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ABSTRACT OF THE DISSERTATION

Cooperative Strategies for Wireless Relay Networks

by Ivana Marié

Dissertation Director: Professor Roy D. Yates

The goal of this thesis is to understand the mechanisms and potential benefits of relaying
and node cooperation in wireless networks. We analyze specific cooperative schemes, present
practical cooperative protocols for large networks, and derive capacity results for systems with
limited transmitter cooperation.

Motivated by sensor applications, the first part of the thesis considers cooperation in large,
energy-constrained networks that have to deliver multicast data. We use the insights offered by
network information theory to propose an accumulative broadcast strategy that allows nodes to
collect energy of unreliably received overheard signals. As a message is forwarded through the
network, nodes will have multiple opportunities to reliably decode the message by collecting
energy during each retransmission. We analyze two problems concerned with energy-efficient
multicast/broadcast. First, we formulate the minimum-energy accumulative broadcast problem.
We show that the problem is NP-complete and propose an energy-efficient heuristic algorithm.
We then address the maximum lifetime multicast problem and present the Mazimum Lifetime
Accumulative Broadcast (MLAB) algorithm that finds the optimum solution. The resulting
transmit power levels ensure that the lifetimes of the active relays are the same, causing them
to fail simultaneously.

The proposed broadcast scheme employs a decode-and-forward (DF) relay strategy. In
general, however, the optimal relay strategy is unknown. In the second part of the thesis,
we evaluate the performance of amplify-and-forward (AF) strategies for energy-constrained
networks. For a single source-destination pair, we characterize the optimum AF bandwidth and

present the optimum power allocation among the AF relays which can be viewed as a form

ii



of maximum ratio combining. Motivated by large bandwidth resources we further consider
orthogonal signaling at the nodes. While the result for the optimum bandwidth still holds,
the relay power solution in this case has the form of water-filling. In contrast, in a network
with unconstrained bandwidth, the DF strategy operates in the wideband regime and requires
a different choice of relays. Thus, in a large scale network, the choice of a cooperative strategy
goes beyond determining a coding scheme at a node; it also determines the operating bandwidth
and the best distribution of the relay power.

In the third part of the thesis, we introduce limited transmitter cooperation to the interfer-
ence channel with two independent sources and two receivers. Transmitter cooperation enabled
by side-channel links with finite capacities allows for a partial message exchange between en-
coders. After cooperation, each encoder will know a common message partially describing the
original messages, and its own private message. We first determine the capacity region of the
compound multiple-access channel (MAC) in which both common and private messages are
decoded at both receivers. We then relax the decoding constraint and consider the interference
channel with common information in which each private message is decoded only by one re-
ceiver. We determine the strong interference conditions under which the capacity region of this
channel is found to coincide with the compound MAC capacity region. Finally, we determine
the strong interference conditions for the interference channel with unidirectional cooperation

in which messages sent at one encoder are known to the other encoder, but not vice versa.
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Chapter 1

Background and Thesis Overview

The performance limits of wireless networks are still unknown. In the point-to-point
channel, the optimum performance is characterized by its capacity, whereas in the
multiple source-destination scenario occuring in wireless networks, the best possible
performance is determined by the capacity region. For a given channel and a given
set of power constraints at the transmitters, the capacity region is the closure of all
the achievable rates for all the communicating pairs. The capacity region defining the
best set of rates achievable in the network is known only for specific scenarios. One
such scenario is the discrete memoryless multiaccess channel (MAC) [1, 2] in which
many nodes wish to communicate independent messages to a single receiver. The
MAC capacity region was determined by Ahlswede [1] and Liao [2], and for the case
in which the transmitters share a common information in addition to their private
messages, by Slepian and Wolf in [3]. A more recent success was the full understanding
of the multiple-input multiple-output Gaussian (MIMO) broadcast channel with perfect
channel state information (CSI) at both the transmitter and the receivers [4-7].
Under a simpler model that assumes only one source-destination pair, the problem
becomes finding the capacity of the active link. The wireless network becomes the
multiple-relay channel [8,9] with all the nodes except the source and the sink acting as
pure relays. However, the simpler assumption does not allow for a simple solution: the
capacity of the relay channel is still unknown even for the case of a single relay node.
The difficulty of these problems comes from their generality: a relay is allowed to use
any causal coding strategy under its power constraint and the challenge is to find the
optimal one. This problem is thus inherent for any multihop system due to the presence

of the relays. While the answer to the ultimate question of wireless network capacity



remains elusive to researchers, existing cooperative schemes have shown potential gains
in wireless systems. As relaying is an unavoidable component of multi-terminal systems,
building practical communication networks with good performance will require a choice
of suitable cooperative schemes. The goal of this thesis is to understand the mechanisms
and potential benefits of relaying and node cooperation in specific wireless networks.

Several coding strategies for relay networks have been proposed that led to capacity
results for certain relay channels. For the special case of the physically degraded single-
relay channel, the capacity was found in [10]. The physically degraded model however,
assumes that the received signal at the destination is a noisy copy of the signal received
at the relay and thus has no value given the observation made at the relay. It does not,
therefore, model well the wireless situation where two receivers experience independent
noise. Thus, the observations at both relay and destination are valuable in offering a
diversity gain. Nevertheless, the coding strategies proposed in [10] were shown to be
crucial also for more general network models [11-14]. The capacity-achieving coding
strategy in [10] required block Markov superposition encoding, random partitioning of
the message set and successive decoding. Two modifications that somewhat simplify
the above scheme were proposed in [15-17]. To avoid the random partitioning, backward
decoding [15] and windowed decoding [16] were used instead. The approach of [16] was
extended to the general relay channel model and referred to as multi-hopping in [14].
When relays are close to the source, this strategy achieves the capacity for some wireless
relay network models [13]. All of these strategies require the relay to reliably decode
the source message before forwarding and are thus referred to as decode-and-forward
(DF) [18].

A different paradigm in which a relay does not decode the message, but sends the
compressed received values to the destination was proposed in [10] and extended to the
multiple-relay channel in [12]. When the relays are close to the destination, this strategy,
referred to as quantize-and-forward (QF) achieves the antenna-clustering capacity [12].

In another strategy that does not require reliable decoding at the relays, called
amplify-and-forward (AF) [18], a relay forwards the scaled version of the received noisy

copy of the source signal. Hence, the data is sent through only two hops with no



cooperation among relays. Under the assumption of uncoded transmission at the source,
it was shown that the two-hop AF strategy achieves the asymptotic capacity in a relay
network in the limit as the number of relays becomes large [19,20]. It was further shown
that in a random network, power efficiency of such strategy increases with the number
of relays [21]. Even though the relay power in [19-22] was allocated suboptimally, the
favorable scaling was achieved due to the coherent combining of the relay signals that
increases the received SNR at the destination node.

Hybrid schemes based on DF, QF and AF strategies have been proposed in [23].
For a fading relay channel and co-located receivers these schemes were shown to have a
superior performance, without requiring the relay to have the destination channel state
information.

As the capacity-achieving examples above illustrate, the performance and hence
the benefit of a relay coding strategy vary with network topology. In networks with a
large number of nodes, a relay position might then determine the most suitable coding
strategy for that relay, or alternatively, the best subset of relays may be chosen to
employ a particular coding strategy. Furthermore, in the scenarios where the power
allocation among relays is possible, we expect that there exists an optimal relay power
allocation. For certain network and traffic scenarios, we will show such an optimum
power allocation. Even beyond, we will argue that the choice of the coding strategy
determines the optimum bandwidth allocation in a network.

Motivated by sensor network applications, the focus of the first part of this thesis
will be on the energy-constrained networks in which energy, rather than bandwidth, is
the limiting resource. We start by considering energy-efficient multicast and broadcast
in Chapter 2. Cooperative strategies for networks with a single source-destination pair
are considered in Chapter 3. In Chapter 4, we analyze the interference channel with
limited cooperation - a network with two cooperating sources and two destinations. In

the reminder of this chapter, we present a thesis overview.



1.1 Energy-Efficient Multicast and Broadcast

The capacity result in [24] revealed the limiting performance and the behavior of wireless
networks. Result showed that the maximum throughput per user decreases to zero as
the number of users grows. In their model, the authors assumed a restricted point-
to-point coding scheme in which, at any given time, a receiver decodes a signal from
one sender while considering the other signals purely as noise. On the other hand, the
problem of network capacity assumes arbitrarily complex coding and decoding in the
network. The result in [16] demonstrates that the more general network coding can
indeed change the scaling behavior of the network capacity. The crucial thing is then
for the destination to keep all the received overheard signals instead of treating them
as interference. Even in the case of a one-relay physically degraded channel, utilizing
the unreliable overheard information was essential for achieving capacity. Yet, the
previous work on energy-efficient broadcast in wireless networks does not incorporate
the overheard signals at the receivers. The wireless formulation of the conventional
broadcast problem assumes that a node can benefit from a certain transmission only
if the received power is above a threshold required for reliable communication. The
solution to the problem is then specified by a broadcast tree. The arcs in the broadcast
tree uniquely determine the power levels for each transmission; a relay that is the
parent of a group of siblings in the broadcast tree transmits with the power needed to
reliably reach the most disadvantaged sibling in the group. In Chapter 2, we propose the
cooperative broadcast strategy that allows nodes to accumulate the energy of unreliable
receptions. We refer to this cooperative strategy as accumulative broadcast.

In Section 2.4, we address the minimum-energy accumulative broadcast problem
with the objective to broadcast data reliably to all network nodes at a fixed rate with
minimum transmit power. The minimum-energy broadcast problem was formulated
as a minimum-energy broadcast tree problem in [25,26]. In a wired network, the
minimum-cost broadcast tree can be found in O(n?) operations [27]. However, in the
wireless network, this problem was shown in [28] to be NP-hard and later on, in [29-

31] to be NP-complete. The greater difficulty of the wireless broadcast tree problem



stems from the wireless multicast advantage [26], the fact that a wireless transmission
can be received by all nodes in the transmission range. Authors in [26] proposed the
Broadcast Incremental Power (BIP) algorithm, a greedy heuristic that uses the principle
of Prim’s algorithm [32] while assigning costs to the nodes in a way that exploits the
wireless multicast advantage. The analytical results for performance of BIP are given
in [33]. Several other heuristics for constructing energy-efficient broadcast trees have
been proposed in the literature and evaluated through simulations (see [28-31, 34, 35]
and references therein).

While the minimum-energy broadcast problem results in energy-efficient solutions
in terms of the total network power, the different transmitter power levels generally
assigned to the relays cause higher drain relays to fail first. Distributing the traffic more
evenly throughout the network requires a different performance objective. The problem
of maximizing the network lifetime where the network lifetime is the time duration until
the first node battery is fully drained [36] addresses this issue. In Section 2.5, we address
the network lifetime problem under the accumulative broadcast cooperative strategy.
Finding a broadcast tree that maximizes network lifetime was considered in [37-39]. The
similar problem of maximizing the network lifetime during a multicast was addressed
in [40,41]. Because the energies of the nodes in a tree are drained unevenly, the optimal
tree changes in time and therefore the authors [37, 39, 41] distinguished between the
static and dynamic maximum lifetime problem. In a static problem, a single tree is
used throughout the broadcast session whereas the dynamic problem allows a sequence
of trees to be used. Since the latter approach balances the traffic more evenly among the
nodes, it generally performs better. For the static problem, an algorithm was proposed
that finds the optimum tree [37]. For the special case of identical initial battery energy
at the nodes, the optimum tree was shown to be the minimum spanning tree. In a
dynamic problem, a series of trees were used that were periodically updated [37] or
used with assigned duty cycles [39].

In Chapter 2, we re-examine these two broadcast problems under the assumption
that nodes exploit the energy of unreliable receptions and demonstrate the benefit

of accumulative broadcast compared to the conventional broadcast. In Section 2.4,



we present the minimum-energy accumulative broadcast problem and the approach
to its solution [42-44]. We show that finding the best solution to the minimum-energy
accumulative broadcast problem is NP-complete. On the other hand, we show in Section
2.5 that the maximum lifetime multicast problem has a simple optimal solution and
propose the Mazimum Lifetime Accumulative Broadcast (MLAB) algorithm that finds
it [45,46]. The simplicity of the solution is due to the accumulative broadcast that
facilitates load balancing by relaxing the constraint that a relay has to transmit with
power sufficient to reach its most disadvantaged child. The power levels given by the
solution ensure that the lifetimes of relay nodes are the same and thus, their batteries

die simultaneously.

1.2 Two-Hop Relay Networks

The proposed accumulative broadcast scheme employs a decode-and-forward relay strat-
egy. As pointed out earlier however, not only is the optimal relay strategy unknown,
but also certain network scenarios have been identified for which unreliable forwarding
is optimal [19-21]. This motivates the performance evaluation of amplify-and-forward
strategies for energy-constrained networks. In Chapter 3, we investigate the impact of
the choice of the relay strategy on the network operation. For a single source-destination
pair, we characterize the optimum AF bandwidth and show that transmitting in the op-
timum bandwidth allows the network to operate in the linear regime where the achieved
rate increases linearly with the available network power [47]. We then present the opti-
mum power allocation among the AF relays [48]. The solution, which can be viewed as
a form of maximum ratio combining, indicates the favorable relay positions in the net-
work. Motivated by the large bandwidth resources we further consider a network that
uses orthogonal transmissions at the nodes. While the above result for the optimum
bandwidth still holds, a different set of relays should optimally be employed. In this
case, the relay power solution can be viewed as a form of water-filling. In contrast, in a
network with unconstrained bandwidth, the DF strategy will operate in the wideband
regime and will require a different choice of relays. The two-hop DF strategies are

analyzed in Section 3.5.



1.3 The Interference Channel with Limited Transmitter Cooperation

The work presented in Chapters 2-3 focuses on single-source networks. However, the
wireless ad hoc and sensor networks generally consist of multiple source-destination
pairs. Multiple data streams cause the interference at the receivers if they are trans-
mitted at the same time and the transmitter of one data stream is sufficiently close to
the intended receiver of another data stream. Furthermore, if sources produce corre-
lated data, as often is the case in sensor networks, exploiting the correlation leads to
more efficient data transmission through the network [49]. Hence, the multiple source
problem adds a new dimension to the cooperation problem.

The channel model that incorporates the communication situation in which two
separate transmitters wish to communicate their independent messages to two cor-
responding receivers is the interference channel [50, 51]. The capacity region of the
interference channel is an open problem. The best known achievable region consisting
of seven MAC-like bounds per receiver was proposed by Han and Kobayashi [52]. Re-
cently, a new achievable region was presented in [53] based on the observation that one
of the H-K bounds can be omitted. For the Gaussian interference channel, the new
outer bounds were recently presented by Kramer in [54]. The bounds improve the best
known outer bounds derived by Sato [51] and Carleial [55]. The full capacity region
of the interference channel is known in the case of the strong interference channel [56]
satisfying

I(X1;Y1]X3) < I(X1;Y2|X3) (1.1)

I(X9;Y5|X1) < I(X9;Y1|X1) (1.2)

for all product distributions on the inputs X; and X5. The capacity region in this case
coincides with the capacity region of the two-sender, two-receiver channel in which both
messages are decoded at both receivers, as determined by Ahlswede [57].

In Chapter 4, we introduce limited transmitter cooperation into the interference
channel model. The broadcast nature of the wireless channel allows a signal trans-
mitted from one node to be overheard at the other and could be used as a base for

transmitter cooperation. Under full transmitter and receiver cooperation with no cost



for cooperation in terms of power and bandwidth, this channel becomes a 2 x 2 MIMO
channel. Thus MIMO channel capacity [58] is the upper bound to the sum-rate of
the interference channel with cooperation. Under full transmitter cooperation which
again incurs no cost in terms of power and bandwidth, the channel reduces to the
MIMO broadcast channnel. In the Gaussian case, the capacity region is known and is
achieved by dirty-paper coding [4,5,7,59]. For the interference channel with coopera-
tion, it has been demonstrated that dirty paper coding brings significant gains as long
as the sources are clustered together [60,61]; for the destination cluster, gains are ob-
tained employing receiver cooperation through amplify-and-forward [60]. As in a single
source-destination Gaussian network, the performance and the suitability of a partic-
ular cooperative scheme depends on the network topology, that is, relative positions
of sources and receivers [61-64]. This motivates the analysis of discrete cooperative
channel models that incorporate different geometries.

A problem in which encoders partially cooperate in a discrete memoryless channel
was proposed by Willems for a multiaccess channel (MAC) [65]. To model transmitter
cooperation, two side-channel communication links with finite capacities are introduced
between the two encoders. The amount of information exchanged between the two
transmitters is bounded by the capacities of the communication links. The proposed
discrete channel model enables investigation of transmitter cooperation gains. In the
discrete memoryless MAC with partially cooperating encoders [65], the outcome of the
cooperation is referred to as a conference. Willems determined the capacity region of
this channel and thus specified the optimum conference. In this work, we are interested
in the channel model with two receivers. In Section 4.4, we extend Willems’ result
to a compound MAC in which two decoders wish to decode messages sent from the
encoders [66]. We show that the same form of conference as in [65] remains optimal
and determine the capacity region [66].

When cooperating over links with finite capacities, encoders obtain partial informa-
tion about each other’s messages. This partial information may consist of a fraction
of bits sent by the encoder, where the fraction is determined by the capacity of the

cooperating link. This information becomes a common message as it is known to both



encoders after the conference. When the capacity of a cooperating link is large enough
to carry the code rate, full information about the source message is obtained by the
other encoder. In general, however, each encoder will still have a private message, in-
dependent information that remains unknown to the other encoder. Both common and
private messages are decoded at a single receiver in the case of the MAC [65], or at
both receivers in the case of a compound MAC [66].

In Section 4.5, we consider the interference channel with both private and common
messages at the encoders [67,68]. We relax the requirement that both private messages
need to be decoded at both decoders. Instead, a private message at an encoder is
intended for a corresponding decoder whereas the common message is to be received at
both decoders. We derive conditions under which the capacity region of this channel
coincides with the capacity region of the channel in which both private messages are
required at both receivers. We show that the obtained conditions are equivalent to the
strong interference conditions determined by Costa and El Gamal for the interference
channel with independent messages.

Finally, in Section 4.6, we analyze the interference channel with a different form
of transmitter cooperation, that we refer to as unidirectional cooperation. We assume
that messages sent at one encoder are known to the other encoder, but not vice versa.
The encoder that knows both messages can exploit that information to improve the
achievable rates. We derive conditions under which the capacity region of this channel
coincides with the capacity region of the channel in which both messages are decoded
at both receivers. We compare the obtained conditions with the strong interference
conditions in the interference channel with independent messages as well as in the

interference channel with both private and common messages [69,70].
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Chapter 2

Accumulative Broadcast

2.1 Introduction

In this chapter, we consider the problem of energy-efficient multicast and broadcast in a
wireless network. In the multicast problem, a message from a source node is to be deliv-
ered efficently to a set of destination nodes. When the set of destination nodes includes
all the network nodes (except the source), the multicast problem reduces to the broad-
cast problem. We present a cooperative broadcast and multicast strategy that allows
nodes to exploit the unreliably received signals. We consider the multicast/broadcast
problems with two different objectives. In Section 2.4, we present the minimum-energy
accumulative broadcast problem and the approach to its solution [42-44]. Because it
allows for more radiated broadcast energy to be captured, it is straightforward to
show [43] that accumulative broadcast increases the energy-efficiency of conventional
broadcast. We show that finding the best solution to the minimum-energy accumula-
tive broadcast problem is NP-complete. This motivates a heuristic algorithm that finds
energy-efficient solutions. In Section 2.4.1, we propose a centralized algorithm that
requires global knowledge of the channel gains. In Section 2.4.2, we then present a dis-
tributed version of the accumulative broadcast heuristic algorithm that uses only local
information at the nodes and is thus better suited for networks with a large number of
nodes.

