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Comments on this Student Solutions Manual

• Matlab functions written as solutions to homework problems in this Stu-
dent’s Solution Manual (SSM) can be found in the archive matsoln3student.zip.
Other Matlab functions used in the text or in these homework solutions
can be found in the archive matcode3e.zip. The archives matcode3e.zip

and matsoln3student.zip are available for download from the John Wiley
companion website. Two other documents of interest are also available for
download:

– Amanual probmatlab.pdf describing the .m functions in matcode.zip.

– The quiz solutions manual quizsol.pdf.

• This manual uses a page size matched to the screen of an iPad tablet. If you
do print on paper and you have good eyesight, you may wish to print two
pages per sheet in landscape mode. On the other hand, a “Fit to Paper”
printing option will create “Large Print” output.

• Send error reports, suggestions, or comments to

ryates@winlab.rutgers.edu.
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Problem Solutions – Chapter 1

Problem 1.1.1 Solution

Based on the Venn diagram on the right, the complete Ger-
landas pizza menu is
• Regular without toppings
• Regular with mushrooms
• Regular with onions
• Regular with mushrooms and onions
• Tuscan without toppings
• Tuscan with mushrooms

M O

T

Problem 1.1.3 Solution

At Ricardo’s, the pizza crust is either Roman (R) or Neapoli-
tan (N). To draw the Venn diagram on the right, we make
the following observations:

R N

M

OW

• The set {R,N} is a partition so we can draw the Venn diagram with
this partition.

• Only Roman pizzas can be white. Hence W ⊂ R.

• Only a Neapolitan pizza can have onions. Hence O ⊂ N .

• Both Neapolitan and Roman pizzas can have mushrooms so that event
M straddles the {R,N} partition.

• The Neapolitan pizza can have both mushrooms and onions so M ∩ O
cannot be empty.

• The problem statement does not preclude putting mushrooms on a
white Roman pizza. Hence the intersection W∩M should not be empty.
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Problem 1.2.1 Solution

(a) An outcome specifies whether the connection speed is high (h), medium
(m), or low (l) speed, and whether the signal is a mouse click (c) or a
tweet (t). The sample space is

S = {ht, hc,mt,mc, lt, lc} . (1)

(b) The event that the wi-fi connection is medium speed is A1 = {mt,mc}.

(c) The event that a signal is a mouse click is A2 = {hc,mc, lc}.

(d) The event that a connection is either high speed or low speed is A3 =
{ht, hc, lt, lc}.

(e) Since A1∩A2 = {mc} and is not empty, A1, A2, and A3 are not mutually
exclusive.

(f) Since

A1 ∪ A2 ∪ A3 = {ht, hc,mt,mc, lt, lc} = S, (2)

the collection A1, A2, A3 is collectively exhaustive.

Problem 1.2.3 Solution

The sample space is

S = {A♣, . . . , K♣, A♦, . . . , K♦, A♥, . . . , K♥, A♠, . . . , K♠} . (1)

The event H that the first card is a heart is the set

H = {A♥, . . . , K♥} . (2)

The event H has 13 outcomes, corresponding to the 13 hearts in a deck.
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Problem 1.2.5 Solution
Of course, there are many answers to this problem. Here are four partitions.

1. We can divide students into engineers or non-engineers. Let A1 equal
the set of engineering students and A2 the non-engineers. The pair
{A1, A2} is a partition.

2. We can also separate students by GPA. Let Bi denote the subset of stu-
dents with GPAsG satisfying i−1 ≤ G < i. At Rutgers, {B1, B2, . . . , B5}
is a partition. Note that B5 is the set of all students with perfect 4.0
GPAs. Of course, other schools use different scales for GPA.

3. We can also divide the students by age. Let Ci denote the subset of
students of age i in years. At most universities, {C10, C11, . . . , C100}
would be an event space. Since a university may have prodigies either
under 10 or over 100, we note that {C0, C1, . . .} is always a partition.

4. Lastly, we can categorize students by attendance. Let D0 denote the
number of students who have missed zero lectures and let D1 denote all
other students. Although it is likely that D0 is an empty set, {D0, D1}
is a well defined partition.

Problem 1.3.1 Solution

(a) A and B mutually exclusive and collectively exhaustive imply P[A] +
P[B] = 1. Since P[A] = 3 P[B], we have P[B] = 1/4.

(b) Since P[A ∪B] = P[A], we see that B ⊆ A. This implies P[A ∩B] =
P[B]. Since P[A ∩B] = 0, then P[B] = 0.

(c) Since it’s always true that P[A ∪B] = P[A] + P[B] − P[AB], we have
that

P[A] + P[B]− P[AB] = P[A]− P[B]. (1)

This implies 2 P[B] = P[AB]. However, since AB ⊂ B, we can conclude
that 2 P[B] = P[AB] ≤ P[B]. This implies P[B] = 0.
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Problem 1.3.3 Solution

An outcome is a pair (i, j) where i is the value of the first die and j is the
value of the second die. The sample space is the set

S = {(1, 1), (1, 2), . . . , (6, 5), (6, 6)} . (1)

with 36 outcomes, each with probability 1/36 Note that the event that the
absolute value of the difference of the two rolls equals 3 is

D3 = {(1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)} . (2)

Since there are 6 outcomes in D3, P[D3] = 6/36 = 1/6.

Problem 1.3.5 Solution

The sample space of the experiment is

S = {LF,BF,LW,BW} . (1)

From the problem statement, we know that P[LF ] = 0.5, P[BF ] = 0.2 and
P[BW ] = 0.2. This implies P[LW ] = 1− 0.5− 0.2− 0.2 = 0.1. The questions
can be answered using Theorem 1.5.

(a) The probability that a program is slow is

P [W ] = P [LW ] + P [BW ] = 0.1 + 0.2 = 0.3. (2)

(b) The probability that a program is big is

P [B] = P [BF ] + P [BW ] = 0.2 + 0.2 = 0.4. (3)

(c) The probability that a program is slow or big is

P [W ∪B] = P [W ] + P [B]− P [BW ] = 0.3 + 0.4− 0.2 = 0.5. (4)
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Problem 1.3.7 Solution
A reasonable probability model that is consistent with the notion of a shuffled
deck is that each card in the deck is equally likely to be the first card. Let Hi

denote the event that the first card drawn is the ith heart where the first heart
is the ace, the second heart is the deuce and so on. In that case, P[Hi] = 1/52
for 1 ≤ i ≤ 13. The event H that the first card is a heart can be written as
the mutually exclusive union

H = H1 ∪H2 ∪ · · · ∪H13. (1)

Using Theorem 1.1, we have

P [H] =
13∑
i=1

P [Hi] = 13/52. (2)

This is the answer you would expect since 13 out of 52 cards are hearts. The
point to keep in mind is that this is not just the common sense answer but
is the result of a probability model for a shuffled deck and the axioms of
probability.

Problem 1.3.9 Solution
Let si equal the outcome of the student’s quiz. The sample space is then
composed of all the possible grades that she can receive.

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . (1)

Since each of the 11 possible outcomes is equally likely, the probability of
receiving a grade of i, for each i = 0, 1, . . . , 10 is P[si] = 1/11. The probability
that the student gets an A is the probability that she gets a score of 9 or
higher. That is

P [Grade of A] = P [9] + P [10] = 1/11 + 1/11 = 2/11. (2)

The probability of failing requires the student to get a grade less than 4.

P [Failing] = P [3] + P [2] + P [1] + P [0]

= 1/11 + 1/11 + 1/11 + 1/11 = 4/11. (3)
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Problem 1.3.11 Solution

Specifically, we will use Theorem 1.4(c) which states that for any events A
and B,

P [A ∪B] = P [A] + P [B]− P [A ∩B] . (1)

To prove the union bound by induction, we first prove the theorem for the
case of n = 2 events. In this case, by Theorem 1.4(c),

P [A1 ∪ A2] = P [A1] + P [A2]− P [A1 ∩ A2] . (2)

By the first axiom of probability, P[A1 ∩ A2] ≥ 0. Thus,

P [A1 ∪ A2] ≤ P [A1] + P [A2] . (3)

which proves the union bound for the case n = 2.Now we make our induction
hypothesis that the union-bound holds for any collection of n− 1 subsets. In
this case, given subsets A1, . . . , An, we define

A = A1 ∪ A2 ∪ · · · ∪ An−1, B = An. (4)

By our induction hypothesis,

P [A] = P [A1 ∪ A2 ∪ · · · ∪ An−1] ≤ P [A1] + · · ·+ P [An−1] . (5)

This permits us to write

P [A1 ∪ · · · ∪ An] = P [A ∪B]

≤ P [A] + P [B] (by the union bound for n = 2)

= P [A1 ∪ · · · ∪ An−1] + P [An]

≤ P [A1] + · · ·P [An−1] + P [An] (6)

which completes the inductive proof.
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Problem 1.3.13 Solution
Following the hint, we define the set of events {Ai|i = 1, 2, . . .} such that i =
1, . . . ,m, Ai = Bi and for i > m, Ai = φ. By construction, ∪mi=1Bi = ∪∞i=1Ai.
Axiom 3 then implies

P [∪mi=1Bi] = P [∪∞i=1Ai] =
∞∑
i=1

P [Ai] . (1)

For i > m, P[Ai] = P[φ] = 0, yielding the claim P[∪mi=1Bi] =
∑m

i=1 P[Ai] =∑m
i=1 P[Bi].

Note that the fact that P[φ] = 0 follows from Axioms 1 and 2. This problem
is more challenging if you just use Axiom 3. We start by observing

P [∪mi=1Bi] =
m−1∑
i=1

P [Bi] +
∞∑
i=m

P [Ai] . (2)

Now, we use Axiom 3 again on the countably infinite sequence Am, Am+1, . . .
to write

∞∑
i=m

P [Ai] = P [Am ∪ Am+1 ∪ · · ·] = P [Bm] . (3)

Thus, we have used just Axiom 3 to prove Theorem 1.3:

P [∪mi=1Bi] =
m∑
i=1

P [Bi] . (4)

Problem 1.4.1 Solution
Each question requests a conditional probability.

(a) Note that the probability a call is brief is

P [B] = P [H0B] + P [H1B] + P [H2B] = 0.6. (1)

The probability a brief call will have no handoffs is

P [H0|B] =
P [H0B]

P [B]
=

0.4

0.6
=

2

3
. (2)
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(b) The probability of one handoff is P[H1] = P[H1B] + P[H1L] = 0.2. The
probability that a call with one handoff will be long is

P [L|H1] =
P [H1L]

P [H1]
=

0.1

0.2
=

1

2
. (3)

(c) The probability a call is long is P[L] = 1−P[B] = 0.4. The probability
that a long call will have one or more handoffs is

P [H1 ∪H2|L] =
P [H1L ∪H2L]

P [L]

=
P [H1L] + P [H2L]

P [L]
=

0.1 + 0.2

0.4
=

3

4
. (4)

Problem 1.4.3 Solution

Since the 2 of clubs is an even numbered card, C2 ⊂ E so that P[C2E] =
P[C2] = 1/3. Since P[E] = 2/3,

P [C2|E] =
P [C2E]

P [E]
=

1/3

2/3
= 1/2. (1)

The probability that an even numbered card is picked given that the 2 is
picked is

P [E|C2] =
P [C2E]

P [C2]
=

1/3

1/3
= 1. (2)

Problem 1.4.5 Solution

The first generation consists of two plants each with genotype yg or gy.
They are crossed to produce the following second generation genotypes, S =
{yy, yg, gy, gg}. Each genotype is just as likely as any other so the probabil-
ity of each genotype is consequently 1/4. A pea plant has yellow seeds if it

10



possesses at least one dominant y gene. The set of pea plants with yellow
seeds is

Y = {yy, yg, gy} . (1)

So the probability of a pea plant with yellow seeds is

P [Y ] = P [yy] + P [yg] + P [gy] = 3/4. (2)

Problem 1.4.7 Solution

The sample outcomes can be written ijk where the first card drawn is i, the
second is j and the third is k. The sample space is

S = {234, 243, 324, 342, 423, 432} . (1)

and each of the six outcomes has probability 1/6. The events E1, E2, E3, O1,
O2, O3 are

E1 = {234, 243, 423, 432} , O1 = {324, 342} , (2)

E2 = {243, 324, 342, 423} , O2 = {234, 432} , (3)

E3 = {234, 324, 342, 432} , O3 = {243, 423} . (4)

(a) The conditional probability the second card is even given that the first
card is even is

P [E2|E1] =
P [E2E1]

P [E1]
=

P [243, 423]

P [234, 243, 423, 432]
=

2/6

4/6
= 1/2. (5)

(b) The conditional probability the first card is even given that the second
card is even is

P [E1|E2] =
P [E1E2]

P [E2]
=

P [243, 423]

P [243, 324, 342, 423]
=

2/6

4/6
= 1/2. (6)
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(c) The probability the first two cards are even given the third card is even
is

P [E1E2|E3] =
P [E1E2E3]

P [E3]
= 0. (7)

(d) The conditional probabilities the second card is even given that the first
card is odd is

P [E2|O1] =
P [O1E2]

P [O1]
=

P [O1]

P [O1]
= 1. (8)

(e) The conditional probability the second card is odd given that the first
card is odd is

P [O2|O1] =
P [O1O2]

P [O1]
= 0. (9)

Problem 1.5.1 Solution

From the table we look to add all the mutually exclusive events to find each
probability.

(a) The probability that a caller makes no hand-offs is

P [H0] = P [LH0] + P [BH0] = 0.1 + 0.4 = 0.5. (1)

(b) The probability that a call is brief is

P [B] = P [BH0] + P [BH1] + P [BH2] = 0.4 + 0.1 + 0.1 = 0.6. (2)

(c) The probability that a call is long or makes at least two hand-offs is

P [L ∪H2] = P [LH0] + P [LH1] + P [LH2] + P [BH2]

= 0.1 + 0.1 + 0.2 + 0.1 = 0.5. (3)
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Problem 1.5.3 Solution

(a) For convenience, let pi = P[FHi] and qi = P[V Hi]. Using this short-
hand, the six unknowns p0, p1, p2, q0, q1, q2 fill the table as

H0 H1 H2

F p0 p1 p2

V q0 q1 q2

. (1)

However, we are given a number of facts:

p0 + q0 = 1/3, p1 + q1 = 1/3, (2)

p2 + q2 = 1/3, p0 + p1 + p2 = 5/12. (3)

Other facts, such as q0 +q1 +q2 = 7/12, can be derived from these facts.
Thus, we have four equations and six unknowns, choosing p0 and p1 will
specify the other unknowns. Unfortunately, arbitrary choices for either
p0 or p1 will lead to negative values for the other probabilities. In terms
of p0 and p1, the other unknowns are

q0 = 1/3− p0, p2 = 5/12− (p0 + p1), (4)

q1 = 1/3− p1, q2 = p0 + p1 − 1/12. (5)

Because the probabilities must be nonnegative, we see that

0 ≤ p0 ≤ 1/3, (6)

0 ≤ p1 ≤ 1/3, (7)

1/12 ≤ p0 + p1 ≤ 5/12. (8)

Although there are an infinite number of solutions, three possible solu-
tions are:

p0 = 1/3, p1 = 1/12, p2 = 0, (9)

q0 = 0, q1 = 1/4, q2 = 1/3. (10)
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and

p0 = 1/4, p1 = 1/12, p2 = 1/12, (11)

q0 = 1/12, q1 = 3/12, q2 = 3/12. (12)

and

p0 = 0, p1 = 1/12, p2 = 1/3, (13)

q0 = 1/3, q1 = 3/12, q2 = 0. (14)

(b) In terms of the pi, qi notation, the new facts are p0 = 1/4 and q1 = 1/6.
These extra facts uniquely specify the probabilities. In this case,

p0 = 1/4, p1 = 1/6, p2 = 0, (15)

q0 = 1/12, q1 = 1/6, q2 = 1/3. (16)

Problem 1.6.1 Solution

This problems asks whether A and B can be independent events yet satisfy
A = B? By definition, events A and B are independent if and only if P[AB] =
P[A] P[B]. We can see that if A = B, that is they are the same set, then

P [AB] = P [AA] = P [A] = P [B] . (1)

Thus, for A and B to be the same set and also independent,

P [A] = P [AB] = P [A] P [B] = (P [A])2 . (2)

There are two ways that this requirement can be satisfied:

• P[A] = 1 implying A = B = S.

• P[A] = 0 implying A = B = φ.
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Problem 1.6.3 Solution
Let Ai and Bi denote the events that the ith phone sold is an Apricot or a
Banana respectively. The works “each phone sold is twice as likely to be an
Apricot than a Banana” tells us that

P [Ai] = 2 P [Bi] . (1)

However, since each phone sold is either an Apricot or a Banana, Ai and Bi

are a partition and

P [Ai] + P [Bi] = 1. (2)

Combining these equations, we have P[Ai] = 2/3 and P[Bi] = 1/3. The
probability that two phones sold are the same is

P [A1A2 ∪B1B2] = P [A1A2] + P [B1B2] . (3)

Since “each phone sale is independent,”

P [A1A2] = P [A1] P [A2] =
4

9
, P [B1B2] = P [B1] P [B2] =

1

9
. (4)

Thus the probability that two phones sold are the same is

P [A1A2 ∪B1B2] = P [A1A2] + P [B1B2] =
4

9
+

1

9
=

5

9
. (5)

Problem 1.6.5 Solution

(a) Since A and B are mutually exclusive, P[A ∩B] = 0. Since P[A ∩B] =
0,

P [A ∪B] = P [A] + P [B]− P [A ∩B] = 3/8. (1)

A Venn diagram should convince you that A ⊂ Bc so that A∩Bc = A.
This implies

P [A ∩Bc] = P [A] = 1/4. (2)

It also follows that P[A ∪Bc] = P[Bc] = 1− 1/8 = 7/8.

(b) Events A and B are dependent since P[AB] 6= P[A] P[B].
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Problem 1.6.7 Solution

(a) Since A ∩B = ∅, P[A ∩B] = 0. To find P[B], we can write

P [A ∪B] = P [A] + P [B]− P [A ∩B] (1)

or

5/8 = 3/8 + P [B]− 0. (2)

Thus, P[B] = 1/4. Since A is a subset of Bc, P[A ∩Bc] = P[A] = 3/8.
Furthermore, since A is a subset of Bc, P[A ∪Bc] = P[Bc] = 3/4.

(b) The events A and B are dependent because

P [AB] = 0 6= 3/32 = P [A] P [B] . (3)

Problem 1.6.9 Solution

For a sample space S = {1, 2, 3, 4} with equiprobable outcomes, consider the
events

A1 = {1, 2} A2 = {2, 3} A3 = {3, 1} . (1)

Each event Ai has probability 1/2. Moreover, each pair of events is indepen-
dent since

P [A1A2] = P [A2A3] = P [A3A1] = 1/4. (2)

However, the three events A1, A2, A3 are not independent since

P [A1A2A3] = 0 6= P [A1] P [A2] P [A3] . (3)
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Problem 1.6.11 Solution

(a) For any events A and B, we can write the law of total probability in
the form of

P [A] = P [AB] + P [ABc] . (1)

Since A and B are independent, P[AB] = P[A] P[B]. This implies

P [ABc] = P [A]− P [A] P [B] = P [A] (1− P [B]) = P [A] P [Bc] . (2)

Thus A and Bc are independent.

(b) Proving that Ac and B are independent is not really necessary. Since
A and B are arbitrary labels, it is really the same claim as in part (a).
That is, simply reversing the labels of A and B proves the claim. Alter-
natively, one can construct exactly the same proof as in part (a) with
the labels A and B reversed.

(c) To prove that Ac and Bc are independent, we apply the result of part (a)
to the sets A and Bc. Since we know from part (a) that A and Bc are
independent, part (b) says that Ac and Bc are independent.

Problem 1.6.13 Solution

A AB B

AC C BC

In the Venn diagram at right, assume the sample
space has area 1 corresponding to probability 1. As
drawn, A, B, and C each have area 1/3 and thus
probability 1/3. The three way intersection ABC
has zero probability, implying A, B, and C are not
mutually independent since

P [ABC] = 0 6= P [A] P [B] P [C] . (1)
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However, AB, BC, and AC each has area 1/9. As a result, each pair of events
is independent since

P [AB] = P [A] P [B] , P [BC] = P [B] P [C] , P [AC] = P [A] P [C] . (2)

Problem 1.7.1 Solution

We can generate the 200×1 vector T, denoted T in Matlab, via the command

T=50+ceil(50*rand(200,1))

Keep in mind that 50*rand(200,1) produces a 200 × 1 vector of random
numbers, each in the interval (0, 50). Applying the ceiling function converts
these random numbers to rndom integers in the set {1, 2, . . . , 50}. Finally,
we add 50 to produce random numbers between 51 and 100.
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Problem Solutions – Chapter 2

Problem 2.1.1 Solution
A sequential sample space for this experiment is

��
���

�H11/4

XXXXXX T13/4

���
���H21/4

T23/4

H2
1/4

XXXXXX T23/4

•H1H2 1/16

•H1T2 3/16

•T1H2 3/16

•T1T2 9/16

(a) From the tree, we observe

P [H2] = P [H1H2] + P [T1H2] = 1/4. (1)

This implies

P [H1|H2] =
P [H1H2]

P [H2]
=

1/16

1/4
= 1/4. (2)

(b) The probability that the first flip is heads and the second flip is tails is
P[H1T2] = 3/16.

Problem 2.1.3 Solution
Let Gi and Bi denote events indicating whether free throw i was good (Gi)
or bad (Bi). The tree for the free throw experiment is

��
�
��
�G11/2

HHH
HHHB1
1/2

��
���

�G23/4

XXXXXXB21/4

��
���

�G21/4

XXXXXXB23/4

•G1G2 3/8

•G1B2 1/8

•B1G2 1/8

•B1B2 3/8
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The game goes into overtime if exactly one free throw is made. This event
has probability

P [O] = P [G1B2] + P [B1G2] = 1/8 + 1/8 = 1/4. (1)

Problem 2.1.5 Solution

The P[− |H ] is the probability that a person who has HIV tests negative for
the disease. This is referred to as a false-negative result. The case where
a person who does not have HIV but tests positive for the disease, is called
a false-positive result and has probability P[+|Hc]. Since the test is correct
99% of the time,

P [−|H] = P [+|Hc] = 0.01. (1)

Now the probability that a person who has tested positive for HIV actually
has the disease is

P [H|+] =
P [+, H]

P [+]
=

P [+, H]

P [+, H] + P [+, Hc]
. (2)

We can use Bayes’ formula to evaluate these joint probabilities.

P [H|+] =
P [+|H] P [H]

P [+|H] P [H] + P [+|Hc] P [Hc]

=
(0.99)(0.0002)

(0.99)(0.0002) + (0.01)(0.9998)

= 0.0194. (3)

Thus, even though the test is correct 99% of the time, the probability that
a random person who tests positive actually has HIV is less than 0.02. The
reason this probability is so low is that the a priori probability that a person
has HIV is very small.

Problem 2.1.7 Solution

The tree for this experiment is
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��
�
��
�A11/2

HHH
HHHB1
1/2

���
���H11/4

T13/4

H1
3/4

XXXXXX T11/4

��
���

�H23/4

T21/4
H2

3/4
XXXXXX T21/4

���
���H21/4

T23/4
H2

1/4
XXXXXX T23/4

•A1H1H2 3/32

•A1H1T2 1/32

•A1T1H2 9/32

•A1T1T2 3/32

•B1H1H2 3/32

•B1H1T2 9/32

•B1T1H2 1/32

•B1T1T2 3/32

The event H1H2 that heads occurs on both flips has probability

P [H1H2] = P [A1H1H2] + P [B1H1H2] = 6/32. (1)

The probability of H1 is

P [H1] = P [A1H1H2] + P [A1H1T2] + P [B1H1H2] + P [B1H1T2]

= 1/2. (2)

Similarly,

P [H2] = P [A1H1H2] + P [A1T1H2] + P [B1H1H2] + P [B1T1H2]

= 1/2. (3)

Thus P[H1H2] 6= P[H1] P[H2], implying H1 and H2 are not independent. This
result should not be surprising since if the first flip is heads, it is likely that
coin B was picked first. In this case, the second flip is less likely to be heads
since it becomes more likely that the second coin flipped was coin A.

Problem 2.1.9 Solution

(a) The primary difficulty in this problem is translating the words into the
correct tree diagram. The tree for this problem is shown below.
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�
�
�
��

H11/2

XXXXXT11/2 ��
��
�H21/2

T21/2
H3

1/2

Z
Z
Z
ZZT3

1/2

H4
1/2

XXXXXT41/2

�
�
�
��

H31/2

T31/2
���

��H4
1/2

T41/2

•H1 1/2

•T1H2H3 1/8

•T1H2T3H4 1/16

•T1H2T3T4 1/16

•T1T2H3H4 1/16

•T1T2H3T4 1/16

•T1T2T3 1/8

(b) From the tree,

P [H3] = P [T1H2H3] + P [T1T2H3H4] + P [T1T2H3H4]

= 1/8 + 1/16 + 1/16 = 1/4. (1)

Similarly,

P [T3] = P [T1H2T3H4] + P [T1H2T3T4] + P [T1T2T3]

= 1/8 + 1/16 + 1/16 = 1/4. (2)

(c) The event that Dagwood must diet is

D = (T1H2T3T4) ∪ (T1T2H3T4) ∪ (T1T2T3). (3)

The probability that Dagwood must diet is

P [D] = P [T1H2T3T4] + P [T1T2H3T4] + P [T1T2T3]

= 1/16 + 1/16 + 1/8 = 1/4. (4)

The conditional probability of heads on flip 1 given that Dagwood must
diet is

P [H1|D] =
P [H1D]

P [D]
= 0. (5)

Remember, if there was heads on flip 1, then Dagwood always postpones
his diet.
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(d) From part (b), we found that P[H3] = 1/4. To check independence, we
calculate

P [H2] = P [T1H2H3] + P [T1H2T3] + P [T1H2T4T4] = 1/4

P [H2H3] = P [T1H2H3] = 1/8. (6)

Now we find that

P [H2H3] = 1/8 6= P [H2] P [H3] . (7)

Hence, H2 and H3 are dependent events. In fact, P[H3|H2] = 1/2 while
P[H3] = 1/4. The reason for the dependence is that given H2 occurred,
then we know there will be a third flip which may result in H3. That is,
knowledge of H2 tells us that the experiment didn’t end after the first
flip.

Problem 2.1.11 Solution

The starting point is to draw a tree of the experiment. We define the events
W that the plant is watered, L that the plant lives, and D that the plant
dies. The tree diagram is

���
��� W0.7

XXXXXXW c0.3

���
��� L0.8

D0.2

L0.1XXXXXX D0.9

•WL 0.56

•WD 0.14

•W cL 0.03

•W cD 0.27

It follows that

(a) P[L] = P[WL] + P[W cL] = 0.56 + 0.03 = 0.59.

(b)

P [W c|D] =
P [W cD]

P [D]
=

0.27

0.14 + 0.27
=

27

41
. (1)
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(c) P[D|W c] = 0.9.

In informal conversation, it can be confusing to distinguish between P[D|W c]
and P[W c|D]; however, they are simple once you draw the tree.

Problem 2.2.1 Solution

Technically, a gumball machine has a finite number of gumballs, but the
problem description models the drawing of gumballs as sampling from the
machine without replacement. This is a reasonable model when the machine
has a very large gumball capacity and we have no knowledge beforehand of
how many gumballs of each color are in the machine. Under this model, the
requested probability is given by the multinomial probability

P [R2Y2G2B2] =
8!

2! 2! 2! 2!

(
1

4

)2(
1

4

)2(
1

4

)2(
1

4

)2

=
8!

