rings around a cell are highlighted to

emphasize that a mobile in the center cell can receive significant signal only from

those colored cells because of the exponential decay in the signal power [35, 36].

In other words, those colored cells may potentially interfere with the mobile in

the center cell, while at the same time they can be coordinated to help overcome

the interference.

Figure 2.5-2.7 show empirical CDFs of the max-min rate for conventional
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Figure 2.6: Empirical max-min rate CDFs for a 64 base network with 9 dB
reference SNR at the cell border.

power control, and coordinated (zero forcing and zero-forcing dirty paper coding)

transmission techniques for different reference SNR values. The CDFs are ob-

tained using max-min rates of 500 network instances. At each network instance,

a set of uniformly distributed mobile locations and random channel realizations

(including path-loss, shadow and Rayleigh fading) are generated. Each base is

loaded with one user, and 10% of the users are allowed to be in outage. Many

heuristic methods are possible to assign mobiles to the outage state. For example,

one may discard those mobiles which have the weakest links to their associated

bases, or have the smallest SINRs when all base antennas transmit at full power.

In our experiments, we used an iterative user discard rule in which the mobile that

makes the power constraint to become active (causing the max-min rate not to be

improved any further) is discarded at each iteration. Figure 2.5 shows that, based

on the median points of the rate CDFs, the coordination improves the max-min
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Figure 2.7: Empirical max-min rate CDFs for a 64 base network with 0 dB
reference SNR at the cell border.

rate by about a factor-of-3 when the zero-forcing coordination is employed, and by

about a factor-of-5 when the combined zero-forcing dirty paper coding scheme is

used. The reported numbers in Figure 2.5 are based on a typical cellular wireless

channel, and therefore should be interpreted as the potential gains in practical

wireless sytems. To show the dependence of our results to the reference SNR,

we also plotted the rate CDFs for 0 dB and 9 dB reference SNRs in Figure 2.6

and Figure 2.7 respectively. From Figure 2.7, we observe that the zero-forcing,

which performs well at high SNRs, performs far from optimal at very low SNRs.

On the other hand, the combined zero-forcing dirty paper coding scheme has an

advantage over the conventional scheme at all SNR ranges.

In Figure 2.8, we compare the max-min rate of our best coordination tech-

nique with the upper bounds. The figure shows that the rate achievable by the

linear zero-forcing beamforming combined with dirty paper coding is close (≈ 1
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Figure 2.8: Performance limits of network coordination: Upper bounds for a 64
base network with 18 dB reference SNR at the cell border.

bit/symbol/base) to the sharpest upper bound obtained. Hence, the coordination

techniques presented achieve the desired performance.

In Figure 2.9, the sectorization is compared with the coordination. Here, we

have a 36 base network with 6 omni or sector antennas in each cell, and one

mobile per antenna. The reference SNR at the cell border is 18 dB, and sec-

torized antennas have an additional 10 log10 6 ≈ 7.8 dB power gain. The figure

shows that, without coordination, 6 mobiles in a cell interfere with each other

significantly when omni antennas are used, and therefore the max-min rate is

very small. The use of sectorized antennas improves the max-min rate as it helps

reducing the intra-cell interference, and provides additional power gain. Combin-

ing the zero-forcing coordination with sectorization gives substantial additional

improvements in system capacity. Notice that, the power gain of the sectorized

antennas adds an additional ≈ 3 bits/symbol/base to the max-min rate at high
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Figure 2.9: Empirical max-min rate CDFs for a 36 base network with 6 sectorized
or omni transmit antennas, and with 18 dB reference SNR at the cell border.

SNRs. Without the power gain, the coordinated sectorized antennas perform

worse than the coordinated omni antennas. The reason is that the omni antennas

provide mobile-specific beamforming instead of fixed/spatial beamforming, and

have more degrees of freedom for coordination.

In Figure 2.10, the effect of partial channel information is presented in the

context of zero-forcing coordination. We observe that more than half of the

throughput achievable with the full channel information can be obtained when

only the channels of 3− 4 base antennas with the strongest links are available.

2.9 Chapter Summary and Conclusion

Coordinating base antenna transmissions to mitigate inter-cell interference is a

promising idea suggesting large capacity improvements over the conventional cel-

lular networks. Practical concerns regarding the coordination are the need for
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Figure 2.10: The effect of limited channel information: Empirical max-min rate
CDFs for a 64 base network with ZF transmission, and with 18 dB reference SNR
at the cell border.

channel knowledge, and a backbone enabling communication between the base

stations, both not far from reach technically. Thus, the network coordination

should be given serious consideration for future wireless networks.
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Chapter 3

Multiple Antenna Network Coordination

In the previous chapter, we presented network coordination as a means to provide

high spectral efficiency in cellular downlink systems with single antenna units.

Here, we will study the impact of network coordination on multiple antenna

systems. We will show that the coordinated transmissions are especially effective

when the base stations and the mobiles are equipped with multiple antennas.

Without coordination, the link qualities can be very poor because of inter-cell

interference. In this case, the network does not benefit significantly from multiple

antennas since the improvement in rate due to the antenna units is small at low

SNRs. When the coordination is employed, inter-cell interference is mitigated

so that the links can operate in the high SNR regime. This enables the cellular

network to enjoy the great spectral efficiency improvement associated with using

multiple antennas.

3.1 System Model

We consider a cellular network with M base stations, each equipped with t trans-

mit antennas, and N mobiles, each with r receive antennas. All M base stations

can act together, and each user may receive signals from up to tM base antennas.

As in Chapter 2, each base is loaded at most with one user, and also the total
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number of transmit antennas is assumed to be larger than the total number of

receive antennas, i.e., tM ≥ rN . Taking all the base antennas as input and all

the mobile antennas as output, we have a MIMO network. The received signal

model for the kth mobile is as follows:

yk = Hkx + nk k = 1, 2, . . . , N (3.1)

where yk ∈ Cr×1 is the received signal, Hk = [hij]r×tM denotes the kth user’s

channel matrix with hij being the complex channel gain between the ith receive

antenna and the jth transmit antenna, x ∈ CtM×1 denotes the complex antenna

outputs (without subscript k since it is composed of signals for all N users),

and nk ∈ Cr×1 denotes the white noise vector with covariance σ2Ir. To simplify

our analysis, we redefine the vectors in (3.1) to be in normalized form, meaning

that each vector has been divided by the standard deviation of the additive noise

component, σ. Then, the components of nk have unit variance. Also, the N

vectors {nk}N
k=1 are i.i.d.

The fact that each user has r receive antennas can be exploited in the spatial

domain by transmitting up to r independent symbol streams simultaneously for

each user. Moreover, since all base antennas are coordinated, the complex antenna

output vector x is composed of signals for all N users. Therefore, x can be written

as follows:

x =
r∑

j=1

b1jw1j +
r∑

j=1

b2jw2j + · · ·+
r∑

j=1

bNjwNj (3.2)

where bij denotes the jth symbol of mobile i. In the context of coordinated mul-

tiple antenna transmissions, wij = [w1
ij, w

2
ij, . . . , w

tM
ij ]T denotes the complex unit

norm antenna weight vector that is multiplied by bij. The selection of appropriate



42

antenna weight vectors, the mathematical problem, and the solution associated

with each transmission method will be given in the next three sections.

3.2 Multiple Antenna Network Coordination by Zero-Forcing

For the multiple antenna zero-forcing coordination, the antenna weight vectors

are selected so that each user’s data does not interfere with other users’ data. On

the other hand, a user’s own data symbols can interfere with each other. Thus,

each normalized zero-forcing weight vector wij satisfies

Hkwij = 0, ‖wij‖2 = 1, i 6= k, j = 1, . . . , r. (3.3)

In other words, each unit norm weight vector wij has to be orthogonal to the

subspace spanned by other users’ channels. We note that each row of the channel

matrix Hk corresponds to the channel seen by one of the receive antennas of user

k. Let us denote the mth row of the matrix Hk by hkm for m = 1, . . . , r. The

channel vector hkm can be expressed as a sum of two vectors hkm = qkm + q
′
km

where q
′
km denotes the part of the vector hkm in the subspace spanned by other

users’ channels. Similarly, we write Hk = Qk + Q
′
k where qkm and q

′
km are the

mth rows of the matrix Qk and Q
′
k respectively. Notice that the row spaces of

Qk and Q
′
k are orthogonal spaces. The zero-forcing weight vectors are selected in

such a way that user k’s transmissions do not cause interference to other users,

and therefore are confined into the subspace spanned by the vectors qkm for

m = 1, . . . , r only, or equivalently in the row space of Qk. In order to find the

basis for the row space, we use the singular value decomposition theorem, and
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write Qk as

Qk = UkSkV
†
k (3.4)

where Uk ∈ Cr×r and Vk ∈ CtM×tM are unitary, and Sk ∈ Cr×tM is a zero matrix

except for the square roots of r nonzero eigenvalues (r < tM) of the matrix

QkQ
†
k on the diagonals. We denote each diagonal by λ

1/2
kj for j = 1, . . . , r. By

the singular value decomposition theorem, the first r columns of Vk are the bases

for the row space of Qk, and therefore are selected to be the user k’s zero-forcing

weight vectors wkj for j = 1, . . . , r. Using (3.1)-(3.2), and with the particular

selection of zero-forcing weight vectors, the received signal for user k is given by

yk = Hkx + nk (3.5)

= Hk

(
r∑

j=1

b1jw1j +
r∑

j=1

b2jw2j + · · ·+
r∑

j=1

bNjwNj

)
+ nk (3.6)

= Hk

(
r∑

j=1

bkjwkj

)
+ nk (3.7)

= (Qk + Q
′
k)

(
r∑

j=1

bkjwkj

)
+ nk (3.8)

= Qk

(
r∑

j=1

bkjwkj

)
+ nk (3.9)

= UkSkV
†
k

(
r∑

j=1

bkjwkj

)
+ nk (3.10)

= Uk




λ
1/2
k1 bk1

λ
1/2
k2 bk2

...

λ
1/2
kr bkr




+ nk (3.11)
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where (3.7)-(3.9) is due to the fact that each user’s zero-forcing weight vectors are

orthogonal to the subspace spanned by other users’ channels, and (3.11) follows

from the fact that user k’s weight vectors are selected to be the first r columns

of the unitary matrix Vk, and Sk is a diagonal matrix with the square roots of

r nonzero eigenvalues on the diagonals. User k recovers its symbols by match-

filtering the received signal with U†
k:

ỹk = U†
kyk =




λ
1/2
k1 bk1

λ
1/2
k2 bk2

...