We then consider the mazimum network lifetime multicast problem. We show in
Section 2.5 that this problem has a simple optimal solution and we propose a Mazi-
mum Lifetime Accumulative Broadcast (MLAB) algorithm that finds it [45,46]. The
simplicity of the solution is due to the accumulative broadcast that facilitates load bal-

ancing by relaxing the constraint that a relay has to transmit with power sufficient to
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reach its most disadvantaged child. The power levels given by the solution ensure that
the lifetimes of relay nodes are the same and thus, their batteries die simultaneously. In
Section 2.5.4 we present a distributed MLAB algorithm that determines the transmit

power levels locally at the nodes.

2.2 System Model

In this work, we seek to employ overheard broadcast information in a large scale net-
work. We focus on techniques that can be implemented as distributed network layer
algorithms in which nodes use local information and coarse timing and synchronization.

In particular, we make the following assumptions:

e Loose Synchronization: Nodes cannot synchronize transmissions for coherent sig-

nal combining at a receiver.

e Reliable Forwarding: A node can forward a message only after reliably decoding

that message.

The advantages of coherent signaling and unreliable forwarding have been recognized
for networks in which one or more relay nodes forward to a destination node, [10, 18-
20]. However, coherent signal combining is challenging to implement as it requires the
precise sychronization of transmitting nodes and exact knowledge of radio path delays
needed for coherent combining at a single receiver. By contrast, unreliable forwarding
is practically implementable and has been shown to be superior to reliable forwarding
in certain scenarios [18]. Nevertheless, we will see that reliable forwarding can simplify
the system architecture and the optimization of retransmission strategies while still
allowing us to benefit from unreliable overheard information.

As stated earlier, motivated by applications for wireless sensor networks, the focus of
our work will be on power-constrained networks. Such networks operate in the wideband
regime [71], as the data rate is very small compared to the bandwidth, resulting in a low
spectral efficiency. In the sensor networks where the energy-efficiency is the primary
goal [72], operating in the wideband regime seems like the right choice: at the expense

of using the large number of degrees of freedom per transmitted bit, the transmit energy
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per bit can be minimized [73]. However, finding the minimum energy per bit in networks
with relays is still an open problem.

We will show that for a network operating in the wideband regime, a single codebook
can be used by all forwarding nodes. While there is a benefit of using more general codes
with incremental redundancy [74] in a general wireless network, this benefit diminishes
when broadcasting in a network operating in the wideband regime [75].

We consider a stationary wireless network of N nodes such that from each trans-
mitting node k to each receiving node m, there exists an AWGN channel of bandwidth
W characterized by a frequency non-selective link gain h,,;. Each channel is assumed
to be time-invariant with a constant link gain representing the signal path loss. We
further assume large enough bandwidth resources to enable each transmission to occur
in an orthogonal channel, thus causing no interference to other transmissions. Each
node has both a transmitter and a receiver capable of operating over all channels.

A receiver node j is said to be in the transmission range of transmitter i if the
received power at j is above a threshold that ensures the capacity of the channel from ¢
to j is above the code rate of node 7. We assume that each node can use different power
levels, which will determine its transmission range. The nodes beyond the transmission
range will receive an unreliable copy of a transmitted signal. Those nodes can exploit the
fact that a message is sent through multiple hops on its way to other nodes. Repeated
transmissions act as a repetition code for all nodes beyond the transmission range.

The assumption of an AWGN channel oversimpifies the reality, since fading is one
of the salient characteristics of wireless channels. There are a few scenarios in which
this assumption actually holds. For example, when terminals are in the proximity of
each other, multipath may not be significant and fading can be neglected. In wideband
CDMA with a lot of resolvable multipath, the signal at the output of the RAKE receiver
can be viewed as the signal at the output of the AWGN channel.

In general however, the power response of the channel will depend both on frequency

and time due to multipath. Consider a single-user flat fading channel

Y = hiz; + z; (2.1)
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where h; are the samples of the fading process with power v; = |h;|%, E[v] = 1, E[|z;]?] <
P and E[|z;|*] = 02. As pointed out in [76], it follows from the Jensen’s inequality that

the capacity of this channel

o= b (1+22)] o3

is upper bounded by the capacity of an AWGN channel with the same average power.
The same conclusion holds for the more general case of the frequency-selective chan-

nel with the frequency response at time ¢ denoted C(t, f). The capacity of this channel

C:EU[/Ooélog(l—l—M)df], (2.3)

—0oQ0

is [77]

where the expectation is taken with respect to the statistics of the random process
C(t, ). Under the ergodic assumption, the statistics are independent of both ¢ and f
and the capacity (2.3) is thus again smaller than the AWGN channel capacity. Hence,
assuming no channel state information at the transmitter, the rate achievable in the
AWGN channel gives an upper bound on the performance achievable in the fading
channel.

Gains from cooperation in fading channels can also be examined from the perspec-
tive of cooperative diversity [18,78]. The multicast problems presented in Chapter 2
and the two-hop relay problem presented in Chapter 3 could be re-considered from
this perspective as well. Since we started this work, there has been a lot of progress
demonstrating diversity gains due to cooperation, initiated with the work by Laneman
et. al. [18]. More recently, various cooperation schemes were investigated from the
multiplexing-diversity tradeoff perspective [79].

We note that algorithms proposed in Chapters 2 and 3 can readily be applied in the
fading environment. It is the analysis that would have to be re-done to evaluate the
performance gains. In fact, the cooperative strategy shown to maximize the network
lifetime in Chapter 2.5 was independently proposed to improve the performance of collo-
cated users in a fading channel [23]. More recently, the same strategy, refered to as Dy-
namic Decode-and-Forward, was shown to achieve the optimum diversity-multiplexing

tradeoft [80].
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A word on notation. In this thesis, power labeled in capital letters represents power
per dimension [Watts/(sHz)]; power denoted in small letters is used to mean the to-
tal power in units of [Watts]; Ny denotes single-sided noise power spectral density in
[Watts/Hz]. For convenience only and with no loss of generality, for numerical results
we assume unit double-side noise power spectral density. Equivalently, the power per
dimension when multiplied by a path loss G between the transmitter and the receiver
will yield the received SNR. The path loss is calculated as G = r~™ where r denotes a
transmitter-receiver distance and n is the propagation exponent again, for convenience
only. Consequently, G is of the order 1 — 10~*, rather than 10~® — 1072, as on an
actual radio path.

We view each orthogonal channel as a discrete-time Gaussian channel by represent-
ing a waveform of duration T as a vector in the n = 2WT dimensional space [81].
Then, during the ith slot, a source node, labeled node 1, transmits a codeword (vec-
tor of length n) x(i) from a (2"%,n) Gaussian code that is generated according to the
distribution p(x) = [[}.; p(z;) where p(z) ~ N(0,1). Under the reliable forwarding
constraint, a node j is permitted to retransmit (forward) codeword x(i) only after re-
liably decoding x(7). With an appropriate set of retransmissions at appropriate power
levels, eventually every node will have reliably decoded x(i). Henceforth, we drop the
index 7 and focus on the broadcast of a single codeword x. We will say a node is re-
liable once it has reliably decoded x. During the multicast, the message is repeatedly
transmitted until the set of destination nodes D becomes reliable.

The constraint of reliable forwarding imposes an ordering on the network nodes. In
particular, a node m will decode x from the transmissions of a specific set of transmitting
nodes that became reliable prior to node m. Starting with node 1, the source, as the
first reliable node, a solution to the accumulative multicast/broadcast problem will be
characterized by a reliability schedule, which specifies the order in which the nodes
become reliable. Since during the multicast, the broadcast stops after the message
has been delivered to D destination nodes, a reliability schedule will not necessarily
contain all the network nodes. In general, a multicast reliability schedule is an ordered

subsequence of the list of nodes of length M, D < M < N, that starts with node 1, and
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contains all destination nodes and a subset of network nodes that relay the message.
In the broadcast case, a reliability schedule [n1,n9,n9,...,ny] is simply a permutation
of [1,2,...,N] that always starts with the source node n; = 1.

For a given reliability schedule, we refer to the ith node in the schedule as simply
node i. After each node k € {1,...,m — 1} transmits codeword x with average energy

per symbol P, the received signal at node m for each symbol z in the codeword is
Ym = hpz + 2, (2.4)

where hy, = [Vhm1 Pr,- -, A/ hmm—1Pm—1]" has kth element v/h,,x Py equal to the re-
ceived energy corresponding to the transmission of node k£ and z is is a random noise

vector with covariance matrix K, = 02Ix. The mutual information is given by

1 v Bk P
I(z;ym) = 5 log, (1 + AL ’“)

(2.5)

as in a multi-antenna system with m — 1 transmitting antennas and one receiving
antenna [58]. It follows from (2.5) that the maximal number of bits per second that
can be transmitted in the system given by (2.4) is

m—1

L h
= 2aik=1 "'mkPk :
rm = W log, (1 + NoW ) bits/s, (2.6)

where p;, is the transmit power at node k£ and Ny is the one-sided power spectral density
of the noise.

Let the required data rate for broadcasting 7 be given by

_ P :
7 = Wlog, (1 + NO—W> bits/s. (2.7)

Rate 7 has to be achieved at every reliable node m. From (2.6) and (2.7), achieving
rm = T implies that the total received power at node m is above the threshold P, that

is,
m—1 o
hmkplc > P. (28)
k=1

After the data has been successfully delivered to the destination nodes, all those nodes

are reliable and the feasibility constraint (2.8) is satisfied at every destination node m.
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In the system where the nodes are power limited and the data rate 7 is small relative
to the channel bandwidth W, the system operates in the wideband regime [71]. The

increase in rate with power is linear

P P
o = 1 = li 1 1 = i . -
Too = fm 7= lim W log, ( + WN0> Nologz = |its/s (2:9)

We emphasize that the system operates at a low spectral efficiency due to the low
transmit powers and does not imply the large operating bandwidth W. From (2.9),
when communicating at rate T, the required signal energy per bit has the minimum
value Ey = P/To, = Nylog?2 Joules/bit. Thus, the system uses the energy in the most
economical way possible to communicate reliably [73] because the system uses a large
number of degrees of freedom per information bit. This energy can be collected at a node
m during one transmission interval [0,7] when a transmitter j is signaling with power
pj = P/ hmj, as commonly assumed in wireless broadcast problems [26,29,30,37-39,41].
However, during the accumulative broadcast in the system (2.4), the required energy
E} is collected in m — 1 repeated transmissions. In the wideband regime, the maximum

achievable rate at node m given by (2.6) becomes

‘ 1 m—1
im iy = Nolog3 > k- (2.10)
k=1

In [82], it was shown that TDMA is first-order optimal in the wideband regime as
it achieves the minimum energy per information bit of a multiaccess channel. Using
(2.10), it is straightforward to conclude that the first-order optimality is preserved even
if the repetition code described above is employed. We formally state this conclusion

in the next theorem.

Theorem 1 For the wideband regime, with fized transmitted powers {p1,...,pn} and
a reliability schedule [1,2, ..., N], the mazimum rate achievable from the source to node

m is given by Equation (2.10) and is achieved by repetition coding.

The proof is given in Appendix A.l.
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2.3 Approach

As pointed out in Chapter 1, in the conventional broadcast problem, the broadcast tree
uniquely determines the transmission levels; a relay that is the parent of a group of
siblings in the broadcast tree transmits with the power needed to reliably reach the
most disadvantaged sibling in the group.

In the accumulative broadcast, however, there is no a clear parent-child relationship
between nodes because nodes collect energy from the transmissions of many nodes. Fur-
thermore, the optimum solution may require that a relay transmits with a power level
different from the level precisely needed to reach a group of nodes reliably; the nodes
may collect the rest of the needed energy from the future transmissions of other nodes.
In fact, the optimum solution often favors such situations because all nodes beyond the
range of a certain transmission are collecting energy while they are unreliable; the more
such nodes, the more efficiently the transmitted energy is being used.

The differences from the conventional broadcast problem dictate a new approach.
The optimum solution must specify the reliability schedule as well as the transmit
power levels used at each node. A schedule is an ordered subsequence of M nodes from
a network of N nodes,

x = [z1,--.,ZM], (2.11)
with z; = 1. We say that the length of the subsequence x in (2.11) is ||x|| = M. In the
broadcast case, M = N. Let

{X} = {.’L‘l,...,.'IIHxH} (212)
denote the set of nodes in a schedule x and let II; denote the set of all variable-length
ordered subsequences of {1,..., N}. It follows that the family of all possible schedules
is

Xn(D) = {x € lIn|D € {x},z1 = 1} (2.13)
Given a schedule x, we define a gain matrix G(x)
hyw; 1>7

0 otherwise
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for 1 < 14,5 < M. Thus, channel gains corresponding to any node j that is not in schedule
x are not included in G(x); since a node j does not participate in the retransmission
of the message it can be omitted from the problem formulation.

Given a schedule x, we can define the accumulative multicast and broadcast problem
with specific performance objective as a linear program (LP) that will find the optimum
solution for that schedule. Such a solution will identify the nodes that should transmit
and their transmission power levels. To define the LP for a certain schedule x, we use
the observation that every node selected to transmit by the optimum solution, needs

to transmit only once. This fact is given by the next theorem.

Theorem 2 For the wideband regime, given a solution to the accumulative broadcast
problem consisting of a sequence of transmissions where a node j is assigned to transmit
K times with power levels le, ... P]-K then there is a feasible optimum solution in which

node j transmits once with power level Zli(:l P}“.

The proof is given in Appendix A.2.

2.4 Minimum-Energy Cooperative Broadcast

We next consider the problem of minimum-energy broadcast, with the objective being to
broadcast data reliably to all network nodes at a fixed rate with minimum transmitted
power.

As explained in the previous section, this problem can be divided into two subprob-
lems. The crucial step is finding the best schedule. We can define the minimum-energy
cooperative broadcast problem for schedule x in terms of the vector p of transmitted

powers as the LP for schedule x is

p(x) =min 17p (2.14)
subject to G(x)p > 1P, (2.14a)
p>0. (2.14b)

The inequality (2.14a) contains N — 1 constraints as in (2.8) requiring that the received

power at all the nodes but the source is above the required threshold P. Given a schedule
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x, we will use p*(x) to denote a power vector p that achieves total transmitted power
p(x).

In a schedule, all N nodes are given a chance to transmit (since p; can be greater than
0 for every node) and only the order of transmission is different for different schedules.
Since the source always transmits first, there are (N — 1)! schedules corresponding to
the number of permutations of N — 1 elements. Thus, out of N(¥=2) broadcast trees,
we consider a subset of (N — 1)! schedules. If the best solution is that only a subset of
nodes should be transmitting, the LP for the best schedule will find that solution by
setting appropriate powers to zero. In general, however, the problem of finding a best

schedule for minimum-energy cooperative broadcast is intractable.

Theorem 3 The existence of a schedule x such that p(x) < B is an NP-complete

problem.

Proof:
Let II; denote the set of all vectors m = [mp,...,m;] that are permutations of
[0,1,...,7]. A formal statement of the ACCUMULATIVE BROADCAST (AB) prob-

lem is

AB Given a nonnegative matrix specified by {h;|1 <j <m,0 <k <m}, and a con-
stant ¢, does there exist a permutation 7 € Il with 79 = 0 and a non-negative

- .
vector p = [pg, P1,---,Pm) such that Y 7" (pr < cand Y7~ hajmiPre 21, J =

1,...,m.

Thus an instance of AB is specified by the pair ({h;x},c). Note that we set the
reliability threshold to unit power since any scaling can be specified by the constant c.
We observe that AB is in NP since given a permutation 7 and vector p, it is easy to
check whether the AB constraints are met.

We will show that the ACCUMULATIVE BROADCAST problem is NP complete
by a polynomial time reduction of the DIRECTED HAMILTON PATH (DHP) [27]

problem. Formally the DHP problem is
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DHP Given a directed graph G = (V, A) with nodes V' = {0,...,n}, does there exist

a permutation 7 € II,, such that 7o = 0 and (m;, mj41) € Afori=0,...,n— 1.

We now describe the transformation of DHP into an instance of AB. Without loss
of generality, we assume that the instance of DHP is such that node 0 has a single
outgoing arc (0,1) and that node n is a sink node reachable by an arc (i,n) from each
node i € {1,...,n — 1}. Note that if this condition does not hold, we can add such
source and sink nodes and solve an equivalent DHP. Thus, for each such graph, the
Hamilton path, if it exists, will start at node 0 and terminate at node n.

Given G = (V, A) for DHP, we construct a set of nodes G' and matrix {h;} for
an instance of AB. In particular, for each node k& € G, we construct a cluster of nodes
Ck C G'. In particular, the cluster Cy, includes a node i, for each incident arc (j,k) € A
and a node oy for each outgoing arc (k,l) € A. That is, in terms of each arc (j, k) € A4,
we have created an incident node i € Cp and an outgoing node 0; € Cj. Note that
cluster Cy contains only the single node op,1 and that the sink node n has the cluster
Cn = {ijn|1 < j < n} of only incoming nodes.

To avoid an explicit enumeration of the nodes in G’, we describe the matrix {h;} in
terms of a function h(a,b) that gives the channel gain from node b to node a. Similarly,
we will use the notation p(a) to denote the transmitted power of the node a. Corre-
sponding to each arc (j,k) € A, we have h(i;x,05%) = 1. Within each cluster Cy, we
have that for any pair of incident nodes i and i g, h(i;x,4; k) = 1. In addition, for
each outgoing node oy; € Cj, and each incoming node iy € Ck, h(ok,ij%) = 1. For
all other pairs of nodes a,b € G', we set h(a,b) = 0. Keep in mind that if h(a,b) = 1,
then p(b) = 1 yields received power h(a,b)p(b) = 1 at node a. We will see in our AB
construction, each node a will use power p(a) € {0,1}.

To prove that AB is NP-complete, we show that the graph G has a Hamilton path if
and only if the resulting instance (h(-,-),c = 2n) of AB is feasible. Consider a Hamilton
path that starts at node zero and proceeds through all nodes to node n. Suppose the
Hamilton path uses arc (j, k), then for the AB problem, we set p(o,x) =1, p(i;%) = 1,
p(ojr) = 0 for all k' # k, and p(ij x) = 0 for all j' # j. In the context of AB, node

0, transmits to make node i, reliable and then node %, transmits to make all nodes
5, Js J»
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in cluster Cy reliable. If the next arc in the Hamilton path is (k,[), then in the AB,
o,, which has already been made reliable by the transmission of 7, will transmit
to make 4 reliable. We call the event that an incoming node i;j is made reliable a
visit to cluster Cx. The sequence of nodes in the Hamilton path corresponds exactly
to the sequence of cluster visits. To calculate the total transmitted power, note that
in cluster Cy, node 0p,; will transmit. In clusters 1,...,n — 1, one incoming node and
one outgoing node will transmit. Lastly, in cluster C,,, one incoming node will transmit
to make the other incoming nodes in C), reliable. The total transmitted power will be
exactly 2n. We note that the node ordering required by the formal statement of AB
will not be uniquely specified. If cluster Cj is visited before cluster Cj, then all nodes
in C} must be ordered ahead of nodes in Cj. In a cluster C}, if incoming node i, is
made reliable then i;; must be first in the cluster but other nodes in the cluster can
be ordered arbitrarily.