410
≈ 0.0385. (1)

Problem 2.2.3 Solution

(a) Let Bi, Li, Oi and Ci denote the events that the ith piece is Berry,
Lemon, Orange, and Cherry respectively. Let F1 denote the event that
all three pieces draw are the same flavor. Thus,

F1 = {S1S2S3, L1L2L3, O1O2O3, C1C2C3} (1)

P [F1] = P [S1S2S3] + P [L1L2L3] + P [O1O2O3] + P [C1C2C3] (2)

Note that

P[L1L2L3] =
3

12
· 2

11
· 1

10
=

1

220
(3)

and by symmetry,

P[F1] = 4 P[L1L2L3] =
1

55
. (4)
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(b) Let Di denote the event that the ith piece is a different flavor from all
the prior pieces. Let Si denote the event that piece i is the same flavor
as a previous piece. A tree for this experiment is

D1
1 ��

�
��
� S22/11

D29/11
��

�
��
� S34/10

D36/10

Note that:

• P[D1] = 1 because the first piece is “different” since there haven’t
been any prior pieces.

• The second piece is the same as the first piece with probability
2/11 because in the remaining 11 pieces there are 2 pieces that
are the same as the first piece. Alternatively, out of 11 pieces left,
there are 3 colors each with 3 pieces (that is, 9 pieces out of 11)
that are different from the first piece.

• Given the first two pieces are different, there are 2 colors, each with
3 pieces (6 pieces) out of 10 remaining pieces that are a different
flavor from the first two pieces. Thus P[D3|D2D1] = 6/10.

It follows that the three pieces are different with probability

P [D1D2D3] = 1

(
9

11

)(
6

10

)
=

27

55
. (5)

Problem 2.2.5 Solution
Since there are H =

(
52
7

)
equiprobable seven-card hands, each probability is

just the number of hands of each type divided by H.

(a) Since there are 26 red cards, there are
(

26
7

)
seven-card hands with all

red cards. The probability of a seven-card hand of all red cards is

P [R7] =

(
26
7

)(
52
7

) =
26! 45!

52! 19!
= 0.0049. (1)
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(b) There are 12 face cards in a 52 card deck and there are
(

12
7

)
seven card

hands with all face cards. The probability of drawing only face cards is

P [F ] =

(
12
7

)(
52
7

) =
12! 45!

5! 52!
= 5.92× 10−6. (2)

(c) There are 6 red face cards (J,Q,K of diamonds and hearts) in a 52 card
deck. Thus it is impossible to get a seven-card hand of red face cards:
P[R7F ] = 0.

Problem 2.2.7 Solution

There are 25 = 32 different binary codes with 5 bits. The number of codes
with exactly 3 zeros equals the number of ways of choosing the bits in which
those zeros occur. Therefore there are

(
5
3

)
= 10 codes with exactly 3 zeros.

Problem 2.2.9 Solution

We can break down the experiment of choosing a starting lineup into a se-
quence of subexperiments:

1. Choose 1 of the 10 pitchers. There are N1 =
(

10
1

)
= 10 ways to do this.

2. Choose 1 of the 15 field players to be the designated hitter (DH). There
are N2 =

(
15
1

)
= 15 ways to do this.

3. Of the remaining 14 field players, choose 8 for the remaining field posi-
tions. There are N3 =

(
14
8

)
to do this.

4. For the 9 batters (consisting of the 8 field players and the designated
hitter), choose a batting lineup. There are N4 = 9! ways to do this.

So the total number of different starting lineups when the DH is selected
among the field players is

N = N1N2N3N4 = (10)(15)

(
14

8

)
9! = 163,459,296,000. (1)
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Note that this overestimates the number of combinations the manager must
really consider because most field players can play only one or two positions.
Although these constraints on the manager reduce the number of possible
lineups, it typically makes the manager’s job more difficult. As for the count-
ing, we note that our count did not need to specify the positions played by the
field players. Although this is an important consideration for the manager, it
is not part of our counting of different lineups. In fact, the 8 nonpitching field
players are allowed to switch positions at any time in the field. For example,
the shortstop and second baseman could trade positions in the middle of an
inning. Although the DH can go play the field, there are some coomplicated
rules about this. Here is an excerpt from Major League Baseball Rule 6.10:

The Designated Hitter may be used defensively, continuing to
bat in the same position in the batting order, but the pitcher must
then bat in the place of the substituted defensive player, unless
more than one substitution is made, and the manager then must
designate their spots in the batting order.

If you’re curious, you can find the complete rule on the web.

Problem 2.2.11 Solution

(a) This is just the multinomial probability

P [A] =

(
40

19, 19, 2

)(
19

40

)19(
19

40

)19(
2

40

)2

=
40!

19!19!2!

(
19

40

)19(
19

40

)19(
2

40

)2

. (1)

(b) Each spin is either green (with probability 19/40) or not (with prob-
ability 21/40). If we call landing on greeen a success, then G19 is the
probability of 19 successes in 40 trials. Thus

P [G19] =

(
40

19

)(
19

40

)19(
21

40

)21

. (2)
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(c) If you bet on red, the probability you win is 19/40. If you bet green,
the probability that you win is 19/40. If you first make a random choice
to bet red or green, (say by flipping a coin), the probability you win is
still p = 19/40.

Problem 2.2.13 Solution
What our design must specify is the number of boxes on the ticket, and the
number of specially marked boxes. Suppose each ticket has n boxes and 5+k
specially marked boxes. Note that when k > 0, a winning ticket will still
have k unscratched boxes with the special mark. A ticket is a winner if each
time a box is scratched off, the box has the special mark. Assuming the
boxes are scratched off randomly, the first box scratched off has the mark
with probability (5 + k)/n since there are 5 + k marked boxes out of n boxes.
Moreover, if the first scratched box has the mark, then there are 4+k marked
boxes out of n−1 remaining boxes. Continuing this argument, the probability
that a ticket is a winner is

p =
5 + k

n

4 + k

n− 1

3 + k

n− 2

2 + k

n− 3

1 + k

n− 4
=

(k + 5)!(n− 5)!

k!n!
. (1)

By careful choice of n and k, we can choose p close to 0.01. For example,

n 9 11 14 17
k 0 1 2 3
p 0.0079 0.012 0.0105 0.0090

(2)

A gamecard with N = 14 boxes and 5 + k = 7 shaded boxes would be quite
reasonable.

Problem 2.3.1 Solution

(a) Since the probability of a zero is 0.8, we can express the probability of
the code word 00111 as 2 occurrences of a 0 and three occurrences of a
1. Therefore

P [00111] = (0.8)2(0.2)3 = 0.00512. (1)
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(b) The probability that a code word has exactly three 1’s is

P [three 1’s] =

(
5

3

)
(0.8)2(0.2)3 = 0.0512. (2)

Problem 2.3.3 Solution

We know that the probability of a green and red light is 7/16, and that of
a yellow light is 1/8. Since there are always 5 lights, G, Y , and R obey the
multinomial probability law:

P [G = 2, Y = 1, R = 2] =
5!

2!1!2!

(
7

16

)2(
1

8

)(
7

16

)2

. (1)

The probability that the number of green lights equals the number of red
lights

P [G = R] = P [G = 1, R = 1, Y = 3] + P [G = 2, R = 2, Y = 1]

+ P [G = 0, R = 0, Y = 5]

=
5!

1!1!3!

(
7

16

)(
7

16

)(
1

8

)3

+
5!

2!1!2!

(
7

16

)2(
7

16

)2(
1

8

)
+

5!

0!0!5!

(
1

8

)5

≈ 0.1449. (2)

Problem 2.3.5 Solution

(a) There are 3 group 1 kickers and 6 group 2 kickers. Using Gi to denote
that a group i kicker was chosen, we have

P [G1] = 1/3, P [G2] = 2/3. (1)
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In addition, the problem statement tells us that

P [K|G1] = 1/2, P [K|G2] = 1/3. (2)

Combining these facts using the Law of Total Probability yields

P [K] = P [K|G1] P [G1] + P [K|G2] P [G2]

= (1/2)(1/3) + (1/3)(2/3) = 7/18. (3)

(b) To solve this part, we need to identify the groups from which the first
and second kicker were chosen. Let ci indicate whether a kicker was
chosen from group i and let Cij indicate that the first kicker was chosen
from group i and the second kicker from group j. The experiment to
choose the kickers is described by the sample tree:

��
���

� c13/9

XXXXXX c26/9

��
���

� c12/8

c2
6/8

c1
3/8

XXXXXX c25/8

•C11 1/12

•C12 1/4

•C21 1/4

•C22 5/12

Since a kicker from group 1 makes a kick with probability 1/2 while a
kicker from group 2 makes a kick with probability 1/3,

P [K1K2|C11] = (1/2)2, P [K1K2|C12] = (1/2)(1/3), (4)

P [K1K2|C21] = (1/3)(1/2), P [K1K2|C22] = (1/3)2. (5)

By the law of total probability,

P [K1K2] = P [K1K2|C11] P [C11] + P [K1K2|C12] P [C12]

+ P [K1K2|C21] P [C21] + P [K1K2|C22] P [C22]

=
1

4

1

12
+

1

6

1

4
+

1

6

1

4
+

1

9

5

12
= 15/96. (6)
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It should be apparent that P[K1] = P[K] from part (a). Symmetry
should also make it clear that P[K1] = P[K2] since for any ordering of
two kickers, the reverse ordering is equally likely. If this is not clear,
we derive this result by calculating P[K2|Cij] and using the law of total
probability to calculate P[K2].

P [K2|C11] = 1/2, P [K2|C12] = 1/3, (7)

P [K2|C21] = 1/2, P [K2|C22] = 1/3. (8)

By the law of total probability,

P [K2] = P [K2|C11] P [C11] + P [K2|C12] P [C12]

+ P [K2|C21] P [C21] + P [K2|C22] P [C22]

=
1

2

1

12
+

1

3

1

4
+

1

2

1

4
+

1

3

5

12
=

7

18
. (9)

We observe that K1 and K2 are not independent since

P [K1K2] =
15

96
6=
(

7

18

)2

= P [K1] P [K2] . (10)

Note that 15/96 and (7/18)2 are close but not exactly the same. The
reason K1 and K2 are dependent is that if the first kicker is successful,
then it is more likely that kicker is from group 1. This makes it more
likely that the second kicker is from group 2 and is thus more likely to
miss.

(c) Once a kicker is chosen, each of the 10 field goals is an independent
trial. If the kicker is from group 1, then the success probability is 1/2.
If the kicker is from group 2, the success probability is 1/3. Out of 10
kicks, there are 5 misses iff there are 5 successful kicks. Given the type
of kicker chosen, the probability of 5 misses is

P [M |G1] =

(
10

5

)
(1/2)5(1/2)5, P [M |G2] =

(
10

5

)
(1/3)5(2/3)5. (11)
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We use the Law of Total Probability to find

P [M ] = P [M |G1] P [G1] + P [M |G2] P [G2]

=

(
10

5

)(
(1/3)(1/2)10 + (2/3)(1/3)5(2/3)5

)
. (12)

Problem 2.4.1 Solution
From the problem statement, we can conclude that the device components
are configured in the following way.

W
1

W
2

W
5

W
3

W
4

W
6

To find the probability that the device works, we replace series devices 1, 2,
and 3, and parallel devices 5 and 6 each with a single device labeled with the
probability that it works. In particular,

P [W1W2W3] = (1− q)3, (1)

P [W5 ∪W6] = 1− P [W c
5W

c
6 ] = 1− q2. (2)

This yields a composite device of the form

1-q
2

1-q

( )1-q
3

The probability P[W ′] that the two devices in parallel work is 1 minus the
probability that neither works:

P [W ′] = 1− q(1− (1− q)3). (3)

Finally, for the device to work, both composite device in series must work.
Thus, the probability the device works is

P [W ] = [1− q(1− (1− q)3)][1− q2]. (4)
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Problem 2.4.3 Solution

Note that each digit 0 through 9 is mapped to the 4 bit binary representa-
tion of the digit. That is, 0 corresponds to 0000, 1 to 0001, up to 9 which
corresponds to 1001. Of course, the 4 bit binary numbers corresponding to
numbers 10 through 15 go unused, however this is unimportant to our prob-
lem. the 10 digit number results in the transmission of 40 bits. For each bit,
an independent trial determines whether the bit was correct, a deletion, or
an error. In Problem 2.4.2, we found the probabilities of these events to be

P [C] = γ = 0.91854, P [D] = δ = 0.081, P [E] = ε = 0.00046. (1)

Since each of the 40 bit transmissions is an independent trial, the joint prob-
ability of c correct bits, d deletions, and e erasures has the multinomial prob-
ability

P [C = c,D = d,E = d] =

{
40!
c!d!e!

γcδdεe c+ d+ e = 40; c, d, e ≥ 0,

0 otherwise.
(2)

Problem 2.5.1 Solution

Rather than just solve the problem for 50 trials, we can write a function that
generates vectors C and H for an arbitrary number of trials n. The code for
this task is

function [C,H]=twocoin(n);

C=ceil(2*rand(n,1));

P=1-(C/4);

H=(rand(n,1)< P);

The first line produces the n × 1 vector C such that C(i) indicates whether
coin 1 or coin 2 is chosen for trial i. Next, we generate the vector P such that
P(i)=0.75 if C(i)=1; otherwise, if C(i)=2, then P(i)=0.5. As a result, H(i)
is the simulated result of a coin flip with heads, corresponding to H(i)=1,
occurring with probability P(i).
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Problem 2.5.3 Solution

To test n 6-component devices, (such that each component works with prob-
ability q) we use the following function:

function N=reliable6(n,q);

% n is the number of 6 component devices

%N is the number of working devices

W=rand(n,6)>q;

D=(W(:,1)&W(:,2)&W(:,3))|W(:,4);

D=D&(W(:,5)|W(:,6));

N=sum(D);

The n × 6 matrix W is a logical matrix such that W(i,j)=1 if component j

of device i works properly. Because W is a logical matrix, we can use the
Matlab logical operators | and & to implement the logic requirements for
a working device. By applying these logical operators to the n × 1 columns
of W, we simulate the test of n circuits. Note that D(i)=1 if device i works.
Otherwise, D(i)=0. Lastly, we count the number N of working devices. The
following code snippet produces ten sample runs, where each sample run tests
n=100 devices for q = 0.2.

>> for n=1:10, w(n)=reliable6(100,0.2); end

>> w

w =

82 87 87 92 91 85 85 83 90 89

>>

As we see, the number of working devices is typically around 85 out of 100.
Solving Problem 2.4.1, will show that the probability the device works is
actually 0.8663.

Problem 2.5.5 Solution

For arbitrary number of trials n and failure probability q, the following func-
tions evaluates replacing each of the six components by an ultrareliable device.
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function N=ultrareliable6(n,q);

% n is the number of 6 component devices

%N is the number of working devices

for r=1:6,

W=rand(n,6)>q;

R=rand(n,1)>(q/2);

W(:,r)=R;

D=(W(:,1)&W(:,2)&W(:,3))|W(:,4);

D=D&(W(:,5)|W(:,6));

N(r)=sum(D);

end

This code is based on the code for the solution of Problem 2.5.3. The n× 6
matrix W is a logical matrix such that W(i,j)=1 if component j of device
i works properly. Because W is a logical matrix, we can use the Matlab
logical operators | and & to implement the logic requirements for a working
device. By applying these logical opeators to the n × 1 columns of W, we
simulate the test of n circuits. Note that D(i)=1 if device i works. Otherwise,
D(i)=0. Note that in the code, we first generate the matrix W such that each
component has failure probability q. To simulate the replacement of the jth
device by the ultrareliable version by replacing the jth column of W by the
column vector R in which a device has failure probability q/2. Lastly, for each
column replacement, we count the number N of working devices. A sample
run for n = 100 trials and q = 0.2 yielded these results:

>> ultrareliable6(100,0.2)

ans =

93 89 91 92 90 93

From the above, we see, for example, that replacing the third component with
an ultrareliable component resulted in 91 working devices. The results are
fairly inconclusive in that replacing devices 1, 2, or 3 should yield the same
probability of device failure. If we experiment with n = 10, 000 runs, the
results are more definitive:
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>> ultrareliable6(10000,0.2)

ans =

8738 8762 8806 9135 8800 8796

>> >> ultrareliable6(10000,0.2)

ans =

8771 8795 8806 9178 8886 8875

>>

In both cases, it is clear that replacing component 4 maximizes the device
reliability. The somewhat complicated solution of Problem 2.4.4 will confirm
this observation.
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Problem Solutions – Chapter 3

Problem 3.2.1 Solution

(a) We wish to find the value of c that makes the PMF sum up to one.

PN (n) =

{
c(1/2)n n = 0, 1, 2,

0 otherwise.
(1)

Therefore,
∑2

n=0 PN(n) = c+ c/2 + c/4 = 1, implying c = 4/7.

(b) The probability that N ≤ 1 is

P [N ≤ 1] = P [N = 0] + P [N = 1] = 4/7 + 2/7 = 6/7. (2)

Problem 3.2.3 Solution

(a) We choose c so that the PMF sums to one.∑
x

PX (x) =
c

2
+
c

4
+
c

8
=

7c

8
= 1. (1)

Thus c = 8/7.

(b)

P [X = 4] = PX (4) =
8

7 · 4 =
2

7
. (2)

(c)

P [X < 4] = PX (2) =
8

7 · 2 =
4

7
. (3)

(d)

P [3 ≤ X ≤ 9] = PX (4) + PX (8) =
8

7 · 4 +
8

7 · 8 =
3

7
. (4)
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Problem 3.2.5 Solution

(a) To find c, we apply the constraint
∑

n PN(n) = 1, yielding

1 =
3∑

n=1

c

n
= c

(
1 +

1

2
+

1

3

)
= c

(
11

6

)
. (1)

Thus c = 6/11.

(b) The probability that N is odd is

P [N is odd] = PN (1) + PN (3) = c

(
1 +

1

3

)
= c

(
4

3

)
=

24

33
. (2)

(c) We can view this as a sequential experiment: first we divide the file into
N packets and then we check that all N packets are received correctly.
In the second stage, we could specify how many packets are received
correctly; however, it is sufficient to just specify whether the N packets
are all received correctly or not. Using Cn to denote the event that n
packets are transmitted and received correctly, we have

N=2
3/11�

��
�
��

N=16/11

HHH
HHH N=32/11

���
��� C2p2

XXXXXX Cc21−p2

���
��� C1p

Cc11−p

C3
p3XXXXXX Cc31−p3

•C

•C

•C

We see that

P [C] = P [C1] + P [C2] + P [C3]

=
6p

11
+

3p2

11
+

2p3

11
=
p(6 + 3p+ 2p2)

11
. (3)
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Problem 3.2.7 Solution

Note that N > 3 if we roll three rolls satisfying R1 > 1, R2 > 2 and R3 > 3.
The tree for this experiment is

��
�
��
� R1=11/6

R1>1
5/6

��
�
��
� R2≤22/6

R2>2
4/6

��
�
��
� R3≤33/6

R3>3
3/6

· · ·

We note that

P [N > 3] = P [R1 > 1, R2 > 2, R3 > 3] =
5

6
· 4

6
· 3

6
=

5

18
. (1)

Problem 3.2.9 Solution

In Problem 3.2.8, each caller is willing to make 3 attempts to get through. An
attempt is a failure if all n operators are busy, which occurs with probability
q = (0.8)n. Assuming call attempts are independent, a caller will suffer three
failed attempts with probability q3 = (0.8)3n. The problem statement requires
that (0.8)3n ≤ 0.05. This implies n ≥ 4.48 and so we need 5 operators.

Problem 3.2.11 Solution

(a) In the setup of a mobile call, the phone will send the “SETUP” message
up to six times. Each time the setup message is sent, we have a Bernoulli
trial with success probability p. Of course, the phone stops trying as
soon as there is a success. Using r to denote a successful response, and
n a non-response, the sample tree is

�
��
� rp

n1−p
�
��
� rp

n1−p
�
��
� rp

n1−p
�
��
� rp

n1−p
�
��
� rp

n1−p
�
��
� rp

n1−p

•K=1 •K=2 •K=3 •K=4 •K=5 •K=6

•K=6
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(b) We can write the PMF of K, the number of “SETUP” messages sent
as

PK (k) =


(1− p)k−1p k = 1, 2, . . . , 5,

(1− p)5p+ (1− p)6 = (1− p)5 k = 6,

0 otherwise.

(1)

Note that the expression for PK(6) is different because K = 6 if either
there was a success or a failure on the sixth attempt. In fact, K = 6
whenever there were failures on the first five attempts which is why
PK(6) simplifies to (1− p)5.

(c) Let B denote the event that a busy signal is given after six failed setup
attempts. The probability of six consecutive failures is P[B] = (1− p)6.

(d) To be sure that P[B] ≤ 0.02, we need p ≥ 1− (0.02)1/6 = 0.479.

Problem 3.3.1 Solution

(a) If it is indeed true that Y , the number of yellow M&M’s in a package,
is uniformly distributed between 5 and 15, then the PMF of Y , is

PY (y) =

{
1/11 y = 5, 6, 7, . . . , 15

0 otherwise
(1)

(b)

P [Y < 10] = PY (5) + PY (6) + · · ·+ PY (9) = 5/11. (2)

(c)

P [Y > 12] = PY (13) + PY (14) + PY (15) = 3/11. (3)

(d)

P [8 ≤ Y ≤ 12] = PY (8) + PY (9) + · · ·+ PY (12) = 5/11. (4)
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Problem 3.3.3 Solution

(a) Each paging attempt is an independent Bernoulli trial with success
probability p. The number of times K that the pager receives a message
is the number of successes in n Bernoulli trials and has the binomial
PMF

PK (k) =

{(
n
k

)
pk(1− p)n−k k = 0, 1, . . . , n,

0 otherwise.
(1)

(b) Let R denote the event that the paging message was received at least
once. The event R has probability

P [R] = P [B > 0] = 1− P [B = 0] = 1− (1− p)n. (2)

To ensure that P[R] ≥ 0.95 requires that n ≥ ln(0.05)/ ln(1 − p). For
p = 0.8, we must have n ≥ 1.86. Thus, n = 2 pages would be necessary.

Problem 3.3.5 Solution
Whether a hook catches a fish is an independent trial with success probability
h. The the number of fish hooked, K, has the binomial PMF

PK (k) =

{(
m
k

)
hk(1− h)m−k k = 0, 1, . . . ,m,

0 otherwise.
(1)

Problem 3.3.7 Solution
Each paging attempt is a Bernoulli trial with success probability p where a
success occurs if the pager receives the paging message.

(a) The paging message is sent again and again until a success occurs.
Hence the number of paging messages is N = n if there are n−1 paging
failures followed by a paging success. That is, N has the geometric PMF

PN (n) =

{
(1− p)n−1p n = 1, 2, . . . ,

0 otherwise.
(1)
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(b) The probability that no more three paging attempts are required is

P [N ≤ 3] = 1− P [N > 3] = 1−
∞∑
n=4

PN (n) = 1− (1− p)3. (2)

This answer can be obtained without calculation since N > 3 if the
first three paging attempts fail and that event occurs with probability
(1 − p)3. Hence, we must choose p to satisfy 1 − (1 − p)3 ≥ 0.95 or
(1− p)3 ≤ 0.05. This implies

p ≥ 1− (0.05)1/3 ≈ 0.6316. (3)

Problem 3.3.9 Solution

(a) K is a Pascal (5, p = 0.1) random variable and has PMF

PK (k) =

(
k − 1

4

)
p5(1− p)k−5 =

(
k − 1

4

)
(0.1)5(0.9)k−5. (1)

(b) L is a Pascal (k = 33, p = 1/2) random variable and so its PMF is

PL(l) =

(
l − 1

32

)
p33(1− p)l−33 =

(
l − 1

32

)(
1

2

)l
. (2)

(c) M is a geometric (p = 0.01) random variable, You should know that
that M has PMF

PM (m) =

{
(1− p)m−1p m = 1, 2, . . .

0 otherwise.
(3)
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Problem 3.3.11 Solution

(a) If each message is transmitted 8 times and the probability of a suc-
cessful transmission is p, then the PMF of N , the number of successful
transmissions has the binomial PMF

PN (n) =

{(
8
n

)
pn(1− p)8−n n = 0, 1, . . . , 8,

0 otherwise.
(1)

(b) The indicator random variable I equals zero if and only if N = 8. Hence,

P [I = 0] = P [N = 0] = 1− P [I = 1] (2)

Thus, the complete expression for the PMF of I is

PI (i) =


(1− p)8 i = 0,

1− (1− p)8 i = 1,

0 otherwise.

(3)

Problem 3.3.13 Solution

(a) Each of the four m&m’s is equally likely to be red or green. Hence the
number of red m&m’s is a binomial (n = 4, p = 1/2) random variable
N with PMF

PN (n) =

(
4

n

)
(1/2)n(1/2)4−n =

(
4

n

)(
1

16

)
. (1)

The probability of an equal number of red and green is

P [E] = P [N = 2] = PN (2) =

(
4

2

)(
1

16

)
=

3

8
. (2)
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(b) In the bag of 64 m&m’s, each m&m is green with probability 1/2 so
that G is a binomial (n = 64, p = 1/2) random variable with PMF

PG(g) =

(
64

g

)
(1/2)g(1/2)64−g =

(
64

g

)
2−64. (3)

(c) This is similar to the number of geometric number number of trials
needed for the first success, except things are a little trickier because
the bag may have all red m&m’s. To be more clear, we will use ri and
gi to denote the color of the ith m&m eaten. The tree is

��
��
� g11

2

r11
2

•R=0

��
��
� g21

2

r21
2

•R=1

· · · ��
��
� g641

2

r641
2

•R=63

•R=64

From the tree, we see that

P [R = 0] = 2−1, P [R = 1] = 2−2, · · · P [R = 63] = 2−64, (4)

and P[R = 64] = 2−64. The complete PMF of R is

PR(r) =


(1/2)r+1 r = 0, 1, 2, . . . , 63,

(1/2)64 r = 64,

0 otherwise.

(5)

Problem 3.3.15 Solution

The packets are delay sensitive and can only be retransmitted d times. For
t < d, a packet is transmitted t times if the first t− 1 attempts fail followed
by a successful transmission on attempt t. Further, the packet is transmitted
d times if there are failures on the first d− 1 transmissions, no matter what
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the outcome of attempt d. So the random variable T , the number of times
that a packet is transmitted, can be represented by the following PMF.

PT (t) =


p(1− p)t−1 t = 1, 2, . . . , d− 1,

(1− p)d−1 t = d,

0 otherwise.

(1)

Problem 3.3.17 Solution

(a) Since each day is independent of any other day, P[W33] is just the prob-
ability that a winning lottery ticket was bought. Similarly for P[L87]
and P[N99] become just the probability that a losing ticket was bought
and that no ticket was bought on a single day, respectively. Therefore

P [W33] = p/2, P [L87] = (1− p)/2, P [N99] = 1/2. (1)

(b) Suppose we say a success occurs on the kth trial if on day k we buy a
ticket. Otherwise, a failure occurs. The probability of success is simply
1/2. The random variable K is just the number of trials until the first
success and has the geometric PMF

PK (k) =

{
(1/2)(1/2)k−1 = (1/2)k k = 1, 2, . . . ,

0 otherwise.
(2)

(c) The probability that you decide to buy a ticket and it is a losing ticket
is (1 − p)/2, independent of any other day. If we view buying a losing
ticket as a Bernoulli success, R, the number of losing lottery tickets
bought in m days, has the binomial PMF

PR(r) =

{(
m
r

)
[(1− p)/2]r[(1 + p)/2]m−r r = 0, 1, . . . ,m,

0 otherwise.
(3)
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(d) Letting D be the day on which the j-th losing ticket is bought, we can
find the probability that D = d by noting that j− 1 losing tickets must
have been purchased in the d − 1 previous days. Therefore D has the
Pascal PMF

PD(d) =

{(
d−1
j−1

)
[(1− p)/2]j[(1 + p)/2]d−j d = j, j + 1, . . . ,

0 otherwise.
(4)

Problem 3.3.19 Solution
Since a and b are positive, let K be a binomial random variable for n trials
and success probability p = a/(a+ b). First, we observe that the sum of over
all possible values of the PMF of K is

n∑
k=0

PK (k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k

=
n∑
k=0

(
n

k

)(
a

a+ b

)k (
b

a+ b

)n−k
=

∑n
k=0

(
n
k

)
akbn−k

(a+ b)n
. (1)

Since
∑n

k=0 PK(k) = 1, we see that

(a+ b)n = (a+ b)n
n∑
k=0

PK (k) =
n∑
k=0

(
n

k

)
akbn−k. (2)

Problem 3.4.1 Solution
Using the CDF given in the problem statement we find that

(a) P[Y < 1] = 0 and P[Y ≤ 1] = 1/4.