λ
1/2
kr bkr




+ ñ (3.12)

where the noise vector ñk = U†
knk remains white with covariance σ2Ir due to

the unitary transformation. It follows that the rate achievable in the parallel

Gaussian channels (3.12) is given by

Rk =
r∑

j=1

log2

(
1 + λkjE[|bkj|2]

)
. (3.13)

Given the antenna weight vector wkj = [w1
kj, w

2
kj, . . . , w

tM
kj ]T , the symbol bkj

with power Pkj = E[|bkj|2] contributes power |wq
kj|2Pkj to the total transmit

power at antenna q. The total transmit power at antenna q is the sum of the

contributions of the symbols of all users, i.e.,

Pq =
N∑

k=1

r∑
j=1

|wq
kj|2Pkj. (3.14)
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Now that we have described how to calculate the achievable rates, and the

individual power constraints at each base antenna, we give the formal problem

statement. The objective is to maximize the minimum rate in the network subject

to per-base (or per-antenna) power constraints. The problem can be defined as

max r0 (3.15)

s.t.
r∑

j=1

log2 (1 + λkjPkj) ≥ r0, k = 1, . . . , N (3.15a)

N∑

k=1

r∑
j=1

|wq
kj|2Pkj ≤ Pmax, q = 1, . . . , tM (3.15b)

r0 ∈ <+, Pkj ∈ <+ ∀ k, j. (3.15c)

Note that r0 can be interpreted as the minimum rate to be maximized, i.e.,

r0 = mink

∑r
j=1 log2 (1 + λkjPkj). Also, notice that the constraint in (3.15b)

defines a per-antenna power constraint. However, other types of power constraints

can easily be included in the above optimization problem. For example, if we need

a constraint on the total base power, we need to sum up the contribution of each

base antenna given on the left side of the inequality in (3.15b) and constrain the

sum. In our numerical examples, we will use a per-base power constraint. The

problem (3.15) is a convex optimization problem since the constraints in (3.15b)

are linear, and the constraints in (3.15a) define a convex region. The logarithm

function is concave in the power assignments, and the sum of concave functions is

also concave. Each constraint in (3.15a) defines a convex set, which is the region

underneath a concave function intersected with the region above the hyperplane

defined by r0. This is because the intersection of convex sets is another convex

set. Therefore, standard convex optimization techniques can be used to solve the
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problem [30].

3.3 Multiple Antenna Network Coordination by Zero-Forcing

Dirty Paper Coding

Similar to the single antenna network coordination schemes, an improved form

of multiple antenna coordination is achieved when zero forcing and dirty paper

coding work together to get rid of the interference. In this section, we will use

a reduced form of zero-forcing to get rid of the interference that the dirty paper

coding does not remove. In the multiple antenna zero forcing coordination, each

user’s interference was nulled out by selecting the weight vectors to be orthogonal

to the other user’s channels. In the dirty paper coding approach, when the inter-

ference is known causally at the transmitter, N users’ codewords can be chosen

such that given an ordering of users [π(1), . . . , π(N)], where π is a permutation,

a user with index π(i) does not suffer any interference from users with lower

indexes, i.e., π(k) with k < i. When dirty paper coding is combined with the

reduced form of zero forcing, the interference still present from dirty paper coding

will be nulled out due to the zero forcing weight vectors. In this case, the weight

vectors for the data symbols of user π(k) with k > i have to be orthogonal to the

user π(i)’s channel. Thus, each zero forcing weight vector wπ(k)j must satisfy

Hπ(i)wπ(k)j = 0, ‖wπ(k)j‖2 = 1, k > i, j = 1, . . . , r. (3.16)

The weight vectors satisfying the above conditions can be found in a similar

way to the zero-forcing case. First, we write the channel vector hπ(k)m as a sum of
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two vectors hπ(k)m = qπ(k)m + q
′
π(k)m where q

′
π(k)m denotes the part of the vector

hπ(k)m in the subspace spanned by channels of users π(i) with i < k. Similarly,

we write Hπ(k) = Qπ(k) + Q
′
π(k). The zero-forcing weight vectors are selected in

such a way that user π(k)’s transmissions are confined into the subspace spanned

by the vectors qπ(k)m for m = 1, . . . , r only, or equivalently in the row space of

Qπ(k). In order to find the bases for the row space, we use the singular value

decomposition theorem, and write Qπ(k) = Uπ(k)Sπ(k)V
†
π(k). The first r columns

of Vπ(k) are selected to be the user π(k)’s zero-forcing weight vectors wπ(k)j for

j = 1, . . . , r. In this case, the received signal for user π(i) is given by

yπ(i) = Hπ(i)x + nπ(i) (3.17)

= Hπ(i)

(
r∑

j=1

b1jw1j +
r∑

j=1

b2jw2j + · · ·+
r∑

j=1

bNjwNj

)
+ nπ(i) (3.18)

= Hπ(i)

(
r∑

j=1

bπ(i)jwπ(i)j

)
+ Hπ(i)

(∑

k>i

r∑
j=1

bπ(k)jwπ(k)j

)
+ nπ(i)(3.19)

= Hπ(i)

(
r∑

j=1

bπ(i)jwπ(i)j

)
+ nπ(i) (3.20)

=
(
Qπ(i) + Q

′
π(i)

) (
r∑

j=1

bπ(i)jwπ(i)j

)
+ nπ(i) (3.21)

= Qπ(i)

(
r∑

j=1

bπ(i)jwπ(i)j

)
+ nπ(i) (3.22)

= Uπ(i)Sπ(i)V
†
π(i)

(
r∑

j=1

bπ(i)jwπ(i)j

)
+ nπ(i) (3.23)

= Uπ(i)




λ
1/2
π(i)1bπ(i)1

λ
1/2
π(i)2bπ(i)2

...

λ
1/2
π(i)rbπ(i)r




+ nπ(i) (3.24)
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Input : Hk = [hij]r×tM , k = 1, 2, . . . , N (channel response matrices).
Output : π = [π(1), π(2), . . . , π(N)], (π(i) projects away from π(j) where i > j).
Initialization : S = {1, 2, . . . , N}.
for k = 1 : N

π(k) = arg mink∈S log2

[
det(Ir + PmaxHkH

†
k)

]
,

S = S− π(k),

eπ(k),i =
hπ(k),i

|hπ(k),i| , i = 1, . . . , r, (hπ(k),i : ith column of Hπ(k))

hj,l = hj,l − (h†j,leπ(k),i)eπ(k),i, ∀j ∈ S, i, l = 1, . . . , r.
end

Figure 3.1: The heuristic user-ordering algorithm for multiple antenna networks.

where (3.19) follows from the fact that a user with index π(i) does not suffer

any interference from users π(k) with k < i due to the dirty paper coding. The

interference that dirty paper coding cannot get rid of, i.e., the term inside the

second parenthesis in (3.19), is nulled out by appropriate zero forcing weight

vectors (3.16), and accordingly (3.20) represents the received signal after both

dirty paper coding and zero-forcing. Equation (3.22) is due to the fact that the

weight vector wπ(i)j is a basis in the row space of the matrix Qπ(i), which is

orthogonal to the row space of Q
′
π(i). The remaining steps are due to the singular

value decomposition theorem.

Given the received signal (3.24), the calculation of the achievable rates, and

the power constraints at each base follow the same steps as in the previous section.

Similarly, the problem statement is the same as (3.15), except that the eigenvalues

and the weight vectors have to be determined based on the zero-forcing dirty paper

coding scheme described in this section.

The above multiple antenna network coordination scheme assumes a particular

user ordering. In this case, a similar version of the heuristic we mentioned in the

context of single antenna systems can be used. Namely, the user with the smallest

single-user log-det capacity is a disadvantaged user. Since the objective is fairness,
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all other users have to project away from this user. In turn, the disadvantaged

user “pays the favor back” by being invisible via the dirty paper encoding. In

the subspace that does not cause interference to this disadvantageous user, the

next user with the smallest log-det capacity is chosen to be the second user in the

ordering. These steps are followed in the same way for the remaining mobiles.

The heuristic user ordering algorithm is shown in Figure 3.1. We will see in the

numerical examples section that the algorithm performs quite well in our cellular

network setup.

3.4 Multi-antenna Cellular Networks with Power Control

Our baseline for comparison with the coordinated schemes is a conventional mul-

tiple antenna cellular network with power control. As an extension of the single

antenna power control scheme, we will assume a simple form of power control

where each antenna of a base station transmits with the same power Pk, and the

power level at each base is controlled. We also assume that xk is Gaussian with co-

variance PkIt. In this case, user k’s rate is given by log2

[
det(Ir + PkHkH

†
kR

−1)
]

where R =
∑N

i=1,i6=k PiHiH
†
i +Ir. To maximize the minimum rate in the network,

we solve the following problem

max r (3.25)

s.t. log2

[
det(Ir + PkHkH

†
k(

N∑

i=1,i 6=k

PiHiH
†
i + Ir)

−1)

]
≥ r, k = 1, . . . , N

(3.25a)

0 ≤ Pk ≤ Pmax, r ∈ <+. (3.25b)
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The way we approach this problem is also analogous to the power control

problems in single-antenna systems [37, 38]. First, we start with a very low,

easily achievable target rate r, and initialize all power assignments to zero. Next,

we determine the power level for each user to achieve the target rate given the

interference of other users. In the second iteration, we increase the target rate, and

given the set of power assignments from the previous iteration and corresponding

interference levels, we calculate the new set of power levels to achieve the new

target rate. We follow the same procedure, with higher target rates, until any

of the base station power constraints is violated. By the very nature of this

procedure, the successive iterations generate a bounded sequence of increasing

rates, and therefore the method converges.

3.5 Performance Evaluation

In this section, we will compare the performance of coordinated multiple antenna

networks to that of conventional cellular networks with inter-cell interference. In

Chapter 2, we showed that the coordination is successful in eliminating inter-cell

interference. Our results in this section indicate that the coordination does more

than mitigate the inter-cell interference. Namely, the coordination improves the

effectiveness of multiple antennas in cellular networks.