To complete the proof, suppose we have a solution to the AB problem. This AB
solution must make every node in the graph G’ reliable. For each cluster Cy, 1 < k <
n, at least one incoming node 7;; must be made reliable by the transmission of the
corresponding outgoing node o;;. However, since this transmission of 0;; makes only
i; reliable, one such transmission is needed for each cluster Cj. Over all clusters Cf,
1 < k < n, we require n such transmissions. Further, within each cluster, the outgoing
nodes can be made reliable only by the transmission of an incoming node in the cluster.
Thus for each cluster Cy, 1 < k < n, at least one incoming node ;; must transmit to
make all other nodes in the cluster reliable; this requires n additional transmissions.
Thus 2n is a lower bound to the number of transmissions for the AB problem. Moreover,
if the solution to AB achieves the minimum 2n, then each outgoing node transmission
must be to an incoming node in a cluster that has had no other incoming nodes receive a
transmission from its corresponding outgoing node. That is, each cluster can be visited
only once for the 2n lower bound to be met. Starting with node 0 and cluster Cy, node
0p,1 will transmit to make node i¢ 1 reliable. Node 491 must then transmit to make all
other nodes in cluster C reliable. An outgoing node 0; ; will then transmit to make a

node i1 reliable, constituting a visit to cluster k. To achieve the 2n lower bound, each
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cluster will be visited precisely once, with termination at cluster C,,. Since moving from
cluster C; to visit Cy can occur only if (j, k) is an arc in G, the AB solution corresponds
to a Hamilton path in the graph G. O

Because of the complexity of the problem of finding the best schedule, we now

propose a heuristic algorithm that finds a good schedule.

2.4.1 Scheduling Heuristic

Once the schedule is determined using the algorithm, the LP for that schedule is solved
to find the optimum power levels. We evaluate the performance of the algorithm through
simulation and compare its power efficiency to the optimum solution as well as to the
performance of BIP.

We observe that we can restrict ourselves to scheduling nodes in an order in which
they can become reliable one at a time. When a node j is scheduled to be the next
node in a schedule after a set of nodes S, then a transmission from that set has to
make node j reliable. If the power that is needed to reach node j is enough to reach
another unreliable node ¢ as well, then we could have done better by assigning node ¢
for transmission before node j. This is because ¢ cannot benefit from a transmission
from node j (since it is made reliable before j) but j might benefit from a transmission
from ¢. If, in fact the optimal solution is to simultaneously make the two nodes i and
j reliable by a transmission from the same set S, then those two nodes do not need to
overhear each other’s transmission. Thus, all the schedules in which nodes i and j are
scheduled one right after the other, in any order, will have the same performance. This
reasoning will be used in the proposed heuristic algorithm.

The algorithm pseudocode is given in Figure 2.1.

The algorithm starts with a partial reliability schedule s = [1] that contains only
the source. Given a partial schedule s, a step of the Greedy filling algorithm does the

following;:

1. We find the reliable node k£ that maximizes the fill rate of the unreliable set, where
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s=[1]; p=0
while (|S| < N) do
k = arg max;cg XijeU hjis
j = argminmev (P — 3 ;e hmipi) [hmk 5
Pk < Pk + (P = Xicg hjipi) [Pk
s < [s,J]
end
Given a partial schedule s, S is the unordered set of nodes in s.
Its complement U is the set of unreliable nodes. The cardinality of S is given by |S]|.

Figure 2.1: Greedy Filling Algorithm for minimum-energy cooperative broadcast

the fill rate
Re =Y hj (2.15)

Jjeu
is the sum of the link gains from node k to the set U of all unreliable nodes.

2. We increase pj such that the transmission by k£ adds one more node, node j, to

the reliable set.
3. We append node j to the partial schedule.

Once the schedule is complete, the LP is solved to find the optimum power levels for
that schedule.

We evaluated the performance of the algorithm and compared it to the optimal
solution as well as to the performance of the Broadcast Incremental Power (BIP) algo-
rithm for networks with a small number (5 — 10) of randomly positioned nodes. The
BIP algorithm, proposed in [26], is greedy heuristic that uses the principle of Prim’s
algorithm [32] while assigning costs to the nodes in a way that exploits the wireless
multicast advantage. We also compared the performance of two heuristics for more
dense networks with a maximum of 150 nodes. Nodes were uniformly distributed in an
area of size 10 x 10. The transmitted power was attenuated as d;?‘k for three different
values of propagation exponent, a = 2, 3,4. The received power threshold was chosen to
be P = 1. Results were based on the performance of 100 randomly chosen networks. In
small networks, the performance metric used was the normalized total transmit power
in the network. In each simulation run, the power used when a heuristic algorithm

was employed was normalized by the power used in the optimum solution. Results
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Figure 2.2: Normalized power used for broadcast. Normalization is with respect to the
optimum power for minimum-energy cooperative broadcast.

are shown in Figure 2.2 as a function of the number of network nodes for o = 2. Re-
sults show the heuristic algorithm performance very close to the optimum. This is a
desirable and important characteristic, given the complexity of finding the optimum so-
lution. The simulation results also show 2 dB savings in average power of accumulative
broadcast over the minimum-energy broadcast tree approach with the broadcast tree
found by BIP.

For the networks with a larger number of nodes, performance comparison of the
greedy filling algorithm and BIP are shown in Figure 2.3. The metric used was the
average total power used for broadcasting. We observe that total power decreases with
the number of nodes due to the increased number of shorter hops. The decrease in
the case of the accumulative broadcast is steeper since the increased number of trans-
missions allows for more energy to be collected. Hence the relative improvement over
BIP increases with the node density of the network. For smaller values of propagation
exponent «, the smaller path loss allows for the higher gains from the accumulative

broadcast and we observe up to 5 dB savings per node for o = 2. Results also show
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Figure 2.3: Average total power used for broadcast.

that, for a larger number of nodes the total power required is smaller for larger values
of . This counterintuitive result is due to the fact that, as the networks becomes more
dense, most of the distances d;; become less than 1 so that 1/ d?k >1/ d?k.

Figure 2.3 also shows the loss in the performance when the LP is not employed to
determine the optimum power levels for a greedy filling schedule. Instead, the power
levels {px|k = 1,..., N} found by the greedy filling algorithm are used for broadcasting.
We observe only a small loss in the performance. Thus, finding the optimum power
levels is not as crucial as finding a good schedule. We will use this observation to

formulate the distributed version of the greedy filling algorithm next.

2.4.2 Distributed Algorithm

In the greedy filling algorithm, we assumed full knowledge of the link gains when forming
a schedule. In particular, we assumed that the fill rates of the reliable nodes are known
in every step, so that the transmitting node k£ could be chosen. Also, we assumed
that the transmit power needed to make one more node reliable could be determined.

In this section, we propose a distributed version of the greedy filling algorithm that
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At each node 7 do:
initialize S;=0; E; =0
while (E; < PT) do
when ACK; is reliably received with power P:
calculate h;; = Ppog/P
transmit LG; control packet with power ﬁNR/hij
when data received from node k with power h;p:
if k € Ng(i): LastTransmitNode=k
E; < E; + hjyppT
if ( E;> PT )
send ACK; with power Pjcx
wait for LG control packets from j € Ng(i) \ S;
initialize U;, R; =3 .y, hji, Pi=0
transmit R; with power Pjcx
end %if
end %while
while( |U;| >0 )
when ACK; received with power P > ﬁNR:
if transmitting: stop
SZ'<—SZ'U{j}, U; (—UZ\{j}, Ri<—Ri—hji
transmit R; with power Pjcx
if ( i:argmanegi{Rj} )
transmit data with power p
when an ACK received after 7’: stop
P+ P +pT'|T
if (i never transmitted): s; = [LastTransmitNode, i]
end %if
when data received from node k € Ng(i):
if (4 never transmitted): LastTransmitNode=k
end %while

For the control packets sent at a common rate, Py o is the transmit power and Py, is

the received power threshold required in a neighborhood.

For a node i, E; denotes energy collected from data packets and R; denotes its fill rate.

Figure 2.4: Distributed Greedy Filling Algorithm.
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assumes only local information at the nodes. The distributed algorithm is based on
the observation that the greatest contribution to a fill rate of a reliable node 7 will be
made by the fill rates of its neighbors that, together with node ¢, define a neighborhood
Ng(i) of node i. As we specify later, the transmit broadcast energy of node i will be
determined by acknowledgments (ACKs) sent by unreliable neighbors as they become
reliable. In addition, ACK packets will allow node ¢ to determine the neighborhood
Nr(i). Specifically, an ACK is sent with a fixed power level Py chosen such that it
guarantees the network connectivity [83]. Distributed algorithms for determining such
a power level have been proposed (see [35]). The neighborhood Ng(i) is defined as the
set of nodes that receive the ACK from node i (ACK;), with received power above a
threshold ?NR that assures reliable reception. The formed links are bidirectional which
is a desirable property in a wireless network [34,84]. All control packets used in the
algorithm will be received reliably within each neighborhood. We assume that ACKs
are always received correctly. In practice however, the ACK packets are often lost.
Such conditions can lead to a power efficiency loss as transmitting nodes rely on ACKs
to decide on when to transmit and with what power level.

We now give a detailed description of the distributed algorithm. The algorithm
pseudocode is given in Figure 2.4.

We let S; = SNNg(i) and U; = UNNEg(i) denote respectively reliable and unreliable
neighbors of node i. Initially, each node i sets S; = . While node i is unreliable, node
1 will collect the energy of overheard transmissions including those from nodes outside
its neighborhood. In addition, it will listen for any ACK; that is received with power
above the threshold Py,. When it receives ACKj, node 7 will identify that j € Ng()
and will respond by sending a link gain (LG) control packet containing h;; reliably to
node j. This also informs node j that i € Ng(j). Node i will then update S; by adding
node j to S;.

Once it becomes reliable, node ¢ will itself send an ACK;. An ACK; will prompt
every node j in U; to send an LG packet to node ¢, enabling node % to calculate its fill

rate R; and broadcast it in Ng(7).
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After a reliable node 4 receives an ACKj, it will do the following: if it was trans-
mitting data at the time it received an ACKj, it will stop transmitting. It will update
sets S; and U; by moving node j from U; to S;, update its fill rate R; and notify its
neighbors of its new fill rate. The reliable node that has the maximum fill rate in §;
will decide to transmit.

At all the times prior to its first transmission, node ¢ will keep track of the identity
of the reliable neighbor (a node in S;) from which it received the last data packet.
Thus, in case node 4 decides to transmit next, it will know the node whose transmission
preceeded its own and will use that information for future data broadcasting. The
algorithm will stop at a node ¢ when U; is empty.

When transmitting, node i will repeatedly send the same data packet of duration T
at the rate 7o, given by (2.9) and at the fixed low power level p until it hears an ACK
after some time 7". Each of these data packets will contribute h;;pT" to the energy
collected at the unreliable node j. Once the total collected energy at node E; becomes
E; = PT, node j will send an ACK,. By that time, node i has transmitted 7"/T data
packets and it can determine that the actual transmit power level needed to make j
reliable was pT”/T. Power level p is assumed to be chosen small enough so that the
negligible excessive power is received at an unreliable node before it has a chance to
transmit an ACK. At the end of the algorithm, a node 7 will know the total broadcast
energy it used E!, and thus the power level P, = E!/T that it will use for time T, to
transmit new data that will arrive. Node ¢ will also know the identity of the neighbor
after which it should transmit the new data. We assume that F; is small enough to
allow the network to operate in the wideband regime.

In the algorithm, the action of nodes are triggered by receptions of the ACK mes-
sages and we let each step of the algorithm start with the transmission of an ACK. The
algorithm will terminate in N — 1 steps. It is easy to see that deadlocks cannot occur:
Since the network is connected, every unreliable node will eventually have a reliable
neighbor, causing the fill rate of that neighbor to be nonzero. At each step, one of the
fill rates must be the maximum and, therefore, at least one reliable node will decide to

transmit. Once all the nodes are reliable, all the fill rates will be zero and the algorithm



29

Average Total Power

14 T T T
—©- Distributed heuristic
\ = - Centralized heuristic, no LP
1351
13F
o
K=/
g
3 1251
o
k]
°
o 12
j=2]
o
2
<
11.5F
11
105 I I I I I

50 100 150 200 250 300
Number of nodes

Figure 2.5: Performance comparison between distributed and centralized versions of
the Greedy Filling Algorithm.

will stop.

The benefit of the overheard information will be highest in the neighborhood of a
transmitting node. For that reason, the distributed greedy heuristic, unlike its cen-
tralized counterpart, allows simultaneous transmissions from nodes that are not in the
same neighborhood. We examine the impact of the limited knowledge at the nodes
to the performance of the heuristic. Performance of the algorithm depends on the
choice of range R. For large enough R, the performance of the distributed algorithm
approaches the performance of its centralized version. For the smallest R that pro-
vided the network connectivity, Figure 2.5 shows the performance comparison of the
distributed algorithm with its centralized counterpart as a function of node density.
In this case, the actual power levels found by the greedy filling algorithm were used
instead of the optimum power levels. Comparison with the centralized algorithm using
an LP as well as with BIP, is shown in Figure 2.6. We observe that the performance of

the distributed algorithm is close to the performance of its centralized version.
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Figure 2.6: Performance comparison between distributed and centralized versions of
the Greedy Filling Algorithm and BIP.

2.5 Cooperative Multicast for Maximum Network Lifetime

We next formulate the maximum lifetime problem for cooperative multicast and broad-
cast and present a Mazimum Lifetime Accumulative Broadcast (MLAB) algorithm that

finds the optimal solution.

2.5.1 Problem Formulation

A lifetime of a node i transmitting with power p; is given by T;(p;) = e;/p; where ¢; is
initial battery energy at node i. The network lifetime is the time until the first node
failure

Tnet(p) = HliinTi(pi) (2'16)

where p is a vector of transmitted node powers. The problem is to maximize the
network lifetime under the constraint that all destination nodes become reliable. For
the multicast problem, broadcasting until the subset of destination nodes becomes
reliable will solve the problem.

We can define the problem of maximizing the network lifetime for schedule x in
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terms of the vector p of transmitted powers as

min max 2% (2.17)

P e€;
subject to G(x)p > 1P (2.17a)
p>0. (2.17b)

The inequality (2.17a) contains M — 1 constraints as in (2.8), requiring that the accu-
mulated received power at all nodes in the schedule (except the source) is above the
threshold P. It should be apparent that the ith power in p corresponds to the transmit
power of node z; for every node x; in the schedule x. Alternatively, we can define the
problem in terms of normalized node powers p; = p;e;/e; that account for different
battery capacities at the nodes; the lifetime at every node ¢ in terms of the normalized
power is as if all the batteries were the same: T; = e;/p; = e1/p;. In terms of normalized

node powers, Problem (2.17) can be defined as

min maxp; (2.18)
P

subject to G(x)p > 1P

iel
Vv

0

where each column g; of the normalized gain matrix G(x) is obtained from the corre-
sponding column g; of matrix G(x) as g; = giei/e1.
For any schedule x, we can formulate Problem (2.18) as an LP in terms of transmit

power levels P,

p*(x) :mﬁin P (2.19)
subject to G(x)p > 1P (2.19a)
p<1p (2.19b)

p>0 (2.19¢)

If p = p*(x), then there exists a power vector p such that (2.19a)-(2.19c) are satisfied.

It follows that for any p > p, p < 1p. Thus, for any power p > p*(x), we say that
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power p is feasible for schedule x. Over all possible schedules, the optimum power is

*— min $*(x). 2.20
P i B (x) (2.20)

Equation (2.20) is a formal statement of the problem from which finding the best
schedule corresponding to p* is not apparent. We will see that the power p*, may, in
fact, be the solution to (2.19) for a set of schedules, X*. From now on, we will consider
only normalized powers and we therefore drop the overline notation; H will denote the
ordinary gain matrix, G(x) will denote the gain matrix permuted for schedule x, and
the power vector will be simply p, with p; representing either the power of node i or
node z;, as appropriate for the context.

Rather than identifying X*, we employ a simple procedure that, for any power p,
determines a collection of schedules for which power p is feasible. In particular, to
distribute a broadcast message, we let each node retransmit with power p as soon as
possible, namely as soon as it becomes reliable. We refer to such a distribution as the
ASAP(p) distribution. During the ASAP(p) distribution, the message will be resent in
a sequence of retransmission stages from sets of nodes Zi(p), Z2(p), ... with power p
where in each stage i, a set Z; that became reliable during stage ¢ — 1, transmits and
makes Z; 1 reliable.

Let S;(p) and U;(p) denote the reliable nodes and unreliable nodes at the start of
stage i. Up;i(p) C U;i(p) is the set of unreliable destination nodes at the start of stage
i. Then, Zi(p) =1 and S;(p) = Zi(p) U...U Z;(p). The set Z;11(p) is given by

Zivi(p) ={z €Uilp):p Y  hux > P} (2.21)
keS;i(p)
Note that if power p is too small, the ASAP(p) distribution can stall at stage i with
Sit1(p) = Si(p) and Up;(p) # 0. In this case, ASAP(p) fails to distribute the message to
all destination nodes. When Up;(p) = 0 at any 4, the ASAP(p) distribution terminates
successfully. We will say that the ASAP(p) distribution is a feasible multicast if it
terminates successfully.
The partial node ordering, Z;(p), Z2(p),- .., specifies the sequence in which nodes

became reliable during the ASAP(p) distribution. In particular, any schedule x that
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is consistent with this partial ordering is a feasible schedule for power p. Nodes that
become reliable during the same stage of ASAP(p) can be scheduled in an arbitrary
order among themselves since these nodes do not contribute to each other’s received
power. The following theorem verifies that in terms of maximizing the network lifetime

it is sufficient to consider only schedules consistent with the ASAP(p) distribution.

Theorem 4 If p is a feasible power for a schedule X, then the ASAP(p) distribution is

a feasible multicast.

In particular, Theorem 4 implies that for optimum power p*, the ASAP(p*) distribution
is feasible. The proof of this theorem is given in Appendix A.3.

We next present the Mazimum Lifetime Accumulative Broadcast (MLAB) algorithm
that determines the optimum power p*. Once the power p* is given, broadcasting with

ASAP(p*) will maximize the network lifetime.

2.5.2 The MLAB Algorithm

We label node 1 as the source node and 2 as its closest neighbor (more precisely,
the node with the highest link gain to the source). The MLAB algorithm finds the
optimum power p* through a series of ASAP(p) distributions, starting with the smallest
possible candidate broadcast power, p = P/hy. Whether ASAP(p) stalls or terminates
successfully, we define 7(p) as the terminating stage. When p = p*, the ASAP(p*)
distribution will terminate in 7* = 7(p*) stages. When the ASAP(p) distribution stalls
at stage 7(p), we determine the minimum power increase ¢ for which ASAP(p + §) will
not stall at stage 7(p), in the following way. The increase in broadcast power d; needed

to make a node j € Uy, (p) reliable must satisfy
P=p+6&) Y hi (2.22)

kES () (P)

We choose § = minjeUT(p)(p) 0;. We then increase p to p + ¢ and restart the MLAB
algorithm. The algorithm stops when an ASAP(p) distribution terminates successfully.
The pseudocode of the algorithm is given in Figure 2.7. The MLAB algorithm ends

after at most N — 1 restarts. There exists a set of feasible schedules that are consistent
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Initialize: p = P/ho
Start: Set Si(p) ={1}; Ui(p) = S°¢
apply the ASAP(p) distribution;

If ASAP(p) stalls at stage 7(p):

for all j € Uy, (p) calculate:

i = P/ Xkes, ) hik = P;

Set: 6= minjeUT(p)(p) 0j; P+ p+0;

go to Start;
end
The cardinality of S is given by |S|. S¢ denotes the complement.