(b)

P [Y > 2] = 1− P [Y ≤ 2] = 1− 1/2 = 1/2. (1)

P [Y ≥ 2] = 1− P [Y < 2] = 1− 1/4 = 3/4. (2)
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(c)

P [Y = 3] = FY
(
3+
)
− FY

(
3−
)

= 1/2. (3)

P [Y > 3] = 1− FY (3) = 0. (4)

(d) From the staircase CDF of Problem 3.4.1, we see that Y is a discrete
random variable. The jumps in the CDF occur at at the values that
Y can take on. The height of each jump equals the probability of that
value. The PMF of Y is

PY (y) =


1/4 y = 1,

1/4 y = 2,

1/2 y = 3,

0 otherwise.

(5)

Problem 3.4.3 Solution

(a) Similar to the previous problem, the graph of the CDF is shown below.

−3 0 5 7

0
0.2
0.4
0.6
0.8

1

x

F
X
(x

)

FX (x) =


0 x < −3,

0.4 −3 ≤ x < 5,

0.8 5 ≤ x < 7,

1 x ≥ 7.

(1)

(b) The corresponding PMF of X is

PX (x) =


0.4 x = −3

0.4 x = 5

0.2 x = 7

0 otherwise

(2)
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Problem 3.4.5 Solution

Since mushrooms occur with probability 2/3, the number of pizzas sold before
the first mushroom pizza is N = n < 100 if the first n pizzas do not have
mushrooms followed by mushrooms on pizza n + 1. Also, it is possible that
N = 100 if all 100 pizzas are sold without mushrooms. the resulting PMF is

PN (n) =


(1/3)n(2/3) n = 0, 1, . . . , 99,

(1/3)100 n = 100,

0 otherwise.

(1)

For integers n < 100, the CDF of N obeys

FN (n) =
n∑
i=0

PN (i) =
n∑
i=0

(1/3)i(2/3) = 1− (1/3)n+1. (2)

A complete expression for FN(n) must give a valid answer for every value of n,
including non-integer values. We can write the CDF using the floor function
bxc which denote the largest integer less than or equal to X. The complete
expression for the CDF is

FN (x) =


0 x < 0,

1− (1/3)bxc+1 0 ≤ x < 100,

1 x ≥ 100.

(3)

Problem 3.4.7 Solution

In Problem 3.2.6, we found the PMF of Y . This PMF, and its corresponding
CDF are

PY (y) =


1− p y = 0,

p(1− p) y = 1,

p2 y = 2,

0 otherwise,

FY (y) =


0 y < 0,

1− p 0 ≤ y < 1,

1− p2 1 ≤ y < 2,

1 y ≥ 2.

(1)
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For the three values of p, the CDF resembles

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

p = 1/4 p = 1/2 p = 3/4

Problem 3.5.1 Solution

For this problem, we just need to pay careful attention to the definitions of
mode and median.

(a) The mode must satisfy PX(xmod) ≥ PX(x) for all x. In the case of the
uniform PMF, any integer x′ between 1 and 100 is a mode of the random
variable X. Hence, the set of all modes is

Xmod = {1, 2, . . . , 100} . (1)

(b) The median must satisfy P[X < xmed] = P[X > xmed]. Since

P [X ≤ 50] = P [X ≥ 51] = 1/2. (2)

we observe that xmed = 50.5 is a median since it satisfies

P [X < xmed] = P [X > xmed] = 1/2. (3)

In fact, for any x′ satisfying 50 < x′ < 51, P[X < x′] = P[X > x′] =
1/2. Thus,

Xmed = {x|50 < x < 51} . (4)
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Problem 3.5.3 Solution

(a) J has the Poisson PMF

PJ (j) =

{
tje−t/j! j = 0, 1, 2, . . . ,

0 otherwise.
(1)

It follows that

0.9 = P [J > 0] = 1− PJ (0) = 1− e−t =⇒ t = ln(10) = 2.3. (2)

(b) For k = 0, 1, 2, . . ., PK(k) = 10ke−10/k!. Thus

P [K = 10] = PK (10) = 1010e−10 = 0.1251. (3)

(c) L is a Poisson (α = E[L] = 2) random variable. Thus its PMF is

PL(l) =

{
2le−2/l! l = 0, 1, 2, . . . ,

0 otherwise.
(4)

It follows that

P [L ≤ 1] = PL(0) + PL(1) = 3e−2 = 0.406. (5)

Problem 3.5.5 Solution

(a) Each packet transmission is a Bernoulli trial with success probability
0.95 and X is the number of packet failures (received in error) in 10
trials. Since the failure probability is p = 0.05, X has the binomial
(n = 10, p = 0.05) PMF

PX (x) =

(
10

x

)
(0.05)x(0.95)10−x. (1)
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(b) When you send 12 thousand packets, the number of packets received
in error, Y , is a binomial (n = 12000, p = 0.05) random variable. The
expected number received in error is E[Y ] = np = 600 per hour, or
about 10 packets per minute. Keep in mind this is a reasonable figure
if you are an active data user.

Problem 3.5.7 Solution

From the solution to Problem 3.4.2, the PMF of X is

PX (x) =


0.2 x = −1,

0.5 x = 0,

0.3 x = 1,

0 otherwise.

(1)

The expected value of X is

E [X] =
∑
x

xPX (x) = −1(0.2) + 0(0.5) + 1(0.3) = 0.1. (2)

Problem 3.5.9 Solution

From Definition 3.6, random variable X has PMF

PX (x) =

{(
4
x

)
(1/2)4 x = 0, 1, 2, 3, 4,

0 otherwise.
(1)

The expected value of X is

E [X] =
4∑

x=0

xPX (x)

= 0

(
4

0

)
1

24
+ 1

(
4

1

)
1

24
+ 2

(
4

2

)
1

24
+ 3

(
4

3

)
1

24
+ 4

(
4

4

)
1

24

= [4 + 12 + 12 + 4]/24 = 2. (2)
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Problem 3.5.11 Solution
K has expected value E[K] = 1/p = 11 and PMF

PK (k) =

{
(1− p)k−1p k = 1, 2, . . . ,

0 otherwise.
(1)

(a) From these facts,

P [K = E [K]] = PK (11) = (1− p)10p

= (10/11)10(1/11) = 1010/1111 = 0.035.

(b)

P [K > E [K]] = P [K > 11]

=
∞∑

x=12

PK (x)

=
∞∑

x=12

(1− p)x−1p

= p[(1− p)11 + (1− p)12 + · · · ]
= p(1− p)11[1 + (1− p) + (1− p)2 + · · · ]
= (1− p)11 = (10/11)11 = 0.3505. (2)

The answer (1− p)11 can also be found by recalling that K > 11 if and
only if there are 11 failures before the first success, an event which has
probability (1− p)11.

(c)

P [K < E [K]] = 1− P [K ≥ E [K]]

= 1− (P [K = E [K]] + P [K > E [K]])

= 1−
(
(10/11)10(1/11) + (10/11)11

)
= 1− (10/11)10. (3)

Note that (10/11)10 is the probability of ten straight failures. As long
as this does NOT occur, then K < 11.
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Problem 3.5.13 Solution

The following experiments are based on a common model of packet trans-
missions in data networks. In these networks, each data packet contains a
cylic redundancy check (CRC) code that permits the receiver to determine
whether the packet was decoded correctly. In the following, we assume that
a packet is corrupted with probability ε = 0.001, independent of whether any
other packet is corrupted.

(a) Let X = 1 if a data packet is decoded correctly; otherwise X = 0.
Random variable X is a Bernoulli random variable with PMF

PX (x) =


0.001 x = 0,

0.999 x = 1,

0 otherwise.

(1)

The parameter ε = 0.001 is the probability a packet is corrupted. The
expected value of X is

E [X] = 1− ε = 0.999. (2)

(b) Let Y denote the number of packets received in error out of 100 packets
transmitted. Y has the binomial PMF

PY (y) =

{(
100
y

)
(0.001)y(0.999)100−y y = 0, 1, . . . , 100,

0 otherwise.
(3)

The expected value of Y is

E [Y ] = 100ε = 0.1. (4)

(c) Let L equal the number of packets that must be received to decode 5
packets in error. L has the Pascal PMF

PL(l) =

{(
l−1
4

)
(0.001)5(0.999)l−5 l = 5, 6, . . . ,

0 otherwise.
(5)
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The expected value of L is

E [L] =
5

ε
=

5

0.001
= 5000. (6)

(d) If packet arrivals obey a Poisson model with an average arrival rate of
1000 packets per second, then the number N of packets that arrive in
5 seconds has the Poisson PMF

PN (n) =

{
5000ne−5000/n! n = 0, 1, . . . ,

0 otherwise.
(7)

The expected value of N is E[N ] = 5000.

Problem 3.5.15 Solution

In this ”double-or-nothing” type game, there are only two possible payoffs.
The first is zero dollars, which happens when we lose 6 straight bets, and the
second payoff is 64 dollars which happens unless we lose 6 straight bets. So
the PMF of Y is

PY (y) =


(1/2)6 = 1/64 y = 0,

1− (1/2)6 = 63/64 y = 64,

0 otherwise.

(1)

The expected amount you take home is

E [Y ] = 0(1/64) + 64(63/64) = 63. (2)

So, on the average, we can expect to break even, which is not a very exciting
proposition.

Problem 3.5.17 Solution

(a) Since you ignore the host, you pick your suitcase and open it. The tree
is
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�
�
�
�
�
�

C100
1/4

Z
Z
Z
Z
Z
Z C800

1/4

���
��� C2001/4

XXXXXX C4001/4

•R=100

•R=200

•R=400

•R=800

The PMF of R is just

PR(r) =

{
1/4 r = 100, 200, 400, 800,

0 otherwise.
(1)

The expected value of R is

E [R] =
∑
r

rPR(r) =
1

4
(100 + 200 + 400 + 800) = 375. (2)

(b) In this case, the tree diagram is

�
�
�
�
��

C1001/4

Z
Z
Z
Z
ZZ C800

1/4

���
��� C2001/4

XXXXXX C4001/4

O400
1

O400
1

O200
1

O200
1

���
��� C2001/2

C8001/2

���
��� C1001/2

C8001/2

C100
1/2

XXXXXX C8001/2

C100
1/2

XXXXXX C4001/2

•R=200

•R=800

•R=100

•R=800

•R=100

•R=800

•R=100

•R=400

All eight outcomes are equally likely. It follows that

r 100 200 400 800
PR(r) 3/8 1/8 1/8 3/8
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The expected value of R is

E [R] =
3

8
(100) +

1

8
(200 + 400) +

3

8
(800) = 412.5. (3)

(c) You can do better by making your decision whether to switch to one
of the unopened suitcases depend on what suitcase the host opened.
In particular, studying the tree from part (b), we see that if the host
opens the $200 suitcase, then your originally chosen suitcase is either
the $400 suitcase or the $800 suitcase. That is, you learn you have
already picked one of the two best suitcases and it seems likely that you
would be better to not switch. On the other hand, if the host opens the
$400 suitcase, then you have learned that your original choice was either
the $100 or $200 suitcase. In this case, switching gives you a chance
to win the $800 suitcase. In this case switching seems like a good idea.
Thus, our intuition suggests that

• switch if the host opens the $400 suitcase;

• stay with your original suitcase if the host opens the $200 suitcase.

To verify that our intuition is correct, we construct the tree to evaluate
this new switching policy:

�
�
�
�
��

C1001/4

Z
Z
Z
Z
ZZ C800

1/4

���
��� C2001/4

XXXXXX C4001/4

O400
1

O400
1

O200
1

O200
1

���
��� C2001/2

C8001/2

��
���

� C1001/2

C8001/2

stay1

stay1

•R=200

•R=800

•R=100

•R=800

•R=400

•R=800
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It follows that

r 100 200 400 800
PR(r) 1/8 1/8 1/4 1/2

The expected value of R is

E [R] =
1

8
(100 + 200) +

1

4
(400) +

1

2
(800) = 537.5. (4)

Problem 3.5.19 Solution
By the definition of the expected value,

E [Xn] =
n∑
x=1

x

(
n

x

)
px(1− p)n−x (1)

= np
n∑
x=1

(n− 1)!

(x− 1)!(n− 1− (x− 1))!
px−1(1− p)n−1−(x−1). (2)

With the substitution x′ = x− 1, we have

E [Xn] = np

n−1∑
x′=0

(
n− 1

x′

)
px
′
(1− p)n−x′︸ ︷︷ ︸

1

= np

n−1∑
x′=0

PXn−1(x) = np. (3)

The above sum is 1 because it is the sum of a binomial random variable for
n− 1 trials over all possible values.

Problem 3.5.21 Solution

(a) A geometric (p) random variable has expected value 1/p. Since R is a
geometric random variable with E[R] = 100/m, we can conclude that
R is a geometric (p = m/100) random variable. Thus the PMF of R is

PR(r) =

{
(1−m/100)r−1(m/100) r = 1, 2, . . .

0 otherwise.
(1)
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(b) From the problem statement, E[R] = 100/m. Thus

E [W ] = E [5mR] = 5mE [R] = 5m
100

m
= 500. (2)

(c) She wins the money if she does work W ≥ 1000, which has probability

P [W ≥ 1000] = P [5mR ≥ 1000] = P

[
R ≥ 200

m

]
. (3)

Note that for a geometric (p) random variable X and an integer x0,

P [X ≥ x0] =
∞∑

x=x0

PX (x)

= (1− p)x0−1p
(
1 + (1− p) + (1− p)2 + · · ·

)
= (1− p)x0−1. (4)

Thus for the geometric (p = m/100) random variable R,

P

[
R ≥ 200

m

]
= P

[
R ≥

⌈
200

m

⌉]
=
(

1− m

100

)d 200m e−1

, (5)

where dxe denotes the smallest integer greater than or equal to x.

As a function of m, the probability of winning is an odd sawtooth
function that has a peak each time 200/m is close to an integer. Here
is a plot if you’re curious:

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

 m

 P
[W

≥ 
10

00
]

It does happen to be true in this case that P[W ≥ 1000] is maximized
at m = 1. For m = 1,

P [W ≥ 1000] = P [R ≥ 200] = (0.99)199 = 0.1353. (6)
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Problem 3.6.1 Solution

From the solution to Problem 3.4.1, the PMF of Y is

PY (y) =


1/4 y = 1,

1/4 y = 2,

1/2 y = 3,

0 otherwise.

(1)

(a) Since Y has range SY = {1, 2, 3}, the range of U = Y 2 is SU = {1, 4, 9}.
The PMF of U can be found by observing that

P [U = u] = P
[
Y 2 = u

]
= P

[
Y =

√
u
]

+ P
[
Y = −√u

]
. (2)

Since Y is never negative, PU(u) = PY(
√
u). Hence,

PU (1) = PY (1) = 1/4, (3)

PU (4) = PY (2) = 1/4, (4)

PU (9) = PY (3) = 1/2. (5)

For all other values of u, PU(u) = 0. The complete expression for the
PMF of U is

PU (u) =


1/4 u = 1,

1/4 u = 4,

1/2 u = 9,

0 otherwise.

(6)

(b) From the PMF, it is straightforward to write down the CDF

FU (u) =


0 u < 1,

1/4 1 ≤ u < 4,

1/2 4 ≤ u < 9,

1 u ≥ 9.

(7)
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(c) From Definition 3.13, the expected value of U is

E [U ] =
∑
u

uPU (u) = 1(1/4) + 4(1/4) + 9(1/2) = 5.75. (8)

From Theorem 3.10, we can calculate the expected value of U as

E [U ] = E
[
Y 2
]

=
∑
y

y2PY (y)

= 12(1/4) + 22(1/4) + 32(1/2) = 5.75. (9)

As we expect, both methods yield the same answer.

Problem 3.6.3 Solution
From the solution to Problem 3.4.3, the PMF of X is

PX (x) =


0.4 x = −3,

0.4 x = 5,

0.2 x = 7,

0 otherwise.

(1)

(a) The PMF of W = −X satisfies

PW (w) = P [−X = w] = PX (−w) . (2)

This implies

PW (−7) = PX (7) = 0.2 (3)

PW (−5) = PX (5) = 0.4 (4)

PW (3) = PX (−3) = 0.4. (5)

The complete PMF for W is

PW (w) =


0.2 w = −7,

0.4 w = −5,

0.4 w = 3,

0 otherwise.

(6)
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(b) From the PMF, the CDF of W is

FW (w) =


0 w < −7,

0.2 −7 ≤ w < −5,

0.6 −5 ≤ w < 3,

1 w ≥ 3.

(7)

(c) From the PMF, W has expected value

E [W ] =
∑
w

wPW (w) = −7(0.2) +−5(0.4) + 3(0.4) = −2.2. (8)

Problem 3.6.5 Solution

(a) The source continues to transmit packets until one is received correctly.
Hence, the total number of times that a packet is transmitted is X = x
if the first x− 1 transmissions were in error. Therefore the PMF of X
is

PX (x) =

{
qx−1(1− q) x = 1, 2, . . . ,

0 otherwise.
(1)

(b) The time required to send a packet is a millisecond and the time required
to send an acknowledgment back to the source takes another millisec-
ond. Thus, if X transmissions of a packet are needed to send the packet
correctly, then the packet is correctly received after T = 2X − 1 mil-
liseconds. Therefore, for an odd integer t > 0, T = t iff X = (t+ 1)/2.
Thus,

PT (t) = PX ((t+ 1)/2) =

{
q(t−1)/2(1− q) t = 1, 3, 5, . . . ,

0 otherwise.
(2)
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Problem 3.6.7 Solution

(a) A student is properly counted with probability p, independent of any
other student being counted. Hence, we have 70 Bernoulli trials and N
is a binomial (70, p) random variable with PMF

PN (n) =

(
70

n

)
pn(1− p)70−n. (1)

(b) There are two ways to find this. The first way is to observe that

P [U = u] = P [N = 70− u] = PN (70− u)

=

(
70

70− u

)
p70−u(1− p)70−(70−u)

=

(
70

u

)
(1− p)up70−u. (2)

We see that U is a binomial (70, 1 − p). The second way is to argue
this directly since U is counting overlooked students. If we call an over-
looked student a “success” with probability 1− p, then U , the number
of successes in n trials, is binomial (70, 1− p).

(c)

P [U ≥ 2] = 1− P [U < 2]

= 1− (PU (0) + PU (1))

= 1− (p70 + 70(1− p)p69). (3)

(d) The binomial (n = 70, 1− p) random variable U has E[U ] = 70(1− p).
Solving 70(1− p) = 2 yields p = 34/35.
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Problem 3.7.1 Solution

Let Wn equal the number of winning tickets you purchase in n days. Since
each day is an independent trial, Wn is a binomial (n, p = 0.1) random
variable. Since each ticket costs 1 dollar, you spend n dollars on tickets
in n days. Since each winning ticket is cashed for 5 dollars, your profit after
n days is

Xn = 5Wn − n. (1)

It follows that

E [Xn] = 5 E [Wn]− n = 5np− n = (5p− 1)n = −n/2. (2)

On average, you lose about 50 cents per day.

Problem 3.7.3 Solution

Whether a lottery ticket is a winner is a Bernoulli trial with a success probabil-
ity of 0.001. If we buy one every day for 50 years for a total of 50·365 = 18250
tickets, then the number of winning tickets T is a binomial random variable
with mean

E [T ] = 18250(0.001) = 18.25. (1)

Since each winning ticket grosses $1000, the revenue we collect over 50 years
is R = 1000T dollars. The expected revenue is

E [R] = 1000 E [T ] = 18250. (2)

But buying a lottery ticket everyday for 50 years, at $2.00 a pop isn’t cheap
and will cost us a total of 18250 · 2 = $36500. Our net profit is then Q =
R−36500 and the result of our loyal 50 year patronage of the lottery system,
is disappointing expected loss of

E [Q] = E [R]− 36500 = −18250. (3)
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Problem 3.7.5 Solution

Given the distributions of D, the waiting time in days and the resulting cost,
C, we can answer the following questions.

(a) The expected waiting time is simply the expected value of D.

E [D] =
4∑
d=1

d · PD(d) = 1(0.2) + 2(0.4) + 3(0.3) + 4(0.1) = 2.3. (1)

(b) The expected deviation from the waiting time is

E [D − µD] = E [D]− E [µd] = µD − µD = 0. (2)

(c) C can be expressed as a function of D in the following manner.

C(D) =


90 D = 1,

70 D = 2,

40 D = 3,

40 D = 4.

(3)

(d) The expected service charge is

E [C] = 90(0.2) + 70(0.4) + 40(0.3) + 40(0.1) = 62 dollars. (4)

Problem 3.7.7 Solution

As a function of the number of minutes used, M , the monthly cost is

C(M) =

{
20 M ≤ 30

20 + (M − 30)/2 M ≥ 30
(1)
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The expected cost per month is

E [C] =
∞∑
m=1

C(m)PM (m)

=
30∑
m=1

20PM (m) +
∞∑

m=31

(20 + (m− 30)/2)PM (m)

= 20
∞∑
m=1

PM (m) +
1

2

∞∑
m=31

(m− 30)PM (m) . (2)

Since
∑∞

m=1 PM(m) = 1 and since PM(m) = (1− p)m−1p for m ≥ 1, we have

E [C] = 20 +
(1− p)30

2

∞∑
m=31

(m− 30)(1− p)m−31p. (3)

Making the substitution j = m− 30 yields

E [C] = 20 +
(1− p)30

2

∞∑
j=1

j(1− p)j−1p = 20 +
(1− p)30

2p
. (4)

Problem 3.7.9 Solution
We consider the cases of using standard devices or ultra reliable devices sep-
arately. In both cases, the methodology is the same. We define random
variable W such that W = 1 if the circuit works or W = 0 if the circuit is
defective. (In the probability literature, W is called an indicator random vari-
able.) The PMF of W depends on whether the circuit uses standard devices
or ultra reliable devices. We then define the revenue as a function R(W ) and
we evaluate E[R(W )].

The circuit with standard devices works with probability (1 − q)10 and
generates revenue of k dollars if all of its 10 constituent devices work. In this
case, W = Ws has PMF

PWs(w) =


1− (1− q)10 w = 0,

(1− q)10 w = 1,

0 otherwise.

(1)
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In addition, let Rs denote the profit on a circuit with standard devices. We
observe that we can we can express Rs as a function rs(Ws):

Rs = rs(Ws) =

{
−10 Ws = 0,

k − 10 Ws = 1.
(2)

Thus we can express the expected profit as

E [Rs] = E [rs(W )]

=
1∑

w=0

PWs(w) rs(w)

= PWs(0) (−10) + PWs(1) (k − 10)

= (1− (1− q)10)(−10) + (1− q)10(k − 10) = (0.9)10k − 10. (3)

To examine the circuit with ultra reliable devices, let W = Wu indicate
whether the circuit works and let Ru = ru(Wu) denote the profit on a circuit
with ultrareliable devices. Wu has PMF

PWu(w) =


1− (1− q/2)10 w = 0,

(1− q/2)10 w = 1,

0 otherwise.

(4)

The revenue function is

Ru = ru(Wu) =

{
−30 Wu = 0,

k − 30 Wu = 1.
(5)

Thus we can express the expected profit as

E [Ru] = E [ru(Wu)]

=
1∑

w=0

PWu(w) ru(w)

= PWu(0) (−30) + PWu(1) (k − 30)

= (1− (1− q/2)10)(−30) + (1− q/2)10(k − 30)

= (0.95)10k − 30. (6)
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Now we can compare E[Rs] and E[Ru] to decide which circuit implementation
offers the highest expected profit. The inequality E[Ru] ≥ E[Rs], holds if and
only if

k ≥ 20/[(0.95)10 − (0.9)10] = 80.21. (7)

So for k < $80.21 using all standard devices results in greater revenue, while
for k > $80.21 more revenue will be generated by implementing the circuit
with all ultra-reliable devices. That is, when the price commanded for a
working circuit is sufficiently high, we should build more-expensive higher-
reliability circuits.

If you have read ahead to Section 7.1 and learned about conditional expected
values, you might prefer the following solution. If not, you might want to
come back and review this alternate approach after reading Section 7.1.

Let W denote the event that a circuit works. The circuit works and gen-
erates revenue of k dollars if all of its 10 constituent devices work. For each
implementation, standard or ultra-reliable, let R denote the profit on a device.
We can express the expected profit as

E [R] = P [W ] E [R|W ] + P [W c] E [R|W c] . (8)

Let’s first consider the case when only standard devices are used. In this
case, a circuit works with probability P[W ] = (1− q)10. The profit made on a
working device is k− 10 dollars while a nonworking circuit has a profit of -10
dollars. That is, E[R|W ] = k−10 and E[R|W c] = −10. Of course, a negative
profit is actually a loss. Using Rs to denote the profit using standard circuits,
the expected profit is

E [Rs] = (1− q)10(k − 10) + (1− (1− q)10)(−10)

= (0.9)10k − 10. (9)

And for the ultra-reliable case, the circuit works with probability P[W ] =
(1− q/2)10. The profit per working circuit is E[R|W ] = k − 30 dollars while
the profit for a nonworking circuit is E[R|W c] = −30 dollars. The expected
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profit is

E [Ru] = (1− q/2)10(k − 30) + (1− (1− q/2)10)(−30)

= (0.95)10k − 30. (10)

Not surprisingly, we get the same answers for E[Ru] and E[Rs] as in the first
solution by performing essentially the same calculations. it should be apparent
that indicator random variable W in the first solution indicates the occurrence
of the conditioning event W in the second solution. That is, indicators are a
way to track conditioning events.

Problem 3.7.11 Solution

(a) There are
(

46
6

)
equally likely winning combinations so that

q =
1(
46
6

) =
1

9,366,819
≈ 1.07× 10−7. (1)

(b) Assuming each ticket is chosen randomly, each of the 2n − 1 other
tickets is independently a winner with probability q. The number of
other winning tickets Kn has the binomial PMF

PKn(k) =

{(
2n−1
k

)
qk(1− q)2n−1−k k = 0, 1, . . . , 2n− 1,

0 otherwise.
(2)

Since the pot has n + r dollars, the expected amount that you win on
your ticket is

E [V ] = 0(1− q) + q E

[
n+ r

Kn + 1

]
= q(n+ r) E

[
1

Kn + 1

]
. (3)
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Note that E[1/Kn + 1] was also evaluated in Problem 3.7.10. For com-
pleteness, we repeat those steps here.

E

[
1

Kn + 1

]
=

2n−1∑
k=0

1

k + 1

(2n− 1)!

k!(2n− 1− k)!
qk(1− q)2n−1−k

=
1

2n

2n−1∑
k=0

(2n)!