Our basic experimental setup is the same as in Chapter 2. In particular, each

base is located at the center of one of the 64 hexagonal cells whose sample layout

is shown in Figure 2.3. We denote by (t, r) a configuration in which each base

station has t transmit antennas and each mobile has r receive antennas. Three

antenna configurations will be considered: (1,1), (2,2) and (4,4) where the base
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Figure 3.2: Empirical max-min rate CDFs: Multiple antenna power control results
for a 64 base network.
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Figure 3.3: Empirical max-min rate CDFs: Multiple antenna zero-forcing results
for a 64 base network.
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Figure 3.4: Empirical max-min rate CDFs: Multiple antenna zero-forcing dirty
paper coding results for a 64 base network.

stations and the mobiles are equipped with 1, 2 and 4 antennas respectively.

Each base is loaded with one mobile, and 10% of the mobiles are allowed to be

in outage. We assume path-loss with a 3.8 propagation exponent, log-normal

shadowing with 0 mean and 8 dB standard deviation, and Rayleigh fading for

each transmit/receive antenna pair with 0 mean, unit variance complex Gaussian

component. Given a maximum base power of 10 W, a mean power loss of 134 dB

at the reference distance of 1.6 km from the base, a receiver noise figure of 5 dB,

a vertical antenna gain of 10.3 dBi, a channel bandwidth of 5 MHz, and a receiver

temperature of 300oK, the SNR at the reference distance is 18 dB (considering

one transmit/receieve antenna pair), accounting only for path loss and ignoring

shadowing and Raleigh fading. However, because of inter-cell interference, the

SINR can fall below 0 dB in our network setup.

We have seen in the previous chapter that, for cellular networks with single
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Figure 3.6: Summary of the multiple antenna results. The results for a conven-
tional network with each base antenna transmitting at the maximum power limit
is also presented.
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antenna terminals, the coordination improves the max-min rate of the network by

about a factor-of-3 when the zero-forcing coordination is employed, and by about

a factor-of-5 when the combined zero-forcing dirty paper coding scheme is used.

Corresponding multiple antenna spectral efficiency results obtained by averaging

over many network instances are shown in Figure 3.2-3.6 for all three antenna

arrangements. The figure shows that the use of multiple antennas improves (lin-

early) the spectral efficiency of the network for all transmission methods. How-

ever, the gain in terms of the marginal increase in rate when an additional an-

tenna is deployed is small without coordination. We observe in Figure 3.5 that

the slope of the rate versus the number of antennas curve is small for the uncoor-

dinated transmissions with power control, while it is significantly improved when

the coordination is employed. More than a factor-of-10 improvement in spectral

efficiency is reported due to both network coordination and (4, 4) antenna ar-

rangements compared to the baseline of uncoordinated transmissions with single

antenna terminals. The results show that the removal of “out of cell” interference

greatly enhances the spectral efficiency improvement associated with increasing

the number of antennas.

3.6 Chapter Summary and Conclusion

In this chapter, we have considered multiple antenna cellular networks with and

without network coordination. We have seen that the network suffers from inter-

cell interference when the coordination is not employed, and this would reduce the

effectiveness of multiple antennas due to relatively low link SNRs. On the other

hand, employing network coordination improves the link qualities, and enables
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the cellular network to realize the predicted capacity improvement due to the

multiple antennas. This suggests that if the multiple antennas are to be deployed

in a practical interference-limited cellular downlink system, it is necessary to

employ some form of interference mitigation technique to improve link SNRs.

The network coordination is an effective way of achieving this objective.
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Chapter 4

Beamforming Design With Per-Antenna Power

Constraints

Thus far, we have considered coordination techniques that require simple, prac-

tical linear beamforming techniques. For the single antenna zero-forcing method,

each mobile’s data symbol is multiplied by a beamforming vector given by the col-

umn of the pseudo-inverse matrix. Similarly, for the combined zero-forcing dirty

paper coding scheme with single antenna terminals, the beamforming vectors are

given by the columns of the unitary matrix obtained by the LQ decompositions of

the channel matrix. Both derivations are extended to the multiple antenna sys-

tems as well. While these linear beamforming techniques provide significant ca-

pacity improvements over the conventional cellular networks, they are not claimed

to be the optimal linear coordination techniques. The objective in this chapter is

to find the optimal beamforming vectors for the coordinated transmissions.

Notice that, in our problem formulations, each base station antenna has a

separate power constraint. The optimal system design with per-antenna power

constraints is different than the design based on a sum-power constraint. This

fact can be illustrated by a simple example where M transmit antennas serve one

mobile with a single antenna. Let’s assume that the mobile’s i.i.d. vector channel

is denoted by h = [h1, h2, . . . , hM ]T , and the antenna outputs are denoted by

x = [x1, x2, . . . , xM ]T . When the system is sum-power constrained, the optimal
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transmission method is the transmit beamforming where the antenna outputs

are aligned with the mobile’s channel, and the beamforming vector is scaled to

the maximum transmit power P . Thus, the optimum antenna output becomes

xopt = Ph†/|h|. When each antenna has a separate power constraint, say P
′
=

P/M for each antenna, the optimum transmission method is to transmit full

power at each antenna, and phase-match the output voltages to the channels,

i.e., xopt = P
′
[h†1/|h1|, h†2/|h2|, . . . , h†M/|hM |]T . The problem with the transmit

beamforming in this case is that it gives more weights to the antennas whose

channels are good, and in the case of a per-antenna power constraint, this makes

the antenna power to drain quickly.

So far, our beamforming design ignores the existence of a per-antenna power

constraint, and therefore is similar to the transmit beamforming design. For ex-

ample, when the pseudo-inverse matrix is used for the zero-forcing, each mobile’s

beamforming vector becomes aligned with the part of the mobile’s channel which

does not deposit interference on the others. Similarly, for the multiple antenna

zero-forcing system, beamforming vectors are chosen to be the eigenvectors of

the part of the mobile’s channel matrix which is orthogonal to the others. No-

tice that, despite ignoring the existence of per-antenna power constraints, these

beamforming designs performed quite well as their performance gets very close

to the upper bounds obtained in Chapter 2. The reason is that, as we will see

in the following sections, optimizing the antenna outputs based on per-antenna

power constraints may improve the rate considerably when the number of trans-

mit antennas is much larger the number of receive antennas, i.e., tM À rN in

the multiple antenna system and tM À N in the single antenna system. This is

because more transmit antennas will give more degrees of freedom to optimize the
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antenna outputs. When the number of transmit and receive antennas are close to

each other, there are not much room left to exploit in the signal space (consider

the zero-forcing design where each mobile’s transmission has to be projected away

from the others), which is the case in the previous two chapters.

4.1 System Model

We consider a broadcast system with a transmitter equipped with M antennas,

and N mobiles, each with a single receive antenna. The received signal model for

the kth mobile is as follows:

yk = h†kx + nk k = 1, 2, . . . , N (4.1)

where yk is the received signal, hk = [hk1, hk2, . . . , hkM ]† denotes the kth mobile’s

complex channel vector, x = [x1, x2, . . . , xM ]† denotes the antenna outputs (with-

out subscript k since it is composed of signals for all N mobiles), and nk denotes

the complex Gaussian noise with variance σ2. In the above model, the M transmit

antennas can be thought of as multiple transmit antennas of a base station in a

single cell system, or alternatively as a network-wide transmit antenna array in a

multi-cell system when M base stations are connected via a high-speed backbone

enabling coordinated base transmissions.

We assume that the transmitter employs linear beamforming where the vector

wk = [wk1, wk2, . . . , wkM ]† is used to map the kth mobile’s data symbol bk to the

antenna outputs. The antenna output x is composed of signals for all N mobiles,
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and therefore is given by

x =
N∑

k=1

bkwk. (4.2)

As a case study, we are interested in the zero-forcing beamforming where

each mobile’s transmissions do not cause interference to others. Our analysis can

simply be extended to the zero-forcing dirty paper coding system design as well.

In the zero-forcing case, the beamforming vector wk is chosen to be orthogonal

to all other mobiles’ channels:

h†jwk = 0, j 6= k. (4.3)

Given the requirement (4.3), and using (4.2), the kth mobile’s received signal

with zero-forcing beamforming becomes yk = bkh
†
kwk + nk. Assuming that the

data symbol bk is zero-mean Gaussian with unit variance, mobile k’s achievable

rate is given by

rk = log2

(
1 +

|h†kwk|2
σ2

)
. (4.4)

Finally, each transmit antenna has a power constraint given by E[|xm|2] ≤

Pmax, m = 1, . . . ,M . Since the data symbols for different mobiles are i.i.d., this

constraint can be written as
∑N

k=1 |wkm|2 ≤ Pmax, m = 1, . . . , M .

4.2 Problem Formulation and Solution

The objective is to design a zero-forcing beamforming system so as to maximize

the minimum rate in the network subject to per-antenna power constraints. The
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optimization problem can be written as

max
wk

r0 (4.5)

s.t. log2

(
1 +

|h†kwk|2
σ2

)
≥ r0, k = 1, . . . , N, (4.5a)

N∑

k=1

|e†mwk|2 ≤ Pmax, m = 1, . . . ,M, (4.5b)

h†jwk = 0 ∀j 6= k, wk ∈ CM×1, r0 ∈ <+. (4.5c)

where em is a standard basis vector which has 1 for its mth component, and 0

for every other component. In the above formulation, r0 can be interpreted as

the minimum rate to be maximized, i.e., r0 = mink log2(1 + |h†kwk|2/σ2). First,

notice that the zero-forcing constraints in (4.5c) are simply linear. Moreover,

the per-antenna power constraints (4.5b) define a convex set, since the function

f(wk) = |e†mwk|2 is convex in wk, the sum of convex functions is convex, and α-

sublevel set of a convex function defined by {wk ∈ dom f | f(wk) ≤ α} is a convex

set [30]. The rate constraints (4.5a) can be written as |h†kwk| ≥
√

(2r0 − 1)σ2,

k = 1, . . . , K, which defines a non-convex set since it is the region outside of

a convex set defined by |h†kwk| ≤
√

(2r0 − 1)σ2. Therefore, the problem above

is not a convex optimization problem, for which a tractable analytical solution

would be possible.