Figure 2.7: MLAB Algorithm.

with the partial ordering given by the ASAP(p) distribution. The normalized transmit
power at all nodes in S;(;)(p) is p. Note that the last transmitting set Z,) could
in fact, transmit with power less than p if it is enough for the last set of unreliable
destination nodes, Up ;(p) (p), to become reliable. Thus, choosing the power level at all
nodes to be p is not necessarily a unique solution. While this won’t change the network
lifetime, the latter solution will reduce the total transmit power in the network. Next

we show that the power found by MLAB is in fact the optimum power, that is, p = p*.

Theorem 5 The MLAB algorithm finds the optimum power p* such that the ASAP(p*)

distribution mazximizes the network lifetime.

The proof is given in Appendix A.4.

Finally, we note that the full restarts of the MLAB algorithm are used primarily
to simplify the proof of Theorem 5. In fact, when MLAB stalls, it is sufficient for the
reliable nodes to offer incremental retransmissions at power A*. This observation will

be the basis of distributed algorithm proposed in Section 2.5.4.

2.5.3 Performance

We now evaluate the benefit of accumulative broadcast to the network lifetime and
compare it to the conventional network broadcast that discards overheard data in a
network. In particular, networks with randomly positioned nodes in a 10 x 10 square
region were generated. The transmitted power was attenuated with distance d as d* for

different values of propagation exponent a = 2,3,4. The received power threshold was
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Figure 2.8: Broadcast power for maximum network lifetime for different propagation
exponent values. Powers are determined by MLAB Algorithm.

chosen to be P = 1. Results were based on the performance of 100 randomly chosen
networks. Figure 2.8 shows the power p for different values of propagation exponent in
networks with different node densities. The observed power decrease is due to shorter
hops between nodes in denser networks. For equal battery capacities at the nodes, the
corresponding network lifetime, i.e. the time until the first node failure, is shown in
Figure 2.9.

Figures 2.10 and 2.11 show the benefit of accumulative broadcast as compared to
conventional broadcast in terms of network lifetime. For conventional broadcast, the
authors in [37,38] proposed two algorithms, MSNL and MST, that maximize the static
network lifetime as well as WMSTSW, a greedy algorithm that increases the dynamic
lifetime. We compare the performance of these algorithms for three different battery
energy distribution, as given in [37, 38|, to the network lifetime found by the MLAB
algorithm. We first assume that all the nodes have identical batteries. Then, we
consider two different node battery scenarios in which the initial battery energies at
the nodes are independent uniform (0,1000) or uniform (500,1000) random variables.
Several other algorithms to increase the dynamic network lifetime were evaluated in [38]

with similar performance to WMSTSW. As expected, we see that solution found by
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Figure 2.9: Network lifetime for different propagation exponent values. Powers are
determined by MLAB Algorithm.

MLAB considerably increases network lifetime. Typically, MLAB increased the network
lifetime by a factor of 2 or more. The reason is twofold. First, in MLAB the broadcast
uses the energy of overheard information which enables for more radiated energy to be
captured. Second, the accumulative broadcast enables MLAB to distribute the load
more evenly among the nodes than does the dynamic load balancing in conventional

broadcast.

2.5.4 Distributed MLAB Algorithm

We next describe a distributed MLAB algorithm for accumulative broadcast that deter-
mines broadcast power locally at each node. Nodes are assumed to have no knowledge of
link gains (distances) to other nodes at the beginning of the algorithm. The distributed
algorithm will be run at the beginning of a broadcast session during the broadcast of
the first message. Let ¢ denote the broadcast power determined by distributed MLAB.
Once the power ¢ is determined, data will be broadcasted through the ASAP(q) distri-
bution. In a static network where the same power ¢ is used throughout a long broadcast
session, the initial overhead to determine ¢ will be small compared to the amount of

broadcast data.
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Comparison: Accumulative Broadcast vs. Conventional Broadcast
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Figure 2.10: Network lifetime of accumulative broadcast and conventional broadcast.
The distributed implementation of the ML AB algorithm has to resolve the following;:
1. When should a reliable node decide to increase the broadcast power?
2. How much should a reliable node increase the broadcast power?

When the ASAP(p) distribution stalls, determining the necessary power increase §
requires global knowledge of network gains and cannot be computed locally at a node.
In the distributed MLAB algorithm, the broadcast power will be increased in steps
of size A, for some small fixed power A. Further, during the initial broadcast phase
while the algorithm is run to determine ¢, we let A be the transmit power of every
transmission. A reliable node intending to transmit with power nA for some n > 1
will instead repeatedly transmit for n times, each time with power A. A transmission
from a node ¢ with power A will be overheard by a number of nodes that define a A-
neighborhood N;(A) of node i. Nodes will belong to Na () if they can detect the presence
of a signal sent at node 4, although their received power may not be sufficient for reliable
decoding. Overhearing a broadcast from a node k will enable node ¢ to determine the
link gain h;; and identify node k as its reliable neighbor. During the algorithm, node
i will keep track of its set of reliable neighbors, R; C N;(A). From the number of

repeated transmissions at node k, node ¢ will also be able to determine the current
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Figure 2.11: Network lifetime of accumulative broadcast and conventional broadcast.

transmit power at node k. Because the transmit power will not necessarily be the same
at all nodes all the time, node ¢ will keep track of transmit power p;(k) = n;(k)A for
every k € R;, where n;(k) is a number of repeated broadcasts by node k. In addition,
once reliable, node ¢ will keep track of its unreliable neighbors, U;. An unreliable node
J will send NACK; control messages to identify itself. As node ¢ becomes reliable, it
will broadcast with maximum power among its reliable neighbors in R;,

p(Ri) = A }Créaé{m(k)}-

While reliable, whenever it overhears a transmission that increases the power p(R;),
node ¢ will repeat the broadcast to meet it. In that way, the current maximum transmit
power in the network g will propagate until all reliable nodes have transmitted with that
power. A reliable node that overhears no transmissions for time 7, > 7(A) and has
unreliable neighbors will decide to increase its transmit power. At the end of the
algorithm, power g will determine the broadcast power gq. A detailed description of the
algorithm is given in pseudocode in Figure 2.12.

Constraining the power of each transmission to A defines A-neighborhoods and
allows nodes to determine the link gains within their A-neighborhoods. Therefore,

power A defines the network topology and has to be high enough to guarantee network
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At each node ¢ do:
initialize R; =0, pr=0;
while (pgr < P) do:
when data received with P from k:
collect data; pr < pr+ P;
if k¢ R;:
hip = P/A, n,(k) =0, R+ R;U {k},
send NACK; reliably to k;
end %if
ni(k) = ni(k) + 1;
end % while
as (pr > P) do once:
decode the message;
set n;(i) = maxger,{ni(k),1};
broadcast the decoded message once;
U; ={j:j that responded with NACK,};
broadcast n;(i) — 1 times;
while (pgr > P) do:
when data received from node k:
update n;(k) = n;(k) + 1;
if ni(k) > ni(i):
ni(1) < n;(7) + 1, broadcast;
if k¢ R;: R;+ R;U{k}, U, + U;\ {k};
if no data received for T, and U; # 0:
broadcast;
ni(1) < ni(é) +1;
end %if
end % while
Received power at a node is denoted pg.

Figure 2.12: Distributed MLAB Algorithm.

connectivity [83]. In the distributed MLAB algorithm, it is sufficient that under power
A, the network is connected in the overheard sense. That is, in the underlying graph,
a link between two nodes exists if they can overhear each other. During MLAB, we
assume that the network is connected under power A.

This assumption is not essential for the algorithm and can be relaxed by letting
MLAB algorithm rely on preexisting network topology. Different distributed algorithms
for determining network topology have been proposed (see [35], [84]) and typically
employ short HELLO control packets exchanged at the nodes. Given the power P,
and rate 7 of control packets, HELLO packets define one-hop neighborhood N;(P,) for

node i as all nodes that can reliably receive a HELLO; packet sent at node i. A version
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of the distributed MLAB algorithm can then be run on the top of the topology defined
by neighborhoods N;(P,) instead of N;(A).

Note that decreasing the rate r. reduces the power P, necessary for network con-
nectivity by reducing the receiver power threshold needed for reliable communication.
Connectivity in overheard sense, required for A-neighborhoods, reduces this threshold
to its minimum value necessary to acquire a signal or decode a packet header and thus
reduces necessary power for connectivity. Therefore, it may be reasonable to assume
that under power A, the network is connected. The next theorem shows that the

algorithm is correct and finishes in finite time.

Theorem 6 The distributed MLAB algorithm makes every network node reliable in

finite time.

The proof is given in Appendix A.5.
The running time and performance of the algorithm are dependent on the values of

the parameters A and T,. In fact, we have the following theorem.

Theorem 7 For large enough T,, T, > 7(A), power q found by the distributed MLAB

algorithm is within A of the optimum solution; that is, q € [p*,p* + A).

The proof is given in Appendix A.6.

Thus, by choosing a smaller A, the solution found by the distributed MLAB algo-
rithm approaches the optimum, at the expense of longer running time due to the larger
T, and smaller step size A. When the distributed MLAB does not rely on a preexisting
topology, there is a lower bound on A to guarantee network connectivity. At the other
extreme, for A large enough to guarantee full connectivity (every node can overhear
every transmission), T, can be chosen to be 0. The optimal tuning of the algorithm

parameters has yet to be determined.

2.6 Conclusion

In this chapter, we defined and solved two accumulative broadcast problems. We showed

that finding the optimum solution for the minimum-energy accumulative broadcast
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problem is NP-complete, and proposed a simple energy-efficient heuristic algorithm. For
the maximum lifetime problem we showed that there exists a simple optimal solution
and proposed an MLAB algortihm that finds it.

While in accumulative broadcast nodes collect unreliably received signals, they for-
ward the information only after reliably decoding a message. And yet, as pointed out
earlier, the relay strategy where no decoding is performed at the relays is optimal for
particular relay networks [12,20]. For the networks of interest in this thesis, where
power rather than bandwidth is the limiting resource, we wish to evaluate the energy-
efficiency of the unreliable, amplify-and-forward strategy and compare it with the reli-
able, decode-and-forward strategy. We present such an analysis for the multiple-relay

channel in the next chapter.
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Chapter 3

Bandwidth and Power Allocation for Cooperative

Strategies in Gaussian Relay Networks

3.1 Introduction

We next consider a network that consists of a single source-destination pair and M
relays that dedicate their resources to relaying information for the source. Simple two-
hop relaying is assumed, thus precluding communications among relays. The capacity
of this network is not known for any finite M. The asymptotic capacity in this network,
as the number of relays gets large, is achieved by the unreliable forwarding at the relays
[20]. We examine the achievable rates with amplify-and-forward (AF) and decode-and-
forward (DF) relaying strategies in this relay network. We show that the AF strategy
does not necessarily benefit from the large available bandwidth. We characterize the
optimum AF bandwidth and show that transmitting in the optimum bandwidth allows
the network to operate in the linear regime where the achieved rate increases linearly
with the available network power. We then present the optimum power allocation
among the AF relays. Motivated by the large bandwidth resources we further consider
a network that uses orthogonal transmissions at the nodes. While the above result
for the optimum bandwidth still holds, we show that a different set of relays should
optimally be employed.

The optimum AF bandwidth and the relay powers can be contrasted to the decode-
and-forward solution. In a network with unconstrained bandwidth, the DF strategy will
operate in the wideband regime to minimize the energy cost per information bit [71,85].
The wideband DF strategy requires again a different choice of relays; in the case of
orthogonal signaling, we show that the data should be sent through only one DF relay.

Thus, in general, in a large scale network, a choice of a coding strategy goes beyond
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determining a coding scheme at a node; it also determines the operating bandwidth as

well as the best distribution of the relay power.

3.2 System Model

We consider a wireless Gaussian network with a single source, labeled node 0, the
destination, labeled node M + 1, and M relays. We consider two bandwidth allocations

in the given network:
1. Shared bandwidth. All the relays transmit in a common bandwidth W (),

2. Orthogonal channels. Every node is assigned an orthogonal channel of bandwidth

w o).

We adopt a discrete-time Gaussian channel model [81] and let the vector X[n] =
[Xo[n],...,Xn[n]]T denote the channel inputs in time slot n. The channel input Xg[n]
depends on the source message and the channel input X,,[n] at relay m depends on
its past outputs X,,[n] = fn(Yim[1],--.,Ym[n — 1]). The output at relay m is denoted
Yk and at the destination V() and Y(© for the shared bandwidth and orthogonal
signaling, respectively.

In such a network, we consider two-hop forwarding strategies in which relays use only
the information received from the source to choose their channel inputs and forward
the messages to the destination. In the first hop, the source transmits. The channel

output at relay m is

Yem[n] = v/amXo[n] + Zgm|[n] (3-1)
and at the destination,
Y9 [n] = \/BoXoln] + Z[n, (3-2)

where /&, and /B; are the source-relay m and source-destination channel gain, re-
spectively, and Z[n] is a zero-mean Gaussian random variable with variance Ny/2. In
the second hop, relays transmit. In shared bandwidth, the channel output at the des-
tination is

YO = 3 VBuXmln] + Zln]. (33)
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However, when relays use orthogonal channels,

Y ©)[n] = BX[n] + Z[n] (3.4)
where B = diag (\/5_0 1/ﬂM) and Z is a Gaussian noise vector with covariance

matrix K = 021M+1-

Using the Cut-Set Theorem [81, Thm. 14.10.1], it was shown in [19] that the capacity
of this network is upper bounded by log M, given that there is a dead zone around the
source that contains no relays.

We consider two transmission strategies at the relays. As in [19], we consider the
amplify-and-forward protocol at the relays, in which the noisy version of the source
input X received at relay m, 1 < m < M, is amplified and forwarded with a unit

delay. For amplification gain b,, > 0, in time slot n, relay m transmits

Xon[n] = Vb (Vam Xoln — 1] + Zgln —1]). (3.5)

We then consider the decode-and-forward strategy in which the source transmission
is reliably received at a relay. The relay decodes, re-encodes using an independent
codebook and transmits.

Rather than considering the power constraint imposed on each transmitter, we as-
sume that the total power budget of p [Watts] is allocated to the network. The con-
straint is on the total power rather than on the power per dimension because DF and AF
will not in general operate in the same bandwidth: as explained later on in this chapter,
DF will operate in the wideband regime in order to improve the energy-efficiency. On
the other hand, AF will operate in the smaller bandwidth in order to reduce the amount
of amplified noise at the relays. Further, such a constraint allows a power allocation

among the nodes such that E[XTX] < p/2W®, i =1,2.

3.3 Amplify-and-Forward: Optimum Bandwidth Allocation

We next consider the rates achievable with the AF strategy. Let p,, denote the power

T
at node m and let p = [po pM] be the power allocation at all nodes. Vector

T .
P = [PO PM] denotes nodes’ powers per dimension and P, = pm/2W(’), ] =
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1,2. The amplification gain by, is chosen such that the transmit power at node m is py,

and is found from (3.5) to be

P
= =1,... M. .
bm OlmPO +N0/2, m 7 (3 6)

The achievable rates, given by the maximum mutual information between the channel

input and the output can be found from the result in [58] to be

Py
No/2

@) = %log [1 + (50 + GO (P))] (3.7)

for ¢ = ¢, 0 where

e For the shared bandwidth,

G (P) = N ) (3.8)

M Bm Pm ’
(XCm=1 anpoiarz +

e For orthogonal channels,

M

(0) _ amﬁmpm
GO =D o B B+ NoJ2 (39)

m=1

Rates (3.7) are normalized by the number of dimensions utilized by a node rather than
by the total number of dimensions in the channel. For G®(P) = 0, (3.7) becomes
the rate achieved in the single-user channel, by a direct source transmission at power
Py. Thus, we can view G())(P) as the gain obtained by employing the AF relays. The
difference in the AF gains (3.8) and (3.9) comes from the coherent combining of the
relay signals transmitted in a shared bandwidth, which is forfeited in the orthogonal
channel system. The analysis presented in this section, however, applies to both cases
and we therefore drop the (i) superscript. We next consider the total rate achieved by
the AF strategy

rarp = 2WIup(P)  Dbits/s, (3.10)

where T4 is given by (3.7). As W becomes large, we observe that G(p/W) decreases

to zero and therefore

Bopo )= Bopo

= i A1
NoW Nolnd bits/s, (3.11)

lim rqp = lim Wlog(1l+
W—oo W—o0
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which is the rate achieved in the wideband regime by the source transmission. Therefore,
there is no benefit from AF relays transmitting in the wideband regime. This behavior
was previously observed in [86] in a parallel Gaussian network with two relays. Except
for the very special case in which the source is in a favorable position compared to all
the relays, the rate r 4 generally decreases for large W.

To characterize the optimum AF bandwidth, we formulate the AF power/bandwidth

relay problem as

r* =max 2WIsp(P) (3.12)
PW
M
subject to 2W Z P, <p, (3.12a)
m=0
P >0, (3.12b)
0<W < Winax. (3.12c)

We assume that Wy, is sufficiently large to allow the network to operate in the wide-
band regime. Let (P*, W*) denote the optimum power and bandwidth allocation that
achieves 7* in (3.12). We first observe that, to achieve nonzero rate in (3.12), it has to
hold that W* > 0 and Py > 0. Furthermore, constraint (3.12a) is always binding. De-
pending on the values of the channel gains, a solution to problem (3.12) may be a direct
source transmission, that is, Py, = 0 for m = 1,..., M, W* = Wpax and Fj given by
(3.12a). Otherwise, there will be a set of 0 < K < M relays employing the AF strategy.
Given P*, it will be convenient to relabel the nodes such that m € {1,..., K} relays
are the active transmitters with powers P, > 0 while P}, =0, form € {K +1,...,M}.

The Lagrangian in (3.12) is

A=2WI r(P) —p <2W > Pa —p) (3.13)
m=0

The fact that rate r4p is decreasing with W for large W implies that W* < Wpyax.
Since in addition W* > 0, the solution to (3.12) is never on the boundary (3.12c). By

the Kuhn-Tucker conditions, this implies

oA s
o = 2Lar(P*) = 2 Y pr=0 (3.14)

m=0
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From (3.14), we obtain the Lagrange multiplier

I4rp(P*)

Zm:O Pm
For nodes k =0, ..., K with non-zero transmitter powers, the Kuhn-Tucker conditions
are
oA 0I4r(P*)
— =2W" — =0 k=0,...,K. 3.16
8Pk [ apk ? ? 7 ( )
From (3.15) and (3.16),
Ol ap(P* Isp(P*
AF ( )ZMZ AIf( ), E=0,... K. (3.17)
apk Zm:O P’;;l
The optimum power allocation (Pf, ..., Pj) can then be determined from K + 1 equa-

tions given by (3.17), and is independent of r and W*. We present the solution for the
optimum relay powers in the next section. The optimum bandwidth can be determined

such that the solution lies on the feasibility region boundary (3.12a):

* b
W= ————«——. 3.18
2y o P (318

From (3.12), (3.15) and (3.18),

I4rp(P¥)

r* = 2W* [y (P*) = S
Em:O P’;(;L

p = pp. (3.19)
We thus proved the following;:

Theorem 8 The AF relay problem (3.12) has an optimum solution in which the op-
timum bandwidth W*, the mazimum rate v* and the total power p have a linear rela-

tionship.
We can view p as a ‘rate reward’ (or the power efficiency); increasing the total available

power in (3.12) by Ap increases the maximum achievable rate r* by uAp.

3.4 Amplify-and-Forward: Optimum Relay Power Allocation

We next consider a subproblem of (3.12) that determines the optimum relay powers
per dimension, for any given source power Py. We consider the shared bandwidth case

first.
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3.4.1 Shared Bandwidth

Given a source power Py, we let

Bm

= 3.20
) T
To maximize the rate (3.7) over the relay powers P = [ po... PM] , We maximize
the AF gain (3.8):
o 2
(Zm:l \% am'Yum)
M
subject to Z P, < Pg, (3.21a)
m=1
P>0 (3.21b)

where Pr = p/2W — P, is the power allocated to the relays. To solve (3.21), we first
argue that the solution is always on the boundary (3.21a). To see that, consider a
feasible solution P such that Z%:l P,, < Pr. Then, there exist a constant K > 1
and a feasible solution P’ = KP such that P’ is on the boundary K Z%:l P,, = Pg.