(k + 1)!(2n− (k + 1))!
qk(1− q)2n−(k+1). (4)

By factoring out 1/q, we obtain

E

[
1

Kn + 1

]
=

1

2nq

2n−1∑
k=0

(
2n

k + 1

)
qk+1(1− q)2n−(k+1)

=
1

2nq

2n∑
j=1

(
2n

j

)
qj(1− q)2n−j

︸ ︷︷ ︸
A

. (5)

We observe that the above sum labeled A is the sum of a binomial
PMF for 2n trials and success probability q over all possible values
except j = 0. Thus A = 1−

(
2n
0

)
q0(1− q)2n−0, which implies

E

[
1

Kn + 1

]
=

A

2nq
=

1− (1− q)2n

2nq
. (6)

The expected value of your ticket is

E [V ] =
q(n+ r)[1− (1− q)2n]

2nq

=
1

2

(
1 +

r

n

)
[1− (1− q)2n]. (7)

Each ticket tends to be more valuable when the carryover pot r is large
and the number of new tickets sold, 2n, is small. For any fixed number n,
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corresponding to 2n tickets sold, a sufficiently large pot r will guarantee
that E[V ] > 1. For example if n = 107, (20 million tickets sold) then

E [V ] = 0.44
(

1 +
r

107

)
. (8)

If the carryover pot r is 30 million dollars, then E[V ] = 1.76. This
suggests that buying a one dollar ticket is a good idea. This is an
unusual situation because normally a carryover pot of 30 million dollars
will result in far more than 20 million tickets being sold.

(c) So that we can use the results of the previous part, suppose there were
2n − 1 tickets sold before you must make your decision. If you buy
one of each possible ticket, you are guaranteed to have one winning
ticket. From the other 2n − 1 tickets, there will be Kn winners. The
total number of winning tickets will be Kn + 1. In the previous part we
found that

E

[
1

Kn + 1

]
=

1− (1− q)2n

2nq
. (9)

Let R denote the expected return from buying one of each possible
ticket. The pot had r dollars beforehand. The 2n− 1 other tickets are
sold add n − 1/2 dollars to the pot. Furthermore, you must buy 1/q
tickets, adding 1/(2q) dollars to the pot. Since the cost of the tickets is
1/q dollars, your expected profit

E [R] = E

[
r + n− 1/2 + 1/(2q)

Kn + 1

]
− 1

q

=
q(2r + 2n− 1) + 1

2q
E

[
1

Kn + 1

]
− 1

q

=
[q(2r + 2n− 1) + 1](1− (1− q)2n)

4nq2
− 1

q
. (10)

For fixed n, sufficiently large r will make E[R] > 0. On the other hand,
for fixed r, limn→∞ E[R] = −1/(2q). That is, as n approaches infinity,
your expected loss will be quite large.
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Problem 3.8.1 Solution
Given the following PMF

PN (n) =


0.2 n = 0,

0.7 n = 1,

0.1 n = 2,

0 otherwise,

(1)

the calculations are straightforward:

(a) E[N ] = (0.2)0 + (0.7)1 + (0.1)2 = 0.9.

(b) E[N2] = (0.2)02 + (0.7)12 + (0.1)22 = 1.1.

(c) Var[N ] = E[N2]− E[N ]2 = 1.1− (0.9)2 = 0.29.

(d) σN =
√

Var[N ] =
√

0.29.

Problem 3.8.3 Solution
From the solution to Problem 3.4.2, the PMF of X is

PX (x) =


0.2 x = −1,

0.5 x = 0,

0.3 x = 1,

0 otherwise.

(1)

The expected value of X is

E [X] =
∑
x

xPX (x) = (−1)(0.2) + 0(0.5) + 1(0.3) = 0.1. (2)

The expected value of X2 is

E
[
X2
]

=
∑
x

x2PX (x) = (−1)2(0.2) + 02(0.5) + 12(0.3) = 0.5. (3)

The variance of X is

Var[X] = E
[
X2
]
− (E [X])2 = 0.5− (0.1)2 = 0.49. (4)
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Problem 3.8.5 Solution

(a) The expected value of X is

E [X] =
4∑

x=0

xPX (x)

= 0

(
4

0

)
1

24
+ 1

(
4

1

)
1

24
+ 2

(
4

2

)
1

24
+ 3

(
4

3

)
1

24
+ 4

(
4

4

)
1

24

= [4 + 12 + 12 + 4]/24 = 2. (1)

The expected value of X2 is

E
[
X2
]

=
4∑

x=0

x2PX (x)

= 02

(
4

0

)
1

24
+ 12

(
4

1

)
1

24
+ 22

(
4

2

)
1

24
+ 32

(
4

3

)
1

24
+ 42

(
4

4

)
1

24

= [4 + 24 + 36 + 16]/24 = 5. (2)

The variance of X is

Var[X] = E
[
X2
]
− (E [X])2 = 5− 22 = 1. (3)

Thus, X has standard deviation σX =
√

Var[X] = 1.

(b) The probability that X is within one standard deviation of its expected
value is

P [µX − σX ≤ X ≤ µX + σX ] = P [2− 1 ≤ X ≤ 2 + 1]

= P [1 ≤ X ≤ 3] . (4)

This calculation is easy using the PMF of X:

P [1 ≤ X ≤ 3] = PX (1) + PX (2) + PX (3) = 7/8. (5)
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Problem 3.8.7 Solution

For Y = aX + b, we wish to show that Var[Y ] = a2 Var[X]. We begin by
noting that Theorem 3.12 says that E[aX + b] = aE[X] + b. Hence, by the
definition of variance.

Var [Y ] = E
[
(aX + b− (aE [X] + b))2]

= E
[
a2(X − E [X])2

]
= a2 E

[
(X − E [X])2

]
. (1)

Since E[(X − E[X])2] = Var[X], the assertion is proved.

Problem 3.8.9 Solution

With our measure of jitter being σT , and the fact that T = 2X − 1, we can
express the jitter as a function of q by realizing that

Var[T ] = 4 Var[X] =
4q

(1− q)2
. (1)

Therefore, our maximum permitted jitter is

σT =
2
√
q

(1− q) = 2 ms. (2)

Solving for q yields q2 − 3q + 1 = 0. By solving this quadratic equation, we
obtain

q =
3±
√

5

2
= 3/2±

√
5/2. (3)

Since q must be a value between 0 and 1, we know that a value of q =
3/2−

√
5/2 ≈ 0.382 will ensure a jitter of at most 2 milliseconds.

Problem 3.8.11 Solution

The standard deviation can be expressed as

σD =
√

Var[D] =

√
E [D2]− E [D]2, (1)
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where

E
[
D2
]

=
4∑
d=1

d2PD(d) = 0.2 + 1.6 + 2.7 + 1.6 = 6.1. (2)

So finally we have

σD =
√

6.1− 2.32 =
√

0.81 = 0.9. (3)

Problem 3.9.1 Solution

For a binomial (n, p) random variable X, the solution in terms of math is

P [E2] =

b√nc∑
x=0

PX
(
x2
)
. (1)

In terms of Matlab, the efficient solution is to generate the vector of per-
fect squares x = [0 1 4 9 16 ...] and then to pass that vector to the
binomialpmf.m. In this case, the values of the binomial PMF are calculated
only once. Here is the code:

function q=perfectbinomial(n,p);

i=0:floor(sqrt(n));

x=i.^2;

q=sum(binomialpmf(n,p,x));

For a binomial (100, 0.5) random variable X, the probability X is a perfect
square is

>> perfectbinomial(100,0.5)

ans =

0.0811
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Problem 3.9.3 Solution

Recall that in Example 3.27 that the weight in pounds X of a package and
the cost Y = g(X) of shipping a package were described by

PX (x) =


0.15 x = 1, 2, 3, 4,

0.1 x = 5, 6, 7, 8,

0 otherwise,

Y =

{
105X − 5X2 1 ≤ X ≤ 5,

500 6 ≤ X ≤ 10.
(1)

%shipcostpmf.m

sx=(1:8)’;

px=[0.15*ones(4,1); ...

0.1*ones(4,1)];

gx=(sx<=5).* ...

(105*sx-5*(sx.^2))...

+ ((sx>5).*500);

sy=unique(gx)’

py=finitepmf(gx,px,sy)’

The shipcostpmf script on the left cal-
culates the PMF of Y . The vector gx is
the mapping g(x) for each x ∈ SX . In
gx, the element 500 appears three times,
corresponding to x = 6, x = 7, and
x = 8. The function sy=unique(gx)

extracts the unique elements of gx while
finitepmf(gx,px,sy) calculates the prob-
ability of each element of sy.

Here is the output:

>> shipcostpmf

sy =

100 190 270 340 400 500

py =

0.15 0.15 0.15 0.15 0.10 0.30

Problem 3.9.5 Solution

Suppose Xn is a Zipf (n, α = 1) random variable and thus has PMF

PX (x) =

{
c(n)/x x = 1, 2, . . . , n,

0 otherwise.
(1)

The problem asks us to find the smallest value of k such that P[Xn ≤ k] ≥
0.75. That is, if the server caches the k most popular files, then with
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P[Xn ≤ k] the request is for one of the k cached files. First, we might as
well solve this problem for any probability p rather than just p = 0.75. Thus,
in math terms, we are looking for

k = min {k′|P [Xn ≤ k′] ≥ p} . (2)

What makes the Zipf distribution hard to analyze is that there is no closed
form expression for

c(n) =

(
n∑
x=1

1

x

)−1

. (3)

Thus, we use Matlab to grind through the calculations. The following simple
program generates the Zipf distributions and returns the correct value of k.

function k=zipfcache(n,p);

%Usage: k=zipfcache(n,p);

%for the Zipf (n,alpha=1) distribution, returns the smallest k

%such that the first k items have total probability p

pmf=1./(1:n);

pmf=pmf/sum(pmf); %normalize to sum to 1

cdf=cumsum(pmf);

k=1+sum(cdf<=p);

The program zipfcache generalizes 0.75 to be the probability p. Although
this program is sufficient, the problem asks us to find k for all values of n
from 1 to 103!. One way to do this is to call zipfcache a thousand times to
find k for each value of n. A better way is to use the properties of the Zipf
PDF. In particular,

P [Xn ≤ k′] = c(n)
k′∑
x=1

1

x
=
c(n)

c(k′)
. (4)

Thus we wish to find

k = min

{
k′| c(n)

c(k′)
≥ p

}
= min

{
k′| 1

c(k′)
≥ p

c(n)

}
. (5)
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Note that the definition of k implies that

1

c(k′)
<

p

c(n)
, k′ = 1, . . . , k − 1. (6)

Using the notation |A| to denote the number of elements in the set A, we can
write

k = 1 +

∣∣∣∣{k′| 1

c(k′)
<

p

c(n)

}∣∣∣∣ . (7)

This is the basis for a very short Matlab program:

function k=zipfcacheall(n,p);

%Usage: k=zipfcacheall(n,p);

%returns vector k such that the first

%k(m) items have total probability >= p

%for the Zipf(m,1) distribution.

c=1./cumsum(1./(1:n));

k=1+countless(1./c,p./c);

Note that zipfcacheall uses a short Matlab program countless.m that is
almost the same as count.m introduced in Example 3.40.If n=countless(x,y),
then n(i) is the number of elements of x that are strictly less than y(i) while
count returns the number of elements less than or equal to y(i).

In any case, the commands

k=zipfcacheall(1000,0.75);

plot(1:1000,k);

is sufficient to produce this figure of k as a function of m:
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We see in the figure that the number of files that must be cached grows slowly
with the total number of files n.

Finally, we make one last observation. It is generally desirable for Matlab
to execute operations in parallel. The program zipfcacheall generally will
run faster than n calls to zipfcache. However, to do its counting all at once,
countless generates and n×n array. When n is not too large, say n ≤ 1000,
the resulting array with n2 = 1,000,000 elements fits in memory. For much
larger values of n, say n = 106 (as was proposed in the original printing of
this edition of the text, countless will cause an “out of memory” error.

Problem 3.9.7 Solution

We can compare the binomial and Poisson PMFs for (n, p) = (100, 0.1) using
the following Matlab code:

x=0:20;

p=poissonpmf(100,x);

b=binomialpmf(100,0.1,x);

plot(x,p,x,b);

For (n, p) = (10, 1), the binomial PMF has no randomness. For (n, p) =
(100, 0.1), the approximation is reasonable:
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(a) n = 10, p = 1 (b) n = 100, p = 0.1

Finally, for (n, p) = (1000, 0.01), and (n, p) = (10000, 0.001), the approxima-
tion is very good:
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(a) n = 1000, p = 0.01 (b) n = 10000, p = 0.001

Problem 3.9.9 Solution

For the PC version of Matlab employed for this test, poissonpmf(n,n)

reported Inf for n = n∗ = 714. The problem with the poissonpmf function
in Example 3.37 is that the cumulative product that calculated nk/k! can
have an overflow. Following the hint, we can write an alternate poissonpmf

function as follows:
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function pmf=poissonpmf(alpha,x)

%Poisson (alpha) rv X,

%out=vector pmf: pmf(i)=P[X=x(i)]

x=x(:);

if (alpha==0)

pmf=1.0*(x==0);

else

k=(1:ceil(max(x)))’;

logfacts =cumsum(log(k));

pb=exp([-alpha; ...

-alpha+ (k*log(alpha))-logfacts]);

okx=(x>=0).*(x==floor(x));

x=okx.*x;

pmf=okx.*pb(x+1);

end

%pmf(i)=0 for zero-prob x(i)

By summing logarithms, the intermediate terms are much less likely to over-
flow.
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Problem Solutions – Chapter 4

Problem 4.2.1 Solution
The CDF of X is

FX (x) =


0 x < −1,

(x+ 1)/2 −1 ≤ x < 1,

1 x ≥ 1.

(1)

Each question can be answered by expressing the requested probability in
terms of FX(x).

(a)

P [X > 1/2] = 1− P [X ≤ 1/2]

= 1− FX (1/2) = 1− 3/4 = 1/4. (2)

(b) This is a little trickier than it should be. Being careful, we can write

P [−1/2 ≤ X < 3/4] = P [−1/2 < X ≤ 3/4]

+ P [X = −1/2]− P [X = 3/4] . (3)

Since the CDF of X is a continuous function, the probability that X
takes on any specific value is zero. This implies P[X = 3/4] = 0 and
P[X = −1/2] = 0. (If this is not clear at this point, it will become clear
in Section 4.7.) Thus,

P [−1/2 ≤ X < 3/4] = P [−1/2 < X ≤ 3/4]

= FX (3/4)− FX (−1/2) = 5/8. (4)

(c)

P [|X| ≤ 1/2] = P [−1/2 ≤ X ≤ 1/2]

= P [X ≤ 1/2]− P [X < −1/2] . (5)
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Note that P[X ≤ 1/2] = FX(1/2) = 3/4. Since the probability that
P[X = −1/2] = 0, P[X < −1/2] = P[X ≤ 1/2]. Hence P[X < −1/2] =
FX(−1/2) = 1/4. This implies

P [|X| ≤ 1/2] = P [X ≤ 1/2]− P [X < −1/2]

= 3/4− 1/4 = 1/2. (6)

(d) Since FX(1) = 1, we must have a ≤ 1. For a ≤ 1, we need to satisfy

P [X ≤ a] = FX (a) =
a+ 1

2
= 0.8. (7)

Thus a = 0.6.

Problem 4.2.3 Solution

(a) By definition, dnxe is the smallest integer that is greater than or equal
to nx. This implies nx ≤ dnxe ≤ nx+ 1.

(b) By part (a),

nx

n
≤ dnxe

n
≤ nx+ 1

n
. (1)

That is,

x ≤ dnxe
n
≤ x+

1

n
. (2)

This implies

x ≤ lim
n→∞

dnxe
n
≤ lim

n→∞
x+

1

n
= x. (3)
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(c) In the same way, bnxc is the largest integer that is less than or equal
to nx. This implies nx− 1 ≤ bnxc ≤ nx. It follows that

nx− 1

n
≤ bnxc

n
≤ nx

n
. (4)

That is,

x− 1

n
≤ bnxc

n
≤ x. (5)

This implies

lim
n→∞

x− 1

n
= x ≤ lim

n→∞

dnxe
n
≤ x. (6)

Problem 4.3.1 Solution

fX (x) =

{
cx 0 ≤ x ≤ 2,

0 otherwise.
(1)

(a) From the above PDF we can determine the value of c by integrating
the PDF and setting it equal to 1, yielding∫ 2

0

cx dx = 2c = 1. (2)

Therefore c = 1/2.

(b) P[0 ≤ X ≤ 1] =
∫ 1

0
x
2
dx = 1/4.

(c) P[−1/2 ≤ X ≤ 1/2] =
∫ 1/2

0
x
2
dx = 1/16.

(d) The CDF of X is found by integrating the PDF from 0 to x.

FX (x) =

∫ x

0

fX (x′) dx′ =


0 x < 0,

x2/4 0 ≤ x ≤ 2,

1 x > 2.

(3)
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Problem 4.3.3 Solution

We find the PDF by taking the derivative of FU(u) on each piece that FU(u)
is defined. The CDF and corresponding PDF of U are

FU (u) =



0 u < −5,

(u+ 5)/8 −5 ≤ u < −3,

1/4 −3 ≤ u < 3,

1/4 + 3(u− 3)/8 3 ≤ u < 5,

1 u ≥ 5,

(1)

fU (u) =



0 u < −5,

1/8 −5 ≤ u < −3,

0 −3 ≤ u < 3,

3/8 3 ≤ u < 5,

0 u ≥ 5.

(2)

Problem 4.3.5 Solution

For x > 2,

fX (x) = (1/2)f2(x) = (c2/2)e−x. (1)

The non-negativity requirement fX(x) ≥ 0 for all x implies c2 ≥ 0. For
0 ≤ x ≤ 2, non-negativity implies

c1

2
+
c2

2
e−x ≥ 0, 0 ≤ x ≤ 2. (2)

Since c2 ≥ 0, we see that this condition is satisfied if and only if

c1

2
+
c2

2
e−2 ≥ 0, (3)

which simplifies to c1 ≥ −c2e
−2. Finally the requirement that the PDF
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integrates to unity yields

1 =
1

2

∫ ∞
−∞

f1(x) dx+
1

2

∫ ∞
−∞

f2(x) dx

=
1

2

∫ 2

0

c1 dx+
1

2

∫ ∞
0

c2e
−x dx

= c1 + c2/2. (4)

Thus c1 = 1− c2/2 and we can represent our three constraints in terms of c2

as
c2 ≥ 0, 1− c2/2 ≥ −c2e

−2. (5)

This can be simplified to

c1 = 1− c2/2, 0 ≤ c2 ≤
1

1/2− e−2
= 2.742. (6)

We note that this problem is tricky because fX(x) can be a valid PDF even
if c1 < 0.

Problem 4.4.1 Solution

fX (x) =

{
1/4 −1 ≤ x ≤ 3,

0 otherwise.
(1)

We recognize that X is a uniform random variable from [-1,3].

(a) E[X] = 1 and Var[X] = (3+1)2

12
= 4/3.

(b) The new random variable Y is defined as Y = h(X) = X2. Therefore

h(E [X]) = h(1) = 1 (2)

and

E [h(X)] = E
[
X2
]

= Var [X] + E [X]2 = 4/3 + 1 = 7/3. (3)
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(c) Finally

E [Y ] = E [h(X)] = E
[
X2
]

= 7/3, (4)

Var [Y ] = E
[
X4
]
− E

[
X2
]2

=

∫ 3

−1

x4

4
dx− 49

9
=

61

5
− 49

9
. (5)

Problem 4.4.3 Solution
The CDF of X is

FX (x) =


0 x < 0,

x/2 0 ≤ x < 2,

1 x ≥ 2.

(1)

(a) To find E[X], we first find the PDF by differentiating the above CDF.

fX (x) =

{
1/2 0 ≤ x ≤ 2,

0 otherwise.
(2)

The expected value is then

E [X] =

∫ 2

0

x

2
dx = 1. (3)

(b)

E
[
X2
]

=

∫ 2

0

x2

2
dx = 8/3, (4)

Var[X] = E
[
X2
]
− E [X]2 = 8/3− 1 = 5/3. (5)

Problem 4.4.5 Solution
The CDF of Y is

FY (y) =


0 y < −1,

(y + 1)/2 −1 ≤ y < 1,

1 y ≥ 1.

(1)
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(a) We can find the expected value of Y by first differentiating the above
CDF to find the PDF

fY (y) =

{
1/2 −1 ≤ y ≤ 1,

0 otherwise.
(2)

It follows that

E [Y ] =

∫ 1

−1

y/2 dy = 0. (3)

(b)

E
[
Y 2
]

=

∫ 1

−1

y2

2
dy = 1/3, (4)

Var[Y ] = E
[
Y 2
]
− E [Y ]2 = 1/3− 0 = 1/3. (5)

Problem 4.4.7 Solution

To find the moments, we first find the PDF of U by taking the derivative of
FU(u). The CDF and corresponding PDF are

FU (u) =



0 u < −5,

(u+ 5)/8 −5 ≤ u < −3,

1/4 −3 ≤ u < 3,

1/4 + 3(u− 3)/8 3 ≤ u < 5,

1 u ≥ 5.

(1)

fU (u) =



0 u < −5,

1/8 −5 ≤ u < −3,

0 −3 ≤ u < 3,

3/8 3 ≤ u < 5,

0 u ≥ 5.

(2)
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(a) The expected value of U is

E [U ] =

∫ ∞
−∞

ufU (u) du =

∫ −3

−5

u

8
du+

∫ 5

3

3u

8
du

=
u2

16

∣∣∣∣−3

−5

+
3u2

16

∣∣∣∣5
3

= 2. (3)

(b) The second moment of U is

E
[
U2
]

=

∫ ∞
−∞

u2fU (u) du =

∫ −3

−5

u2

8
du+

∫ 5

3

3u2

8
du

=
u3

24

∣∣∣∣−3

−5

+
u3

8

∣∣∣∣5
3

= 49/3. (4)

The variance of U is Var[U ] = E[U2]− (E[U ])2 = 37/3.

(c) Note that 2U = e(ln 2)U . This implies that∫
2u du =

∫
e(ln 2)u du =

1

ln 2
e(ln 2)u =

2u

ln 2
. (5)

The expected value of 2U is then

E
[
2U
]

=

∫ ∞
−∞

2ufU (u) du

=

∫ −3

−5

2u

8
du+

∫ 5

3

3 · 2u
8

du

=
2u

8 ln 2

∣∣∣∣−3

−5

+
3 · 2u
8 ln 2

∣∣∣∣5
3

=
2307

256 ln 2
= 13.001. (6)
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Problem 4.5.1 Solution

Since Y is a continuous uniform (a = 1, b = 5) random variable, we know
that

fY (y) =

{
1/4 1 ≤ y ≤ 5,

0 otherwise,
(1)

and that

E [Y ] =
a+ b

2
= 3, Var[Y ] =

(b− a)2

12
=

4

3
. (2)

With these facts, the remaining calculations are straightforward:

(a) P[Y > E[Y ]] = P[Y > 3] =
∫ 5

3
1
4
dy = 1

2
.

(b) P[Y ≤ Var[Y ]] = P[X ≤ 4/3] =
∫ 4/3

1
1
4
dy = 1

12
.

Problem 4.5.3 Solution

The reflected power Y has an exponential (λ = 1/P0) PDF. From Theo-
rem 4.8, E[Y ] = P0. The probability that an aircraft is correctly identified
is

P [Y > P0] =

∫ ∞
P0

1

P0

e−y/P0 dy = e−1. (1)

Fortunately, real radar systems offer better performance.

Problem 4.5.5 Solution

An exponential (λ) random variable has PDF

fX (x) =

{
λe−λx x ≥ 0,

0 otherwise,
(1)

and has expected value E[Y ] = 1/λ. Although λ was not specified in the
problem, we can still solve for the probabilities:
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(a) P [Y ≥ E [Y ]] =

∫ ∞
1/λ

λe−λx dx = −e−λx
∣∣∞
1/λ

= e−1.

(b) P [Y ≥ 2 E [Y ]] =

∫ ∞
2/λ

λe−λx dx = −e−λx
∣∣∞
2/λ

= e−2.

Problem 4.5.7 Solution

Since Y is an Erlang random variable with parameters λ = 2 and n = 2, we
find in Appendix A that

fY (y) =

{
4ye−2y y ≥ 0,

0 otherwise.
(1)

(a) Appendix A tells us that E[Y ] = n/λ = 1.

(b) Appendix A also tells us that Var[Y ] = n/λ2 = 1/2.

(c) The probability that 1/2 ≤ Y < 3/2 is

P [1/2 ≤ Y < 3/2] =

∫ 3/2

1/2

fY (y) dy =

∫ 3/2

1/2

4ye−2y dy. (2)

This integral is easily completed using the integration by parts formula∫
u dv = uv −

∫
v du with

u = 2y, dv = 2e−2y,

du = 2dy, v = −e−2y.

Making these substitutions, we obtain

P [1/2 ≤ Y < 3/2] = −2ye−2y
∣∣3/2
1/2

+

∫ 3/2

1/2

2e−2y dy

= 2e−1 − 4e−3 = 0.537. (3)
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Problem 4.5.9 Solution

Since U is a continuous uniform random variable with E[U ] = 10, we know
that u = 10 is the midpoint of a uniform (a, b) PDF. That is, for some
constant c > 0, U is a continuous uniform (10 − c, 10 + c) random variable
with PDF

fU(u) =

{
1/(2c) 10− c ≤ u ≤ 10 + c,

0 otherwise.

This implies

1

4
= P [U > 12] =

∫ ∞
12

fU (u) du

=

∫ 10+c

12

1

2c
du =

10 + c− 12

2c
=

1

2
− 1

c
. (1)

This implies 1/c = 1/4 or c = 4. Thus U is a uniform (6, 14) random variable
with PDF

fU(u) =

{
1/8 6 ≤ u ≤ 14,

0 otherwise.

It follows that

P[U < 9] =

∫ 9

−∞
fU(u) du =

∫ 9

6

1

8
du =

3

8
.

Problem 4.5.11 Solution

For a uniform (−a, a) random variable X,

Var[X] = (a− (−a))2/12 = a2/3. (1)

Hence P[|X| ≤ Var[X]] = P[|X| ≤ a2/3]. Keep in mind that

fX (x) =

{
1/(2a) −a ≤ x ≤ a,

0 otherwise.
(2)
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If a2/3 > a, that is a > 3, then we have P[|X| ≤ Var[X]] = 1. Otherwise, if
a ≤ 3,

P [|X| ≤ Var[X]] = P
[
|X| ≤ a2/3

]
=

∫ a2/3

−a2/3

1

2a
dx = a/3. (3)

Problem 4.5.13 Solution

Given that

fX (x) =

{
(1/2)e−x/2 x ≥ 0,

0 otherwise,
(1)

(a)

P [1 ≤ X ≤ 2] =

∫ 2

1

(1/2)e−x/2 dx = e−1/2 − e−1 = 0.2387. (2)

(b) The CDF of X may be be expressed as

FX (x) =

{
0 x < 0,∫ x

0
(1/2)e−x/2 dτ x ≥ 0,

=

{
0 x < 0,

1− e−x/2 x ≥ 0.
(3)

(c) X is an exponential random variable with parameter a = 1/2. By
Theorem 4.8, the expected value of X is E[X] = 1/a = 2.

(d) By Theorem 4.8, the variance of X is Var[X] = 1/a2 = 4.

Problem 4.5.15 Solution

Let X denote the holding time of a call. The PDF of X is

fX (x) =

{
(1/τ)e−x/τ x ≥ 0,

0 otherwise.
(1)
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We will use CA(X) and CB(X) to denote the cost of a call under the two
plans. From the problem statement, we note that CA(X) = 10X so that
E[CA(X)] = 10 E[X] = 10τ . On the other hand

CB(X) = 99 + 10(X − 20)+, (2)

where y+ = y if y ≥ 0; otherwise y+ = 0 for y < 0. Thus,

E [CB(X)] = E
[
99 + 10(X − 20)+

]
= 99 + 10 E

[
(X − 20)+

]
= 99 + 10 E

[
(X − 20)+|X ≤ 20

]
P [X ≤ 20]

+ 10 E
[
(X − 20)+|X > 20

]
P [X > 20] .