Fortunately, the problem can be simplified significantly by observing that

the optimum beamforming vectors are invariant to phase-shifts, i.e., if w∗
k is an

optimum beamforming vector for the problem (4.5), then the vector ejθw∗
k is also

an optimum beamforming vector [33, 34]. This is because of the fact for any

feasible wk, the vector ejθwk would also satisfy the constraints (4.5a)-(4.5c). In
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this case, without loss of generality, we can search for the optimum beamforming

solutions among the vectors that would result in positive and real projections

h†kwk. Thus, an equivalent optimization problem can be written as

max
wk

t (4.6)

s.t. (h†kwk) ≥ t, k = 1, . . . , N, (4.6a)

Im(h†kwk) = 0 ∀k, (4.6b)

K∑

k=1

|e†mwk|2 ≤ Pmax, m = 1, . . . ,M, (4.6c)

h†jwk = 0 ∀j 6= k, wk ∈ CM×1, t ∈ <+. (4.6d)

where t =
√

(2r0 − 1)σ2, and the optimum beamforming vectors maximizing t

would also maximize r0. Similar to (4.5), the constraints (4.6c) and (4.6d) are

convex and linear respectively, and (4.6a) and (4.6b) are linear constraints. Since

the objective function is also linear, the problem (4.6) is a convex optimization

problem.

In the next section, we will consider the conventional zero-forcing technique

based on the Moore-Penrose pseudo-inverse, and investigate why and when this

technique can be an optimal/suboptimal solution to the above problem (4.6).
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4.2.1 Optimality/Suboptimality of the Moore-Penrose Zero-

Forcing

The simplest, and probably the most widely used, form of zero-forcing involves

channel inversion when the channels are invertible, or the Moore-Penrose pseudo-

inverse operation otherwise. In this section, we will study the optimality of

these simplest forms of zero-forcing. We will show that the zero-forcing based

on the conventional pseudo-inverse operation is a suboptimal zero-forcing tech-

nique when there are per-antenna power constraints.

First, we briefly revisit the optimal max-min rate solution under the assump-

tion of zero-forcing by channel inversion, or by the pseudo-inverse operation. The

system model is written in matrix form as

y = Hx + n (4.7)

where y = [y1, y2, . . . , yN ]† is the vector of the received signals, H ∈ CN×M is the

channel matrix with the kth row given by hT
k , x is the complex antenna outputs,

and n = [n1, n2, . . . , nN ]† denotes an additive white noise vector with covariance

σ2I. Denoting the vector of data symbols by b = [b1, b2, . . . , bN ]†, the linear

beamforming operation is performed by a pre-filter matrix W ∈ CM×N , which

maps the data symbols to the antenna outputs, i.e., x = Wb. It is clear from

(4.2) that the kth column vector of W is the beamforming vector wk.

When there are as many users as the number of antennas, H is a square matrix,

and there can be only one pre-filter matrix achieving zero-forcing transmission,

which is the inverse channel given by W = H−1. When there are more antennas
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than users, the pre-filter matrix takes the form of a pseudo-inverse matrix given

by W = H†(HH†)−1. Geometrically speaking, in both cases, each user’s channel

is projected away from all other users’ channels, and the remaining piece of the

channel gives the beamforming direction which would not cause interference to

others. When the above pre-filter matrices are used, each user receives its own

data symbol corrupted by the noise, i.e., yk = bk + nk. Denoting the power of

bk by pk = E[|bk|2], the following convex problem results in the max-min rate

solution for the given pre-filter matrix W:

max
pk

r0 (4.8)

s.t. log2

(
1 +

pk

σ2

)
≥ r0, k = 1, . . . , N , (4.8a)




|W11|2 . . . |W1N |2
...

...

|WM1|2 . . . |WMN |2







p1

...

...

pN




≤ Pmax1, (4.8b)

r0, pk ∈ <+ (4.8c)

In the above problem, (4.8b) represents the per-antenna power constraints,

and is obtained using the fact that the antenna powers are on the diagonals of

the following transmit covariance matrix

E[xx†] = WE[bb†]W† = W




p1

. . .

pN




W†, (4.9)
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Figure 4.1: 3 transmit antennas and 2 mobiles with orthogonal channels.

and the constraints on the diagonals can be expressed in the matrix form (4.8b).

We will show in the case of 2 users that, when there is a sum-power constraint

instead of a per-antenna power constraint (4.5b), the columns of the Moore-

Penrose pseudo-inverse matrix defines the optimum beamforming directions, and

the above problem (4.8) would result in the max-min rate solution for the original

problem (4.5). On the other hand, the same zero-forcing form is suboptimal when

there are per-antenna power constraints.

Proposition 1. The beamforming based on the Moore-Penrose pseudo-inverse

matrix W = H†(HH†)−1 is a suboptimal form of zero-forcing when there are

per-antenna power constraints.

Proof. We prove the statement by an example. Consider a broadcast system with

3 transmit antennas and 2 single antenna mobiles with channels h1,h2 ∈ C3×1.

Assume that h1 and h2 are orthogonal, h†1h2 = 0. In three dimensional space,

there is a third vector h3 ∈ C3×1, which is orthogonal to both h1 and h2. These

three vectors are shown in Figure 4.1. The matrix H ∈ C2×3 representing the

channel between the two mobile antennas and the transmit antenna array has hT
1
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and hT
2 on its rows. The zero-forcing beamforming directions are on the column

vectors of the pseudo-inverse channel H†(HH†)−1, and are given by h1/|h1|2 and

h2/|h2|2 respectively. In this case, the signals are transmitted in the directions

of h1 and h2 intended for the first and the second mobile respectively. These

particular beamforming selections make sense since they provide interference-free

transmission because h†1h2 = 0, and any signal transmitted in the direction of

h3 cannot add up rate for neither mobiles. However, we will show that the third

orthogonal dimension h3 is in fact useful.

Let us write the antenna outputs as

x = b1

√
P1w1 + b2

√
P2w2 + b3

√
P3w3 (4.10)

where Pk is the transmit power associated with zero-mean unit-variance data

symbol bk, and wk = hk/|hk| is the unit-power beamforming vector. If no sig-

nal is transmitted in the direction of h3, then P3 = 0 which is the case with

the pseudo-inverse zero-forcing. If b3 is chosen to be an independent data sym-

bol, then the total transmit power at the mth antenna is
∑3

k=1 Pk|e†mwk|2, and

clearly P3 is wasted as b3 cannot be received by neither mobiles (w3 is orthogonal

to both h1 and h2). The only remaining option is to transmit either b1 or b2

(or a linear combination of them) in the third orthogonal dimension. For exam-

ple, if b3 = b1, then the total transmit power at the mth antenna is given by

P2|e†mw2|2 + |e†m(
√

P1w1 +
√

P3w3)|2. This shows that, although transmitting b1

in the direction of h3 cannot add up rate for mobile 1, it affects the power con-

straint, and may even help to save some power by coherently nulling out transmit

voltage at an antenna.
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For example, assume two orthogonal mobile channel vectors h1 = (0, 2, 0)

and h2 = (0.8, 0, 0.6). In this case, the third orthogonal dimension is given by1

h3 = (0.6, 0,−0.8). When the pseudo-inverse zero-forcing is used, the unit-norm

beamforming vectors are given by w1 = (0, 1, 0), w2 = (0.8, 0, 0.6), and

xzf = b1

√
P1w1 + b2

√
P2w2. (4.11)

Assuming that Pmax = 1 W, the max-min received power is Pmax/(0.8)2 ∼= 1.56

W, which is achieved when P1
∼= 0.39 W, P2

∼= 1.56 W. Notice that the power

constraint is active only for the first transmit antenna. Instead, the following

signal can be transmitted

x
′
= b1

√
P
′
1w1 + b2

√
P
′
2(1.4w2 − 0.2w3), (4.12)

where w3 = (0.6, 0,−0.8), P
′
1 = 0.49 W and P

′
2 = 1 W. In this case, the third

orthogonal dimension is used to send the second mobile’s data, which helps to

increase the max-min rate received power to 1.96 W. This improvement can be

explained in two ways. First, the first and the third antennas transmit at full

power in this case, which improves the second mobile’s received power. Second,

more power is transmitted in the direction of the second mobile’s channel h2, and

the beamforming direction w2. This would not be feasible without w3, since the

power constraint at the first antenna would be violated. Sending signal on w3

has the effect of nulling out part of the transmit voltage on the first antenna, and

1This particular numerical example is given for its simplicity, and is not intended to represent
realistic channel realizations. Also, the channel values include both the magnitude and the phase
components, and therefore can be negative depending on its phase.
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therefore easing the power constraint.

Theorem 1. The beamforming based on the Moore-Penrose pseudo-inverse ma-

trix W = H†(HH†)−1 is the optimal form of downlink zero-forcing beamforming

when the system is sum-power constrained.

Proof. We will prove the theorem in the case of 2 users with single antenna

receivers. The same result can be extended to multiple users as well. We have to

show that each mobile’s beamforming vector obtained by the pseudo-inverse zero-

forcing corresponds to the part of the mobile’s channel orthogonal to the other

mobiles’ channels. The optimality of the pseudo-inverse zero-forcing follows from

the fact that, subject to a sum power constraint, the transmit beamforming is

optimal, and therefore there is no need to transmit any signal in any direction

that would not contribute to the data rate.

First, notice that the (i, j)th entry of the matrix HH† is given by hT
i hj, which

is the projection of the ith mobile’s channel onto the jth mobile’s channel. For

the 2 user case, its inverse matrix is given by

(HH†)−1 =
1

|h1|2|h2|2 − (hT
1 h2)2




|h2|2 −hT
1 h2

−hT
1 h2 |h1|2


 (4.13)

The first column of the matrix W = H†(HH†)−1 is the beamforming vector

w1 used to transmit the data symbol b1 (similarly, w2 for b2). Since the kth

column of H† is hk, it follows that

w1 =
|h2|2

|h1|2|h2|2 − (hT
1 h2)2

(
h1 − hT

1 h2

|h2|
h2

|h2|
)

. (4.14)



68

The term inside the parenthesis in (4.14) is the part of h1 that is orthogonal to

h2. In M -dimensional space, there is a subspace defined by M − 2 basis vectors,

which are orthogonal to both w1 and h2, and therefore can be used to transmit

the data symbol b1 without violating zero-forcing constraints (without causing

interference to the second mobile). Thus, the optimal beamforming vector for the

first mobile can be in the following form

wopt = α1w1 +
∑

∀ek⊥w1,h2

αkek (4.15)

where ek is a basis vector in the subspace orthogonal to w1 and h2, and for

some α1, αk ∈ <. Notice that only the signal transmitted in the direction of

w1 can be received by the first mobile. Moreover, when the sum-power is a

concern, any signal transmitted in the direction of ek would be a waste since

E[|b1wopt|2] = p1α
2
1|w1|2 + p1

∑
∀ek⊥w1,h2

α2
k|ek|2 where p1 = E[|b1|2], and the

second term in the sum does not contribute to the received power. Thus, the

signal intended for the first mobile must be transmitted in the direction of w1,

which is the beamforming direction chosen by the pseudo-inverse zero-forcing.