Furthemore, it is easy to verify that G(P’) > G(P). We can thus let the constraint

(3.21a) be satisfied with equality. The objective function (3.21) becomes

2
(2%21 am'Yum)
M (Ym +1/Pg) P

A solution to problem (3.21) can be found by representing the objective function (3.22)

G(P) =

(3.22)

in the form of a Rayleigh quotient that would then be maximized [87]. A simpler

approach, however, can be used by introducing variables z = [z,,]

Zm =\ Tm + 1/Pe/Prm, m=1,....M (3.23)

and a vector of coefficients d = [d,,,] where

AmYm
d =4/ 5 m=1,....M 3.24

Problem (3.21) can then be represented in a vector form

T \2
max (d Z) .

z zl'z

(3.25)
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Applying the Schwartz inequality, the solution to (3.25) is z* = kd where the constant

k can be found from (3.21a) and (3.23). We get the optimum powers in the MRC form

as
Pgré
Pl = (3.26)
Zk:l 619
where we define
by = ——omm__ (3.27)
(1 + 'YmPR)
The AF gain (3.8) becomes
M
CWnﬂmf)R
)(Py, Pr) . 3.28
0r R Z:IQmPO+/8mPR+N0/2 ( )

The next lemma follows by comparing AF gains (3.28) and (3.9).

Lemma 1 For any given source power Py and relay power Pg with the relays employing

amplify-and-forward, signaling in shared bandwidth outperforms orthogonal signaling.

Given the relay powers (3.26), the AF power/bandwidth problem (3.12) for any given

W reduces to

(1)
mpax I+ (Po, Pr) (3.29)
. p
Py+ Pr < Pr=— 2
subject to Py + Pr < Pr ST (3.29a)

Py, P > 0. (3.29D)
Lemma 2 There exists a unique optimum solution (Py(W), PR(W)) to (3.29).

The proof for the lemma follows from the observation that the optimum is on the
boundary where P = Pr — P and that IS%(PO, Py — Py) is strictly concave in P.
Given (Pj(W), Pg(W)), the AF power/bandwidth problem (3.12) reduces to max-

imizing the rate with respect to bandwidth for 0 < W < Wiax,

(W) = muz}x2WI§}(PO*(W), Pi(W)). (3.30)
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3.4.2 Numerical Results

Numerical calculation of r*(W) is straightforward. The relay powers (3.26) are shown in
Figures 3.1-3.4 for a scenario of M = 2500 relays positioned on a 100 x 100 square grid.
The source and the destination are positioned on the two opposite sides of the grid.
The propagation exponent n = 2 was chosen. As explained in the Introduction, for
convenience we choose Ny/2 = 1 and path loss G = r~™ where r denotes a transmitter-
receiver distance. Using more realistic values for Ny, G and the distance units scale the
results without impact on the power fraction allocated to a relay.

In the simulations, we consider a dense network with a large number of AF nodes
transmitting signals that coherently combine at the destination receiver. It may there-
fore appear that such a setting may cause a physically impossible scenario in which the
received power at the destination is higher than the transmitted power at the source.
Calculating the received power for the actual values of the parameters reveals that the
received power is still significantly smaller than the source transmit power. To illustrate
this fact, assume that M = 100 relays are positioned on the line between the source
and the destination at a distance of 1 meter from the destination and are transmitting
with power P,,, =1 mW at a carrier frequency of 3 GHz. For the source power Py = 1
mW the resulting receiver power is 6 x 1074 mW.

For large source power P, relay powers are shown in Figure 3.1. In this case,
the received SNR at the relays is high and the network MAC side from the relays to
the destination limits the performance. The relays that have a better channel to the
destination are employed. Figure 3.2 shows the opposite case of a small power P, and a
high power Pr. We observe a reversed relay power allocation compared to the previous
case, as the network tries to improve the broadcast side performance by choosing the
relays with high received SNR. Figure 3.3 shows the powers for larger values of Py and
Pr. Finally, Figure 3.4 shows the relay powers when the network operates in a low

SNR-regime due to small Py and Pg.
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Power allocation at the relays

1 M= 2500

P =10%,P.= 001
08 0 R

0.6

0.2 /4
lll“ destination
AN
SN

100

source

Figure 3.1: Relay powers for Py = 10*, Pr = 0.01. Due to a small power available to
the relays, the MAC side limits the network performance. The solution chooses relays
that have a better relay-destination channel.

Power allocation at the relays

1000 M = 2500

- Zant
PO =:0.0% PR— 10

Figure 3.2: Relay powers for Py = 0.01, Pr = 10*. Relays that are closer to the source
are employed.
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Figure 3.4: Relay powers for Py = Pr = 0.01 and Ny/2 = 1.
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3.4.3 Orthogonal Channels

We next identify the best subset of AF relays and their powers for the case of orthogonal

signaling. Given a source power Py, we let

amBm
=4 f———. 3.31

Again, to maximize the rate (3.7) over the relay powers P, we maximize the AF gain

(3.9)

M Y2, P,
max — = 3.32
P mZ:I Qm + 712an ( )
M
subject to Z P, < Pg, (3.32a)
m=1
P >0. (3.32b)

From the Kuhn-Tucker conditions, the solution to (3.32) is in the form of water-filling
P,;:O‘—m[i—ir, m=1,...,M (3.33)

Ym LV Ym
where 7 is the Lagrange multiplier and is found such that constraint (3.32a) is satisfied
with equality. Once again, the best choice of relays varies with the transmit source
power. We observe that the AF relay network, depending on whether it operates in
shared or orthogonal channels, will require two different relay power allocations, as

given by (3.26) and (3.33).

3.4.4 Single-Relay Channel

A different AF paradigm can be used in a single-relay channel (or in a relay network with
multiple relays that cannot hear each others’ transmissions). Under the assumption
that a relay can transmit and receive simultaneously, we can allow the source and the
relay to transmit at the same time, in the shared bandwidth. As observed in [14], this
strategy turns the relay channel into a unit-memory intersymbol interference channel,

as the signal at the destination becomes

Y[n] = /BoX[n] + Vou fibi X[n — 1] + Wn] (3.34)
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where
Wn] = /B1b1 Z[n] + W(n] (3.35)

is the total noise at the destination. The amplification gain b; is given in (3.6), as

before. Note that W|[n] has variance
0%, = E[[W[n][*] = (B1b1 + 1) No/2. (3.36)

The capacity of this effective ISI channel is [81]

1/2 v +
= [ o (i) @ (3.37)
-1/2 O'V~V
under the power constraint
1/2 a%/ +
v— —+—| df =P, 3.38
L. [ IH(f)I2] r=n (3.35)
where

[H(f)|” = Bo + a1Bib1 + 2y/c1BoB1b1 cos (2 f). (3-39)

When using the large bandwidth W, the amplification gain b; goes to zero and the
channel (3.34) becomes the point-to-point channel with no benefit from the relay. Thus,
this AF strategy can again benefit from the bandwidth optimization. We illustrate that
fact on the network example of [14] where a source, relay and destination are positioned
on a line. The source-relay distance is denoted as d. For Py = Pr = 10, we repeat the
performance comparison given in [14] in Figure 3.5. Figure 3.6 shows the comparison
for Py = Pr = 0.01. Note that, when employing the DF strategy, a relay also transmits
and receives simultaneously. We observe that the relative performance between DF and
AF changes as a different power per dimension is used. Thus, in Figure 3.7, we compare
the two strategies while allowing each of them to operate in its optimum bandwidth

and thus optimum power per dimension, for the given power (Watts) at the nodes.

3.5 Decode-and-Forward

A multi-hopping strategy [14] in which the data sent at the source is successively de-

coded by the relays and finally by the destination was shown to achieve the rates [14,
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Thm. 1]:

Rpr = max ogigl}vf I( X7 0:0); Yr(ea1) | X (t41:01)) (3.40)

where 7 is a permutation on the set of nodes and 7(0) = 0, #(M +1) = M + 1 and
(i : j) = {r(i),...7(4)}. X, denotes the channel inputs X;;; = [X;, X;q1... Xj].
For a fixed covariance matrix R = E[XXT], it follows from the conditional maximum
entropy theorem [88, Lemma 1] that all the terms in (3.40) are maximized by choosing
X as a zero-mean Gaussian vector.

The two-hop decode-and-forward is a more constrained case of multi-hopping and
it imposes a constraint on the correlation between the inputs. The rate (3.40) then
reduces to the minimum of the rates on each of the two hops; the first rate, achieved

on the broadcast part of the network in the first hop:

OtPO

1
= —log(l + ——
Rpc 5 og( +N0/2)

(3.41)
and the second rate, achieved on the MAC side in the hop from the relays to the
destination:

1 1
RS\}I)AC =3 log 1+ NoJ2 BoPo + ( Z VBiP)? |- (3.42)
JEA(Po)

A(Pp) denotes the subset of relays executing the DF strategy and a = minje 4(p,){c}-
The channel capacity from the source to any node in A(FPp) is thus higher than the code
rate Rpc and we say that the source makes a node in A(Fy) reliable. In general, the
source power is split into two parts: one part is used for the transmission to the relays,
and the second part is used for helping them forward a message to the destination [10].
However, in (3.41) and (3.42), the source power is used for the first goal exclusively.
The reason is that the MAC rate (3.42) increases with M and thus will become higher
than the rate (3.41) for sufficiently large M.
In the case of the orthogonal signaling, the MAC rate is given by

@) Lygg (14 Dobo L1og (14 i 4
Ryjac 9 08( + No/2 + | Z 5 log {1+ Noj2) " (3.43)
JjE€A(Po)

As in the AF case, the difference in the two bandwidth allocations is that the signaling
in the common bandwidth allows for the coherent combining of the relay signals at the

destination.
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The achievable rate (3.40) reduces to
@ _ (#) L
IDF = mln{RBCaRMAC}a 1=1,2. (344)

The achievable rate (3.44) is bounded by the worst source-relay link and by the
MAC part of the relay network that, for any A(FP), is a Gaussian vector channel [58]
with relays acting as a multiple-transmit antenna transmitter. For the given powers, the
maximum rate in bits/s or equivalently, the minimum energy cost per information bit
in both the point-to-point and Gaussian vector channel is achieved in the limit of large
W [71]. Thus, the power-efficiency of the decode-and-forward strategy is maximized in

the wideband regime. This behavior was recently analyzed in [85].

3.5.1 DF Orthogonal Signaling: Optimum Power Allocation

In this case, the MAC rate is given by R§\2/1) 4c- For the given power Py and the rate r
at the source, relay m will be able to execute the DF strategy only if the rate r can be
communicated reliably from the source to relay m with power pg. Thus it has to hold

that

OémP()
>, .
W log <1+N0/2> > (3.45)

When constraint (3.45) is met for node m, we say that the source makes node m reliable.
To optimize the transmit powers, we have to find the best subset of nodes to be made
reliable so that they can decode-and-forward the message. We use binary variables z;
to indicate which relays ¢ will be in the active set A(py) and formulate the maximization

of I(DZI),, in the following way:

M
Pofo pibi
max 7 = Wlog <1+WNO>+i2_;xiW10g (1+WN0) (3.46)
subject to W log <1 + 5;)10\2) > xr (3.46a)
M
> pi <p, (3.46b)
i=0
z; € {0,1}, (3.46¢)

pi > 0. (3.46d)
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Specifically, (3.46), sets Rs\?I)AC = r while (3.46a) requires that rate r be achievable at
each active relay. In the limit of large W, problem (3.46) simplifies to the orthogonal

wideband DF relay problem:

M
max 1 = pofo + Z TipifBi (3.47)
=1

subject to poa; > x;r, (3.47a)
M

> pi <o, (3.47b)
i=0

;i € {0,1}, (3.47¢)

pi > 0. (3.47d)

From (3.47) we observe that in terms of the set A(py) = {i|z; = 1} of active relays,
r=pofo+ > piBi<pobot| D>, pi max [ (3.48)
i€AGpo) i€apo) ) A0
Moreover, this upper bound is achievable by assigning the relay power budget ), A(po) Pi

to a single relay k with 8 = max;c a(p,) Bi- This observation yields the following claim.

Theorem 9 The orthogonal wideband DF relay problem (3.47) admits an optimal so-

lution in which no more than one relay node transmits.

The intuition of Theorem 9 is that the relays provide a set of parallel channels to the
destination and under wideband operation, transmitted power per dimension is severely
restricted. Thus waterfilling this power over the relay channels results in transmission
only on the best channel to the destination.

By Theorem 9, it is sufficient to consider only policies that employ a single relay k.
In this case, zx = 1, and z; = 0 for 7 # k. The problem (3.47) becomes the wideband

single relay problem

max 7 = poBo + Pk (3.49)
subject to poay > 7, (3.49a)
Po+pr <P (3.49b)

po, Pk > 0. (3.49d)



59

In the problem (3.49), one can show that relay k is used with power py > 0 only if

ar > By and B > Bo. In this case, the transmit powers are

. Br

ag — fPo

O o+ B — Bo T ag+ B — o (3.50)
The achieved rate normalized by the noise variance is
Ty = akiﬁkp. (3.51)

o + Bk — Po
We emphasize that this is the optimal power assignment for using node k as long as

node k is a useful relay, in the sense that k& belongs to the set of useful relays
U = {ilai > Bo, Bi > Po}- (3.52)

Finally, among all useful relays k, we choose that one which maximizes the rate r;. We

summarize our observations in the following theorem.

Theorem 10 If the set U of useful relays is non-empty, the optimal solution to the

orthogonal wideband DF relay problem (3.47) is for the source to employ relay
1 Bo

k* =argmin |— + — —
keU |ag  Br  orfk

(3.53)
with power assignment given by (3.50); otherwise, if U is empty, then direct transmis-
ston from the source to the destination is optimal.

3.5.2 DF Coherent Combining: Optimum Power Allocation

When the decode-and-forward relays share the bandwidth, the maximum rate problem

can be formulated as

e (ST

=Wl 1 .54

max 1 = Wlog +WN0 WG (3.54)

subject to W log (1 + 5210\‘;;)) > xr (3.54a)
M

> pi<p, (3.54b)
i=0

z; € {0,1}, (3.54c)

pi > 0. (3.54d)
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In the limit of large W, this problem simplifies to the wideband DF relay problem:

M 2
max 1 = pofo + (Z V iviﬁiPi) (3.55)
=1

subject to poa; > z;r, (3.55a)
M

> pi<p, (3.55b)
i=0

z; € {0,1}, (3.55¢)

pi > 0. (3.55d)

Any choice of source power py determines a reliable set of relays A(pg), for which (3.45)
is satisfied. With total power p, = p — py allocated to relays, problem (3.55) simplifies

to determining the optimum powers p of relays within the set:

2
max | > /Bips (3.56)
P\
i€A(po)
M
subject to Zpi < pr, (3.56b)
i=1
p>0 (3.56d)

It is straightforward to show that the solution is in the MRC form

ﬁ* _ ﬁipr )
" ke (o) B

Thus, unlike the orthogonal DF case, each reliable relay is employed in order to con-

(3.57)

tribute to the coherent combining gain. The corresponding achievable rate (3.55) is

7(po) = Bopo + pr Z Bi- (3.58)

i€ A(po)

Without loss of generality, we can assume that the relay nodes are labeled such that
ai > ag > -+ > aypy. Thus, if poag > r, then relay nodes 1 through & will be able to

decode and forward. From (3.58), the achievable rate will become

r(po) = Bopo + prek (3.59)

where

k
k=Y B (3.60)
=1
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From (3.55) and (3.59), the wideband relay problem reduces to

max 1 = Bopo + Prck (3.61)

subject to  poag > 7%, (3.61a)
Po + pr < P, (3.61Db)

po, Pk = 0. (3.61d)

We observe that the problem (3.61) is identical to problem (3.49) with ¢ replacing S.
In this case, however, node k& will not be the only transmitting relay, but rather the
transmitting relay with the kth smallest link gain to the source.

Using the same reasoning as in the case of (3.49), we conclude that a set of relays
{1,...,k} is employed if a > Sy and ¢ > [y for a given py. From (3.61), we obtain

the optimum powers

« Ck " o, — Po

=—— =—— . 3.62
P e B Pk = ok ¥ or — Bo (3.62)

The set of useful relays in this case is given by
U. = {k|ak > Bo,cp > /60} (3.63)

We choose relay k such that
1 1
k* = arg min [— +— - bo ] . (3.64)
kel [ ag Ck QLCL

3.6 Conclusion

In this chapter, we characterized the optimum bandwidth of the amplify-and forward
strategy employed in two-hop, multiple-relay networks. A similar strategy has recently
been proposed in [89] and shown to achieve the outage capacity of a slow-fading single-
relay channel operating in the low-SNR regime. For both AF and DF used in two-hop,
multiple-relay networks, we also presented the optimum power allocation at the relays.

The work presented so far focuses on single networks. Wireless networks, however,
generally consist of multiple source-destination pairs in which multiple data streams

can cause interference at the receivers if they are transmitted at the same time and the
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transmitter of one data stream is sufficiently close to the intended receiver of another
data stream. In the next chapter we consider the smallest such network i.e. the interfer-
ence channel with two source-destination pairs. We introduce transmitter cooperation
to this channel model and determine the capacity region under the conditions of strong

interference.
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Chapter 4

The Strong Intereference Channel with Limited

Transmitter Cooperation

4.1 Introduction

While in previous chapters we considered single-source networks, in this chapter we fo-
cus on the communication situation in which two separate sources wish to communicate
their independent messages to two corresponding receivers. Without cooperation, this
communication situation is captured by the interference channel [50,51]. In this work,
we introduce limited transmitter cooperation in the interference channel.

We start by reviewing the capacity result on the MAC channel with with common
information, by Slepian and Wolf [3] and Willems [15], in Section 4.2. We will use this
result to derive capacity result in subsequent section. In Sections 4.3 and 4.4, we assume
initially that both receivers wish to decode messages sent from both encoders, corre-
sponding to a compound multiple-access channel (MAC). In Section 4.3, we consider the
compound MAC with both private and common messages at the encoders and present
the capacity region of this channel. In Section 4.4, we adopt the cooperation model
proposed by Willems [65] that assumes encoders can cooperate over side-channel links
with finite capacities. We determine the capacity region of this compound multiple-
access channel. When cooperating over the links with finite capacities, encoders can
exchange partial information about each other’s messages. This information becomes
a common message, as it is available to both encoders after message exchange. In ad-
dition, each encoder will still have a private message, independent information known
to that encoder only.

In Section 4.5, we relax the constraint that both private messages need to be de-

coded at each receiver and consider the interference channel with private and common
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messages at the encoders. We assume that a private message at an encoder is intended
for a corresponding decoder whereas the common message is to be received at both
decoders. We show that, under the strong interference conditions determined by Costa
and El Gamal [56], the capacity region of this channel coincides with the capacity region
of the channel in which both private messages are required at both receivers.

Finally, in Section 4.6, we analyze the interference channel with a different form of
transmitter cooperation, which we refer to as unidirectional cooperation. We assume
that messages sent at one encoder are known to the other encoder, but not vice versa.
We derive conditions under which the capacity region of this channel coincides with
the capacity region of the corresponding compound MAC in which both messages are

decoded at both receivers [69].