(3)

Given X ≤ 20, (X − 20)+ = 0. Thus E[(X − 20)+|X ≤ 20] = 0 and

E [CB(X)] = 99 + 10 E [(X − 20)|X > 20] P [X > 20] . (4)

Finally, we observe that P[X > 20] = e−20/τ and that

E [(X − 20)|X > 20] = τ (5)

since given X ≥ 20, X − 20 has a PDF identical to X by the memoryless
property of the exponential random variable. Thus,

E [CB(X)] = 99 + 10τe−20/τ (6)

Some numeric comparisons show that E[CB(X)] ≤ E[CA(X)] if τ > 12.34
minutes. That is, the flat price for the first 20 minutes is a good deal only if
your average phone call is sufficiently long.

Problem 4.5.17 Solution
For an Erlang (n, λ) random variable X, the kth moment is

E
[
Xk
]

=

∫ ∞
0

xkfX (x) dt

=

∫ ∞
0

λnxn+k−1

(n− 1)!
e−λx dt =

(n+ k − 1)!

λk(n− 1)!

∫ ∞
0

λn+kxn+k−1

(n+ k − 1)!
e−λt dt︸ ︷︷ ︸

1

. (1)
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The above integral equals 1 since it is the integral of an Erlang (n + k, λ)
PDF over all possible values. Hence,

E
[
Xk
]

=
(n+ k − 1)!

λk(n− 1)!
. (2)

This implies that the first and second moments are

E [X] =
n!

(n− 1)!λ
=
n

λ
, E

[
X2
]

=
(n+ 1)!

λ2(n− 1)!
=

(n+ 1)n

λ2
. (3)

It follows that the variance of X is n/λ2.

Problem 4.5.19 Solution

For n = 1, we have the fact E[X] = 1/λ that is given in the problem state-
ment. Now we assume that E[Xn−1] = (n− 1)!/λn−1. To complete the proof,
we show that this implies that E[Xn] = n!/λn. Specifically, we write

E [Xn] =

∫
0

xnλe−λx dx. (1)

Now we use the integration by parts formula
∫
u dv = uv−

∫
v du with u = xn

and dv = λe−λx dx. This implies du = nxn−1 dx and v = −e−λx so that

E [Xn] = −xne−λx
∣∣∞
0

+

∫ ∞
0

nxn−1e−λx dx

= 0 +
n

λ

∫ ∞
0

xn−1λe−λx dx

=
n

λ
E
[
Xn−1

]
. (2)

By our induction hyothesis, E[Xn−1] = (n− 1)!/λn−1 which implies

E [Xn] = n!/λn. (3)
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Problem 4.6.1 Solution

Given that the peak temperature, T , is a Gaussian random variable with mean
85 and standard deviation 10 we can use the fact that FT(t) = Φ((t−µT )/σT )
and Table 4.2 on page 143 to evaluate:

P [T > 100] = 1− P [T ≤ 100]

= 1− FT (100)

= 1− Φ

(
100− 85

10

)
= 1− Φ(1.5) = 1− 0.933 = 0.066, (1)

P [T < 60] = Φ

(
60− 85

10

)
= Φ(−2.5) = 1− Φ(2.5) = 1− .993 = 0.007, (2)

P [70 ≤ T ≤ 100] = FT (100)− FT (70)

= Φ(1.5)− Φ(−1.5) = 2Φ(1.5)− 1 = .866. (3)

Problem 4.6.3 Solution

(a)

P [V > 4] = 1− P [V ≤ 4] = 1− P

[
V − 0

σ
≤ 4− 0

σ

]
= 1− Φ(4/σ)

= 1− Φ(2) = 0.023. (1)

(b)

P [W ≤ 2] = P

[
W − 2

5
≤ 2− 2

5

]
= Φ(0) =

1

2
. (2)
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(c)

P [X ≤ µ+ 1] = P [X − µ ≤ 1]

= P

[
X − µ
σ

≤ 1

σ

]
= Φ(1/σ) = Φ(0.5) = 0.692. (3)

(d)

P [Y > 65] = 1− P [Y ≤ 65]

= 1− P

[
Y − 50

10
≤ 65− 50

10

]
= 1− Φ(1.5) = 1− 0.933 = 0.067. (4)

Problem 4.6.5 Solution
Your body temperature T (in degrees Fahrenheit) satisfies

P [T > 100] = P

[
T − 98.6

0.4
>

100− 98.6

0.4

]
= Q(3.5) = 2.32× 10−4. (1)

According to this model, if you were to record your body temperature every
day for 10, 000 days (over 27 years), you would expect to measure a temper-
ature over 100 perhaps 2 or 3 times. This seems very low since a 100 degree
body temperature is a mild and not uncommon fever. What this suggests is
that this is a good model for when you are healthy but is not a good model
for when you are sick. When you are healthy, 2× 10−4 might be a reasonable
value for the probability of an elevated temperature. However, when you are
sick, you need a new model for body temperatures such that P[T > 100] is
much higher.

Problem 4.6.7 Solution
X is a Gaussian random variable with zero mean but unknown variance. We
do know, however, that

P [|X| ≤ 10] = 0.1. (1)

96



We can find the variance Var[X] by expanding the above probability in terms
of the Φ(·) function.

P [−10 ≤ X ≤ 10] = FX (10)− FX (−10) = 2Φ

(
10

σX

)
− 1. (2)

This implies Φ(10/σX) = 0.55. Using Table 4.2 for the Gaussian CDF, we
find that 10/σX = 0.15 or σX = 66.6.

Problem 4.6.9 Solution

Moving to Antarctica, we find that the temperature, T is still Gaussian but
with variance 225. We also know that with probability 1/2, T exceeds −75
degrees. First we would like to find the mean temperature, and we do so by
looking at the second fact.

P [T > −75] = 1− P [T ≤ −75] = 1− Φ

(−75− µT
15

)
= 1/2 (1)

By looking at the table we find that if Φ(x) = 1/2, then x = 0. Therefore,

Φ

(−75− µT
15

)
= 1/2 (2)

implies that (−75 − µT )/15 = 0 or µT = −75. Now we have a Gaussian T
with expected value −75 and standard deviation 15. So we are prepared to
answer the following problems:

P [T > 0] = Q

(
0− (−75)

15

)
= Q(5) = 2.87× 10−7, (3)

P [T < −100] = FT (−100) = Φ

(−100− (−75)

15

)
= Φ(−5/3) = 1− Φ(5/3) = 0.0478. (4)
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Problem 4.6.11 Solution

We are given that there are 100,000,000 men in the United States and 23,000
of them are at least 7 feet tall, and the heights of U.S men are independent
Gaussian random variables with mean 5′10′′.

(a) Let H denote the height in inches of a U.S male. To find σX , we look
at the fact that the probability that P[H ≥ 84] is the number of men
who are at least 7 feet tall divided by the total number of men (the
frequency interpretation of probability). Since we measure H in inches,
we have

P [H ≥ 84] =
23,000

100,000,000
= Φ

(
70− 84

σX

)
= 0.00023. (1)

Since Φ(−x) = 1− Φ(x) = Q(x),

Q(14/σX) = 2.3 · 10−4. (2)

From Table 4.3, this implies 14/σX = 3.5 or σX = 4.

(b) The probability that a randomly chosen man is at least 8 feet tall is

P [H ≥ 96] = Q

(
96− 70

4

)
= Q(6.5). (3)

Unfortunately, Table 4.3 doesn’t include Q(6.5), although it should be
apparent that the probability is very small. In fact, Matlab will cal-
culate Q(6.5) = 4.0× 10−11.

(c) First we need to find the probability that a man is at least 7’6”.

P [H ≥ 90] = Q

(
90− 70

4

)
= Q(5) ≈ 3 · 10−7 = β. (4)

Although Table 4.3 stops at Q(4.99), if you’re curious, the exact value
is Q(5) = 2.87 · 10−7.
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Now we can begin to find the probability that no man is at least 7’6”.
This can be modeled as 100,000,000 repetitions of a Bernoulli trial with
parameter 1− β. The probability that no man is at least 7’6” is

(1− β)100,000,000 = 9.4× 10−14. (5)

(d) The expected value of N is just the number of trials multiplied by the
probability that a man is at least 7’6”.

E [N ] = 100,000,000 · β = 30. (6)

Problem 4.6.13 Solution
First we note that since W has an N [µ, σ2] distribution, the integral we wish
to evaluate is

I =

∫ ∞
−∞

fW (w) dw =
1√

2πσ2

∫ ∞
−∞

e−(w−µ)2/2σ2

dw. (1)

(a) Using the substitution x = (w − µ)/σ, we have dx = dw/σ and

I =
1√
2π

∫ ∞
−∞

e−x
2/2 dx. (2)

(b) When we write I2 as the product of integrals, we use y to denote the
other variable of integration so that

I2 =

(
1√
2π

∫ ∞
−∞

e−x
2/2 dx

)(
1√
2π

∫ ∞
−∞

e−y
2/2 dy

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy. (3)

(c) By changing to polar coordinates, x2 + y2 = r2 and dx dy = r dr dθ so
that

I2 =
1

2π

∫ 2π

0

∫ ∞
0

e−r
2/2r dr dθ

=
1

2π

∫ 2π

0

−e−r2/2
∣∣∣∞
0
dθ =

1

2π

∫ 2π

0

dθ = 1. (4)
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Problem 4.6.15 Solution

This problem is mostly calculus and only a little probability. The result is a
famous formula in the analysis of radio systems. From the problem statement,
the SNR Y is an exponential (1/γ) random variable with PDF

fY (y) =

{
(1/γ)e−y/γ y ≥ 0,

0 otherwise.
(1)

Thus, from the problem statement, the BER is

P e = E [Pe(Y )] =

∫ ∞
−∞

Q(
√

2y)fY (y) dy

=

∫ ∞
0

Q(
√

2y)
y

γ
e−y/γ dy. (2)

Like most integrals with exponential factors, its a good idea to try integration
by parts. Before doing so, we recall that if X is a Gaussian (0, 1) random
variable with CDF FX(x), then

Q(x) = 1− FX (x) . (3)

It follows that Q(x) has derivative

Q′(x) =
dQ(x)

dx
= −dFX (x)

dx
= −fX (x) = − 1√

2π
e−x

2/2 (4)

To solve the integral, we use the integration by parts formula∫ b

a

u dv = uv|ba −
∫ b

a

v du, (5)

where

u = Q(
√

2y), dv =
1

γ
e−y/γ dy, (6)

du = Q′(
√

2y)
1√
2y

= − e−y

2
√
πy
, v = −e−y/γ. (7)
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From integration by parts, it follows that

P e = uv|∞0 −
∫ ∞

0

v du

= −Q(
√

2y)e−y/γ
∣∣∣∞
0
−
∫ ∞

0

1√
y
e−y[1+(1/γ)] dy

= 0 +Q(0)e−0 − 1

2
√
π

∫ ∞
0

y−1/2e−y/γ̄ dy, (8)

where γ̄ = γ/(1 + γ). Next, recalling that Q(0) = 1/2 and making the
substitution t = y/γ̄, we obtain

P e =
1

2
− 1

2

√
γ̄

π

∫ ∞
0

t−1/2e−t dt. (9)

From Math Fact B.11, we see that the remaining integral is the Γ(z) function
evaluated z = 1/2. Since Γ(1/2) =

√
π,

P e =
1

2
− 1

2

√
γ̄

π
Γ(1/2) =

1

2

[
1−√γ̄

]
=

1

2

[
1−

√
γ

1 + γ

]
. (10)

Problem 4.6.17 Solution

First we recall that the stock price at time t is X, a uniform (k − t, k + t)
random variable. The profit from the straddle is R′ = 2d− (V +W ) where

V = (k −X)+, W = (X − k)+. (1)

To find the CDF, we write

FR′(r) = P [R′ ≤ r] = P [2d− (V +W ) ≤ r]

= P [V +W ≥ 2d− r] . (2)

Since V +W is non-negative,

FR′(r) = P [V +W ≥ 2d− r] = 1, r ≥ 2d. (3)
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Now we focus on the case r ≤ 2d. Here we observe that V > 0 and W > 0
are mutually exclusive events. Thus, for 2d− r ≥ 0,

FR′(r) = P [V ≥ 2d− r] + P [W ≥ 2d− r] = 2 P [W ≥ 2d− r] . (4)

sinceW and V are identically distributed. SinceW = (X−k)+ and 2d−r ≥ 0,

P [W ≥ 2d− r] = P
[
(X − k)+ ≥ 2d− r

]
= P [X − k ≥ 2d− r]

=

{
0 (2d− r) > t,
t−(2d−r)

2t
(2d− r) ≤ t.

(5)

We can combine the above results in the following statement:

FR′(r) = 2 P [W ≥ 2d− r] =


0 r < 2d− t,
t−2d+r

t
2d− t ≤ r ≤ 2d,

1 r ≥ 2d.

(6)

The PDF of R′ is

fR′(r) =

{
1
t

2d− t ≤ r ≤ 2d,

0 otherwise.
(7)

It might appear that this is a good strategy since you may expect to receive
a return of E[R′] > 0 dollars; however this is not free because you assume the
risk of a significant loss. In a real investment, the PDF of the price X is not
bounded and the loss can be very very large. However, in the case of this
problem, the bounded PDF for X implies the loss is not so terrible. From
part (a), or by examination of the PDF fR′(r), we see that

E[R′] =
4d− t

2
.

Thus E[R′] > 0 if and only if d > t/4. In the worst case of d = t/4, we
observe that R′ has a uniform PDF over (−t/2, t/2) and the worst possible
loss is t/2 dollars. Whether the risk of such a loss is worth taking for an
expected return E[R′] would depend mostly on your financial capital and your
investment objectives, which were not included in the problem formulation.
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Problem 4.7.1 Solution

(a) Using the given CDF

P [X < −1] = FX
(
−1−

)
= 0, (1)

P [X ≤ −1] = FX (−1) = −1/3 + 1/3 = 0. (2)

Where FX(−1−) denotes the limiting value of the CDF found by ap-
proaching −1 from the left. Likewise, FX(−1+) is interpreted to be the
value of the CDF found by approaching −1 from the right. We notice
that these two probabilities are the same and therefore the probability
that X is exactly −1 is zero.

(b)

P [X < 0] = FX
(
0−
)

= 1/3, (3)

P [X ≤ 0] = FX (0) = 2/3. (4)

Here we see that there is a discrete jump at X = 0. Approached from
the left the CDF yields a value of 1/3 but approached from the right
the value is 2/3. This means that there is a non-zero probability that
X = 0, in fact that probability is the difference of the two values.

P [X = 0] = P [X ≤ 0]− P [X < 0] = 2/3− 1/3 = 1/3. (5)

(c)

P [0 < X ≤ 1] = FX (1)− FX
(
0+
)

= 1− 2/3 = 1/3, (6)

P [0 ≤ X ≤ 1] = FX (1)− FX
(
0−
)

= 1− 1/3 = 2/3. (7)

The difference in the last two probabilities above is that the first was
concerned with the probability that X was strictly greater then 0, and
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the second with the probability that X was greater than or equal to
zero. Since the the second probability is a larger set (it includes the
probability that X = 0) it should always be greater than or equal to
the first probability. The two differ by the probability that X = 0,
and this difference is non-zero only when the random variable exhibits
a discrete jump in the CDF.

Problem 4.7.3 Solution

(a) By taking the derivative of the CDF FX(x) given in Problem 4.7.2, we
obtain the PDF

fX (x) =

{
δ(x+1)

4
+ 1/4 + δ(x−1)

4
−1 ≤ x ≤ 1,

0 otherwise.
(1)

(b) The first moment of X is

E [X] =

∫ ∞
−∞

xfX (x) dx

= x/4|x=−1 + x2/8
∣∣1
−1

+ x/4|x=1

= −1/4 + 0 + 1/4 = 0. (2)

(c) The second moment of X is

E
[
X2
]

=

∫ ∞
−∞

x2fX (x) dx

= x2/4
∣∣
x=−1

+ x3/12
∣∣1
−1

+ x2/4
∣∣
x=1

= 1/4 + 1/6 + 1/4 = 2/3. (3)

Since E[X] = 0, Var[X] = E[X2] = 2/3.
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Problem 4.7.5 Solution

The PMF of a geometric random variable with mean 1/p is

PX (x) =

{
p(1− p)x−1 x = 1, 2, . . . ,

0 otherwise.
(1)

The corresponding PDF is

fX (x) = pδ(x− 1) + p(1− p)δ(x− 2) + · · ·

=
∞∑
j=1

p(1− p)j−1δ(x− j). (2)

Problem 4.7.7 Solution

The professor is on time 80 percent of the time and when he is late his arrival
time is uniformly distributed between 0 and 300 seconds. The PDF of T , is

fT (t) =

{
0.8δ(t− 0) + 0.2

300
0 ≤ t ≤ 300,

0 otherwise.
(1)

The CDF can be found be integrating

FT (t) =


0 t < −1,

0.8 + 0.2t
300

0 ≤ t < 300,

1 t ≥ 300.

(2)

Problem 4.7.9 Solution

The professor is on time and lectures the full 80 minutes with probability 0.7.
In terms of math,

P [T = 80] = 0.7. (1)

Likewise when the professor is more than 5 minutes late, the students leave
and a 0 minute lecture is observed. Since he is late 30% of the time and given
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that he is late, his arrival is uniformly distributed between 0 and 10 minutes,
the probability that there is no lecture is

P [T = 0] = (0.3)(0.5) = 0.15 (2)

The only other possible lecture durations are uniformly distributed between
75 and 80 minutes, because the students will not wait longer then 5 minutes,
and that probability must add to a total of 1−0.7−0.15 = 0.15. So the PDF
of T can be written as

fT (t) =


0.15δ(t) t = 0,

0.03 75 ≤ 7 < 80,

0.7δ(t− 80) t = 80,

0 otherwise.

(3)

Problem 4.8.1 Solution

Taking the derivative of the CDF FY(y) in Quiz 4.2, we obtain

fY (y) =

{
1/4 0 ≤ y ≤ 4,

0 otherwise.
(1)

We see that Y is a uniform (0, 4) random variable. By Theorem 6.3, if X is a
uniform (0, 1) random variable, then Y = 4X is a uniform (0, 4) random vari-
able. Using rand as Matlab’s uniform (0, 1) random variable, the program
quiz31rv is essentially a one line program:

function y=quiz31rv(m)

%Usage y=quiz31rv(m)

%Returns the vector y holding m

%samples of the uniform (0,4) random

%variable Y of Quiz 3.1

y=4*rand(m,1);
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Problem 4.8.3 Solution

By Theorem 4.9, if X is an exponential (λ) random variable, then K = dXe
is a geometric (p) random variable with p = 1 − e−λ. Thus, given p, we can
write λ = − ln(1 − p) and dXe is a geometric (p) random variable. Here is
the Matlab function that implements this technique:

function k=georv(p,m);

lambda= -log(1-p);

k=ceil(exponentialrv(lambda,m));

To compare this technique with that use in geometricrv.m, we first examine
the code for exponentialrv.m:

function x=exponentialrv(lambda,m)

x=-(1/lambda)*log(1-rand(m,1));

To analyze how m = 1 random sample is generated, let R = rand(1,1).
In terms of mathematics, exponentialrv(lambda,1) generates the random
variable

X = − ln(1−R)

λ
(1)

For λ = − ln(1− p), we have that

K = dXe =

⌈
ln(1−R)

ln(1− p)

⌉
(2)

This is precisely the same function implemented by geometricrv.m. In short,
the two methods for generating geometric (p) random samples are one in the
same.
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Problem Solutions – Chapter 5

Problem 5.1.1 Solution

(a) The probability P[X ≤ 2, Y ≤ 3] can be found be evaluating the joint
CDF FX,Y(x, y) at x = 2 and y = 3. This yields

P [X ≤ 2, Y ≤ 3] = FX,Y (2, 3) = (1− e−2)(1− e−3) (1)

(b) To find the marginal CDF of X, FX(x), we simply evaluate the joint
CDF at y =∞.

FX (x) = FX,Y (x,∞) =

{
1− e−x x ≥ 0,

0 otherwise.
(2)

(c) Likewise for the marginal CDF of Y , we evaluate the joint CDF at
X =∞.

FY (y) = FX,Y (∞, y) =

{
1− e−y y ≥ 0,

0 otherwise.
(3)

Problem 5.1.3 Solution

We wish to find P[x1 ≤ X ≤ x2 ∪ y1 ≤ Y ≤ y2]. We define events

A = {x1 ≤ X ≤ x2} , B = {y1 ≤ Y ≤ y2} (1)

so that P[A ∪B] is the probability of observing an X, Y pair in the “cross”
region. By Theorem 1.4(c),

P [A ∪B] = P [A] + P [B]− P [AB] (2)

108



Keep in mind that the intersection of events A and B are all the outcomes such
that both A and B occur, specifically, AB = {x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2}. It
follows that

P [A ∪B] = P [x1 ≤ X ≤ x2] + P [y1 ≤ Y ≤ y2]

− P [x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2] . (3)

By Theorem 5.2,

P [x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2]

= FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1) . (4)

Expressed in terms of the marginal and joint CDFs,

P [A ∪B] = FX (x2)− FX (x1) + FY (y2)− FY (y1)

− FX,Y (x2, y2) + FX,Y (x2, y1)

+ FX,Y (x1, y2)− FX,Y (x1, y1) . (5)

Problem 5.1.5 Solution

In this problem, we prove Theorem 5.2 which states

P [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2)− FX,Y (x2, y1)

− FX,Y (x1, y2) + FX,Y (x1, y1) . (1)

(a) The events A, B, and C are

Y

X
x1

y1

y2

Y

X
x1 x2

y1

y2

Y

X
x1 x2

y1

y2

A B C

(2)
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(b) In terms of the joint CDF FX,Y(x, y), we can write

P [A] = FX,Y (x1, y2)− FX,Y (x1, y1) , (3)

P [B] = FX,Y (x2, y1)− FX,Y (x1, y1) , (4)

P [A ∪B ∪ C] = FX,Y (x2, y2)− FX,Y (x1, y1) . (5)

(c) Since A, B, and C are mutually exclusive,

P [A ∪B ∪ C] = P [A] + P [B] + P [C] . (6)

However, since we want to express

P [C] = P [x1 < X ≤ x2, y1 < Y ≤ y2] (7)

in terms of the joint CDF FX,Y(x, y), we write

P [C] = P [A ∪B ∪ C]− P [A]− P [B]

= FX,Y (x2, y2)− FX,Y (x1, y2)− FX,Y (x2, y1) + FX,Y (x1, y1) , (8)

which completes the proof of the theorem.

Problem 5.2.1 Solution

In this problem, it is helpful to label points with nonzero probability on the
X, Y plane:

-

6

y

x

PX,Y(x, y)

•c

•3c

•2c

•6c

•4c

•12c

0 1 2 3 4
0

1

2

3

4
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(a) We must choose c so the PMF sums to one:∑
x=1,2,4

∑
y=1,3

PX,Y (x, y) = c
∑

x=1,2,4

x
∑
y=1,3

y

= c [1(1 + 3) + 2(1 + 3) + 4(1 + 3)] = 28c. (1)

Thus c = 1/28.

(b) The event {Y < X} has probability

P [Y < X] =
∑

x=1,2,4

∑
y<x

PX,Y (x, y)

=
1(0) + 2(1) + 4(1 + 3)

28
=

18

28
. (2)

(c) The event {Y > X} has probability

P [Y > X] =
∑

x=1,2,4

∑
y>x

PX,Y (x, y)

=
1(3) + 2(3) + 4(0)

28
=

9

28
. (3)

(d) There are two ways to solve this part. The direct way is to calculate

P [Y = X] =
∑

x=1,2,4

∑
y=x

PX,Y (x, y) =
1(1) + 2(0)

28
=

1

28
. (4)

The indirect way is to use the previous results and the observation that

P [Y = X] = 1− P [Y < X]− P [Y > X]

= 1− 18/28− 9/28 = 1/28. (5)

(e)

P [Y = 3] =
∑

x=1,2,4

PX,Y (x, 3)

=
(1)(3) + (2)(3) + (4)(3)

28
=

21

28
=

3

4
. (6)
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Problem 5.2.3 Solution

Let r (reject) and a (accept) denote the result of each test. There are four
possible outcomes: rr, ra, ar, aa. The sample tree is

�
��

�
��

rp

HH
HHHH a1−p

���
���

rp

XXXXXX a1−p

���
���

rp

XXXXXX a1−p

•rr p2

•ra p(1−p)

•ar p(1−p)

•aa (1−p)2

Now we construct a table that maps the sample outcomes to values of X and
Y .

outcome P [·] X Y
rr p2 1 1
ra p(1− p) 1 0
ar p(1− p) 0 1
aa (1− p)2 0 0

(1)

This table is esentially the joint PMF PX,Y(x, y).

PX,Y (x, y) =



p2 x = 1, y = 1,

p(1− p) x = 0, y = 1,

p(1− p) x = 1, y = 0,

(1− p)2 x = 0, y = 0,

0 otherwise.

(2)

Problem 5.2.5 Solution

As the problem statement says, reasonable arguments can be made for the
labels being X and Y or x and y. As we see in the arguments below, the
lowercase choice of the text is somewhat arbitrary.
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• Lowercase axis labels: For the lowercase labels, we observe that we are
depicting the masses associated with the joint PMF PX,Y(x, y) whose
arguments are x and y. Since the PMF function is defined in terms of
x and y, the axis labels should be x and y.

• Uppercase axis labels: On the other hand, we are depicting the pos-
sible outcomes (labeled with their respective probabilities) of the pair
of random variables X and Y . The corresponding axis labels should
be X and Y just as in Figure 5.2. The fact that we have labeled the
possible outcomes by their probabilities is irrelevant. Further, since the
expression for the PMF PX,Y(x, y) given in the figure could just as well
have been written PX,Y(·, ·), it is clear that the lowercase x and y are
not what matter.

Problem 5.2.7 Solution

(a) Using r, v, and n to denote the events that (r) Rutgers scores, (v)
Villanova scores, and (n) neither scores in a particular minute, the tree
is:

��
��

�
��

r
0.2

H
HHH

HHH n
0.6

v0.2

���
���

� r0.5

v
0.5

���
���

� r0.5

v
0.5

���
���

� r0.3

XXXXXXX n0.4

v0.3

• 0.10 R=2,V=0

• 0.10 R=1,V=1

• 0.10 R=1,V=1

• 0.10 R=0,V=2

• 0.18 R=1,V=0

• 0.18 R=0,V=1

• 0.24 R=0,V=0

From the leaf probabilities, we can write down the joint PMF of R and
V , taking care to note that the pair R = 1, V = 1 occurs for more than
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one outcome.
PR,V(r, v) v = 0 v = 1 v = 2

r = 0 0.24 0.18 0.1
r = 1 0.18 0.2 0
r = 2 0.1 0 0

(b)

P [T ] = P [R = V ] =
∑
i

PR,V (i, i)

= PR,V (0, 0) + PR,V (1, 1)

= 0.24 + 0.2 = 0.44. (1)

(c) By summing across the rows of the table for PR,V(r, v), we obtain
PR(0) = 0.52, PR(1) = 0.38, and PR(r)2 = 0.1. The complete expresson
for the marginal PMF is

r 0 1 2
PR(r) 0.52 0.38 0.10

(d) For each pair (R, V ), we have G = R + V . From first principles.