The same analysis applies to the second mobile as well.

4.3 Performance Evaluation

In this section, we will compare the performance of the optimum zero-forcing

design with that of the zero-forcing based on the Moore-Penrose pseudo-inverse

when there are per-antenna transmit power constraints. We will see that the

pseudo-inverse zero-forcing performs increasingly worse compared to the optimum

design as the number of transmit antennas increases.
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Our basic experimental setup is as follows. We consider a downlink network

where the transmitter is equipped with multiple antennas, and each mobile has

a single receive antenna. This model is valid for a single cell system with mul-

tiple transmit antennas at the base station, or a multi-cell system with single

or multiple antenna base stations. Each transmit antenna is assumed to have a

separate power constraint. We evaluate the performance improvement due to the

optimum beamforming design in a single-cell system. The total base transmit

power is constrained to 10 Watts, and in the case of t transmit antennas, each

antenna power will be constrained to 10/t Watts. We assume path-loss with a 3.8

propagation exponent, log-normal shadowing with 0 mean and 8 dB standard de-

viation, and Rayleigh fading for each transmit/receive antenna pair with 0 mean,

unit variance complex Gaussian component. Given a mean power loss of 134 dB

at the reference distance of 1.6 km from the base, a receiver noise figure of 5 dB,

a vertical antenna gain of 10.3 dBi, a channel bandwidth of 5 MHz, and a receiver

temperature of 300oK, the SNR at the reference distance is 18 dB (considering

one transmit/receieve antenna pair), accounting only for path loss and ignoring

shadowing and Raleigh fading.

Figure 4.2 compares the spectral efficiency (averaged over many random net-

work realizations) of the optimum zero-forcing and the pseudo-inverse zero-forcing

in the case of a 2 user system. When there are only 2 transmit antennas, there

is only one way of achieving the zero-forcing transmission, which is given by the

channel inversion. In this case, the optimum zero-forcing design and the pseudo-

inverse design have the same spectral efficiency. On the other hand, the optimum

design becomes increasingly better compared to the pseudo-inverse design when
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Figure 4.2: Optimum zero-forcing beamforming vs. Moore-Penrose pseudo-
inverse zero-forcing: 2 users with single antenna receivers.

the number of transmit antennas increases, as it effectively uses available sig-

nal space to optimize the antenna outputs, and to reduce the transmit power at

particular antennas with limited transmit power, while the pseudo-inverse zero-

forcing does not have the same capability. Notice that, according to Figure 4.2,

the optimum zero-forcing design requires only 8 transmit antennas to achieve a

target spectral efficiency of 8 bits/second/Hz, while the pseudo-inverse design re-

quires 16 transmit antennas for the same spectral efficiency. Figures 4.3 and 4.4

also support similar conclusions in the case of 4 users and 8 users respectively.
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Figure 4.3: Optimum zero-forcing beamforming vs. Moore-Penrose pseudo-
inverse zero-forcing: 4 users with single antenna receivers.

4.4 Chapter Summary and Conclusion

In this chapter, we studied the optimum zero-forcing beamforming design with

per-antenna power constraints. We observe that the optimum beamforming vec-

tors are invariant to the phase-shifts. This observation helps us to formulate

convex optimization problems finding the optimum vectors. Our numerical re-

sults indicate that optimizing the antenna outputs based on the per-antenna

constraints improves the rate when the number of transmit antennas is larger

the number of receive antennas. In this case, the additional degrees of freedom

given by more transmit antennas helps the per-antenna power constraints. In

particular, the additional degrees is used to null out part of the transmit voltages

at particular antennas with relatively high transmit powers. Our analysis can be
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Figure 4.4: Optimum zero-forcing beamforming vs. Moore-Penrose pseudo-
inverse zero-forcing: 8 users with single antenna receivers.

extended to improve the performance of the zero-forcing scheme in the combined

zero-forcing dirty paper coding technique of the previous two chapters. Also, we

plan to extend our analysis to downlink networks with multiple antenna receivers.
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Chapter 5

Cellular Backhaul Design to Enable

Communication and Coordination Between the

Base Stations

The techniques of the previous chapters assume the existence of a high-speed

backhaul enabling communications between the base stations. In this chapter, we

study the design of such a backhaul in a cellular network. More specifically, we

consider a mesh backhaul network consisting of fixed base stations (mesh routers)

connected by wireless links. Some of the mesh routers have connections to the

wired network, and therefore can function as gateways. The network has multi-

hop capability where the traffic entering the mesh backhaul through the gateway

routers can be carried over multiple wireless links towards the destination mesh

routers. The objective in this work is to study the capacity of such networks.

Assuming the use of an OFDMA air-interface for the mesh backhaul network, we

formulate a cross-layer optimization problem that involves power control, channel

allocation, link scheduling and routing. Our results indicate that OFDMA-based

mesh architecture provides an efficient backhaul solution in cellular networks.
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5.1 Introduction

Next generation wireless networks are designed to provide broadband services

with quality of service (QoS) support for various applications including voice and

multimedia data. The successful deployment of these all-IP networks requires

advanced network architectures with high spectral efficiency, ubiquitous cover-

age and cross-layer optimized system design. To achieve these goals, a service

provider may deploy a large number of access points (base stations) in a given

service area. On the other hand, the cost of connecting these base stations by

a wired backhaul is too high, mainly because of the cable deployment cost. In

this case, a wireless backhaul is necessary to enable communications between the

base stations. As an efficient backhaul architecture, wireless mesh network is a

promising system design providing interoperability among different wireless tech-

nologies including Wi-Fi and 3G, and its all-IP network design enables extended

network coverage through multi-hop routing. In this study, we consider a mesh

network backhaul architecture for a cellular system, and investigate how a mesh

backhaul can improve the cellular network coverage and the capacity.

In our network architecture, we assume the use of an OFDMA air-interface

for the mesh backhaul. In this case, the wideband channel available in each base-

to-base link is divided into narrowband subchannels, called tones, for efficient use

of spectrum in multipath environments. Our objective is to optimize the radio

resources, such as transmit power and tone allocations, and study efficient routing

and scheduling techniques so as to maximize the end-user throughput. As we

will see, this problem is relatively complex because of the non-linear constraints

involved, and the size of a typical network; hence a large number of parameters

involved (flow control, link scheduling, tone and power allocations for every link
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in the network). However, the base locations are fixed, and therefore the channels

are relatively static and time-invariant. This fact can be used to perform network

optimization in an off-line fashion.

Wireless mesh networks have been studied extensively in the literature. A

survey paper summarizing the recent state of art, and open research issues can

be found in [39]. A mesh architecture in a cellular network context has been

considered in [40]. Given a set of scheduling modes (sets of simultaneously active

links), and assuming constant transmit power, a linear programming framework

is used to optimize the throughput. Joint routing and scheduling schemes have

been studied to characterize the capacity of mesh networks in [41–43]. Assuming

constant link capacities and no power control, and by modeling the link schedul-

ing feasibility as an explicit constraint in the optimization problem, the authors

develop efficient algorithms to find the set of achievable rates in multi-hop wireless

networks. We will use the same scheduling constraint in our problem formulation

to determine the set of simultaneously active OFDM tones. Joint power control,

scheduling and/or routing in multi-hop adhoc networks is considered in [44–47].

In [44], average power consumption of a link is calculated by taking into account

of the fraction of time the link is scheduled to be active. We will use a similar

model to define the mesh node power constraints in an OFDMA network. Among

the joint power control, scheduling and/or routing problems studied in the litera-

ture, [44,46] are closest to our work. The analysis in both [44,46] apply to single

carrier systems. In the case of a single-carrier system, when a link between two

nodes with bandwidth W is active, the whole bandwidth W is used for transmis-

sion. In the case of multi-carrier systems, the link between the same two nodes

can be partially utilized by using a fraction of the bandwidth W (preferably part
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of the spectrum with favorable channel conditions) for transmission. This enables

more efficient use of spectrum in the mesh backhaul. Moreover, our scheduling

model is more constrained than the model in [46] in the sense that we impose

per-tone level half-duplex and multi-access/broadcast constraints as we will ex-

plain in more detail in Section 5.2.3. Comparison of different routing metrics and

protocols in multi-hop wireless networks has been studied in [48, 49]. Capacity

limits of adhoc networks and their scaling laws are investigated in [50,51].

Our main contribution in this study is the analysis of the use of an OFDMA

type air-interface [52] in wireless mesh networks. To the best of our knowledge,

this is the first study conducting a detailed analysis of the use of OFDMA in a

mesh backhaul. By providing multiple orthogonal channels in each link, OFDMA

provides multi-radio advantage with a single radio in mesh networks. Moreover,

when the radio resources are optimized carefully, OFDM transmissions may pro-

vide tone-diversity advantage in the form of efficient bandwidth utilization by

choosing better channels for transmissions and scheduling, or in the form of im-

proved routing performance by providing more path options to route the traffic.

To study the performance limits of OFDMA mesh backhaul, and to find effi-

cient algorithms achieving these performance limits, we formulate a cross-layer

optimization problem involving power control, OFDMA resource allocation, link

scheduling and routing. Using our framework, we quantify the throughput of a

mesh backhaul in realistic cellular environments.

The outline of the study is as follows. In Section 5.2, we describe the system

model, and explain transmission constraints in the physical layer, scheduling con-

straints in the link layer, and flow constraints in the routing layer. Cross-layer
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Figure 5.1: A sample network topology.

throughput optimization problem is defined in Section 5.3. The problem of iden-

tifying individual routing paths achieving the optimal throughput is studied in

Section 5.4. Simulation setup, and the numerical results are given in Section 5.5.

We conclude the study, and give future research directions in Section 5.6.

5.2 System Model

We consider the backhaul of a mesh network consisting of fixed base station

routers connected by wireless links. Some of the mesh routers have connections

to the wired network, and therefore can function as gateways. The network has

multi-hop capability where the traffic entering the network through the gateway

routers can be carried over multiple mesh-to-mesh wireless links towards the des-

tination mesh client. The objective in this work is to study the capacity of such

networks.
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5.2.1 Mesh Network Topology

We consider the downlink of a mesh network, and aim to maximize the throughput

received by each mesh node. We use a directed network flow diagram to model the

mesh topology. A network flow can be mapped onto a directed graph G = (M, A)

consisting of a set M of nodes and a set A of links. Figure 5.1 shows a sample

directed graph corresponding to a simple 5 node mesh network. In the figure,

Cij denotes the link capacity, and xij ≤ Cij denotes the amount of flow on link

(i, j). The set of nodes and the set of links are given by M = {1, 2, 3, 4, 5} and

A = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 2), (4, 3), (3, 5), (5, 4)} respectively.