4.2 Review: The Discrete Memoryless Multiaccess Channel with Com-

mon Information

Limited transmitter cooperation allows encoders to exchange only a partial description
of their messages. After such partial exchange, there will be common information
about both messages known at both encoders, in addition to the private information.
Consequently, the capacity region of the interference channel with limited transmitter
cooperation is closely related to the capacity region of the multi-access channel in
which private and common messages are transmittted to a single receiver, referred to
as the MAC with common information [3]. We next review this channel and its the
capacity region as determined in [3,15]. The channel, shown in Figure 4.1, consists
of finite sets X1, X2, and a conditional probability distribution p(y|z1,z2). Symbols
(z1,22) € X1 X Xy are channel inputs and y € ) are channel outputs. Each encoder ¢,
t = 1,2, wishes to send a private message W; € {1,..., M;} to the receiver in N channel
uses. In addition, a common message Wy € {1,..., My} needs to be communicated from
the encoders to the receiver, as shown in Figure 4.1. The channel is memoryless and

time-invariant in the sense that

p(yn|x7f, Xg, yn—l, wo, w1, w2) = DY |X1X» (yn|$1,n, xQ:’ﬂ)' (41)
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Figure 4.1: MAC with common information.

ey

where x} = |::L't’1’ g;t’n] and where py|x, x, (-) is the channel probability distribu-
tion. For the remainder of the chapter, we follow the convention of dropping subscripts
of probability distributions if the arguments of the distributions are lower case ver-
sions of the corresponding random variables. To simplify notation, we also drop the
superscript when n = N.

Indexes Wy, W1 and W5 are independently generated at the beginning of each block

of N channel uses. An encoder t,¢ = 1,2 maps the common message W) and the private

message W, into a codeword x;

x1 = f1(Wo, Wh) (4.2)

Xy = f2(Wo, Wa). (4-3)

The decoder estimates the common message Wy and the private messages W; based on

the received N-sequence Y as
(W()a Wh W2) = g(Y). (4.4)

An (My, My, M5, N, P,) code for the channel consists of two encoding functions fi, fo,

decoding function g, and an error probability

Pe= ), mP[Q(Y) # (wg, w1, w2)|(wo, w1, ws) sent]. (4.5)

(w05w1;w2)
A rate triple (Rp, R1, R2) is achievable if, for any € > 0, there is an (Mg, My, Ms, N, P,)
code such that

P, <eand M; > 2N 5 =0,1,2.
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The capacity region of the MAC with common information is the closure of the set of
all achievable rate triplets (R, R1, R2). The capacity region of this channel, Cyprac, was

shown in [3,15] to be

Crrac = | J{(Ro, R, Ry) :
0< R <I(X1;Y|X2,U)
0 < Ry <I(X2;Y|X1,U)
Ri+ Ry < I(X4,X9;Y|U)

OSRO‘l‘Rl +R2 SI(Xl,XQ,Y)} (46)

where the union is over all p(u,z1,z9,y) that factor as p(u)p(z1|u)p(za|u)p(y|z1, z2).

(In [15] the convex hull operation used in [3] was shown to be unnecessary).

4.3 The Discrete Memoryless Compound Multiaccess Channel with

Common Information

If in the MAC with common information, instead of one there are two receivers that wish
to decode both private messages and a common message, the resulting channel becomes
a compound MAC with common information, denoted (X1 X Xa, p(y1, y2|T1,Z2), Y1 X V2).
A code for the channel is given by encoding functions (4.2)-(4.3) and two decoding
functions

(Wo, W1, Wa) = g:(Y), t=1,2. (4.7)

The error probability of the code is

Po= Y papan P oY) # (wo,wn,0)

(wo »W1 ,’lUQ)

U{g2(Y2) # (wo, w1, wa)} |(wo, w1, ws) sent]. (4.8)

As in the case of the MAC with common information, a rate triple (Ry, R1, Rp) is

achievable if, for any e > 0, there is an (Mg, M1, Ms, N, P,) code such that

P, <eand M; > 2Nt =0,1,2.
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The capacity region of the Compound MAC with common information is the closure of
the set of all achievable rate triplets (R, R1, R2)-
This channel defines two multiple-access channels with common information, MAC;

(X1 x Ao, p(yt|z1,z2), Vi), one for each receiver ¢t where

Pyl m2) = > p(yr, yalz1, 72) (4.9)
Y2€Y2

p(yalz1,x2) = Y plyr, yol1, 22). (4.10)
Yy1EV1

An (My, M1, My, N, P,;) code for MAC,, t = 1,2 is then given by the encoding func-
tions (4.2)-(4.3), a decoding function g¢(-), (4.7), and the error probability as in (4.5).

Specifically,

1
Pey = Z mp[gt(Yt) # (wo, w1, w2)|(wo, w1, ws) sent], t=1,2 (4.11)

(’lUO,U)l,’lU2)
where (U)(),’UJl,U)Q) € Wy X Wy X Ws.
The encoding and decoding strategy proposed by Willems in [15] can be adapted for

the compound MAC with common information to guarantee the achievability of rates

Comac = U {Rmaci N Rmace} (4.12)

where Ryracs, t = 1,2 satisfies the bounds (4.6) with Y replaced by Y;, and the union
is over all p(u)p(z1|u)p(z2|u)p(y1,y2|z1, z2). More specifically, the following theorem

gives the capacity region of the compound MAC with common information.

Theorem 11 The capacity region of the compound multiple access channel (X1 X

Xo, p(y1,y2|T1,22), V1 X Yo), Comac, is given by

Comac = U{(RO,R1,R2) :
0 < Ry < min{I(X1; V1| Xp,U), I(X1; Ya| Xo, U)}
0 < Ry < min{I(Xo; Yi|X1,U), I(Xa; Ya| X1, U)}
Ri + Ry < min{I(X,, Xo; Vi |U), (X1, Xo: Ya|U)}

O S R() + R1 + R2 S min{I(Xl,XQ;Yl),I(Xl,XQ;YQ)} (413)

where the union is over all joint distributions that factor as p(u)p(z1|u)p(z2|w)p(y1, y2|z1, z2).
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4.3.1 Converse

Consider an (M(), Ml,MQ,N, Pe) code for the (Xl X Xg,p(yl,y2|$1,$2), yl X )72) com-
pound MAC with common information. By comparing (4.11) with (4.8), we conclude
that

maX{Pel, PeZ} S Pe- (414)

From (4.14), the necessary condition for P, — 0 is that P,; — 0 and P,2 — 0. Since
each P,t = 1,2 is the error probability in the MAC with a single receiver, it follows
from (4.6) that to guarantee that P,y — 0 for ¢ = 1,2, the rates (Ry, R1, Ry) have to

belong to the Cyac region (4.6) for each receiver t. That is, these rates have to satisfy

R, < I(X;Y4]X5,U)
Ry < I(X2;Yy| X1,U)
Ry + Ry < I(X;,X9;Y3|U)

Ry + Ri + Ry < I(X1,X2;Yy) (4.15)

for a joint distribution p(u)p(z1|u)p(z2|u)p(yi|z1,z2). O

A more detailed proof can be obtained starting from Fano’s inequality and following
the converse proof in [15]. We will present this approach when proving the converse for
the Compound MAC with conferencing in Section 4.4.1.

We can show that the region of Theorem 11 is convex. In particular, we define a

region
7z’%MAC £ {(Rla e aRS)at = 1a2 :
Rypor < I(X1;Yy| X2, U) k=0
Riior < I(Xo; Y X1,U) k=1
Rijor, < I(X1,XosVi|U) k=2
Rt+2k S I(Xl,XQ;Y't) k= 3} (416)
for p(u)p(z1|uw)p(z2|u)p(y1, y2|T1, T2)-

Applying the approach in [15, Appendix A] we can show that the region RSCM AC 18

convex. For completeness, we next present the proof.
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Theorem 12 Region ’RSCM AC 8 conver.

Proof:

Assume that there are two points that belong to the region R%M ac- That is,
(Rl,...,R{) € R¥qyac and (RZ,...,R%) € Ry ac- (4.16) implies that there exist dis-
tributions p(u', 1, 23,41, 43) = p(u')p(zi|u')p(z3|u')p(yi, yz |21, 73) and p(u?, 21, 23,17, 43) =

p(u?)p(2? [u?)p(2|u?)p(y?, y2 |22, £3) such that
1 2 1> Y21%1, Ty

Ri o < I(X1;Y'|X5,UY) R} op < I(XT;Y7|X5,U%) k=0
Ryop < I(X3; V' |X{,UY) R} o < I(X5; V2XT,U%) k=1
Ryop < I(X{, X5; V;HUY) R} oy < I(X{,X3;Y2|U?) k=2
Ri o < I(X], X5V} R}op < I(X7,X3:;Y)) k=3 (4.17)

Let a random variable I have a distribution P[I = 1] = o« and P[I =2] =1 — a. We

define new random variables X; 2 X/, Y; 2 Y/ and U £ (U, I) and observe that

p(u,x1, T2,Y1,Y2)
=PU' =, X! =21, X5 =29, Y} =41, Yd = go|I = 0)P(I = i)
=PU' =u|I =i)P(X} =21, Xy = mo|U* =/, T = i)
P(Y{ =41, Y) = yo| X} =21, Xb = 20, U = o/, T = i) P(I =)
= P(U = u)P(X] = 1|U = w)P(X] = 25, |U = u)
PY{ = y1, Yy = yo| X{ = 21, X5 = 1)
= p(u)p(z1|u)p(z2|uw)p(y1, y2|21, 72) (4.18)

where u = (u/,4). It is now easy to show that

aRy o + (1 — )R oy, < I(X1; Y| X5, U) k=0
aRf g + (1 — @)RY ), < I(Xo; Y3 X1, U) k=1
aRyyop + (1= a)RY oy, < I(X1, Xo; Yi|U) k=2
aRyyop + (1= a)RY oy, < I(X1, Xa;Yy) k=3 (4.19)

and therefore (aR% +(1—-a)R2,...,aR + (1 - Q)Rg) € 7-"'échAC' O
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4.3.2 Achievability

We adapt the encoding and decoding strategy proposed by Willems in [15] to achieve
the rates (4.13). Specifically, we use the codebook in [15, Section 3] constructed as

follows:
1. Fix the distribution p(u,z1,z2) = p(u)p(z1|u)p(z2|u).

2. Generate My sequences u each with probability p(u) = HT]LV:1 p(uy). Label them
U(UJ()), wp € {11 s 7M0}'

3. For each u(wyg), generate M, sequences x; with probability P(x;|u) = Hi:;l p(Tin|un)

where ¢ = 1,2. Label them x;(wg,wt),w € {1,..., Mi}.

Encoding: To send a common message wg and a private message wy encoder ¢ sends
the codeword x;(wg, wy).
Decoding: At each decoder, we use the decoding scheme of [15]: After receiving yy,

decoder ¢ determines unique (g, 11, Ws) such that
(u(ag), x1 (1o, 1), X2 (o, W2), Yt) € Ac(U, X1, Xo, Yt)

where A.(U,X;,Xo2,Y}) is the set of e-typical N-sequences (u,x1,x2,y:) as defined
in [81, Section 14.2].

The probability of error: We apply the union bound to (4.8) to obtain
PeSPe1+Pe2 (4.20)

where P.; and P9 are given by (4.11). It was shown in [15] that P.; and P.2 can made
arbitrarily small when the rates satisfy (4.13). From (4.20) it then follows that the

probability of error P, can be made arbitrarily small. O

4.4 The Discrete Memoryless Compound Multiaccess Channel with

Conferencing Encoders

In this section, we now assume that in the two-source, two-destination network under

consideration, there exist two communication links with known capacities between the
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Figure 4.2: Compound MAC with conferencing encoders.

two encoders, allowing them to partially cooperate to send their intended messages.
This model was introduced by Willems for multi-access channels [65]. The amount of
information exchanged between the transmitters is bounded by the capacities C'o and
C91 of the communication links. The proposed channel model enables investigation of
the gains obtained using transmitter cooperation. The communications system is shown
in Figure 4.2. As in the previous section, it is assumed that both messages are required
to be decoded at both receivers. We refer to this channel as a compound multiple access
channel with conferencing encoders and denote it (X1 X Xa, p(y1, y2|z1, 2), V1 X V2). We
next determine the capacity region of the compound MAC with conferencing encoders.
We show that for an input distribution with a specific Markov property, the rate region is
an intersection of two rate regions of the MAC with partially cooperating encoders [65].
The capacity region is the union of all such rate regions. For Ci2 = Cy; = 0, it reduces
to the capacity region of the two-sender, two-receiver channel with non-cooperating
encoders [57].

The channel consists of finite sets X1, Xs, V1,2 and a conditional probability dis-
tribution p(y1, y2|z1,22). Symbols (z1,z2) € X1 X Xy are channel inputs and (y1,y2) €
Y1 X Yo are corresponding channel outputs. Each encoder ¢, ¢ = 1,2, wishes to send a
message W; € {1,..., M;} to both receivers in N channel uses. The channel is memo-

ryless and time-invariant in the sense that

n—1

p(yl,nayQ,nb{?aXgay{bilayZ ) :p(yl,n,yQ,n|$1,n7$2,n)- (421)

Encoders use the communication links in the form of a conference [65]. A conference
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is given by two sets of K communicating functions {ht1, bk} t =12 Each

e,
function h;j maps the message W; and the sequence of previously received communi-
cations from the other encoder into the kth communication V; ;, where V; j ranges over

a finite alphabet V;;, for k =1,... K,
hig : Wi x V5 h = Vig, v =hyp(W, Vo) (4.22)

hoj : Wo x VETE 5 Vo g, vg g = ho g (Wo, V). (4.23)

The amount of information that can be exchanged during the conference is bounded by

the capacities C1o and C1. A conference is (Cig, Ca1)-permissible if

K

> log([Vikl) < NCia (4.24)
k=1

K
> “log([Vaxl) < NCo. (4.25)
k=1

An encoding function f; maps the message W; and what was learned from the
conference into a codeword x;. An (My, My, N, K, P,) code for the channel consists of

two sets of K communicating functions (4.22)-(4.23), two encoding functions

fi:wr x VE 5 xN (4.26)
fo:Wh x VE 5 &N (4.27)
generating codewords
x1 = f1(W1, V5) (4.28)
xy = fo(Wa, Vi) (4.29)
and two decoding functions
(W1, W) = g:(Y) t=1,2 (4.30)

such that the average probability of error of the code is

1
P. = > wnt [{g1 (YY) # (w1, ws)}
(w1,w2) EW1 X W2 12

U {gg(YQN) # (w1, w2) } [(w1,ws) sent] . (4.31)
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A rate pair (R1, Rp) is achievable if, for any € > 0, there exists an (M7, Ms, N, K, P,)
code such that
M; >2NB ¢ =12 and P, <e. (4.32)
The capacity region of the compound multiple access channel with conferencing encoders
is the closure of the set of all achievable rate pairs (Ri, Ra).
The next theorem presents the capacity region of the compound multiple access
channel with conferencing encoders. For an input distribution with a specific Markov
property, the rate region is an intersection of two rate regions of the MAC with partially

cooperating encoders [65]. The capacity region is the union of all such rate regions.

Theorem 13 For the compound multiple access channel (X1 x Xa, p(y1,y2|z1,z2), Y1 X
YV2) with communication links with capacities C1o and Ca; the capacity region R(C1a, Ca1)

s given by
R(Ci2,Co1) = U{(RlaRQ) :
Ry < min{I(X1; Yi|Xo,U), I(X1; Ya| X, U)} + Ch
Ry < min{I(X2;Y1|X1,U), I(X2;Y2|X1,U)} + Cn
R1 + Ry < min{I(X1, Xo; Y1|U), I(X1, X2; Y2|U)} + Ci2 + Cox

Ri+ Ry < min{I(Xl,XQ;Yl),I(Xl,XQ;YQ)} (433)
where the union is over all joint distributions that factor as

p(u)p(z1|u)p(z2|w)p(y1, yo|z1, T2).

4.4.1 Converse

The exact same reasoning as in the converse proof of Theorem 11 applies in this case.
Alternatively, we can obtain the same result by applying Fano’s inequality to the

message estimate (W1, Ws) at each receiver. We then use the approach of Willems [65,
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Section III] to obtain

Ri <= Y I(Xin;Yin|Xon, Un) + Cr2 + en

n=1,N

> I(Xan; Yin| X1n, Un) + Co1 + €1v
n=1,N

Z I(Xi1p, Xon; Yin|Un) + C12 + Ca1 + &N
n=1,N

Z I(XlnaXQn;lftn) + &N (4'34)
n=1,N

2|~

Ry <

2=

Ry + Ry <

2]~

1

R1+R2SN

We proceed as in [65] and show that the region of Theorem 13 is convex. We define a
region
RE 2 {(Ry,...,Rg),t =1,2:
Rypor < I(X1;Y3 X0,U) + Cop k=0
Riior < I(X2;Yy| X1,U) + Coy k=1
Riior <I(X1,X0;Y3|U)+ Cia+Co1 k=2
Ryyor < I(X1, Xo;Y3) k =3} (4.35)
for p(u)p(z1|u)p(z2|u)p(y1, y2|z1,z2). Applying the approach in [15, Appendix A] we
can show that the region R® is convex, and thus rates (4.34) belong to the region R2.

From the definition of R® and R in (4.35) and (4.33), it then follows that rates (R;, Ry)
belong to R(Cia,Co1). O

4.4.2 Achievability

In a conference, transmitters cooperate over the communication links with capacities
C12 and C9; using the strategy proposed by Willems [65, Sec. IV]. Specifically, the
set {1,..., M} is partitioned into 2VF12 cells, labeled s; € {1,...,2VF12} each with
aN(Ri—F12) elements labeled t; € {1,...,2N(F1=F12)}1 When w; belongs to cell s;, we
let ¢1(w1) = s1. The same type of partitioning is done for messages Wo. Rates Ri2, Ro1
are chosen such that Ri2 = min{R;,Ci2} < Ci2, R21 = min{Ry,Cs1} < Cy ensuring

that during the communication, the partial information

w6 = (w61,w62) = (c1(w1), c2(w2))
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Figure 4.3: After the conference, the compound MAC with conferencing encoders be-
comes the compound MAC with common information.

(c1(wr),ca(ws)) € {1,...,2NB12} x {1 ... 2NB21} can be exchanged between the en-
coders. We refer to W as a common message.

The part of the original message unknown to the other encoder is given by
w) = ti(wr) € {1,...,2N0E~Ri2)y

’11)/2 = tz(’wg) € {1, - ,2N(R2_R21)}.

The obtained system is shown in Figure 4.3. Thus, after the conference, coding has to

be done for a common message with alphabet W,

wy € {1,..., M)} (4.36)
and private messages

wi € {1,...,M]} (4.37)

wh € {1,..., M} (4.38)

with corresponding alphabets W, and W). We use the notation M} = 2N(Fiz+Hz1)
M! = 2N(FB1=Fu2) and My = 2N(Re—Ra1)

In the case of a single receiver, the MAC channel after the conference reduces to a
MAC with common and private messages at the encoders, [65]. The capacity region
of this channel (4.6) then guarantees that the rates for the MAC with conferencing
in [65, Sec. II.] are achievable. Similarly, the compound MAC with conferencing after
the conference is identical to the compound MAC with common information. The

common message W and private messages W{ and W, are shown in Figure 4.3. From
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Equation (4.36), we observe that the common rate is Rjs+ Ro1. From Equations (4.37)-
(4.38), the private rates are Ry — Rjo and Ry — Ro;. It follows from Theorem 11 that
these rates (Ri2 + Ro1, R1 — Ri2, Ry — Ra1) are achievable as long they belong to the
region given by (4.13). This guarantees that rates (4.33) in Theorem 13 are achievable.

a

4.4.3 TImplications

For Cia = Cy1 = 0, the capacity region (4.33) of the compound MAC with confer-
encing encoders becomes the capacity region of the two-sender, two-receiver channel
established by Ahlswede [57]. Rates (4.33) qualify the improvement due to transmitter
cooperation over the dedicated communication links with capacities C1o and Cy;.