PG(0) = PR,V (0, 0) = 0.24, (2)

PG(1) = PR,V (1, 0) + PR,V (0, 1) = 0.36, (3)

PG(2) = PR,V (2, 0) + PR,V (1, 1) + PR,V (0, 2) = 0.4. (4)

The complete expression is

PG(g) =


0.24 g = 0,

0.36 g = 1,

0.40 g = 2,

0 otherwise.

(5)
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Problem 5.2.9 Solution
Each circuit test produces an acceptable circuit with probability p. Let
K denote the number of rejected circuits that occur in n tests and X is
the number of acceptable circuits before the first reject. The joint PMF,
PK,X(k, x) = P[K = k,X = x] can be found by realizing that {K = k,X = x}
occurs if and only if the following events occur:

A The first x tests must be acceptable.

B Test x + 1 must be a rejection since otherwise we would have x + 1
acceptable at the beginnning.

C The remaining n− x− 1 tests must contain k − 1 rejections.

Since the events A, B and C are independent, the joint PMF for x + k ≤ r,
x ≥ 0 and k ≥ 0 is

PK,X (k, x) = px︸︷︷︸
P[A]

(1− p)︸ ︷︷ ︸
P[B]

(
n− x− 1

k − 1

)
(1− p)k−1pn−x−1−(k−1)︸ ︷︷ ︸

P[C]

(1)

After simplifying, a complete expression for the joint PMF is

PK,X (k, x) =

{(
n−x−1
k−1

)
pn−k(1− p)k x+ k ≤ n, x ≥ 0, k ≥ 0,

0 otherwise.
(2)

Problem 5.3.1 Solution
On the X, Y plane, the joint PMF PX,Y(x, y) is

-

6

y

x

PX,Y(x, y)

•c

•3c

•2c

•6c

•4c

•12c

0 1 2 3 4
0

1

2

3

4
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By choosing c = 1/28, the PMF sums to one.

(a) The marginal PMFs of X and Y are

PX (x) =
∑
y=1,3

PX,Y (x, y) =


4/28 x = 1,

8/28 x = 2,

16/28 x = 4,

0 otherwise,

(1)

PY (y) =
∑

x=1,2,4

PX,Y (x, y) =


7/28 y = 1,

21/28 y = 3,

0 otherwise.

(2)

(b) The expected values of X and Y are

E [X] =
∑

x=1,2,4

xPX (x) = (4/28) + 2(8/28) + 4(16/28) = 3, (3)

E [Y ] =
∑
y=1,3

yPY (y) = 7/28 + 3(21/28) = 5/2. (4)

(c) The second moments are

E
[
X2
]

=
∑

x=1,2,4

xPX (x)

= 12(4/28) + 22(8/28) + 42(16/28) = 73/7, (5)

E
[
Y 2
]

=
∑
y=1,3

yPY (y) = 12(7/28) + 32(21/28) = 7. (6)

The variances are

Var[X] = E
[
X2
]
− (E [X])2 = 10/7, (7)

Var[Y ] = E
[
Y 2
]
− (E [Y ])2 = 3/4. (8)

The standard deviations are σX =
√

10/7 and σY =
√

3/4.

116



Problem 5.3.3 Solution

We recognize that the given joint PMF is written as the product of two
marginal PMFs PN(n) and PK(k) where

PN (n) =
100∑
k=0

PN,K (n, k) =

{
100ne−100

n!
n = 0, 1, . . . ,

0 otherwise,
(1)

PK (k) =
∞∑
n=0

PN,K (n, k) =

{(
100
k

)
pk(1− p)100−k k = 0, 1, . . . , 100,

0 otherwise.
(2)

Problem 5.3.5 Solution

The joint PMF of N,K is

PN,K (n, k) =


(1− p)n−1p/n k = 1, 2, . . . , n,

n = 1, 2 . . . ,

o otherwise.

(1)

For n ≥ 1, the marginal PMF of N is

PN (n) =
n∑
k=1

PN,K (n, k) =
n∑
k=1

(1− p)n−1p/n = (1− p)n−1p. (2)

The marginal PMF of K is found by summing PN,K(n, k) over all possible N .
Note that if K = k, then N ≥ k. Thus,

PK (k) =
∞∑
n=k

1

n
(1− p)n−1p. (3)

Unfortunately, this sum cannot be simplified.

Problem 5.4.1 Solution
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(a) The joint PDF of X and Y is
Y

X

Y + X = 1
1

1

fX,Y (x, y) =

{
c x+ y ≤ 1, x, y ≥ 0

0 otherwise.

To find the constant c we integrate over the region shown. This gives∫ 1

0

∫ 1−x

0

c dy dx = cx− cx

2

∣∣∣1
0

=
c

2
= 1. (1)

Therefore c = 2.

(b) To find the P[X ≤ Y ] we look to integrate over the area indicated by
the graph

Y

X

X=Y

1

1

X Y£

P [X ≤ Y ] =

∫ 1/2

0

∫ 1−x

x

dy dx

=

∫ 1/2

0

(2− 4x) dx

= 1/2. (2)

(c) The probability P[X + Y ≤ 1/2] can be seen in the figure. Here we can
set up the following integrals

Y

X

Y + X = 1

Y + X = ½

1

1

P [X + Y ≤ 1/2] =

∫ 1/2

0

∫ 1/2−x

0

2 dy dx

=

∫ 1/2

0

(1− 2x) dx

= 1/2− 1/4 = 1/4. (3)
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Problem 5.4.3 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
6e−(2x+3y) x ≥ 0, y ≥ 0,

0 otherwise.
(1)

(a) The probability that X ≥ Y is:

Y

X

X Y³ P [X ≥ Y ] =

∫ ∞
0

∫ x

0

6e−(2x+3y) dy dx

=

∫ ∞
0

2e−2x
(
−e−3y

∣∣y=x

y=0

)
dx

=

∫ ∞
0

[2e−2x − 2e−5x] dx = 3/5. (2)

The probability P[X + Y ≤ 1] is found by integrating over the region
where X + Y ≤ 1:

Y

X

X+Y 1≤

1

1

P [X + Y ≤ 1] =

∫ 1

0

∫ 1−x

0

6e−(2x+3y) dy dx

=

∫ 1

0

2e−2x
[
−e−3y

∣∣y=1−x
y=0

]
dx

=

∫ 1

0

2e−2x
[
1− e−3(1−x)

]
dx

= −e−2x − 2ex−3
∣∣1
0

= 1 + 2e−3 − 3e−2. (3)

(b) The event {min(X, Y ) ≥ 1} is the same as the event {X ≥ 1, Y ≥ 1}.
Thus,

P [min(X, Y ) ≥ 1] =

∫ ∞
1

∫ ∞
1

6e−(2x+3y) dy dx = e−(2+3). (4)
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(c) The event {max(X, Y ) ≤ 1} is the same as the event {X ≤ 1, Y ≤ 1}
so that

P [max(X, Y ) ≤ 1] =

∫ 1

0

∫ 1

0

6e−(2x+3y) dy dx = (1− e−2)(1− e−3).

(5)

Problem 5.5.1 Solution

The joint PDF (and the corresponding region of nonzero probability) are
Y

X

1

-1

fX,Y (x, y) =

{
1/2 −1 ≤ x ≤ y ≤ 1,

0 otherwise.
(1)

(a)

P [X > 0] =

∫ 1

0

∫ 1

x

1

2
dy dx =

∫ 1

0

1− x
2

dx = 1/4 (2)

This result can be deduced by geometry. The shaded triangle of the
X, Y plane corresponding to the event X > 0 is 1/4 of the total shaded
area.

(b) For x > 1 or x < −1, fX(x) = 0. For −1 ≤ x ≤ 1,

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1

x

1

2
dy = (1− x)/2. (3)

The complete expression for the marginal PDF is

fX (x) =

{
(1− x)/2 −1 ≤ x ≤ 1,

0 otherwise.
(4)
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(c) From the marginal PDF fX(x), the expected value of X is

E [X] =

∫ ∞
−∞

xfX (x) dx =
1

2

∫ 1

−1

x(1− x) dx

=
x2

4
− x3

6

∣∣∣∣1
−1

= −1

3
. (5)

Problem 5.5.3 Solution
X and Y have joint PDF

fX,Y (x, y) =

{
2 x+ y ≤ 1, x, y ≥ 0,

0 otherwise.
(1)

Y

X

Y + X = 1
1

1

Using the figure to the left we can find the marginal
PDFs by integrating over the appropriate regions.

fX (x) =

∫ 1−x

0

2 dy =

{
2(1− x) 0 ≤ x ≤ 1,

0 otherwise.
(2)

Likewise for fY(y):

fY (y) =

∫ 1−y

0

2 dx =

{
2(1− y) 0 ≤ y ≤ 1,

0 otherwise.
(3)

Problem 5.5.5 Solution
The joint PDF of X and Y and the region of nonzero probability are

Y

X

1

1

-1

fX,Y (x, y) =

{
5x2/2 −1 ≤ x ≤ 1, 0 ≤ y ≤ x2,

0 otherwise.

(1)

We can find the appropriate marginal PDFs by integrating the joint PDF.
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(a) The marginal PDF of X is

fX (x) =

∫ x2

0

5x2

2
dy =

{
5x4/2 −1 ≤ x ≤ 1,

0 otherwise.
(2)

(b) Note that fY(y) = 0 for y > 1 or y < 0. For 0 ≤ y ≤ 1,

Y

X

1

1

-1

y

- yÖ Öy

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

=

∫ −√y
−1

5x2

2
dx+

∫ 1

√
y

5x2

2
dx

= 5(1− y3/2)/3. (3)

The complete expression for the marginal CDF of Y is

fY (y) =

{
5(1− y3/2)/3 0 ≤ y ≤ 1,

0 otherwise.
(4)

Problem 5.5.7 Solution

First, we observe that Y has mean µY = aµX + b and variance Var[Y ] =
a2 Var[X]. The covariance of X and Y is

Cov [X, Y ] = E [(X − µX)(aX + b− aµX − b)]
= aE

[
(X − µX)2

]
= aVar[X]. (1)

The correlation coefficient is

ρX,Y =
Cov [X, Y ]√

Var[X]
√

Var[Y ]
=

aVar[X]√
Var[X]

√
a2 Var[X]

=
a

|a| . (2)

When a > 0, ρX,Y = 1. When a < 0, ρX,Y = −1.
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Problem 5.5.9 Solution

(a) The joint PDF of X and Y and the region of nonzero probability are
Y

X

1

1

fX,Y (x, y) =

{
cy 0 ≤ y ≤ x ≤ 1,

0 otherwise.
(1)

(b) To find the value of the constant, c, we integrate the joint PDF over all
x and y.∫ ∞

−∞

∫ ∞
−∞

fX,Y (x, y) dx dy =

∫ 1

0

∫ x

0

cy dy dx =

∫ 1

0

cx2

2
dx

=
cx3

6

∣∣∣∣1
0

=
c

6
. (2)

Thus c = 6.

(c) We can find the CDF FX(x) = P[X ≤ x] by integrating the joint PDF
over the event X ≤ x. For x < 0, FX(x) = 0. For x > 1, FX(x) = 1.
For 0 ≤ x ≤ 1,

Y

X

1x

1 FX (x) =

∫∫
x′≤x

fX,Y (x′, y′) dy′ dx′

=

∫ x

0

∫ x′

0

6y′ dy′ dx′

=

∫ x

0

3(x′)2 dx′ = x3. (3)
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The complete expression for the joint CDF is

FX (x) =


0 x < 0,

x3 0 ≤ x ≤ 1,

1 x ≥ 1.

(4)

(d) Similarly, we find the CDF of Y by integrating fX,Y(x, y) over the event
Y ≤ y. For y < 0, FY(y) = 0 and for y > 1, FY(y) = 1. For 0 ≤ y ≤ 1,

Y

X

1

y

1

FY (y) =

∫∫
y′≤y

fX,Y (x′, y′) dy′ dx′

=

∫ y

0

∫ 1

y′
6y′ dx′ dy′

=

∫ y

0

6y′(1− y′) dy′

= 3(y′)2 − 2(y′)3
∣∣y
0

= 3y2 − 2y3. (5)

The complete expression for the CDF of Y is

FY (y) =


0 y < 0,

3y2 − 2y3 0 ≤ y ≤ 1,

1 y > 1.

(6)

(e) To find P[Y ≤ X/2], we integrate the joint PDF fX,Y(x, y) over the
region y ≤ x/2.

Y

X

1

½

1 P [Y ≤ X/2] =

∫ 1

0

∫ x/2

0

6y dy dx

=

∫ 1

0

3y2
∣∣x/2
0

dx

=

∫ 1

0

3x2

4
dx = 1/4. (7)
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Problem 5.6.1 Solution

The key to this problem is understanding that “small order” and “big order”
are synonyms for W = 1 and W = 5. Similarly, “vanilla”, “chocolate”, and
“strawberry” correspond to the events D = 20, D = 100 and D = 300.

(a) The following table is given in the problem statement.

vanilla choc. strawberry
small
order

0.2 0.2 0.2

big
order

0.1 0.2 0.1

This table can be translated directly into the joint PMF of W and D.

PW,D(w, d) d = 20 d = 100 d = 300

w = 1 0.2 0.2 0.2

w = 5 0.1 0.2 0.1

(1)

(b) We find the marginal PMF PD(d) by summing the columns of the joint
PMF. This yields

PD(d) =


0.3 d = 20,

0.4 d = 100,

0.3 d = 300,

0 otherwise.

(2)

(c) To check independence, we calculate the marginal PMF

PW (w) =
∑

d=20,100,300

PW,D(w, d) =

{
0.6 w = 1,

0.4 w = 5,
(3)
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and we check if PW,D(w, d) = PW(w)PD(d). In this case, we see that

PW,D(1, 20) = 0.2 6= PW (1)PD(20) = (0.6)(0.3). (4)

Hence W and D are dependent.

Problem 5.6.3 Solution

Flip a fair coin 100 times and let X be the number of heads in the first 75
flips and Y be the number of heads in the last 25 flips. We know that X and
Y are independent and can find their PMFs easily.

PX (x) =

(
75

x

)
(1/2)75, PY (y) =

(
25

y

)
(1/2)25. (1)

The joint PMF of X and N can be expressed as the product of the marginal
PMFs because we know that X and Y are independent.

PX,Y (x, y) =

(
75

x

)(
25

y

)
(1/2)100. (2)

Problem 5.6.5 Solution

From the problem statement, X and Y have PDFs

fX (x) =

{
1/2 0 ≤ x ≤ 2,

0 otherwise,
, fY (y) =

{
1/5 0 ≤ y ≤ 5,

0 otherwise.
(1)

Since X and Y are independent, the joint PDF is

fX,Y (x, y) = fX (x) fY (y) =

{
1/10 0 ≤ x ≤ 2, 0 ≤ y ≤ 5,

0 otherwise.
(2)
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Problem 5.6.7 Solution

(a) We find k by the requirement that the joint PDF integrate to 1. That
is,

1 =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy =

∫ 1/2

−1/2

∫ 1/2

−1/2

(k + 3x2) dx dy

=

(∫ 1/2

−1/2

dy

)(∫ 1/2

−1/2

(k + 3x2) dx

)
= kx+ x3

∣∣x=1/2

x=−1/2
= k + 1/4 (1)

Thus k=3/4.

(b) For −1/2 ≤ x ≤ 1/2, the marginal PDF of X is

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1/2

−1/2

(k + 3x2) dy = k + 3x2. (2)

The complete expression for the PDF of X is

fX (x) =

{
k + 3x2 −1/2 ≤ x ≤ 1/2,

0 otherwise.
(3)

(c) For −1/2 ≤ y ≤ 1/2,

fY (y) =

∫ ∞
−∞

fX (x) dx

=

∫ 1/2

−1/2

(k + 3x2) dx = kx+ x3
∣∣x=1/2

x=−1/2
= k + 1/4. (4)

Since k = 3/4, Y is a continuous uniform (−1/2, 1/2) random variable
with PDF

fY (y) =

{
1 −1/2 ≤ y ≤ 1/2,

0 otherwise.
(5)
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(d) We need to check whether fX,Y(x, y) = fX(x)fY(y). If you solved for k
in part (a), then from (b) and (c) it is obvious that this equality holds
and thus X and Y are independent. If you were not able to solve for k in
part (a), testing whether fX,Y(x, y) = fX(x)fY(y) yields the requirement
1 = k + 1/4. With some thought, you should have gone back to check
that k = 3/4 solves part (a). This would lead to the correct conclusion
that X and Y are independent.

Problem 5.6.9 Solution

This problem is quite straightforward. From Theorem 5.5, we can find the
joint PDF of X and Y is

fX,Y (x, y) =
∂2[FX (x)FY (y)]

∂x ∂y
=
∂[fX (x)FY (y)]

∂y
= fX (x) fY (y) . (1)

Hence, FX,Y(x, y) = FX(x)FY(y) implies that X and Y are independent.

If X and Y are independent, then

fX,Y (x, y) = fX (x) fY (y) . (2)

By Definition 5.3,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du

=

(∫ x

−∞
fX (u) du

)(∫ y

−∞
fY (v) dv

)
= FX (x)FX (x) . (3)

Problem 5.7.1 Solution

We recall that the joint PMF of W and D is

PW,D(w, d) d = 20 d = 100 d = 300

w = 1 0.2 0.2 0.2

w = 5 0.1 0.2 0.1

(1)
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In terms of W and D, the cost (in cents) of a shipment is C = WD. The
expected value of C is

E [C] =
∑
w,d

wdPW,D(w, d)

= 1(20)(0.2) + 1(100)(0.2) + 1(300)(0.2)

+ 5(20)(0.3) + 5(100)(0.4) + 5(300)(0.3) = 764 cents. (2)

Problem 5.7.3 Solution
We solve this problem using Theorem 5.9. To do so, it helps to label each
pair X, Y with the sum W = X + Y :

PX,Y(x, y) y = 1 y = 2 y = 3 y = 4

x = 5 0.05
W=6

0.1
W=7

0.2
W=8

0.05
W=9

x = 6 0.1
W=7

0.1
W=8

0.3
W=9

0.1
W=10

It follows that

E [X + Y ] =
∑
x,y

(x+ y)PX,Y (x, y)

= 6(0.05) + 7(0.2) + 8(0.3) + 9(0.35) + 10(0.1) = 8.25. (1)

and

E
[
(X + Y )2

]
=
∑
x,y

(x+ y)2PX,Y (x, y)

= 62(0.05) + 72(0.2) + 82(0.3) + 92(0.35) + 102(0.1)

= 69.15. (2)

It follows that

Var[X + Y ] = E
[
(X + Y )2

]
− (E [X + Y ])2

= 69.15− (8.25)2 = 1.0875. (3)

An alternate approach would be to find the marginals PX(x) and PY(y) and
use these to calculate E[X], E[Y ], Var[X] and Var[Y ]. However, we would
still need to find the covariance of X and Y to find the variance of X + Y .
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Problem 5.7.5 Solution

We start by observing that

Cov[X, Y ] = ρ
√

Var[X] Var[Y ] = 1.

This implies

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov[X, Y ] = 1 + 4 + 2(1) = 7.

Problem 5.7.7 Solution

We will solve this problem when the probability of heads is p. For the fair
coin, p = 1/2. The number X1 of flips until the first heads and the number
X2 of additional flips for the second heads both have the geometric PMF

PX1(x) = PX2(x) =

{
(1− p)x−1p x = 1, 2, . . . ,

0 otherwise.
(1)

Thus, E[Xi] = 1/p and Var[Xi] = (1− p)/p2. By Theorem 5.11,

E [Y ] = E [X1]− E [X2] = 0. (2)

Since X1 and X2 are independent, Theorem 5.17 says

Var[Y ] = Var[X1] + Var[−X2] = Var[X1] + Var[X2] =
2(1− p)

p2
. (3)

Problem 5.7.9 Solution

(a) Since X and Y have zero expected value, Cov[X, Y ] = E[XY ] = 3,
E[U ] = aE[X] = 0 and E[V ] = bE[Y ] = 0. It follows that

Cov [U, V ] = E [UV ]

= E [abXY ]

= abE [XY ] = abCov [X, Y ] = 3ab. (1)
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(b) We start by observing that Var[U ] = a2 Var[X] and Var[V ] = b2 Var[Y ].
It follows that

ρU,V =
Cov [U, V ]√

Var[U ] Var[V ]

=
abCov [X, Y ]√

a2 Var[X]b2 Var[Y ]
=

ab√
a2b2

ρX,Y =
1

2

ab

|ab| . (2)

Note that ab/|ab| is 1 if a and b have the same sign or is −1 if they have
opposite signs.

(c) Since E[X] = 0,

Cov [X,W ] = E [XW ]− E [X] E [U ]

= E [XW ]

= E [X(aX + bY )]

= aE
[
X2
]

+ bE [XY ]

= aVar[X] + bCov [X, Y ] . (3)

Since X and Y are identically distributed, Var[X] = Var[Y ] and

1

2
= ρX,Y =

Cov [X, Y ]√
Var[X] Var[Y ]

=
Cov [X, Y ]

Var[X]
=

3

Var[X]
. (4)

This implies Var[X] = 6. From (3), Cov[X,W ] = 6a+ 3b. Thus X and
W are uncorrelated if 6a+ 3b = 0, or b = −2a.

Problem 5.7.11 Solution

(a) Since E[V ] = E[X]− E[Y ] = 0,

Var[V ] = E
[
V 2
]

= E
[
X2 − 2XY + Y 2

]
= Var[X] + Var[Y ]− 2 Cov [X, Y ]

= Var[X] + Var[Y ]− 2σXσY ρX,Y

= 20− 16ρX,Y . (1)
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This is minimized when ρX,Y = 1. The minimum possible variance is 4.
On other hand, Var[V ] is maximized when ρX,Y = −1; the maximum
possible variance is 36.

(b) Since E[W ] = E[X]− E[2Y ] = 0,

Var [W ] = E
[
W 2
]

= E
[
X2 − 4XY + 4Y 2

]
= Var [X] + 4 Var [Y ]− 4 Cov [X, Y ]

= Var [X] + 4 Var [Y ]− 4σXσY ρX,Y

= 68− 32ρX,Y . (2)

This is is minimized when ρX,Y = 1 and maximized when ρX,Y = −1.
The minimum and maximum possible variances are 36 and 100.

Problem 5.7.13 Solution

The joint PDF of X and Y and the region of nonzero probability are
Y

X

1

1

-1

fX,Y (x, y) =

{
5x2/2 −1 ≤ x ≤ 1, 0 ≤ y ≤ x2,

0 otherwise.

(1)

(a) The first moment of X is

E [X] =

∫ 1

−1

∫ x2

0

x
5x2

2
dy dx =

∫ 1

−1

5x5

2
dx =

5x6

12

∣∣∣∣1
−1

= 0. (2)

Since E[X] = 0, the variance of X and the second moment are both

Var[X] = E
[
X2
]

=

∫ 1

−1

∫ x2

0

x2 5x2

2
dy dx =

5x7

14

∣∣∣∣1
−1

=
10

14
. (3)
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(b) The first and second moments of Y are

E [Y ] =

∫ 1

−1

∫ x2

0

y
5x2

2
dy dx =

5

14
, (4)

E
[
Y 2
]

=

∫ 1

−1

∫
0

x2y2 5x2

2
dy dx =

5

26
. (5)

Therefore, Var[Y ] = 5/26− (5/14)2 = .0576.

(c) Since E[X] = 0, Cov[X, Y ] = E[XY ]− E[X] E[Y ] = E[XY ]. Thus,

Cov [X, Y ] = E [XY ] =

∫ 1

1

∫ x2

0

xy
5x2

2
dy dx =

∫ 1

−1

5x7

4
dx = 0. (6)

(d) The expected value of the sum X + Y is

E [X + Y ] = E [X] + E [Y ] =
5

14
. (7)

(e) By Theorem 5.12, the variance of X + Y is

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov [X, Y ]

= 5/7 + 0.0576 = 0.7719. (8)

Problem 5.7.15 Solution

Since E[Y ] = E[X] = E[Z] = 0, we know that

Var[Y ] = E
[
Y 2
]
, Var[X] = E

[
X2
]
, Var[Z] = E

[
Z2
]
, (1)

and

Cov [X, Y ] = E [XY ] = E [X(X + Z)] = E
[
X2
]

+ E [XZ] . (2)

Since X and Z are independent, E[XZ] = E[X] E[Z] = 0, implying

Cov [X, Y ] = E
[
X2
]
. (3)
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Independence of X and Z also implies Var[Y ] = Var[X] + Var[Z], or equiva-
lently, since the signals are all zero-mean,

E
[
Y 2
]

= E
[
X2
]

+ E
[
Z2
]
. (4)

These facts imply that the correlation coefficient is

ρX,Y =
E [X2]√

E [X2] E [Y 2]
=

E [X2]√
E [X2] (E [X2] + E [Z2])

=
1√

1 + E[Z2]
E[X2]

. (5)

In terms of the signal to noise ratio, we have

ρX,Y =
1√

1 + 1
Γ

. (6)

We see in (6) that ρX,Y → 1 as Γ→∞.

Problem 5.8.1 Solution

Independence of X and Z implies

Var[Y ] = Var[X] + Var[Z] = 12 + 42 = 17. (1)

Since E[X] = E[Y ] = 0, the covariance of X and Y is

Cov [X, Y ] = E [XY ] = E [X(X + Z)] = E
[
X2
]

+ E [XZ] . (2)

Since X and Z are independent, E[XZ] = E[X] E[Z] = 0. Since E[X] = 0,
E[X2] = Var[X] = 1. Thus Cov[X, Y ] = 1. Finally, the correlation coefficient
is

ρX,Y =
Cov [X, Y ]√

Var[X]
√

Var[Y ]
=

1√
17

= 0.243. (3)

Since ρX,Y 6= 0, we conclude that X and Y are dependent.
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Problem 5.8.3 Solution

� -

6

?

y

x

PX,Y(x, y)

•3/14

•2/14

•1/14

•1/14

•1/14

•1/14

•2/14

•3/14

1 2

1

In Problem 5.2.1, we found the joint PMF
PX,Y(x, y) shown here. The expected values
and variances were found to be

E [X] = 0, Var[X] = 24/7, (1)

E [Y ] = 0, Var[Y ] = 5/7. (2)

We need these results to solve this problem.

(a) Random variable W = 2XY has expected value

E
[
2XY

]
=

∑
x=−2,0,2

∑
y=−1,0,1

2xyPX,Y (x, y)

= 2−2(−1) 3

14
+ 2−2(0) 2

14
+ 2−2(1) 1

14
+ 20(−1) 1

14
+ 20(1) 1

14

+ 22(−1) 1

14
+ 22(0) 2

14
+ 22(1) 3

14
= 61/28. (3)

(b) The correlation of X and Y is

rX,Y =
∑

x=−2,0,2

∑
y=−1,0,1

xyPX,Y (x, y)

=
−2(−1)(3)

14
+
−2(0)(2)

14
+
−2(1)(1)

14

+
2(−1)(1)

14
+

2(0)(2)

14
+

2(1)(3)

14
= 4/7. (4)
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(c) The covariance of X and Y is

Cov [X, Y ] = E [XY ]− E [X] E [Y ] = 4/7. (5)

(d) The correlation coefficient is

ρX,Y =
Cov [X, Y ]√
Var[X] Var[Y ]

=
2√
30
. (6)

(e) By Theorem 5.16,

Var [X + Y ] = Var [X] + Var[Y ] + 2 Cov [X, Y ]

=
24

7
+

5

7
+ 2

4

7
=

37

7
. (7)

Problem 5.8.5 Solution

X and Y are independent random variables with PDFs

fX (x) =

{
1
3
e−x/3 x ≥ 0,

0 otherwise,
fY (y) =

{
1
2
e−y/2 y ≥ 0,

0 otherwise.
(1)

(a) Since X and Y are exponential random variables with parameters λX =
1/3 and λY = 1/2, Appendix A tells us that E[X] = 1/λX = 3 and
E[Y ] = 1/λY = 2. Since X and Y are independent, the correlation is
E[XY ] = E[X] E[Y ] = 6.