In our mesh network setup, base station routers correspond to the set M of

nodes, and the wireless links connecting the mesh routers correspond to the set

A of links. Each base station router i with gateway functionality is a source

node with a total supply of Ti bits/sec. In this case, Ti is the total amount of

traffic entering the network through node i that has to be distributed to users

located in the service areas of the mesh routers. Moreover, a symmetric traffic-user

distribution is assumed, which means that the total demand at each sink router

is assumed to be the same. In this case, the destination nodes have uniform

demands of T bits/sec. These sink nodes have the capability to route traffic for

the other nodes, while the net incoming flow into each sink is greater than its

net outgoing flow. Let us assume that the set of all nodes M is divided into two

subsets M = Mso

⋃
Msi, where Mso contains the source nodes, and Msi contains

the sink nodes. In Figure 5.1, Mso = {1} and Msi = {2, 3, 4, 5}. The network

may also have a number of base stations with routing capabilities only. In this

case, the net traffic flow would be zero for these routers.
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5.2.2 PHY Model and Transmission Constraints

We assume the use of a multi-carrier (OFDM) technology for the mesh backhaul

network. Given that the total bandwidth available on each link is B Hz, OFDM

transmissions divide the bandwidth into L frequency bands (tones) of size B/L

Hz each. Typically, the wireless channel is frequency-selective across the wide

bandwidth B because of the multi-path propagation. However, when the channel

is divided into many narrowband pieces, it is possible to have a flat fading channel

on each tone. In our network flow model, the existence of multiple non-interfering

(orthogonal) OFDM tones between base station routers can be accounted for by

having L distinct links between node pairs. Let us use a superscript f to denote

each of these links, i.e., xf
ij denotes the flow on tone f in use between nodes i and

j.

The capacity of each link is defined as the maximum rate that can be trans-

mitted over the link reliably. In this case, the maximum rate achievable on a

particular tone f can be expressed as

Cf
ij = W log2(1 + ρf

ij) (5.1)

in bits/sec where W = B/L Hz, and ρf
ij is the received signal-to-interference-

plus-noise ratio (SINR) on this tone. Here, the SINR is given by

ρf
ij =

pf
ijh

f
ij

If
ij + σ2

(5.2)

where pf
ij is the tone transmit power, hf

ij is the channel fading loss (that may
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include path-loss, shadow fading and Rayleigh fading), If
ij represents the total in-

terference received by the node j on this particular tone, and σ2 is due to the white

noise. Any rate xf
ij below Cf

ij is feasible. Notice that the factors contributing to

If
ij are, first, the interference caused by the nodes l 6= i trying to communicate

with node j using the same tone f simultaneously, and second, the interference

caused by other pairs of nodes communicating using the tone f . We will deal

with the first part of the interference by designing appropriate MAC scheduling

schemes. In particular, our MAC design will guarantee that multiple nodes will

not transmit to a particular node using the same tone. We should emphasize that

the mesh backhaul is a fixed wireless network for which the channels are relatively

static and time-invariant, and therefore can be estimated pretty accurately. In

this case, timing offsets and synchronization information necessary for the tone

orthogonality are available. More specifically, a node receiving data from multi-

ple nodes simultaneously can have orthogonal reception with appropriate timing

offset adjustments. The second part of the interference is taken care of by the

use of directional antennas between the base stations. This can be achieved by

employing antenna arrays at the base stations which can beamform the data in

a particular direction by adjusting the antenna weights. Moreover, frequency

domain beamforming [53] can be employed so that a base station can transmit

different groups of subcarriers to different base stations simultaneously.

Each node i has a total power budget P that has to be shared among all

transmitting links/tones of node i. It is well-known that the water-filling policy

maximizes the total rate achievable on a number of parallel/orthogonal chan-

nels subject to a total power constraint [25]. When the water-filling policy is

employed, the tones with favorable channel conditions are allocated more power
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compared to the ones with deep channel fades, and determining the power al-

locations in this case is a relatively easy task. However, in our network setup,

power control is a much more challenging task. The reason is that, in a network

with many source-destination pairs, a cross-layer design approach is necessary in

which power control, MAC scheduling (which links/tones can be active simulta-

neously), and routing/flow control decisions have to be optimized jointly. For

example, the set of link rates determined by the water-filling policy with the ob-

jective to maximize the sum-rate out of a particular node may not be the set

of rates desired by the routing/flow control unit, i.e., the flow control unit may

wish to route the traffic through a link with a relatively bad channel condition to

avoid congestion in the network, or to provide a minimum service rate to a mesh

router with unfavorable channel conditions, while the water-filling policy tends

to avoid allocating power on such links. Moreover, there is a scheduling unit that

determines which links/tones can be active simultaneously (for example, in the

case of an RTS/CTS protocol in 802.11 type of MAC). In a network with many

source-destination pairs, there might be many active link combinations (trans-

mission modes). In this case, the power control becomes a difficult task since

one needs to specify how the total power is distributed among these transmission

modes as well as among active links/tones in each transmission mode.

5.2.3 MAC Model and Scheduling Constraints

We assume a half-duplex operation per-tone level, i.e., a node cannot receive

from and transmit to other nodes using the same tone simultaneously. Moreover,

a node cannot use the same tone to transmit to multiple nodes (no multicasting,

broadcasting per tone level), and the link/tone transmissions are scheduled so that
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multiple nodes do not transmit to the same node using the same tone. However,

each node can communicate with multiple nodes simultaneously using different

OFDM tones.1

Notice that the above conditions are related to edge-coloring of a graph.

Namely, corresponding to each OFDM tone, there is a network graph with each

edge representing the particular OFDM tone channel between two nodes. Edge-

coloring is interested in finding the minimum number of colors needed to color the

edges of a graph such that the same color are not incident on the same node [54].

In this case, the set of edges with the same color is a transmission mode describing

a set of links permitted to be active simultaneously using the particular tone, and

the minimum number of colors needed is the same as the number of transmission

modes. In [54], Shannon derived an upper bound on the minimum number of

colors needed. Using this result, it is shown [41,55] that if the following condition

is satisfied, there exists a feasible link scheduling policy satisfying the above MAC

conditions:

∑

(i,j)∈Aout(i)

xf
ij

Cf
ij

+
∑

(j,i)∈Ain(i)

xf
ji

Cf
ji

≤ β, i ∈ M, f = 1, 2, . . . , L, (5.3)

where Aout(i) and Ain(i) are the set of outgoing and incoming links connected

to node i respectively, xf
ij/C

f
ij is the fraction of time that tone f on the link

(i, j) is active, and β = 2/3 defines a sufficient condition for a feasible schedule,

1Other types of MAC structures are also possible. For example, multiple nodes may be
allowed to communicate with a destination node using the same tone simultaneously. Also, the
destination node may wish to employ multi-user detection or interference cancelation at the
physical layer when decoding multiple signals on the same frequency band. Our MAC structure
is relatively simple, and does not require advanced receiver/transmitter architectures. Other
MAC structures, in particular multi-node reception with multi-user detection and interference
cancelation, is one of our future work items.
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while β = 1 defines a necessary condition. Thus, when the above condition is

satisfied, it is possible to have a net flow of xf
ij from the base router i to the

base router j using the fth OFDM tone, and there exists a scheduling policy

specifying the set of simultaneously active tones that results in the set of rates in

(5.3) without violating the MAC conditions explained above. Efficient heuristic

graph-coloring/scheduling algorithms are available in the literature [56].

We note that providing a link with capacity Cf
ij requires a transmit power of

pf
ij = (2Cf

ij/W − 1)σ2/hf
ij watts, where the interference term in (5.2) from other

nodes communicating using the same tone is taken care of by a combination of the

MAC scheduling policy avoiding link conflicts and the use of directional antennas

between base routers. Since the link is active xf
ij/C

f
ij percent of the time, the

average power p̄f
ij consumed in this link is given by

p̄f
ij =

xf
ij

Cf
ij

(2Cf
ij/W − 1)σ2

hf
ij

(5.4)

In this case, the average node power constraints can expressed as:

∑

(i,j)∈Aout(i)

∑

∀f

xf
ij

Cf
ij

(2Cf
ij/W − 1)σ2

hf
ij

≤ P, i ∈ M. (5.5)

5.2.4 Routing and Flow Constraints

The network has multi-hop capability where the incoming traffic from the base

routers connected to the wired backbone can be carried over multiple wireless

links towards the destination mesh routers. In this case, for each source node i,



84

the following node flow constraint have to be satisfied:

∑

(i,j)∈Aout(i)

∑

∀f
xf

ij = Ti, i ∈ Mso (5.6)

where Ti is the total traffic to be distributed to the mesh clients through node

i. Since we consider the downlink of the mesh network, the source nodes which

have wired connections to the internet will not receive traffic from the wireless

mesh backhaul, and will only route the traffic coming from the wired backbone.