Furthermore, the rates (4.33) give inner bounds on the rates achievable in an inter-
ference channel in which users partially cooperate and each decoder decodes a message
sent from a single encoder. It would be interesting to characterize the class of interfer-
ence channels for which these rates in fact give the capacity region.

Finally, we apply (4.33) to a Gaussian network with channel outputs

Y1i = T1i + ho1Zoi + 21 (4.39)

Y2i = h12x1; + @2 + 22 (4.40)

where Z; is zero-mean, unit-variance noise. The code definition is the same as that

given in Section 4.4 with the addition of the power constraints

N
1
~ Y EBIXZI<P, t=12 (4.41)

i=1

The power expended for the conference is thus not considered. We have the following.

Corollary 1 The capacity region of the Gaussian compound MAC with conferencing
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Figure 4.4: The Gaussian Compound MAC with conferencing encoders capacity region.

encoders is given by

R(Ch2,C) = | J{(R1, Ry) :
0 < Ry <min{C(aP),C(h},aP:)} + Cis (4.42)
0 < Ry < min {C(bP,),C(h3,bP,)} + C (4.43)
Ri + Ry < min {C(@P; + h3,bP), C(h},aPy + bP2)} + Cia + Co1  (4.44)
R + Ry < min {C(P1 + hi Py + 27121\/@),

C(h3,Py + Py + 20y /aPibPy) }) (4.45)
where the union is over all a,b, for 0 <a<1,0<b<landa=1—a,b=1-b.

Figure 4.4 shows the capacity region for a symmetric case where C19 = Cy; = ¢ = 0.5,
Ph=P=P=10, Ny =Ny =1, hig = hoy = h = v/0.8. Due to the symmetry, we
choose a = b. To illustrate the cooperation benefit, also shown are the rates achievable
when there is no cooperation (¢ = 0). Furthermore, for ¢ = 0 we also consider perfect
receiver cooperation in which case the considered channel becomes the MIMO MAC
with two receive antennas and a single antenna at each of the two transmitters. We plot
the capacity region of the MIMO MAC. We observe much higher receiver cooperation

gains as compared to the gains from transmitter cooperation.
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The bounds (4.42), (4.43) and (4.44) are maximized for a = 0. As a increases, these
bounds decrease, but the bound on the sum rate (4.45) increases. The sum rate is
maximized when a is chosen such that (4.44) and (4.45) are the same. The capacity

region is the union of all the pentagons obtained for different values of a.

4.5 The Capacity Region of the Strong Interference Channel with

Common Information

Consider again the communication situation in which two encoders each have a pri-
vate message and a common message they wish to send. In this section, we relax the
constraints of Section 4.3 that both receivers have to decode both private messages.
Instead, we assume that each decoder t is interested in only one private message sent
at the corresponding encoder ¢. Both decoders wish to decode the common message.
We refer to this channel as an interference channel with common information, denoted
(X1 x Xa, p(y1,y2|T1, 2), V1 X Y2). The communication system is shown in Figure 4.5.
We determine the capacity region of interference channels with a common message

if
I(X1;1[X0,U) < I(Xy1;Y2|Xo,U) (4.46)

I(X2;Yo|X1,U) < I(X2;Y1|X1,U) (4.47)

for all joint distributions p(u, 1, T2, Y1, y2) that factor as p(u)p(z1|u)p(z2|u)p(y1, y2|z1, 2).
We further show that this class of interference channels is the same as those determined

by (1.1) and (1.2) with independent X; and Xj.
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As in Section 4.3, the channel consists of finite sets X1, X5, V1, Vs and a conditional
probability distribution p(y1,y2|z1,%2). Each encoder ¢, ¢t = 1,2, wishes to send a
private message Wy € {1,...,M;} to receiver ¢ in N channel uses. In addition, a
common message Wy € {1,..., My} needs to be communicated from the encoders to
both decoders, as shown in Figure 4.5. The channel is memoryless and time-invariant
as given by Equation (4.21).

Indexes Wy, W1 and W5 are independently generated at the beginning of each block
of N channel uses. An encoder t,t = 1,2 maps the common message Wy and the private

message W, into a codeword x;

x1 = f1(Wo, Wh) (4.48)

X9 = fo(Wo, Wa). (4.49)

Each decoder t estimates the common message W and the private message W; based

on the received N-sequence Y, as

(Wo, Wh) = g1 (Y1) (4.50)
(Wo, Wa) = ga(Y2). (4.51)

An (My, M1, M5, N, P,) code for the channel consists of two encoding functions fi, fo,

two decoding functions g;, g2 and a maximum error probability

P, £ max{P,.1, P2} (4.52)

1
P, = Z mp[gt(Yt) # (wo,w)|(wo, wi,ws) sent], t=1,2. (4.53)

(’IU(),'U)l,UJZ)
A rate triple (R, R1, R2) is achievable if, for any € > 0, there is an (Mg, M1, M, N, P,)
code such that

P,<eand M; > 2NBi 5 =0,1,2.

The capacity region of the interference channel with common information is the closure

of the set of all achievable rate triplets (Ry, R1, R2).
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The next theorem is the main result of this section. It gives conditions under which
the capacity region coincides with the capacity region of the channel in which both

private messages are required at both receivers.

Theorem 14 For an interference channel (X1 X Xa,p(y1,y2|%1, 22), V1 X Va) with com-

mon information satisfying the strong interference conditions [56]

I(X1;Y1[Xp) < I(X1;Ya| X2) (4.54)

I(X2; Y| X1) < I(Xo; Y1|X1) (4.55)

for all joint distributions p(x1,z2,y1,Yy2) that factor as p(z1)p(z2)p(y1,ye|z1,22) the

capacity region C is given by

C = J{(Ro, Ry, Ry):

0 < Ry < I(X1;11]X,0) (4.56)
0 < Ry < I(X2;Y2|X1,U) (4.57)
R1 + Ry <min{I(Xy, Xo; Y1|U), I(X1, Xo; Y2|U)} (4.58)
0 < Ro+ Ri + Ry < min{I (X1, Xo; Y1), I(X1, X2;Y2) } (4.59)

where the union is over all joint distributions that factor as

p(w)p(z1|w)p(zalw)p(ys; y2|z1, 22)- (4.60)

When the constraints (4.54) and (4.55) are satisfied, we refer to the considered channel

as a strong interference channel with common information. We next prove the converse.

4.5.1 Converse: Strong Interference Conditions

Consider a code (Mg, M1, M, N, P,) for the interference channel with common infor-

mation. Applying Fano’s inequality results in
H(Wy, W1|Y1) < Py log(MoM; — 1) + h(Pe1) £ N6y n (4.61)

H(Wy, Wa|Y3) < Peylog(MoMs — 1) + h(Pep) £ Néo n. (4.62)



where 6,y — 0 as P,y — 0 (or as P, — 0). It follows that

H(W(),Wl‘Yl) = H(W()‘Yl) + H(W1|Y1, W()) < N(51,N

H(W(), W2|Y2) = H(W0|Y2) + H(WQ'YQ, W()) < N&Q,N.

Since conditioning cannot increase entropy, from (4.64) it follows that

H(W2|Yq, Wy, W1) < H(W5|Y2, Wy) < Néa N
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(4.63)

(4.64)

(4.65)

To prove the converse, we will use the data processing inequality for the following

Markov chains:

Lemma 3 The following form Markov chains for the interference channel with a com-

mon message:

Wi — (X, Wo, Wa) = Y,
Wy = (Xo, Wy, W1) = Yo

(Wo,Wt) — (Xt,W()) — Yt
fort=1,2.

Proof:
The result follows easily by the problem definition. O

We will need the data processing inequality in the following form:

Lemma 4 For a Markov chain W — (U,X) - Y
IW;Y|U) < I(X;Y|U).

Proof:
We have
H(Y|U,X) = H(Y|W,U,X)

<O HY|W,U)

(4.66)
(4.67)

(4.68)

(4.69)

(4.70)

where (a) holds because of the Markov property and (b) since conditioning cannot

increase entropy. Subtracting both sides from H (Y |U) gives the desired result. O
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Applying Lemma 4 to the Markov Chains (4.67)- (4.68) and using (4.68) yields,

I(WQ;Y2|W0,W1) S I(XQ;Y2|W0,W1) (471)
I(Wy Yo [Wo) < I(Xy; Y| Wo) (4.72)
I(W(),Wl;Yl) S I(Wo,Xl;Yl). (473)

We first consider the bound (4.59) at the decoder 1. We have

N(Rp+R1 + Ro)
= HW,) + HW1) + H(W>)
=) H(Wo, W) + H(W|Wo, Wy)
= I(Wo, W1;Y1) + I(Wo; Yo |Wy, W1 ) + H(Wy, W1 |Y1) + H(Ws| Y, Wy, Wi)
<O 1(Wo, X1; Y1) + I(Xo; Yo |Wo, Wi) + H(Wo, Wi|Y1) + H(Wa|Yo, Wy, Wi)
<) T(Wo, X1; Y1) + I(X2; Yo|Wo, W1) + N6y x + Ny
=D I(Wo,X1; Y1) + I(Xo; Yo|Wo, Wi, X1 (Wo, W1)) + N1, n + Nég n
=(©) I(Wo,X1; Y1) + I(Xo; Yo|Wo,X1) + N1y + Néo n
(4.74)

where (a) follows from the independence of Wy, W1, Wa; (b) from (4.71) and (4.73); (c)
from (4.63) and (4.65); (d) and (e) from (4.48). If

I(XQ;Y2|W(),X1) S I(Xg;Yl‘W(),Xl) (475)
then it follows from (4.74) that

N(Ro + Ri + Ry) < I(Wy,X1; Y1) + I(Xo; Y1 |Xy, Wp) + Noy,n + Noon

=I(Wy,X1,X2; Y1) + Noy v+ Noon

4.76
=I(X1,X2;Y1)+ Noyn + N n (4.76)

N
< ZI(XlnaXQn; Yin) + Noin + Nogn.

n=1

Applying Willems’ notation [15, Section 3]

U, =W, n=1,...,N (4.77)
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to condition (4.75) yields
I(X2;Y5|X,U) < I(X9;Y1[X4,U) (4.78)
Furthermore, the condition
I(X2; Y| X1, U) < I(X3; Y1 X1, U) (4.79)
implies (4.75) and (4.78) due to the following theorem.

Theorem 15 If
I(X1;Y1|X2,U) < I(X1;Y2[ X2, U) (4.80)

for all probability distributions on U x X1 X Xy such that p(u, z1,z2) = p(u)p(z1|u)p(z2|u),

then for the strong interference channel with a common message we have
I(Xl;Y1|X2,U) S I(Xl;Y2|X2,U). (481)

Equivalently, I(Xy; Y| X1,U) < I(X2;Y1|X1,U) implies I(X2; Y2|X1,U) < I(X2;Y1|X;, U).
The proof of Theorem 15 relies on the result in [90, Proposition 1] and follows the same
approach as Lemma in [56].

To prove that the bound (4.58) at the decoder 1 is valid, we consider

N(R1+Ry)
= H(W1) + H(W»)
=) H(W,|Wo) + H(Wa|Wo, W1)
= I(Wy; Y1 |Wo) + I(Wa; Yo |Wo, W1) + H(W1|Y 1, Wo) + H(W,|Ya, Wy, W1)
<O I(X1; Y1|Wo) + I(Xa; Yo|Wo, W) + H(W1|Y1, Wo) + H(Wa|Y2, Wo, W1)
<O I(X1; Y1 |Wo) 4+ I(Xo; Yo Wy, W1) + Né1 x + Nég n
=) [(X1; Y1 [Wo) + I(Xo; Yo|Wo, W1, X1 (Wo, W1)) + N1y + Nig y
=(©) [(X1;Y1|U) + I(X2; Yo|Xy, U) + N6y + N .
(4.82)

where again (a) follows from the independence of Wy, Wi, Wy; (b) from (4.71) and
(4.72); (c) from (4.63) and (4.65); (d) from (4.48); (e) from (4.48) and (4.77). Again, if
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(4.75) holds, then (4.82) becomes

Ri+ Ry < I(X1;Y1|U) + I(X2; Y1|X1,U) + Noy,n + N n

I(X1,X2;Y1|U) + Néyn + Noowy (4.83)

IA

N
Z I(X1n, Xon; Yin|Un) + Né1,§ + Noo n.
n=1

The same approach can be used to show that the bounds (4.58) and (4.59) are satisfied

at decoder 2 under a condition equivalent to (4.78)

I(X1;Y1]X2,0) < I(Xy;Y2[X5,U) (4.84)
which, due to Theorem 15, reduces to

I(X1;Y1|X2,U) < I(X1;Y2| X2, U). (4.85)

Finally, the bounds (4.56) and (4.57) are the single user upper bounds and hence
have to be satisfied.

To conclude the proof we need the following lemma that shows that the obtained
conditions (4.79) and (4.85) are identical to the strong interference conditions (4.54)

and (4.55).
Lemma 5 The conditions

I(X1;Y1|X2,U) < I(X1;Y2| X5, U) (4.86)

I(X2;Yo|X1,U) < I(X2;Y1|X1,U) (4.87)

that hold for all joint p(u,x1,x2,y1,y2) that factor as in (4.60), and the strong inter-
ference conditions (4.54)-(4.55)

I(X1;Y1]X2) < I(X1;Ya|Xo) (4.88)

I(X; Yo X1) < I(Xo; V1] X1) (4.89)

that hold for all product distributions on the inputs X1 and Xo, are equivalent, that is,

they are satisfied by the same class of interference channels.
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Proof.

We use the following result from [56, Lemmal: If I(X1;Y7|X2) < I(X1;Ya|X?2) for all
product probability distributions on X; x Xo, then I(X1;Y1|Xo,U) < I(X1;Y2| X2, U)
where U — (X1, X2) — (Y7,Y3) and X; — U — Xso. From this result it follows directly
that the strong interference conditions (4.54) and (4.55) imply the conditions in the
interference channel with common information (4.86) and (4.87).

To prove that the other direction is also true, we observe that since the conditions
(4.86) and (4.87) are satisfied for all input distributions of the form (4.60), the condi-
tions (4.86) and (4.87) must hold also when U is independent of inputs X1, X5. There-
fore, the strong interference conditions must hold, because for such input distribution
p(u, z1,z2), conditions (4.86) and (4.87) reduce to the strong interference conditions
(4.54)-(4.55). O

From (4.76) and (4.83), it follows that (R, R1, R2) € co(C). Since the region C is

already convex, then (Ry, Ry, Re) € C. O

4.5.2 Achievability

The achievability of the rates of Theorem 14 follows from the capacity region of the
compound MAC with common information (4.13): from Theorem 11, rates (4.13) are
achievable in the case in which both private messages are decoded at the receivers;
this further guarantees that these rates are also achieved when a weaker constraint
of decoding of a single private message is imposed at the receivers, and are hence
achievable in the interference channel with common information. Furthermore, the
strong intereference conditions (4.54)-(4.55) imply conditions (4.86)-(4.87) by Lemma 5
and therefore the region (4.13) reduces to (4.56)-(4.59). Hence the proof of achievability
in Theorem 14 is immediate. O

In the weak interference case in which the conditions (4.54)-(4.55) do not hold, the
capacity region will contain the rates (4.13). The capacity region in the general case is

however still an open problem.
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4.5.3 Gaussian Channel

We next consider the Gaussian interference channel in the standard form (4.39)-(4.40).
The code definition is the same as that given in Section 4.5 with the addition of the
power constraints (4.41). From the maximum-entropy theorem [81, Thm. 9.6.5] it

follows that Gaussian inputs are optimal. We have the following result.

Corollary 2 When the strong interference conditions h%, > 1, h3; > 1 are satisfied, the
capacity region of the Gaussian strong interference channel with common information

s given by

R = J{(R1, Ry) :

0< R < C(C_I,Pl) (4.90)
0 < Ry <C (bP) (4.91)
Ry + Ry < min {C(@P; + h},1bP,), C(h},aP, + bPy)} (4.92)

0 < Ro+ Ry + Ry < min {C(P1 + B2, Py + 2ho1\/a P bP)

C(R3,Py+ Py + 2hipy/aPbB) by (4.93)

where the union is over all a,b, for 0 <a<1,0<b<landa=1—a,b=1-b.

4.5.4 Discussion

Communication systems with encoders that have to send both private and common in-
formation naturally arise in the case when encoders can partially cooperate as in [65,66].
After such cooperation, the common information consists of two indexes, each partially
describing one of the two original messages. The assumption of our model that the en-
tire common message is decoded simplifies the problem. However, a receiver interested
in a message from only one encoder, as is the case in the interference channel, will be
interested in only a part of the common message. Understanding such communication

problems appears to be much more challenging and is the subject of our future work.
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4.6 The Strong Interference Channel With Unidirectional Coopera-

tion

In this section, we consider the interference channel in which full information about
messages sent at one encoder is available to the other encoder, but not vice versa.
Such a channel model allows the encoder that knows both messages to exploit that
information to improve the achievable rates. The achievable rates for this channel
model have been presented in [91]. Furthermore, for the case of weak interference, i.e.
ho1 < 1, the capacity region was determined in [92]. The communication system is
shown in Figure 4.6.

We derive conditions equivalent to (1.1)-(1.2) under which there is no penalty in
decoding both messages at both decoders in the interference channel with unidirectional
cooperation. We compare the obtained conditions to the strong interference conditions
(1.1)-(1.2).

We consider a memoryless interference channel that consists of finite sets X1, Xa, V1, Vo
and a conditional probability distribution p(y1,y2|z1,22). Each encoder ¢, t = 1,2,
wishes to send an independent message W; € {1,..., M;} to receiver ¢t in N channel
uses. It is assumed that message Wi is also known at encoder 2, thus allowing for
unidirectional cooperation. The channel is memoryless and time-invariant as given by

Equation (4.21).
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An (My, M3, N, P,) code for the channel consists of two encoding functions gener-

ating codewords

x1 = f1(W) (4.94)
X9 = fQ(Wl, WQ) (4.95)
two decoding functions
Wi =gi(Yy) t=1,2 (4.96)
and a maximum error probability
Pe = ma,x{Pe,l, Pe,g} (497)
where, for t = 1,2
Py = L Plg(Y) # (wr)|(wi, ws) sent] . (4.98)
My M,

(w1,w2)

A rate pair (R1, Ry) is achievable if, for any € > 0, there is an (M7, My, N, P,) code
such that

P.<eand M; > 2VNB =1 2.

The capacity region of the interference channel with unidirectional cooperation is the
closure of the set of all achievable rate pairs (R, Rg).
The next theorem gives conditions under which the capacity region coincides with

the capacity region of the channel in which both messages are required at both receivers.

Theorem 16 For an interference channel (X1 X Xa,p(y1,y2|z1, z2), Y1 X Vo) with uni-

directional cooperation satisfying
I(X2;Ys| X)) < I(Xo;Y1|X7) (4.99)
I(X1, Xo; Y1) < I(X1, X2;Y5) (4.100)
for all joint input distributions on X1 and Xo, the capacity region C is given by
C= U{(Rl,Rg) :
Ry < I(X9;Y5|X1) (4.101)

Ry + Ry < I(X1, Xo; Yl)} (4.102)

where the union is over joint distributions p(z1, T2, y1,Y2).
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In the following section, we prove the converse and determine the strong interference
conditions. To complete the proof of Theorem 16, in Section 4.6.2 we discuss how
the achievability of the C rate region follows from the compound MAC with common

information.