(b) Since X and Y are independent, Cov[X, Y ] = 0.
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Problem 5.8.7 Solution

-

6

y

x

•1/4 •1/8

•1/8

•1/12

•1/12

•1/12

•1/16

•1/16

•1/16

•1/16

•
W=1
V=1

•
W=1
V=2

•
W=2
V=2

•
W=1
V=3

•
W=2
V=3

•
W=3
V=3

•
W=1
V=4

•
W=2
V=4

•
W=3
V=4

•
W=4
V=4

PX,Y(x, y)

0 1 2 3 4

0

1

2

3

4

To solve this problem,
we identify the values
of W = min(X, Y ) and
V = max(X, Y ) for each
possible pair x, y. Here we
observe that W = Y and
V = X. This is a result of
the underlying experiment
in that given X = x, each
Y ∈ {1, 2, . . . , x} is equally
likely. Hence Y ≤ X. This
implies min(X, Y ) = Y and
max(X, Y ) = X.

Using the results from Problem 5.8.6, we have the following answers.

(a) The expected values are

E [W ] = E [Y ] = 7/4, E [V ] = E [X] = 5/2. (1)

(b) The variances are

Var[W ] = Var[Y ] = 41/48, Var[V ] = Var[X] = 5/4. (2)

(c) The correlation is

rW,V = E [WV ] = E [XY ] = rX,Y = 5. (3)

(d) The covariance of W and V is

Cov [W,V ] = Cov [X, Y ] = 10/16. (4)
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(e) The correlation coefficient is

ρW,V = ρX,Y =
10/16√

(41/48)(5/4)
. ≈ 0.605. (5)

Problem 5.8.9 Solution

(a) Since X̂ = aX, E[X̂] = aE[X] and

E
[
X̂ − E

[
X̂
]]

= E [aX − aE [X]]

= E [a(X − E [X])] = aE [X − E [X]] . (1)

In the same way, since Ŷ = cY , E[Ŷ ] = cE[Y ] and

E
[
Ŷ − E

[
Ŷ
]]

= E [aY − aE [Y ]]

= E [a(Y − E [Y ])] = aE [Y − E [Y ]] . (2)

(b)

Cov
[
X̂, Ŷ

]
= E

[
(X̂ − E

[
X̂
]
)(Ŷ − E

[
Ŷ
]
)
]

= E [ac(X − E [X])(Y − E [Y ])]

= acE [(X − E [X])(Y − E [Y ])] = acCov [X, Y ] . (3)

(c) Since X̂ = aX,

Var[X̂] = E
[
(X̂ − E

[
X̂
]
)2
]

= E
[
(aX − aE [X])2

]
= E

[
a2(X − E [X])2

]
= a2 Var[X]. (4)
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In the very same way,

Var[Ŷ ] = E
[
(Ŷ − E

[
Ŷ
]
)2
]

= E
[
(cY − cE [Y ])2

]
= E

[
c2(Y − E [Y ])2

]
= c2 Var[Y ]. (5)

(d)

ρX̂,Ŷ =
Cov

[
X̂, Ŷ

]
√

Var[X̂] Var[Ŷ ]

=
acCov [X, Y ]√

a2c2 Var[X] Var[Y ]
=

Cov [X, Y ]√
Var[X] Var[Y ]

= ρX,Y . (6)

Problem 5.9.1 Solution

X and Y have joint PDF

fX,Y (x, y) = ce−(x2/8)−(y2/18). (1)

The omission of any limits for the PDF indicates that it is defined over all
x and y. We know that fX,Y (x, y) is in the form of the bivariate Gaussian
distribution so we look to Definition 5.10 and attempt to find values for σY ,
σX , E[X], E[Y ] and ρ. First, we know that the constant is

c =
1

2πσXσY
√

1− ρ2
. (2)

Because the exponent of fX,Y (x, y) doesn’t contain any cross terms we know
that ρ must be zero, and we are left to solve the following for E[X], E[Y ], σX ,
and σY : (

x− E [X]

σX

)2

=
x2

8
,

(
y − E [Y ]

σY

)2

=
y2

18
. (3)
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From which we can conclude that

E [X] = E [Y ] = 0, (4)

σX =
√

8, (5)

σY =
√

18. (6)

Putting all the pieces together, we find that c = 1
24π

. Since ρ = 0, we also
find that X and Y are independent.

Problem 5.9.3 Solution

FALSE: Let Y = X1 + aX2. If E[X2] = 0, then E[Y ] = E[X1] for all a.
Since Y is Gaussian (by Theorem 5.21), P[Y ≤ y] = 1/2 if and only if E[Y ] =
E[X1] = y. We obtain a simple counterexample when y = E[X1]− 1.

Note that the answer would be true if we knew that E[X2] 6= 0. Also note
that the variance of W will depend on the correlation between X1 and X2,
but the correlation is irrelevant in the above argument.

Problem 5.9.5 Solution

For the joint PDF

fX,Y (x, y) = ce−(2x2−4xy+4y2), (1)

we proceed as in Problem 5.9.1 to find values for σY , σX , E[X], E[Y ] and ρ.

(a) First, we try to solve the following equations(
x− E [X]

σX

)2

= 4(1− ρ2)x2, (2)(
y − E [Y ]

σY

)2

= 8(1− ρ2)y2, (3)

2ρ

σXσY
= 8(1− ρ2). (4)

The first two equations yield E[X] = E[Y ] = 0.
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(b) To find the correlation coefficient ρ, we observe that

σX = 1/
√

4(1− ρ2), σY = 1/
√

8(1− ρ2). (5)

Using σX and σY in the third equation yields ρ = 1/
√

2.

(c) Since ρ = 1/
√

2, now we can solve for σX and σY .

σX = 1/
√

2, σY = 1/2. (6)

(d) From here we can solve for c.

c =
1

2πσXσY
√

1− ρ2
=

2

π
. (7)

(e) X and Y are dependent because ρ 6= 0.

Problem 5.9.7 Solution

(a) The person’s temperature is high with probability

p = P [T > 38] = P [T − 37 > 38− 37] = 1− Φ(1) = 0.159. (1)

Given that the temperature is high, then W is measured. Since ρ = 0,
W and T are independent and

q = P [W > 10] = P

[
W − 7

2
>

10− 7

2

]
= 1− Φ(1.5) = 0.067. (2)

The tree for this experiment is

��
���

���
��T>38p

T≤38
1−p

��
���

���
��W>10q

W≤10
1−q
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The probability the person is ill is

P [I] = P [T > 38,W > 10]

= P [T > 38] P [W > 10] = pq = 0.0107. (3)

(b) The general form of the bivariate Gaussian PDF is

fW,T (w, t) =

exp

−
(
w−µ1
σ1

)2

− 2ρ(w−µ1)(t−µ2)
σ1σ2

+
(
t−µ2
σ2

)2

2(1− ρ2)


2πσ1σ2

√
1− ρ2

. (4)

With µ1 = E[W ] = 7, σ1 = σW = 2, µ2 = E[T ] = 37 and σ2 = σT = 1
and ρ = 1/

√
2, we have

fW,T (w, t) =
exp

[
− (w−7)2

4
−
√

2(w−7)(t−37)
2

+ (t− 37)2
]

2π
√

2
. (5)

To find the conditional probability P[I|T = t], we need to find the con-
ditional PDF of W given T = t. The direct way is simply to use algebra
to find

fW |T (w|t) =
fW,T (w, t)

fT (t)
. (6)

The required algebra is essentially the same as that needed to prove
Theorem 7.15. Its easier just to apply Theorem 7.15 which says that
given T = t, the conditional distribution of W is Gaussian with

E [W |T = t] = E [W ] + ρ
σW
σT

(t− E [T ]), (7)

Var[W |T = t] = σ2
W (1− ρ2). (8)
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Plugging in the various parameters gives

E [W |T = t] = 7 +
√

2(t− 37), and Var [W |T = t] = 2. (9)

Using this conditional mean and variance, we obtain the conditional
Gaussian PDF

fW |T (w|t) =
1√
4π
e−(w−(7+

√
2(t−37)))

2
/4. (10)

Given T = t, the conditional probability the person is declared ill is

P [I|T = t] = P [W > 10|T = t]

= P

[
W − (7 +

√
2(t− 37))√

2
>

10− (7 +
√

2(t− 37))√
2

]

= P

[
Z >

3−
√

2(t− 37)√
2

]

= Q

(
3
√

2

2
− (t− 37)

)
. (11)

Problem 5.9.9 Solution
The key to this problem is knowing that a sum of independent Gaussian
random variables is Gaussian.

(a) First we calculate the mean and variance of Y . Since the expectation
of the sum is always the sum of the expectations,

E [Y ] =
1

2
E [X1] +

1

2
E [X2] = 74. (1)

Since X1 and X2 are independent, the variance of the sum is the sum
of the variances:

Var[Y ] = Var[X1/2] + Var[X2/2]

=
1

4
Var[X1] +

1

4
Var[X2] = 162/2 = 128. (2)
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Thus, Y has standard deviation σY = 8
√

2. Since we know Y is Gaus-
sian,

P [A] = P [Y ≥ 90] = P

[
Y − 74

8
√

2
≥ 90− 74

8
√

2

]
= Q(

√
2) = 1− Φ(

√
2). (3)

(b) With weight factor w, Y is still Gaussian, but with

E [Y ] = wE [X1] + (1− w) E [X2] = 74, (4)

Var[Y ] = Var[wX1] + Var[(1− w)X2]

= w2 Var[X1] + (1− w)2 Var[X2] = 162[w2 + (1− w)2]. (5)

Thus, Y has standard deviation σY = 16
√
w2 + (1− w)2. Since we

know Y is Gaussian,

P [A] = P [Y ≥ 90] = P

[
Y − 74

σY
≥ 90− 74

σY

]
= 1− Φ

(
1√

w2 + (1− w)2

)
. (6)

Since Φ(x) is increasing in x, 1−Φ(x) is decreasing in x. To maximize
P[A], we want the argument of the Φ function to be as small as possible.
Thus we want w2 + (1 − w)2 to be as large as possible. Note that
w2 +(1−w)2 is a parabola with a minimum at w = 1/2; it is maximized
at w = 1 or w = 0.

That is, if you need to get exam scores around 74, and you need 90 to
get an A, then you need to get lucky to get an A. With w = 0, you just
need to be lucky on exam 1. With w = 0, you need only be lucky on
exam 2. It’s more likely that you are lucky on one exam rather than
two.
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(c) With the maximum of the two exams,

P [A] = P [max(X1, X2) > 90]

= 1− P [max(X1, X2) ≤ 90]

= 1− P [X1 ≤ 90, X2 ≤ 90]

= 1− P [X1 ≤ 90] P [X2 ≤ 90]

= 1− (P [X1 ≤ 90])2

= 1−
[
Φ

(
90− 74

16

)]2

= 1− Φ2(1). (7)

(d) Let Nc and Na denote the number of A’s awarded under the rules in
part (c) and part (a). The expected additional number of A’s is

E [Nc −Na] = 100[1− Φ2(1)]− 100[1− Φ(
√

2)]

= 100[Φ(
√

2)− Φ2(1)] = 21.3. (8)

Problem 5.9.11 Solution

From Equation (5.68), we can write the bivariate Gaussian PDF as

fX,Y (x, y) =
1

σX
√

2π
e−(x−µX)2/2σ2

X
1

σ̃Y
√

2π
e−(y−µ̃Y (x))2/2σ̃2

Y , (1)

where µ̃Y (x) = µY + ρ σY
σX

(x − µX) and σ̃Y = σY
√

1− ρ2. However, the
definitions of µ̃Y (x) and σ̃Y are not particularly important for this exercise.
When we integrate the joint PDF over all x and y, we obtain∫ ∞

−∞

∫ ∞
−∞

fX,Y (x, y) dx dy

=

∫ ∞
−∞

1

σX
√

2π
e−(x−µX)2/2σ2

X

∫ ∞
−∞

1

σ̃Y
√

2π
e−(y−µ̃Y (x))2/2σ̃2

Y dy︸ ︷︷ ︸
1

dx

=

∫ ∞
−∞

1

σX
√

2π
e−(x−µX)2/2σ2

X dx. (2)
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The marked integral equals 1 because for each value of x, it is the integral
of a Gaussian PDF of one variable over all possible values. In fact, it is the
integral of the conditional PDF fY |X(y|x) over all possible y. To complete the
proof, we see that∫ ∞

−∞

∫ ∞
−∞

fX,Y (x, y) dx dy =

∫ ∞
−∞

1

σX
√

2π
e−(x−µX)2/2σ2

X dx = 1. (3)

since the remaining integral is the integral of the marginal Gaussian PDF
fX(x) over all possible x.

Problem 5.10.1 Solution
The repair of each laptop can be viewed as an independent trial with four
possible outcomes corresponding to the four types of needed repairs.

(a) Since the four types of repairs are mutually exclusive choices and since
4 laptops are returned for repair, the joint distribution of N1, . . . , N4 is
the multinomial PMF

PN1,...,N4(n1, . . . , n4)

=

(
4

n1, n2, n3, n4

)
pn1

1 p
n2
2 p

n3
3 p

n4
4

=

(
4

n1, n2, n3, n4

)(
8

15

)n1
(

4

15

)n2
(

2

15

)n3
(

1

15

)n4

. (1)

(b) Let L2 denote the event that exactly two laptops need LCD repairs.
Thus P[L2] = PN1(2). Since each laptop requires an LCD repair with
probability p1 = 8/15, the number of LCD repairs, N1, is a binomial
(4, 8/15) random variable with PMF

PN1(n1) =

(
4

n1

)
(8/15)n1(7/15)4−n1 . (2)

The probability that two laptops need LCD repairs is

PN1(2) =

(
4

2

)
(8/15)2(7/15)2 = 0.3717. (3)
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(c) A repair is type (2) with probability p2 = 4/15. A repair is type (3)
with probability p3 = 2/15; otherwise a repair is type “other” with
probability po = 9/15. Define X as the number of “other” repairs
needed. The joint PMF of X,N2, N3 is the multinomial PMF

PN2,N3,X (n2, n3, x) =

(
4

n2, n3, x

)(
4

15

)n2
(

2

15

)n3
(

9

15

)x
. (4)

However, Since X + 4−N2 −N3, we observe that

PN2,N3(n2, n3) = PN2,N3,X (n2, n3, 4− n2 − n3)

=

(
4

n2, n3, 4− n2 − n3

)(
4

15

)n2
(

2

15

)n3
(

9

15

)4−n2−n3

=

(
9

15

)4(
4

n2, n3, 4− n2 − n3

)(
4

9

)n2
(

2

9

)n3

(5)

Similarly, since each repair is a motherboard repair with probability
p2 = 4/15, the number of motherboard repairs has binomial PMF

PN2(n2)n2 =

(
4

n2

)(
4

15

)n2
(

11

15

)4−n2

(6)

Finally, the probability that more laptops require motherboard repairs
than keyboard repairs is

P [N2 > N3] = PN2,N3(1, 0) + PN2,N3(2, 0) + PN2,N3(2, 1)

+ PN2(3) + PN2(4) . (7)

where we use the fact that if N2 = 3 or N2 = 4, then we must have
N2 > N3. Inserting the various probabilities, we obtain

P [N2 > N3] =

(
9

15

)4(
4

(
4

9

)
+ 6

(
16

81

)
+ 12

(
32

81

))
+ 4

(
4

15

)3(
11

15

)
+

(
4

15

)4

=
8,656

16,875
≈ 0.5129. (8)
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Problem 5.10.3 Solution

(a) In terms of the joint PDF, we can write the joint CDF as

FX1,...,Xn(x1, . . . , xn)

=

∫ x1

−∞
· · ·
∫ xn

−∞
fX1,...,Xn(y1, . . . , yn) dy1 · · · dyn. (1)

However, simplifying the above integral depends on the values of each
xi. In particular, fX1,...,Xn(y1, . . . , yn) = 1 if and only if 0 ≤ yi ≤ 1 for
each i. Since FX1,...,Xn(x1, . . . , xn) = 0 if any xi < 0, we limit, for the
moment, our attention to the case where xi ≥ 0 for all i. In this case,
some thought will show that we can write the limits in the following
way:

FX1,...,Xn(x1, . . . , xn) =

∫ max(1,x1)

0

· · ·
∫ min(1,xn)

0

dy1 · · · dyn
= min(1, x1) min(1, x2) · · ·min(1, xn). (2)

A complete expression for the CDF of X1, . . . , Xn is

FX1,...,Xn(x1, . . . , xn) =

{∏n
i=1 min(1, xi) 0 ≤ xi, i = 1, 2, . . . , n,

0 otherwise.
(3)

(b) For n = 3,

1− P
[
min
i
Xi ≤ 3/4

]
= P

[
min
i
Xi > 3/4

]
= P [X1 > 3/4, X2 > 3/4, X3 > 3/4]

=

∫ 1

3/4

∫ 1

3/4

∫ 1

3/4

dx1 dx2 dx3

= (1− 3/4)3 = 1/64. (4)

Thus P[miniXi ≤ 3/4] = 63/64.
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Problem 5.10.5 Solution

The value of each byte is an independent experiment with 255 possible out-
comes. Each byte takes on the value bi with probability pi = p = 1/255. The
joint PMF of N0, . . . , N255 is the multinomial PMF

PN0,...,N255(n0, . . . , n255) =

(
10000

n0, n1, . . . , n255

)
pn0pn1 · · · pn255

=

(
10000

n0, n1, . . . , n255

)
(1/255)10000. (1)

Keep in mind that the multinomial coefficient is defined for nonnegative in-
tegers ni such that(

10000

n0, n1, . . . , n255

)
=

{
10000

n0!n1!···n255!
n0 + · · ·+ n255 = 10000,

0 otherwise.
(2)

To evaluate the joint PMF of N0 and N1, we define a new experiment with
three categories: b0, b1 and “other.” Let N̂ denote the number of bytes that
are “other.” In this case, a byte is in the “other” category with probability
p̂ = 253/255. The joint PMF of N0, N1, and N̂ is

PN0,N1,N̂
(n0, n1, n̂) =

(
10000

n0, n1, n̂

)(
1

255

)n0
(

1

255

)n1
(

253

255

)n̂
. (3)

Now we note that the following events are one in the same:

{N0 = n0, N1 = n1} =
{
N0 = n0, N1 = n1, N̂ = 10000− n0 − n1

}
. (4)

Hence, for non-negative integers n0 and n1 satisfying n0 + n1 ≤ 10000,

PN0,N1(n0, n1)

= PN0,N1,N̂
(n0, n1, 10000− n0 − n1)

=
10000!

n0!n1!(10000− n0 − n1)!

(
1

255

)n0+n1
(

253

255

)10000−n0−n1

. (5)
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Problem 5.10.7 Solution

We could use Theorem 8.2 to skip several of the steps below. However, it is
also nice to solve the problem from first principles.

(a) We first derive the CDF of V . Since each Xi is non-negative, V is non-
negative, thus FV(v) = 0 for v < 0. For v ≥ 0, independence of the Xi

yields

FV (v) = P [V ≤ v] = P [min(X1, X2, X3) ≤ v]

= 1− P [min(X1, X2, X3) > v]

= 1− P [X1 > v,X2 > v,X3 > v]

= 1− P [X1 > v] P [X2 > v] P [X3 > v] . (1)

Note that independence of the Xi was used in the final step. Since each
Xi is an exponential (λ) random variable, for v ≥ 0,

P [Xi > v] = P [X > v] = 1− FX (v) = e−λv. (2)

Thus,

FV (v) = 1−
(
e−λv

)3
= 1− e−3λv. (3)

The complete expression for the CDF of V is

FV (v) =

{
0 v < 0,

1− e−3λv v ≥ 0.
(4)

By taking the derivative of the CDF, we obtain the PDF

fV (v) =

{
0 v < 0,

3λe−3λv v ≥ 0.
(5)

We see that V is an exponential (3λ) random variable.
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(b) The CDF of W is found in a similar way. Since each Xi is non-negative,
W is non-negative, thus FW(w) = 0 for w < 0. For w ≥ 0, independence
of the Xi yields

FW (w) = P [W ≤ w] = P [max(X1, X2, X3) ≤ w]

= P [X1 ≤ w,X2 ≤ w,X3 ≤ w]

= P [X1 ≤ w] P [X2 ≤ w] P [X3 ≤ w] . (6)

Since each Xi is an exponential (λ) random variable, for w ≥ 0,

P [Xi ≤ w] = 1− e−λw. (7)

Thus, FW(w) = (1− e−λw)3 for w ≥ 0. The complete expression for the
CDF of Y is

FW (w) =

{
0 w < 0,(
1− e−λw

)3
w ≥ 0.

(8)

By taking the derivative of the CDF, we obtain the PDF

fW (w) =

{
0 w < 0,

3(1− e−λw)2e−λw w ≥ 0.
(9)

Problem 5.10.9 Solution

(a) This is straightforward:

FUn(u) = P [max(X1, . . . , Xn) ≤ u]

= P [X1 ≤ u, . . . , Xn ≤ u]

= P [X1 ≤ u] P [X2 ≤ u] · · ·P [Xn ≤ u] = (FX (u))n . (1)
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(b) This is also straightforward.

FLn(l) = 1− P [min(X1, . . . , Xn) > l]

= 1− P [X1 > l, . . . , Xn > l]

= 1− P [X1 > l] P [X2 > l] · · ·P [Xn > l]

= 1− (1− FX (l))n . (2)

(c) This part is a little more difficult. The key is to identify the “easy”
joint probability

P [Ln > l, Un ≤ u]

= P [min(X1, . . . , Xn) ≥ l,max(X1, . . . , Xn) ≤ u]

= P [l < Xi ≤ u, i = 1, 2, . . . , n]

= P [l < X1 ≤ u] · · ·P [l < Xn ≤ u]

= [FX (u)− FX (l)]n . (3)

Next we observe by the law of total probability that

P [Un ≤ u] = P [Ln > l, Un ≤ u] + P [Ln ≤ l, Un ≤ u] . (4)

The final term on the right side is the joint CDF we desire and using
the expressions we derived for the first two terms, we obtain

FLn,Un(l, u) = P [Un ≤ u]− P [Ln > l, Un ≤ u]

= [FX (u)]n − [FX (u)− FX (l)]n . (5)

Problem 5.10.11 Solution

Since U1, . . . , Un are iid uniform (0, 1) random variables,

fU1,...,Un(u1, . . . , un) =

{
1/T n 0 ≤ ui ≤ 1; i = 1, 2, . . . , n,

0 otherwise.
(1)
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Since U1, . . . , Un are continuous, P[Ui = Uj] = 0 for all i 6= j. For the same
reason, P[Xi = Xj] = 0 for i 6= j. Thus we need only to consider the case
when x1 < x2 < · · · < xn.

To understand the claim, it is instructive to start with the n = 2 case. In
this case, (X1, X2) = (x1, x2) (with x1 < x2) if either (U1, U2) = (x1, x2) or
(U1, U2) = (x2, x1). For infinitesimal ∆,

fX1,X2(x1, x2) ∆2 = P [x1 < X1 ≤ x1 + ∆, x2 < X2 ≤ x2 + ∆]

= P [x1 < U1 ≤ x1 + ∆, x2 < U2 ≤ x2 + ∆]

+ P [x2 < U1 ≤ x2 + ∆, x1 < U2 ≤ x1 + ∆]

= fU1,U2(x1, x2) ∆2 + fU1,U2(x2, x1) ∆2. (2)

We see that for 0 ≤ x1 < x2 ≤ 1 that

fX1,X2(x1, x2) = 2/T n. (3)

For the general case of n uniform random variables, we define

π =
[
π(1) . . . π(n)

]′
. (4)

as a permutation vector of the integers 1, 2, . . . , n and Π as the set of n!
possible permutation vectors. In this case, the event

{X1 = x1, X2 = x2, . . . , Xn = xn} (5)

occurs if

U1 = xπ(1), U2 = xπ(2), . . . , Un = xπ(n) (6)

for any permutation π ∈ Π. Thus, for 0 ≤ x1 < x2 < · · · < xn ≤ 1,

fX1,...,Xn(x1, . . . , xn) ∆n =
∑
π∈Π

fU1,...,Un

(
xπ(1), . . . , xπ(n)

)
∆n. (7)

Since there are n! permutations and fU1,...,Un(xπ(1), . . . , xπ(n)) = 1/T n for each
permutation π, we can conclude that

fX1,...,Xn(x1, . . . , xn) = n!/T n. (8)

Since the order statistics are necessarily ordered, fX1,...,Xn(x1, . . . , xn) = 0
unless x1 < · · · < xn.
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Problem 5.11.1 Solution

The script imagepmf in Example 5.26 generates the grid variables SX, SY,
and PXY. Recall that for each entry in the grid, SX. SY and PXY are the
corresponding values of x, y and PX,Y(x, y). Displaying them as adjacent
column vectors forms the list of all possible pairs x, y and the probabilities
PX,Y(x, y). Since any Matlab vector or matrix x is reduced to a column
vector with the command x(:), the following simple commands will generate
the list:

>> format rat;

>> imagepmf;

>> [SX(:) SY(:) PXY(:)]

ans =

800 400 1/5

1200 400 1/20

1600 400 0

800 800 1/20

1200 800 1/5

1600 800 1/10

800 1200 1/10

1200 1200 1/10

1600 1200 1/5

>>

Note that the command format rat wasn’t necessary; it just formats the
output as rational numbers, i.e., ratios of integers, which you may or may not
find esthetically pleasing.

Problem 5.11.3 Solution

In this problem randn(1,2) generates a 1× 2 array of independent Gaussian
(0, 1) random variables. If this array is

[
X Y

]
, then W = 4(X + Y ) and

Var[W ] = Var[4(X + Y )] = 16(Var[X] + Var[Y ]) = 16(1 + 1) = 32.
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Problem 5.11.5 Solution

By following the formulation of Problem 5.2.6, the code to set up the sample
grid is reasonably straightforward:

function [SX,SY,PXY]=circuits(n,p);

%Usage: [SX,SY,PXY]=circuits(n,p);

% (See Problem 4.12.4)

[SX,SY]=ndgrid(0:n,0:n);

PXY=0*SX;

PXY(find((SX==n) & (SY==n)))=p^n;

for y=0:(n-1),

I=find((SY==y) &(SX>=SY) &(SX<n));

PXY(I)=(p^y)*(1-p)* ...

binomialpmf(n-y-1,p,SX(I)-y);

end;

The only catch is that for a given value of y, we need to calculate the binomial
probability of x− y successes in (n− y − 1) trials. We can do this using the
function call

binomialpmf(n-y-1,p,x-y)

However, this function expects the argument n-y-1 to be a scalar. As a
result, we must perform a separate call to binomialpmf for each value of y.

An alternate solution is direct calculation of the PMF PX,Y(x, y) in Prob-
lem 5.2.6. In this case, we calculatem! using the Matlab function gamma(m+1).
Because, gamma(x) function will calculate the gamma function for each ele-
ment in a vector x, we can calculate the PMF without any loops:
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function [SX,SY,PXY]=circuits2(n,p);

%Usage: [SX,SY,PXY]=circuits2(n,p);

% (See Problem 4.12.4)

[SX,SY]=ndgrid(0:n,0:n);

PXY=0*SX;

PXY(find((SX==n) & (SY==n)))=p^n;

I=find((SY<=SX) &(SX<n));

PXY(I)=(gamma(n-SY(I))./(gamma(SX(I)-SY(I)+1)...