This condition, which also encourages forward routing, requires

∑

(j,i)∈Ain(i)

∑

∀f
xf

ji = 0, i ∈ Mso. (5.7)

Our objective is to maximize the incoming traffic to each sink router. Using

the fact that the total demand at each sink router is T bits/sec (symmetric traffic-

user distribution in the network), and together with the fact that the sink routers

can help each other by multi-hop routing, the flow constraint for the sink nodes

can be written as

∑

(j,i)∈Ain(i)

∑

f

xf
ji −

∑

(i,j)∈Aout(i)

∑

f

xf
ij = T, i ∈ Msi. (5.8)

Finally, the total traffic from the source mesh nodes must be equal to the sum

of the traffic received by the destination mesh nodes. It follows that

∑
i∈Mso

Ti =
∑

i∈Msi

T. (5.9)
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5.3 Problem Definition and Approach

The problem is to maximize the throughput received by each destination router

subject to the node power constraints, the scheduling constraints, and the flow

constraints. The problem formulation is as follows:

max T (5.10)

s.t.
∑

(j,i)∈Ain(i)

∑

f

xf
ji −

∑

(i,j)∈Aout(i)

∑

f

xf
ij = T, i ∈ Msi, (5.10a)

∑

(i,j)∈Aout(i)

∑

f

xf
ij = Ti, i ∈ Mso, (5.10b)

∑

(j,i)∈Ain(i)

∑

f

xf
ji = 0, i ∈ Mso, (5.10c)

∑
i∈Mso

Ti =
∑

i∈Msi

T, (5.10d)

∑

(i,j)∈Aout(i)

∑

f

xf
ij

Cf
ij

(2Cf
ij/W − 1)σ2

hf
ij

≤ P, i ∈ M, (5.10e)

∑

(i,j)∈Aout(i)

xf
ij

Cf
ij

+
∑

(j,i)∈Ain(i)

xf
ji

Cf
ji

≤ 2

3
, i ∈ M, (5.10f)

T, Ti, xf
ij, C

f
ij ≥ 0, (i, j) ∈ A, f = 1, 2, . . . , L. (5.10g)

Thus, we are searching for an optimal flow through the mesh network maximiz-

ing the incoming traffic T to each sink node, while each flow xf
ij meets the source

and the sink net flow constraints (5.10a)-(5.10d), the node power constraints

(5.10e), and the link scheduling constraints (5.10f). Notice that the constraint

(5.10f) implies xf
ij ≤ Cf

ij. The solution of the above problem results in the set
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of link rates between each source-destination pairs as well as the set of OFDM

tones allocated, and the power assignments achieving these rates. In the above

problem formulation, the objective function and the constraints (5.10a)-(5.10d)

are linear, while (5.10e) and (5.10f) are non-linear constraints.

With its current form above, (5.10) is a non-linear optimization problem with

non-convex constraints. In this case, approximate solutions can be obtained by

heuristic approaches [44]. Our approach is to decompose the problem into two

smaller but tractable pieces, while allowing partial coupling between the two steps.

In the first step, we determine the link capacities by employing the water-filling

policy [25] for power allocation. When the water-filling is employed at each node

with the objective to maximize the node’s output throughput, only a subset of

the links/tones with favorable channel conditions may be selected at each node.

Although this seems to be a locally efficient solution from a node’s perspective,

it can cause connectivity problems in the network as some of the mesh routers

will not be receiving traffic because of its neighbors’ greedy link selection pref-

erences. One way to deal with this problem is to couple the water-filling power

allocation with the scheduling and the routing decisions by distributing power

efficiently to each link so that the network becomes fully-connected. Then, the

scheduling and the routing unit determine which one of the links/tones will be

active at any given time instance under the constraints on the nodes’ average

transmit power (5.10e). When the link capacities are determined, the remain-

ing (scheduling/routing) problem becomes a linear program, as (5.10e)-(5.10f)

becomes linear constraints. The two step hierarchical solution is summarized in

Figure 5.2. We will see in our numerical examples that our hierarchical approach

results in promising capacity enhancements due to multi-hop routing in the mesh
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• Step 1: Given sets of L channels, determine the link capacities as follows:

Input : P (initial power level), h = {h1, h2, . . . , hL} (channel responses),
σ2

Output : p = {p1, p2, . . . , pL} (power allocations), C = {C1, C2, . . . , CL}
(tone capacities)
Initialization : p = 0, C = 0
Find λ∗ such that

∑L
f=1 max{0, λ∗ − σ2

hf } = P ,

pf = max{0, λ∗ − σ2

hf }, Cf = log2(1 + pf hf

σ2 ), ∀f
end

• Step 2: Solve the remaining Linear Program (LP).

Figure 5.2: The outline of the two steps hierarchical solution.

backhaul.

We should note that while we use our framework to obtain the maximum

rate that can be delivered to all mesh routers in the backhaul, other optimiza-

tion objectives, such as sum-rate maximization, can be studied using the same

framework with simple changes in the objective and the constraint functions.

5.3.1 Link Capacity Assignments

In this section, we will outline different link capacity assignment techniques in a

mesh network (Step 1). Among the three techniques given below, the link-based

water-filling method, in which all the links in the network are allocated a non-

zero capacity based on an efficient water-filling algorithm, will provide a good

compromise between network connectivity and the throughput.

Spatial Water-filling

Consider the set of outgoing links from a node i ∈ M denoted by Aout(i). For

example, in Figure 5.1, Aout(1) = {(1, 2), (1, 3), (1, 4), (1, 5)}. Moreover, L OFDM
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tones are available for use between each of these node pairs in the set Aout(i). The

spatial water-filling distributes available node transmit power across the links in

the set Aout(i). On the other hand, each tone can only be active on one of the links

in the set due to the scheduling constraints given in Section 5.2.3, and therefore L

links have to be selected for L tones. The following theorem states that, in order

to maximize the total rate out of a particular node, each tone must be assigned

to the link which has the strongest channel on that particular tone.

Theorem 1. Given that L orthogonal channels are available for use in N distinct

links, and assuming that each orthogonal channel can be used in at most one of

the N links, the optimal sum-rate maximizing strategy subject to a sum-power

constraint is to pick, for each orthogonal channel, the link with the largest gain

on that channel, and water-fill across the selected L link/channel pairs.

Proof. A power allocation vector p = [p1, p2, . . . , pL] is feasible if
∑L

l=1 pl ≤ P ,

where P is the sum-power constraint. Consider two links h and g with channel

gains hl and gl on the lth orthogonal channel. Also, assume hl > gl. For any

feasible power allocation vector p, the sum-rate improves if the channel l is as-

signed to link h instead of link g since log2(1+plhl/σ
2) > log2(1+plgl/σ

2). Thus,

the channel l must be assigned to the link with the largest gain among N links.

Since the previous statement is true for any feasible power vector p, one can first

assign L orthogonal channels to the corresponding L strongest links. Given these

link/channel assignments, the water-filling maximizes the sum-rate subject to a

sum-power constraint [25].

In the spatial water-filling, each node makes a greedy attempt by selecting the

links with the strongest channels to maximize its own throughput. When all the
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nodes in the network make such local decisions, some of the mesh routers with

unfavorable channel conditions may get disconnected from the mesh backhaul.

The following two methods perform better than the spatial water-filling in terms

of the network connectivity.

Random Link Assignments with Water-filling

In the random link assignment case, each tone will be assigned to a link which is

randomly selected in the set Aout(i), and the total node transmit power will be

water-filled across these randomly selected link/tone pairs. In a large mesh back-

haul with many routers, the random link selection will increase the probability

of each mesh router to get connected to some other mesh routers. Thus, random

link assignments increase the likelihood of a fully connected network, while it does

not necessarily maximize each node’s throughput.

Link-based Water-filling

A third strategy, link-based water-filling, will outperform previous two strategies,

and is intended to compromise between these two approaches. In the link-based

water-filling, each node pair will be considered separately, and all the links/pairs

will have non-zero capacities (by water-filling power on each link). This ensures

the connectivity of the network. On the other hand, tones with good channel

conditions will be favored by the water-filling policy. In other words, per-link

level, capacity allocations are performed efficiently. When the water-filling is per-

formed on each link, the power level is assumed to be the node power constraint

P . The rationale is that assuming N links are connected to the node i, the total

node power would be NP if all the links/tones would be used at the same time.
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However, only one link is active for each tone at any given time out of the N

links. Roughly speaking, this would mean that the total power utilization would

be 1/Nth of NP on the average. We note that the task of determining the trans-

mission modes, i.e., the set of simultaneously active links/tones, is performed by

the scheduling and the routing unit in this case (see [56] for efficient heuristic

graph-coloring/scheduling algorithms). Moreover, the average node power con-

straint is explicitly expressed in (5.10e), and the remaining linear program will

be solved under this constraint.

5.4 Identifying Individual Routing Paths

In the previous section, we were interested in finding the optimum flow assign-

ments so as to maximize the destination throughput. While the resulting solution

specifies how much traffic should be carried over each link, it does not identify

which users’ traffic is carried over the links. In other words, the solution does not

give routing paths. In this section, we are interested in finding the routing paths

for each destination mesh router.

Assume that the optimum link flow assignment for the fth OFDM tone on

the link (i, j) is xf
ij = af

ij. There are N destination routers, and af
ij may contain

traffic for all of these destinations. Denoting the part of af
ij belonging to the

destination node d by af
ij(d), it follows that af

ij =
∑N

d=1 af
ij(d). Also assume that

the optimum values of T and Ti, i ∈ Mso, occurs a T ∗ and T ∗
i respectively. In

this case, the net flow constraints for the source nodes can be written in terms of
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individual user traffic as

∑

(i,j)∈Aout(i)

∑

f

(
N∑

d=1

af
ij(d)

)
= T ∗

i , i ∈ Mso, (5.11)

∑

(j,i)∈Ain(i)

∑

f

(
N∑

d=1

af
ji(d)

)
= 0, i ∈ Mso. (5.12)

For the sink routers, we need to modify the net flow constraints (5.8) to

account for the fact that the only traffic that can be routed by a sink router is

the traffic belonging to the others. The following constraints say that the sink

routers do not route their own traffic:

∑

(j,i)∈Ain(i)

∑

f

af
ji(i) = T ∗, i ∈ Msi, (5.13)

∑

(i,j)∈Aout(i)

∑

f

af
ij(i) = 0, i ∈ Msi. (5.14)

The fact that the sink routers help each other by routing each other’s traffic

is expressed in the following constraint:

∑

(j,i)∈Ain(i)

∑

f

af
ji(d) =

∑

(i,j)∈Aout(i)

∑

∀f
af

ij(d), i 6= d, i, d ∈ Msi. (5.15)

where the left side of (5.15) denotes the traffic belonging to the destination d,

and to be routed by the node i, and the right side denotes the traffic routed. The

problem of identifying individual routing paths can be solved as a linear feasibility

problem subject to the constraints (5.11)-(5.15). Basically, we solve the following
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linear program:

find a = [af
ij(.)]|A|×L×N (or min 0× a) (5.16)

subject to (5.11)− (5.15)

a ≥ 0

Notice that we may have more unknowns than equations as we have |A|×L×N

variables (total number of links is |A|, L tones are available on each link, N users

may share each flow), while the number of equations is limited by the number

of nodes in the network. In this case, there may be multiple solutions satisfying

the constraints (5.11)-(5.15), which means that multiple alternative routing paths

may exist with the same destination throughput. All of these routes are the same

in terms of their power consumption and the link scheduling feasibility, as they all

satisfy the constraints (5.10a)-(5.10f). The differences might exist in the number

of hops required for different routing paths. Finding the paths with minimum

number of hops is one of our future research directions.