4.6.1 Converse: Strong Interference Conditions

Cousider a code (M;, My, N, P,) for the interference channel with unidirectional coop-

eration. Applying Fano’s inequality results in

H(W1|Y1) < Peylog(My — 1) + h(P.1) £ N6y, (4.103)

H(W5|Y2) < Peylog(My — 1) + h(Pes) £ N n. (4.104)

where ;v — 0 as P,y — 0 (or as P, — 0). For notational convenience, we define
oy 2 d1,n + d2,n and Ry = R1 + Ro. We now derive the R, bound (4.102) for receiver
t=1.

From independence of Wi and W5 and Fano’s inequalities (4.103) and (4.104), we

have

NR,; = H(Wl) + H(W2|W1) (4.105)
=I(Wi; Y1) + I(W2; Y[ W)
+ HWh Y1) + H(W2 Y2, W) (4.106)

< I(Wy; Y1) 4+ I(Wa; Yo W) + Néy. (4.107)

With the assumption that (4.94) defines X; as a deterministic one-to-one function of

W1, it follows that

NRs < I(W1,X1;Y1) + I(X2; Yo|Wi) + Niy (4.108)

<IW1,Xy;Y1) + I(Xe; Yo | Xy, Wh) + Now. (4.109)
Therefore, if the condition

I(Xz;Yz'Xl,Wl) S I(Xg;Yl‘Xl,Wl) (4110)



90

holds, then it follows from (4.109) that

NR, SI(W1,X1;Y1)+I(X2;Y1|X1,W1)+N5N (4.111)
:I(Xl,Xg;Yl) +N(5N (4112)

N
< I(X1n, Xon; Yin) + Néy. (4.113)

n=1

And therefore, we obtain the sum-rate outer bound (4.102). Per-letter conditions follow

from the next lemma.
Lemma 6 If per-letter conditions
I(X2;Y2|X1) < I(X2; Y[ X1) (4.114)
are satisfied for joint distributions p(z1,x2), then
I(Xo; Y2 | X1, W1) < I(Xo;Y1|Xq, Wh). (4.115)

Lemma 6 is similar to the lemma by Costa and El Gamal [56]. One difference is that
the condition (4.114) in our case has to be satisfied for all the input distributions not
only for product ones, as cooperation introduces dependence between inputs.

The bound (4.101) is an immediate single-link outer bound and hence the converse
follows. O

In the case when (4.100) does not hold, showing that (4.116) is indeed the capacity
region would require proving an outer bound of the form Rg < I(X7, X9;Y5). Due to

the asymmetry of the problem, the approach (4.105)-(4.113) does not apply.

4.6.2 Achievability

We apply the same reasoning as in Section 4.5.2. The achievability of the rates (4.13)
of Theorem 11 in the compound MAC with common information guarantees that these
rates are also achieved when a weaker constraint of decoding of a single message is im-
posed at the receivers. Since in the interference channel with unidirectional cooperation

encoder 2 knows the entire message Wi, we can view R; as the common rate. For the
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Figure 4.7: Gaussian interference channel with unidirectional cooperation capacity re-
gion.

same reason, user 1 in the corresponding compound MAC has zero rate for the private

message. We can choose U = X; and the region (4.13) becomes

Comac = U{(R1,R2) :

Ry <minl(X2;¥;|X1)
Ry + Ry < min I(Xy, Xp; Yt)} (4.116)

where the union is over all p(z1, z2,y1,y2). When conditions (4.99)-(4.100) are satisfied,

region (4.116) reduces to region (4.101)-(4.102) in Theorem 16. O

4.6.3 Gaussian Channel

We next consider the Gaussian interference channel in the standard form (4.39)-(4.40).
The code definition is the same as given in Section 4.6 with the addition of the power
constraints (4.41). From the maximum-entropy theorem [81, Thm. 9.6.5] it follows that

Gaussian inputs are optimal.
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Corollary 3 When the strong interference conditions

ho > 1 (4.117)

1
hig > o (\/052 + h3, — 1+ 2paha + p? — p) (4.118)

hold, where p is a correlation coefficient for X1,Xs and a = /Py/ Py, the capacity

region of the Gaussian interference channel with unidirectional cooperation is given by

C= U{(Rl,RZ) :

Ry <C((1-p*)P) (4.119)
Ri+ R <C (P1 + h3, Py + 2p\/h%1P1P2> }. (4.120)

Figure 4.7 shows the capacity region for P; = P, = P = 10 and ho; = 1.5.

One can show that satisfying conditions (4.117)-(4.118) for all possible values of p
is more demanding than the conditions (1.1)-(1.2) which in Gaussian case reduce to
ho1 > 1,h12 > 1. Still, we observe there will always be some set of values ho1, hio that
satisfy conditions (4.117)-(4.118), except when P; = 0. For P; = 0, the channel reduces
to the broadcast channel from encoder 2. As the channel is degraded, there can be no

strong interference conditions.

4.6.4 Conclusion

In this chapter, we presented three channel models that incorporate partial transmit-
ter cooperation. For the interference channels presented in Sections 4.5 and 4.6, we
determined the capacity region under the strong interference conditions in which de-
coders can decode all transmitted messages with no rate penalty. For the interference
channel with unidirectional cooperation it is possible that weaker conditions exist. De-
termining the strong interference conditions for more general channel models such as

the interference channel with correlated sources is still an open problem.
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Chapter 5

Summary and Future Directions

This thesis was motivated by an interest in understanding the mechanisms and gains
of relaying and node cooperation in wireless networks. While the crucial cooperative
strategies were proposed back in late seventies [10], recent interest in sensor networks
has rekindled interest in multi-terminal systems with many nodes. Motivated by sensor
applications, we began this work by considering cooperation in large, energy-constrained
networks. For such networks, we proposed a cooperative strategy for the multicast and
broadcast traffic model. We used insights offered by network information theory on
the importance of exploiting the overheard received signals, to propose an accumu-
lative broadcast strategy that increases the network energy-efficiency. We analyzed
two problems concerned with energy-efficient data broadcast. First, we formulated the
minimum-energy accumulative broadcast problem. We showed that the problem is NP-
complete and proposed an energy-efficient heuristic algorithm. We then addressed the
maximum lifetime multicast problem and presented the Maximum Lifetime Accumula-
tive Broadcast (MLAB) Algorithm that finds the optimum solution. The power levels
found by the algorithm ensure that the lifetimes of the active relays are the same, caus-
ing them to fail simultaneously. Several questions regarding accumulative broadcast

remain at this time.

e The proposed accumulative broadcast scheme employs a decode-and-forward re-
lay strategy. The potential benefit of unreliable forwarding in the accumulative

broadcast problem still needs to be investigated.

e In this work, accumulative broadcast was proposed for the AWGN channel with
constant link gains. However, cooperation among the nodes in the fading channel

offers additional benefit as a form of diversity [18,78,93]. It would be interesting to
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consider the implications of time varying channels on the accumulative broadcast

problems.

e The maximum lifetime solution found by MLAB is static since it stays constant
throughout the multicast session. Similar to conventional broadcast, a dynamic
strategy with time varying powers can extend the network lifetime [42]. Dynamic
switching between schedules, corresponding to routing packets along multiple
routes, may yield a network lifetime larger than that of the ASAP distribution,
the optimal static policy. A general solution for optimal dynamic cooperative

multicast remains an open problem.

We then considered cooperation in a large network with a different traffic model that
assumes a single source-destination link. We considered a simple two-hop protocol that
precludes communication among relays. Rather, relays process information received
from the source and forward it to the destination. For the two-hop AF power/bandwidth
problem (3.12) presented in Chapter 3, we characterized the optimum bandwidth by
showing that it allows the network to operate in the linear regime. We then deter-
mined the optimum relay power allocation for two cases - when relays are signal-
ing in shared bandwidth and for orthogonal signaling. While we considered a single
source-destination pair, our results have implications to networks with multiple source-
destination pairs. Qur view is that, for each such pair, the relay network in between is
a resource that we aim to use efficiently. Such a view motivates a total power contraint
as the network budget. The optimum power allocation then allows determination of
the best subset of relay nodes for each source-destination pair.

In a wireless network, messages are typically expected to travel further than just
two hops and the two-hop protocol approach should not be viewed as an obstacle to
multihoping protocols. In fact, it is expected that a routing protocol will still exist on
the network layer. The cooperative relay strategies will be run on the lower medium-
access control layer, allowing for faster network adaptation to changes due to fading
or high mobility. In that sense, routing and relaying will work together to increase

network performance.
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Three immediate open problem become apparent from our analysis.

e Proof that the optimum AF bandwidth problem (3.30) has a unique solution.
Given the relay powers (3.26) or (3.33), the AF problem (3.12) reduces to an op-
timization problem in two-variables: bandwidth and the power fraction allocated
to the source. Even when the source power is known, the closed-form solution for
the optimum bandwidth does not appear to exist. Proving the uniqueness of the
optimum solution reduces to proving the unimodality of the rate function (3.30).
The difficulty in the proof seems to come from the optimality of the infinitely
large bandwidth for certain values of channel gains. It occurs in the special case
when direct transmission at the source is optimal. While the numerical results

indicate the uniqueness of the solution, the explicit proof remains elusive.

e Practical design of networks that allow for the form of cooperation described
above. These protocols in general require a cross-layer design in which physical
layer cooperation is intergrated with MAC and network layer design for impoved

performance. Several aspects of practical design have been addressed in [94].

e In low-SNR scenarios, the relay power solutions (3.26) or (3.33) exhibit a cluster-
ing behavior by favorizing the relays that are in the vicinity of the source and/or
the destination, as shown in Figures 3.1, 3.2 and 3.4. This further suggests solu-
tions that, instead of two-hop, employ a three-hop network architecture. In the
first hop, the source transmits to the nodes in its vicinity. After decoding the
message, these nodes, together with the source, can jointly encode and transmit,
forming a transmit cluster. On the receiving side, a receiving cluster performs co-
operative detection. Therefore, data is transmitted through two clusters that act
as multiple transmit and receive antennas. Preliminary results in that direction
have been presented in [95]. The problem involves specifying the exact coopera-
tion strategy among the cluster nodes and investigating the potential gains from

such MIMO architectures.

In Chapter 4, we considered the interference channel with limited cooperation, cap-

turing a communication situation in which two sources wish to send messages to two
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corresponding receivers, while being able to partially cooperate with each other. The
capacity region of the basic interference channel has been a long-standing open problem
and thus one has little hope in solving the interference channel with cooperation prob-
lem, which adds yet another dimension to the problem. In Chapter 4, we determined
the capacity region of such channels under very special conditions in which there is no
penalty in decoding both messages at both receivers. For transmitter cooperation, we
initially assumed that encoders cooperate over links with finite capacities in the form of
a conference. In Section 4.4, we presented the capacity region of the compound MAC
with conferencing in which both receivers wish to decode both messages. The obtained
capacity region is an inner bound on the rates achievable in a channel in which each
decoder decodes a message sent from a single encoder. We then determined the strong
interference conditions and the capacity region for the strong interference channel with
common information in Section 4.5 and for the strong interference channel with uni-
directional cooperation in Section 4.6. It would be interesting to investigate whether
there exists a weaker set of strong interference conditions for the interference channel
with unidirectional cooperation than those determined in [69].

For the conferencing model, after cooperation over the links with finite capacities,
encoders will have partial information about each other’s messages. The exact amount
of such common information is determined by the link capacities and we expect the
solution to be parametrized by these capacities. Therefore, channel models with specific
assumptions about the knowledge of each other’s messages at the encoders, as in the
interference channel with unidirectional cooperation, are captured by the channel model

with conferencing. We list three immediate interesting problems still ahead.

e The strong interference conditions for more general models such as the interference

channel with conferencing or the interference channel with correlated sources.

e Even more challenging, the capacity region of the interference chanel with con-

ferencing for a wider set of channel conditions.

e Even more general, cooperation gains for more general discrete channel models

with cooperation.
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Appendix A

Additional Proofs

A.1 Proof: Theorem 1

An upper bound to the achievable rate between the source and the destination is the
maximum conditional mutual information across a minimum cut [81]. Consider the
multiaccess cut in the given network that separates the destination node from the rest
of the network. Let X; denote a symbol transmitted at node j and Y denote the
received signal at the destination. The maximum mutual information across this cut is
given by

Cyvac =I(Xy,... Xp-1;Y). (A1)

In this network, each orthogonal channel is assigned bandwidth W and hence the mutual
information above is given by the sum of rates achieved in each of the channels. For

Gaussian channels,

m—1
hmkplc
=W . A2
Cmac k§:1 log, (1 + NoW ) (A.2)

In the wideband regime, Equation (A.2) becomes

m—1
) Pk pr
=1 1 1 n A3
Cune = Jim W S o, 1+ 2 )
1 m—1
- h A4
NO 10g2 ; mkPk, ( )

which is precisely the rate given by (2.10) achieved using the repetition strategy. Since
this rate is achievable, this cut is the minimum cut. No better rate can be achieved

since it would violate the condition for the upper bound. O
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A.2 Proof: Theorem 2

For the purpose of this proof we represent a solution to the accumulative broadcast
problem by a vector with each entry ¢ containing the ¢th transmitting node n; and the

1th transmitted power level P;. A solution S is represented as

S = [ (n1, P) (n2, P2), ... (nar,Pum) ]T (A.5)

for some M > N. We write (n;, P;) = (0,0) if no node transmits at step .

Assume that S schedules the same node for a transmission more than once. It is
sufficient to show that there is a feasible schedule S that uses the same total transmit
power as S, in which that node transmits once. Let [ denote the smallest integer such
that there exists an integer m > [ with n,, = n;. Consider the policy S, a vector of

length M — 1 with elements (7;, P;) such that

(nla-Pl+Pm) lf’L:l,
(7, P2) = 4 (0,0) if i = m, (A.6)

(ni, B) if i > m.

The solution § combines transmissions at steps [ and m into a single transmission with
power P, + P, at step [. The rest of the nodes are scheduled as in S.

For any node 7, the energy accumulated by step k in new schedule is Ef;ll hjmpi >
Zf:_ll hjn,P;. Therefore, S is a feasible schedule since any node j made reliable by step

k in schedule S is also reliable at step k£ in the new schedule. O

A.3 Proof: Theorem 4

The proof is by induction on k, where k is the index to a sequence of stages during
the ASAP(p) distribution. We prove by induction that at the start of stage k, nodes
{z1,...,2x} C Sk(p). In case that the number of stages is 7 = 7(p) < M, we define
Sk(p) = Sz(p) for all 7 < k < M. The idea is that ASAP(p) makes nodes reliable at
least as soon as the schedule x.

Case k = 1 is obvious since S1(p) = {1} for any p. Next we assume that {z1,...,zx} C
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Sk(p). This implies
P Gk > Y g 29P (A.7)
x; €S (P) x]e{ml,...,zk}
where (a) follows from the feasibility of power p for schedule x, because under schedule
X, node x4 is made reliable by transmissions of {z1, ...,z }. We conclude that z4; €
Sk+1(p) and since {z1,...,zx} C Sk(P) C Sk+1(p), it follows that {z1,..., 2541} C
Sk+1(P). Thus, {z1,...,zpm} C Sp(p), implying the ASAP(p) distribution makes all

the nodes in a schedule x, and thus all destination nodes, reliable. O

A.4 Proof: Theorem 5

Suppose the last restart of the MLAB algorithm occurs when the power is py and the
ASAP(py) distribution stalls at stage 7o = 7(po). This implies
S>> b <P, jeUn(p). (A8)
keS7y(po)
In this case, we restart MLAB with broadcast power pg + dp where §y = min;¢y, +(p0) d;

and J; satisfies

(Po+6;) Y. hy=P (A.9)
kES-,—O(po)
This implies
pO + 50 E h]k < P .7 € UTO (pO)' (AlO)
kes-r()(pO)

Since this is the last restart of MLAB, the ASAP(py + dp) distribution is a feasible
multicast. It follows that p* < pg+ dy since p* is the optimal broadcast power. To show

that p* = pg + dp requires the following lemma.

Lemma 1 For any power p' < po + &y, the ASAP(p') distribution stalls at stage 7' =
T(p") with S (p') C Sy, (po).

Lemma 1 implies that if p* < pg + dg, then the ASAP(p*) distribution will stall, which
is a contradiction of Theorem 4. Thus, at the final restart of the MLAB algorithm, the

power is pg + dg =
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Proof: Lemma 1

Let F = Sy (p') \ Sr(po). First, we show by contradiction that F is an empty set.
Suppose F is nonempty. Let 77 denote the first stage in which a node j' € F was made

reliable by the ASAP(p') distribution. Thus,

Z hjik- (A.11)

keSry(p')

Moreover, S;, (p") C Sr,(po) since up to stage 77, all nodes that were made reliable by

ASAP(p') belong to S;,(py). Hence,

P< E R (A.12)

kES-,—O(po)
(a) p() + (50 Z h; ik (A13)
kESTO(po)
<P (A.14)

since (a) follows from p' < py + §y and (b) follows from Equation (A.10). Thus we
have the contradiction P < P and we conclude that F is empty, S,/(p') C Sy, (po), and
Ur,(po) C Up(p'). Second, we observe that ASAP(p’) stalls at stage 7' since for all
j € Ur(p'),
Py hi<p D hi (A.15)
keS.(p") k€Szy(po)

<(o+d) Y, hpx<P. (A.16)
kGSTO(PO)

A.5 Proof: Theorem 6

In a network that is connected under power A, there is a path from the source node
to every other node in the network. Consider a path from node 1 to some node K.
We relabel the nodes such that the path is given by [1,2,... K]. For any reliable node
1 <k < K —1 such that k£ + 1 is unreliable, it holds that £ 4+ 1 € Uy. By distributed

MLAB, node k will increase its transmit power whenever it overhears no transmissions
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for T,, until £+ 1 is reliable. Thus, eventually all the nodes on the path will be reliable.
This holds for any path for any node K.

We next find an upper bound on 7;, time it takes for a node 7 to make all of its
neighbors reliable. An upper bound on the number of transmissions needed at a node i
to make node j € N;(A) reliable, neglecting the energy node j may have collected from
transmission from other nodes, is [P/h;;A]. In the worst case, node i will wait for 7,

between any two consecutive broadcasts. Thus,

P
- < - .
Ti < JENA(A) {To ’VAhji-‘ } (A.17)
P
=T, . . A.18
[A mmjeNi(A){hji}-‘ (A.18)

Since j € N;(A), it follows that hj; # 0 and therefore 7; is finite for every node i. Since

there is only a finite number of nodes, all nodes will be made reliable in finite time. O

A.6 Proof: Theorem 7

To prove Theorem 7, we next upper bound the time 7 (k) it takes for maximum transmit

power ¢ = kA, k > 0 to propagate through the network.

Lemma 2 Let T be the duration of a single transmission and let (k) = N(k + 1)T.
Then, T (k) < 7(k).

Proof: Lemma 2

The time it takes for one node to transmit with g is upper bounded by kT, the case
when the node never previously transmitted. Since the node may have to wait for
NACKs for additional time T, the total time at a node is upper bounded by (k + 1)7T,
Since the propagation cannot take more than N hops, the total time is upper bounded
by N(k+1)T. O

To prove Theorem 7, we first observe that power ¢ is lower bounded by p*: before
the power p* is reached, there are always nodes that are unreliable and the distributed

MLAB does not stop at the reliable nodes. The power p* is reached for § = [p*/A]A <
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p* + A and no further increase in power is neccessary. By Lemma 2, § will propagate
in less than 7(A) = N([p*/A] +1)T time. If T, > 7(A), no node will increase g before
all reliable nodes transmitted with g. However, at that point all network nodes will be

reliable and distributed MLAB will stop at all nodes with ¢ =q. O
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