5.5 Performance Evaluation

In this section, we will evaluate the capacity improvements in the mesh back-

haul due to multi-hop routing and the use of OFDMA-based air-interface pro-

viding tone diversity in power allocation, scheduling and routing. Our baseline

for comparison will be a mesh backhaul without multi-hop routing capability.

Four network topologies will be considered: 19 cells cellular network with 2 rings

of mesh routers around a source node, 37 cells cellular network with 3 rings of
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Figure 5.3: Simulation setup, 19 cells cellular network (2 rings around the source
node).

mesh routers around a source node, and 37 cells cellular networks with 2 and

3 source nodes. Each base stations is located in an hexagonal cell where the

distance from the center to any of the corners of the hexagon is 0.5 mile. Each

base station antenna can radiate 10 Watts of transmit power on the average, in a

10MHz bandwidth with 1024 OFDM tones available for transmissions. A simple

distance path-loss model is used in which the path loss PL at a distance of D

mile is given by PL = 32.6 + 35 log10(D) dB. An exponential power-delay profile

is assumed with 0.5 µs RMS delay spread, and each channel tap experiences an

independent Rayleigh fading with zero mean, unit variance complex Gaussian

component. Also, log-normal shadow fading is assumed with 8 dB standard devi-

ation. Given the RMS delay spread of the channels, the coherence bandwidth is

about 2 MHz, and therefore 5 groups of independently fading tones can be seen in

a 10 MHz bandwidth. To simply the numerical analysis, we will assume that the

tones are grouped into 16 sub-bands, each with an independent fading realization

as explained above.

For the baseline single-hop scheme, the source node transmits to only one base
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Figure 5.4: Results for 19 cells cellular network (2 rings around the source node).
Multi-hop throughput is based on the link-based capacity assignment method.

station at a time, and the transmissions are time-scheduled to provide uniform

demands of all base stations. Denoting the rate that will be delivered to all

bases by R, and the capacity of each single-hop link between the source node and

destination node i by Ri, the fraction of time that has to be allocated to the base

station i is given by ti = R/Ri. Since
∑

i ti = 1, it follows that R = 1/
∑

i (1/Ri).

For the single-hop multiple sources case, each destination node can be assigned

to the source node with the strongest link, and the sources might time-schedule

transmissions for their assigned bases. For the multi-hop mesh network, among

the three link capacity assignment methods mentioned in Section 5.3.1, we will

use the throughput of the link-based water-filling technique for comparison with

the single-hop schemes. For both single-hop and multi-hop scenarios, two types of

power allocation techniques will be considered: the water-filling power allocation,

and the uniform power allocation where there is no power adaption with respect

to the frequency selective channels.
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Figure 5.5: Simulation setup, 37 cells cellular network (3 rings around the source
node).

We also compare the single-hop and the multi-hop results with a simple upper

bound on the mesh throughput. The upper bound is obtained by the fact that

the total rate delivered to all mesh routers cannot be larger than the maximum

sum-rate out of the source node (sum of the source rates in the case of multiple

sources). The maximum source sum-rate follows from Theorem 1. In this case,

each OFDM tone is used on an outgoing link from the source node with the largest

channel gain, and the total source transmit power is then water-filled across the

selected tone/link pairs. The maximum mesh throughput delivered to each mesh

router is the source sum-rate divided by the number of mesh routers.

Figures 5.3-5.10 show different network topologies, and the corresponding rate

CDFs obtained over 100 random realizations of the channels. For all network

topologies, we observe a significant capacity improvement in the mesh backhaul

due to multi-hop routing. Based on the median points of the rate CDFs, multi-hop

routing with water-filling power allocation improves the rate by about a factor of

5 compared to the single-hop transmissions with water-filling in 19 cells network
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Figure 5.6: Results for 37 cells cellular network (3 rings around the source node).
Multi-hop throughput is based on the link-based capacity assignment method.

topology; by about a factor of 10 in 37 cells topology with one source, and by

about a factor 7 and 4 in 37 cells topology with 2 and 3 sources respectively.

We observe that as transmission ranges for the single-hop schemes get larger,

the single-hopping tends to be more suboptimal, and therefore the gain due to

the multi-hop routing increases. Moreover, the improvement in rate due to the

water-filling type power allocation as opposed to the uniform power allocation

is relatively larger in the single-hop scenarios than in the multi-hop scenarios.

This is due to the fact that, in the multi-hop case, most of the transmissions

occur between the neighboring base stations. These links are relatively high SNR

links because of relatively shorter transmission distances (compared to single-

hop transmissions to 2 or 3 rings away), and hence small path-loss values. In

this case, the water-filling does not improve the rate much as the power level is

significantly higher than the noise level (the noise level on all frequency ranges

looks flat compared to the high power level), and therefore the uniform power
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Figure 5.7: Simulation setup, 37 cells cellular network with 2 source nodes.

allocation becomes as good as the water-filling power allocation. We should note

that the two-step heuristic is a simple approach to a complicated problem, yet it

provides significant improvement over the single-hop throughput, and performs

well when it is compared to a simple upper bound2.

Figure 5.11 compares the throughput of an OFDMA-based mesh backhaul

with a single carrier mesh network. The network topology and the channels are

the same in both cases. The only difference is that the bandwidth of each link

is divided into L frequency bands in the OFDMA-based architecture, while the

whole bandwidth is used in the single carrier system when the link is selected

to be active. Furthermore, while we use the link-based water-filling heuristic in

the OFDMA-based system, the link capacities are calculated optimally in the

single carrier system (by water-filling across the frequency selective channels).

2The reported multi-hop throughput results are based on β = 2/3 in (5.10f), which defines a
sufficient condition for the link scheduling feasibility. Further throughput improvement is pos-
sible with the two-step hierarchical framework in some cases where only the necessary condition
(β = 1) is satisfied.
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Figure 5.8: Results for 37 cells cellular network with 2 source nodes. Multi-hop
throughput is based on the link-based capacity assignment method.

The figure shows that the OFDMA-based mesh backhaul has a throughput ad-

vantage over the single carrier mesh backhaul. This relative gain is due to the

fact that OFDM transmissions provide tone-diversity advantage in the form of

efficient bandwidth utilization by choosing better channels for transmissions and

scheduling, and in the form of improved routing performance by providing more

path options to route the traffic.

In Figure 5.12, we compare the three link assignment strategies. We observe

that the link-based water-filling is the best strategy among the three as it effec-

tively distributes the link power across the frequency bands by the water-filling

policy, while ensuring the connectivity of the network. The spatial-water filling

suffers from the connectivity problems as the nodes’ local greedy link selections

make some of the mesh routers get disconnected. On the other hand, when the

channel delay spread increases and the coherence bandwidth gets smaller, each
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Figure 5.9: Simulation setup, 37 cells cellular network with 3 source nodes.

link would have more groups of tones with independent fades. This increased ran-

domness in the channel provides the disconnected mesh routers with more link

opportunities to get connected to the mesh backhaul.

5.6 Chapter Summary and Conclusion

Wireless mesh network is a promising network architecture providing cost-efficient

backhaul solution in wireless systems. In this study, we considered an OFDMA-

based mesh backhaul in a cellular base station network. In this architecture, the

base stations can help each other by multi-hop routing, which not only helps avoid-

ing congestion in the network, but also enables efficient radio resource utilization

by having shorter transmission paths. Moreover, when an OFDMA air-interface

is used, multiple orthogonal channels are generated on each link, which gives ad-

ditional channel-diversity advantage in power allocation, scheduling and routing.

In short, OFDMA-based mesh architecture provides an efficient backhaul solution

in cellular networks.
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Figure 5.10: Results for 37 cells cellular network with 3 source nodes. Multi-hop
throughput is based on the link-based capacity assignment method.

We should note that our framework can be used for other optimization ob-

jectives as well. For example, one of our future works includes the use of the

framework to determine the best placements of mesh routers in a backhaul net-

work. Also, we plan to have a dynamic optimization framework extension that

accounts for traffic variations in the network. More accurate modeling of the

interference, alternative MAC schemes, and the routing techniques that require

minimum number of hops are also under investigation.
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the source node).
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Chapter 6

Conclusion

Our results indicate that the network coordination is a promising technique

suggesting large capacity improvements over the conventional cellular networks.

Without network coordination, the downlink system capacity is limited by inter-

cell interference. Furthermore, since the links often operate in the low SINR

regime, the use of multiple antennas does not improve the system capacity signif-

icantly. On the other hand, when network coordination is employed, inter-cell in-

terference is successfully eliminated. Then, the links can operate in the high SNR

regime. This enables the cellular network to enjoy the great spectral efficiency im-

provement associated with using multiple antennas. This strongly suggests that

if the multiple antennas are to be deployed in a practical interference-limited cel-

lular downlink system, it is very advisable to consider employing some form of

coordination to eliminate inter-cell interference.

The coordination requires a high-speed backbone enabling information (data,

control/syncronization and channel state) exchange between the base stations.

Moreover, the coherent methods need channel information at the base stations,

which could be achieved in practice by using channel estimates on the uplink

in the time division duplexing (TDD) mode, or by a channel feedback from the

mobiles in the frequency division duplexing mode (FDD). Also, the timing/phase

synchronization is essential to achieve coherent combining of the signals from
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multiple base stations. Impairments due to Doppler are another challenge to be

addressed in practice. As processing power required for advanced signal process-

ing techniques improves, implementation of complex transmission techniques such

as dirty paper coding will be closer to reality.

As a future research direction, it would be interesting to have distributed, or

local, implementation of network coordination in cellular networks. To achieve

this, one has to identify essential part of the information (channel state, synchro-

nization etc.) that has to be shared among the base stations to realize significant

portion of the promised gains. For example, it might be enough for each base sta-

tion to have the channel information of a few neighboring base stations. Also, it

is important to quantify the amount of backhaul resources required to implement

network coordination in a practical system. We note that network coordination

is an example of cooperation in cellular systems, and the base stations can ac-

tually cooperate in many different ways. As an example, the base stations can

take advantage of the bursty nature of the data transmissions by sharing on-off

information to avoid interference during the bursty data arrivals. Also, spectrum

allocations can be performed in a coordinated way to avoid overlapping bursty

transmissions.

The base station coordination is a futuristic system design that may poten-

tially offer a significant capacity improvement in cellular networks. Our study

establishes the initial foundations of the design, and quantifies the theoretical

performance gains to encourage further studies striving towards these gains in

practice.
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