.*gamma(n-SX(I)))).*(p.^SX(I)).*((1-p).^(n-SX(I)));

Some experimentation with cputime will show that circuits2(n,p) runs
much faster than circuits(n,p). As is typical, the for loop in circuit

results in time wasted running the Matlab interpretor and in regenerating
the binomial PMF in each cycle.

To finish the problem, we need to calculate the correlation coefficient

ρX,Y =
Cov [X, Y ]

σXσY
. (1)

In fact, this is one of those problems where a general solution is better than
a specific solution. The general problem is that given a pair of finite random
variables described by the grid variables SX, SY and PMF PXY, we wish to
calculate the correlation coefficient

This problem is solved in a few simple steps. First we write a function that
calculates the expected value of a finite random variable.

function ex=finiteexp(sx,px);

%Usage: ex=finiteexp(sx,px)

%returns the expected value E[X]

%of finite random variable X described

%by samples sx and probabilities px

ex=sum((sx(:)).*(px(:)));

Note that finiteexp performs its calculations on the sample values sx and
probabilities px using the column vectors sx(:) and px(:). As a result, we
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can use the same finiteexp function when the random variable is represented
by grid variables.We can build on finiteexp to calculate the variance using
finitevar:

function v=finitevar(sx,px);

%Usage: ex=finitevar(sx,px)

% returns the variance Var[X]

% of finite random variables X described by

% samples sx and probabilities px

ex2=finiteexp(sx.^2,px);

ex=finiteexp(sx,px);

v=ex2-(ex^2);

Putting these pieces together, we can calculate the correlation coefficient.

function rho=finitecoeff(SX,SY,PXY);

%Usage: rho=finitecoeff(SX,SY,PXY)

%Calculate the correlation coefficient rho of

%finite random variables X and Y

ex=finiteexp(SX,PXY); vx=finitevar(SX,PXY);

ey=finiteexp(SY,PXY); vy=finitevar(SY,PXY);

R=finiteexp(SX.*SY,PXY);

rho=(R-ex*ey)/sqrt(vx*vy);

Calculating the correlation coefficient of X and Y , is now a two line exercise..

>> [SX,SY,PXY]=circuits2(50,0.9);

>> rho=finitecoeff(SX,SY,PXY)

rho =

0.4451

>>
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Problem Solutions – Chapter 6

Problem 6.1.1 Solution

In this problem, it is helpful to label possible points X, Y along with the
corresponding values of W = X − Y . From the statement of Problem 6.1.1,

� -

6

?

y

x

PX,Y(x, y)

•
3/14
W=−1

•
2/14
W=−2

•
1/14
W=−3

•
1/14
W=1

•
1/14
W=−1

•
1/14
W=3

•
2/14
W=2

•
3/14
W=1

1 2

1

To find the PMF of W , we simply add the probabilities associated with each
possible value of W :

PW (−3) = PX,Y (−2, 1) = 1/14, (1)

PW (−2) = PX,Y (−2, 0) = 2/14, (2)

PW (−1) = PX,Y (−2,−1) + PX,Y (0, 1) = 4/14, (3)

PW (1) = PX,Y (0,−1) + PX,Y (2, 1) = 4/14, (4)

PW (2) = PX,Y (2, 0) = 2/14, (5)

PW (3) = PX,Y (2, 1) = 1/14. (6)
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For all other values of w, PW(w) = 0. A table for the PMF of W is

w −3 −2 −1 1 2 3
PW(w) 1/14 2/14 4/14 4/14 2/14 1/14

Problem 6.1.3 Solution

This is basically a trick problem. It looks like this problem should be in
Section 6.5 since we have to find the PMF of the sum L = N +M . However,
this problem is an special case since N and M are both binomial with the
same success probability p = 0.4.

In this case, N is the number of successes in 100 independent trials with
success probability p = 0.4. M is the number of successes in 50 independent
trials with success probability p = 0.4. Thus L = M + N is the number
of successes in 150 independent trials with success probability p = 0.4. We
conclude that L has the binomial (n = 150, p = 0.4) PMF

PL(l) =

(
150

l

)
(0.4)l(0.6)150−l. (1)

Problem 6.1.5 Solution

X

Y

w

w

W>w
The x, y pairs with nonzero probability are
shown in the figure. For w = 0, 1, . . . , 10,
we observe that

P [W > w] = P [min(X, Y ) > w]

= P [X > w, Y > w]

= 0.01(10− w)2. (1)
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To find the PMF of W , we observe that for w = 1, . . . , 10,

PW (w) = P [W > w − 1]− P [W > w]

= 0.01[(10− w − 1)2 − (10− w)2] = 0.01(21− 2w). (2)

The complete expression for the PMF of W is

PW (w) =

{
0.01(21− 2w) w = 1, 2, . . . , 10,

0 otherwise.
(3)

Problem 6.2.1 Solution

Since 0 ≤ X ≤ 1, Y = X2 satisfies 0 ≤ Y ≤ 1. We can conclude that
FY(y) = 0 for y < 0 and that FY(y) = 1 for y ≥ 1. For 0 ≤ y < 1,

FY (y) = P
[
X2 ≤ y

]
= P [X ≤ √y] . (1)

Since fX(x) = 1 for 0 ≤ x ≤ 1, we see that for 0 ≤ y < 1,

P [X ≤ √y] =

∫ √y
0

dx =
√
y (2)

Hence, the CDF of Y is

FY (y) =


0 y < 0,
√
y 0 ≤ y < 1,

1 y ≥ 1.

(3)

By taking the derivative of the CDF, we obtain the PDF

fY (y) =

{
1/(2
√
y) 0 ≤ y < 1,

0 otherwise.
(4)
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Problem 6.2.3 Solution
Note that T has the continuous uniform PDF

fT (t) =

{
1/15 60 ≤ t ≤ 75,

0 otherwise.
(1)

The rider’s maximum possible speed is V = 3000/60 = 50 km/hr while the
rider’s minimum speed is V = 3000/75 = 40 km/hr. For 40 ≤ v ≤ 50,

FV (v) = P

[
3000

T
≤ v

]
= P

[
T ≥ 3000

v

]
=

∫ 75

3000/v

1

15
dt =

t

15

∣∣∣∣75

3000/v

= 5− 200

v
. (2)

Thus the CDF, and via a derivative, the PDF are

FV (v) =


0 v < 40,

5− 200/v 40 ≤ v ≤ 50,

1 v > 50,

fV (v) =


0 v < 40,

200/v2 40 ≤ v ≤ 50,

0 v > 50.

(3)

Problem 6.2.5 Solution
Since X is non-negative, W = X2 is also non-negative. Hence for w < 0,
fW(w) = 0. For w ≥ 0,

FW (w) = P [W ≤ w] = P
[
X2 ≤ w

]
= P [X ≤ w]

= 1− e−λ
√
w. (1)

Taking the derivative with respect to w yields fW(w) = λe−λ
√
w/(2
√
w). The

complete expression for the PDF is

fW (w) =

{
λe−λ

√
w

2
√
w

w ≥ 0,

0 otherwise.
(2)
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Problem 6.2.7 Solution

Before solving for the PDF, it is helpful to have a sketch of the function
X = − ln(1− U).

0 0.5 1
0

2

4

U

X
(a) From the sketch, we observe that X will be nonnegative. Hence FX(x) =

0 for x < 0. Since U has a uniform distribution on [0, 1], for 0 ≤ u ≤ 1,
P[U ≤ u] = u. We use this fact to find the CDF of X. For x ≥ 0,

FX (x) = P [− ln(1− U) ≤ x]

= P
[
1− U ≥ e−x

]
= P

[
U ≤ 1− e−x

]
. (1)

For x ≥ 0, 0 ≤ 1− e−x ≤ 1 and so

FX (x) = FU
(
1− e−x

)
= 1− e−x. (2)

The complete CDF can be written as

FX (x) =

{
0 x < 0,

1− e−x x ≥ 0.
(3)

(b) By taking the derivative, the PDF is

fX (x) =

{
e−x x ≥ 0,

0 otherwise.
(4)

Thus, X has an exponential PDF. In fact, since most computer lan-
guages provide uniform [0, 1] random numbers, the procedure outlined
in this problem provides a way to generate exponential random variables
from uniform random variables.
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(c) Since X is an exponential random variable with parameter a = 1,
E[X] = 1.

Problem 6.2.9 Solution

Since X is constrained to the interval [−1, 1], we see that 20 ≤ Y ≤ 35. Thus
, FY(y) = 0 for y < 20 and FY(y) = 1 fpr y > 35. For 20 ≤ y ≤ 35,

FY (y) = P
[
20 + 15X2 ≤ y

]
= P

[
X2 ≤ y − 20

15

]
= P

[
−
√
y − 20

15
≤ X ≤

√
y − 20

15

]

=

∫ √ y−20
15

−
√

y−20
15

1

2
dx =

√
y − 20

15
. (1)

The complete expression for the CDF and, by taking the derivative, the PDF
are

FY (y) =


0 y < 20,√

y−20
15

20 ≤ y ≤ 35,

1 y > 35,

fY (y) =

{
1√

60(y−20)
20 ≤ y ≤ 35,

0 otherwise.
(2)

Problem 6.2.11 Solution

If X has a uniform distribution from 0 to 1 then the PDF and corresponding
CDF of X are

fX (x) =

{
1 0 ≤ x ≤ 1,

0 otherwise,
FX (x) =


0 x < 0,

x 0 ≤ x ≤ 1,

1 x > 1.

(1)
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For b− a > 0, we can find the CDF of the function Y = a+ (b− a)X

FY (y) = P [Y ≤ y] = P [a+ (b− a)X ≤ y]

= P

[
X ≤ y − a

b− a

]
= FX

(
y − a
b− a

)
=
y − a
b− a . (2)

Therefore the CDF of Y is

FY (y) =


0 y < a,
y−a
b−a a ≤ y ≤ b,

1 y ≥ b.

(3)

By differentiating with respect to y we arrive at the PDF

fY (y) =

{
1/(b− a) a ≤ x ≤ b,

0 otherwise,
(4)

which we recognize as the PDF of a uniform (a, b) random variable.

Problem 6.2.13 Solution

We can prove the assertion by considering the cases where a > 0 and a < 0,
respectively. For the case where a > 0 we have

FY (y) = P [Y ≤ y] = P

[
X ≤ y − b

a

]
= FX

(
y − b
a

)
. (1)

Therefore by taking the derivative we find that

fY (y) =
1

a
fX

(
y − b
a

)
, a > 0. (2)

Similarly for the case when a < 0 we have

FY (y) = P [Y ≤ y] = P

[
X ≥ y − b

a

]
= 1− FX

(
y − b
a

)
. (3)
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And by taking the derivative, we find that for negative a,

fY (y) = −1

a
fX

(
y − b
a

)
, a < 0. (4)

A valid expression for both positive and negative a is

fY (y) =
1

|a|fX
(
y − b
a

)
. (5)

Therefore the assertion is proved.

Problem 6.3.1 Solution
From Problem 4.7.1, random variable X has CDF

FX (x) =


0 x < −1,

x/3 + 1/3 −1 ≤ x < 0,

x/3 + 2/3 0 ≤ x < 1,

1 1 ≤ x.

(1)

(a) We can find the CDF of Y , FY(y) by noting that Y can only take on
two possible values, 0 and 100. And the probability that Y takes on
these two values depends on the probability that X < 0 and X ≥ 0,
respectively. Therefore

FY (y) = P [Y ≤ y] =


0 y < 0,

P [X < 0] 0 ≤ y < 100,

1 y ≥ 100.

(2)

The probabilities concerned with X can be found from the given CDF
FX(x). This is the general strategy for solving problems of this type:
to express the CDF of Y in terms of the CDF of X. Since P[X < 0] =
FX(0−) = 1/3, the CDF of Y is

FY (y) = P [Y ≤ y] =


0 y < 0,

1/3 0 ≤ y < 100,

1 y ≥ 100.

(3)
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(b) The CDF FY(y) has jumps of 1/3 at y = 0 and 2/3 at y = 100. The
corresponding PDF of Y is

fY (y) = δ(y)/3 + 2δ(y − 100)/3. (4)

(c) The expected value of Y is

E [Y ] =

∫ ∞
−∞

yfY (y) dy = 0 · 1

3
+ 100 · 2

3
= 66.66. (5)

Problem 6.3.3 Solution
Since the microphone voltage V is uniformly distributed between -1 and 1
volts, V has PDF and CDF

fV (v) =

{
1/2 −1 ≤ v ≤ 1,

0 otherwise,
FV (v) =


0 v < −1,

(v + 1)/2 −1 ≤ v ≤ 1,

1 v > 1.

(1)

The voltage is processed by a limiter whose output magnitude is given by
below

L =

{
|V | |V | ≤ 0.5,

0.5 otherwise.
(2)

(a)

P [L = 0.5] = P [|V | ≥ 0.5] = P [V ≥ 0.5] + P [V ≤ −0.5]

= 1− FV (0.5) + FV (−0.5)

= 1− 1.5/2 + 0.5/2 = 1/2. (3)

(b) For 0 ≤ l ≤ 0.5,

FL(l) = P [|V | ≤ l] = P [−l ≤ v ≤ l]

= FV (l)− FV (−l)
= 1/2(l + 1)− 1/2(−l + 1) = l. (4)

166



So the CDF of L is

FL(l) =


0 l < 0,

l 0 ≤ l < 0.5,

1 l ≥ 0.5.

(5)

(c) By taking the derivative of FL(l), the PDF of L is

fL(l) =

{
1 + (0.5)δ(l − 0.5) 0 ≤ l ≤ 0.5,

0 otherwise.
(6)

The expected value of L is

E [L] =

∫ ∞
−∞

lfL(l) dl

=

∫ 0.5

0

l dl + 0.5

∫ 0.5

0

l(0.5)δ(l − 0.5) dl = 0.375. (7)

Problem 6.3.5 Solution

Given the following function of random variable X,

Y = g(X) =

{
10 X < 0,

−10 X ≥ 0.
(1)

we follow the same procedure as in Problem 6.3.1. We attempt to express
the CDF of Y in terms of the CDF of X. We know that Y is always less
than −10. We also know that −10 ≤ Y < 10 when X ≥ 0, and finally, that
Y = 10 when X < 0. Therefore

FY (y) = P [Y ≤ y] =


0 y < −10,

P [X ≥ 0] = 1− FX (0) −10 ≤ y < 10,

1 y ≥ 10.

(2)
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Problem 6.3.7 Solution

The PDF of U is

fU (u) =

{
1/2 −1 ≤ u ≤ 1,

0 otherwise.
(1)

Since W ≥ 0, we see that FW(w) = 0 for w < 0. Next, we observe that the
rectifier output W is a mixed random variable since

P [W = 0] = P [U < 0] =

∫ 0

−1

fU (u) du = 1/2. (2)

The above facts imply that

FW (0) = P [W ≤ 0] = P [W = 0] = 1/2. (3)

Next, we note that for 0 < w < 1,

FW (w) = P [U ≤ w] =

∫ w

−1

fU (u) du = (w + 1)/2. (4)

Finally, U ≤ 1 implies W ≤ 1, which implies FW(w) = 1 for w ≥ 1. Hence,
the complete expression for the CDF is

FW (w) =


0 w < 0,

(w + 1)/2 0 ≤ w ≤ 1,

1 w > 1.

(5)

By taking the derivative of the CDF, we find the PDF of W ; however, we
must keep in mind that the discontinuity in the CDF at w = 0 yields a
corresponding impulse in the PDF.

fW (w) =

{
(δ(w) + 1)/2 0 ≤ w ≤ 1,

0 otherwise.
(6)
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From the PDF, we can calculate the expected value

E [W ] =

∫ 1

0

w(δ(w) + 1)/2 dw = 0 +

∫ 1

0

(w/2) dw = 1/4. (7)

Perhaps an easier way to find the expected value is to use Theorem 3.10. In
this case,

E [W ] =

∫ ∞
−∞

g(u)fW (w) du =

∫ 1

0

u(1/2) du = 1/4. (8)

As we expect, both approaches give the same answer.

Problem 6.3.9 Solution

You may find it helpful to plot W as a function of V for the following calcula-
tions. We start by finding the CDF FW(w) = P[W ≤ w]. Since 0 ≤ W ≤ 10,
we know that

FW (w) = 0 (w < 0) (1)

and that

FW (w) = 1 (w ≥ 10). (2)

Next we recall that continuous uniform V has the CDF

FV (v) =


0 v < −15,

(v + 15)/30 −15 ≤ v ≤ 15,

1 v > 15.

(3)

Now we can write for w = 0 that

FW (0) = P [V ≤ 0] = FV (0) = 15/30 = 1/2. (4)

For 0 < w < 10,

FW (w) = P [W ≤ w] = P [V ≤ w] = FV (w) =
w + 15

30
. (5)
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Thus the complete CDF of W is

FW (w) =


0 w < 0,

(w + 15)/30 0 ≤ w < 10,

1 w ≥ 10.

(6)

If you study (and perhaps plot) FW(w), you’ll see that it has a jump discon-
tinuity of height 1/2 at w = 0 and also has a second jump of height 1/6 at
w = 10. Thus when we take a derivative of the CDF, we obtain the PDF

fW (w) =


(1/2)δ(w) w = 0,

1/30 0 < w < 10,

(1/6)δ(w − 10) w = 10,

0 otherwise.

(7)

Problem 6.3.11 Solution
A key to this problem is recognizing that W is a mixed random variable. Here
is the mapping from V to W :

V

W

0.6

0.6

To find the CDF FW(w) = P[W ≤ w], careful study of the function shows
there are three different cases for w that must be considered:

V

W

0.6

0.6

w

w V

W

0.6

0.6

w

−0.6
V

W
0.6

0.6

w

−0.6
w

(a) w < −0.6 (b) −0.6 ≤ w < 0.6 (c) w ≥ 0.6
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(a) If w < −0.6, then the event {W ≤ w}, shown as the highlighted range
on the vertical axis of graph (a) corresponds to the event that the the
pair (V,W ) is on the gray highlighted segment of the function W =
g(V ), which corresponds to the event {V ≤ w}. In this case, FW(w) =
P[V ≤ w] = FV(w).

(b) If −0.6 < w < 0.6, then the event {W ≤ w}, shown as the highlighted
range on the vertical axis of graph (b) corresponds to the event that
the pair (V,W ) is on the gray highlighted segment of the function W =
g(V ), which corresponds to the event {V < 0.6}. In this case, FW(w) =
P[V < 0.6] = FV(0.6−).

(c) If w ≥ 0.6, then the event {W ≤ w}, shown as the highlighted range
on the vertical axis of graph (c) corresponds to the event that the pair
(V,W ) is on the gray highlighted segment of the function W = g(V ),
which now includes pairs v, w on the horizontal segment such that w =
0.6, and this corresponds to the event {V ≤ w}. In this case, FW(w) =
P[V ≤ w] = FV(w).

We combine these three cases in the CDF

FW (w) =


FV (w) w < −0.6,

FV (0.6−) −0.6 ≤ w < 0.6,

FV (w) w ≥ 0.6.

(1)

Thus far, our answer is valid for any CDF FV(v). Now we specialize the
result to the given CDF for V . Since V is a continuous uniform (−5, 5)
random variable, V has CDF

FV (v) =


0 v < −5,

(v + 5)/10 −5 ≤ v ≤ 5,

1 otherwise.

(2)

The given V causes the case w < 0.6 to split into two cases: w < −5 and
−5 ≤ w < 0.6. Similarly, the w ≥ 0.6 case gets split into two cases. Applying
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this CDF to Equation (1), we obtain

FW (w) =



0 w < −5,

(w + 5)/10 −5 ≤ w < −0.6,

0.44 −0.6 ≤ w < 0.6,

(w + 5)/10 0.6 ≤ w < 5,

1 w > 1.

(3)

In this CDF, there is a jump from 0.44 to 0.56 at w = 0.6. This jump of
height 0.12 corresponds precisely to P[W = 0.6] = 0.12.

Since the CDF has a jump at w = 0.6, we have an impulse at w = 0 when
we take the derivative:

fW (w) =



0.1 −5 ≤ w < −0.6,

0 −0.6 ≤ w < 0.6,

0.12δ(w − 0.6) w = 0.6,

0.1 0.6 < w ≤ 5,

0 otherwise.

(4)

Problem 6.3.13 Solution

(a) Given FX(x) is a continuous function, there exists x0 such that FX(x0) =
u. For each value of u, the corresponding x0 is unique. To see this,
suppose there were also x1 such that FX(x1) = u. Without loss of
generality, we can assume x1 > x0 since otherwise we could exchange
the points x0 and x1. Since FX(x0) = FX(x1) = u, the fact that FX(x)
is nondecreasing implies FX(x) = u for all x ∈ [x0, x1], i.e., FX(x) is flat
over the interval [x0, x1], which contradicts the assumption that FX(x)
has no flat intervals. Thus, for any u ∈ (0, 1), there is a unique x0 such
that FX(x) = u. Moreiver, the same x0 is the minimum of all x′ such
that FX(x′) ≥ u. The uniqueness of x0 such that FX(x)x0 = u permits
us to define F̃ (u) = x0 = F−1

X (u).
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(b) In this part, we are given that FX(x) has a jump discontinuity at x0.
That is, there exists u−0 = FX(x−0 ) and u+

0 = FX(x+
0 ) with u−0 < u+

0 .
Consider any u in the interval [u−0 , u

+
0 ]. Since FX(x0) = FX(x+

0 ) and
FX(x) is nondecreasing,

FX (x) ≥ FX (x0) = u+
0 , x ≥ x0. (1)

Moreover,

FX (x) < FX
(
x−0
)

= u−0 , x < x0. (2)

Thus for any u satisfying u−o ≤ u ≤ u+
0 , FX(x) < u for x < x0 and

FX(x) ≥ u for x ≥ x0. Thus, F̃ (u) = min{x|FX(x) ≥ u} = x0.

(c) We note that the first two parts of this problem were just designed to
show the properties of F̃ (u). First, we observe that

P
[
X̂ ≤ x

]
= P

[
F̃ (U) ≤ x

]
= P [min {x′|FX (x′) ≥ U} ≤ x] . (3)

To prove the claim, we define, for any x, the events

A : min {x′|FX (x′) ≥ U} ≤ x, (4)

B : U ≤ FX (x) . (5)

Note that P[A] = P[X̂ ≤ x]. In addition, P[B] = P[U ≤ FX(x)] =
FX(x) since P[U ≤ u] = u for any u ∈ [0, 1].

We will show that the events A and B are the same. This fact implies

P
[
X̂ ≤ x

]
= P [A] = P [B] = P [U ≤ FX (x)] = FX (x) . (6)

All that remains is to show A and B are the same. As always, we need
to show that A ⊂ B and that B ⊂ A.

• To show A ⊂ B, suppose A is true and min{x′|FX(x′) ≥ U} ≤ x.
This implies there exists x0 ≤ x such that FX(x0) ≥ U . Since x0 ≤
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x, it follows from FX(x) being nondecreasing that FX(x0) ≤ FX(x).
We can thus conclude that

U ≤ FX (x0) ≤ FX (x) . (7)

That is, event B is true.

• To show B ⊂ A, we suppose event B is true so that U ≤ FX(x).
We define the set

L = {x′|FX (x′) ≥ U} . (8)

We note x ∈ L. It follows that the minimum element min{x′|x′ ∈ L} ≤
x. That is,

min {x′|FX (x′) ≥ U} ≤ x, (9)

which is simply event A.

Problem 6.4.1 Solution

Since 0 ≤ X ≤ 1, and 0 ≤ Y ≤ 1, we have 0 ≤ V ≤ 1. This implies FV(v) = 0
for v < 0 and FV(v) = 1 for v ≥ 1. For 0 ≤ v ≤ 1,

FV (v) = P [max(X, Y ) ≤ v] = P [X ≤ v, Y ≤ v]

=

∫ v

0

∫ v

0

6xy2 dx dy

=

(∫ v

0

2x dx

)(∫ v

0

3y2 dy

)
= (v2)(v3) = v5. (1)

The CDF and (by taking the derivative) PDF of V are

FV (v) =


0 v < 0,

v5 0 ≤ v ≤ 1,

1 v > 1,

fV (v) =

{
5v4 0 ≤ v ≤ 1,

0 otherwise.
(2)
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Problem 6.4.3 Solution

The key to the solution is to draw the triangular region where the PDF is
nonzero:

X

Y

1

1

(a) X and Y are not independent. For example it is easy to see that
fX(3/4) = fY(3/4) > 0 and thus fX(3/4)fY(3/4) > 0. However, fX,Y(3/4, 3/4) =
0.

(b) First we find the CDF. Since X ≥ 0 and Y ≥ 0, we know that FU(u) = 0
for u < 0. Next, for non-negative u, we see that

FU (u) = P [min(X, Y ) ≤ u] = 1− P [min(X, Y ) > u]

= 1− P [X > u, Y > u] . (1)

At this point is is instructive to draw the region for small u:

X

Y

1

1

u

u

(1− u, u)

(u, 1− u)
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We see that this area exists as long as u ≤ 1 − u, or u ≤ 1/2. This is
because if both X > 1/2 and Y > 1/2 then X + Y > 1 which violates
the constraint X + Y ≤ 1. For 0 ≤ u ≤ 1/2,

FU (u) = 1−
∫ 1−u

u

∫ 1−x

u

2 dy dx

= 1− 2
1

2
[(1− u)− u]2 = 1− [1− 2u]2. (2)

Note that we wrote the integral expression but we calculated the integral
as c times the area of integration. Thus the CDF of U is

FU (u) =


0 u < 0,

1− [1− 2u]2 0 ≤ u ≤ 1/2,

1 u > 1/2.

(3)

Taking the derivative, we find the PDF of U is

FU (u) =

{
4(1− 2u) 0 ≤ u ≤ 1/2,

0 otherwise.
(4)

(c) For the CDF of V , we can write

FV (v) = P [V ≤ v] = P [max(X, Y ) ≤ v]

= P [X ≤ v, Y ≤ v]

=

∫ v

0

∫ v

0

fX,Y (x, y) dx, dy. (5)

This is tricky because there are two distinct cases:
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X

Y

1

1

v

v
X

Y

1

1

v

v

(v, 1− v)

(1− v, v)

0 ≤ v ≤ 1/2 1/2 ≤ v ≤ 1

For 0 ≤ v ≤ 1/2,

FV (v) =

∫ v

0

∫ v

0

2 dx dy = 2v2. (6)

For 1/2 ≤ v ≤ 1, you can write the integral as

FV (v) =

∫ 1−v

0

∫ v

0

2 dy dx+

∫ v

1−v

∫ 1−x

0

2 dy dx

= 2

[
v2 − 1

2
[v − (1− v)]2

]
= 2v2 − (2v − 1)2 = 4v − 2v2 − 1, (7)

where we skipped the steps of the integral by observing that the shaded
area of integration is a square of area v2 minus the cutoff triangle on
the upper right corner. The full expression for the CDF of V is

FV (v) =


0 v < 0,

2v2 0 ≤ v ≤ 1/2,

4v − 2v2 − 1 1/2 ≤ v ≤ 1,

1 v > 1.

(8)

Taking a derivative, the PDF of V is

fV (v) =

{
4v 0 ≤ v ≤ 1/2,

4(1− v) 1/2 ≤ v ≤ 1.
(9)
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Problem 6.4.5 Solution

(a) Since the joint PDF fX,Y(x, y) is nonzero only for 0 ≤ y ≤ x ≤ 1, we
observe that W = Y − X ≤ 0 since Y ≤ X. In addition, the most
negative value of W occurs when Y = 0 and X = 1 and W = −1.
Hence the range of W is SW = {w| − 1 ≤ w ≤ 0}.

(b) For w < −1, FW(w) = 0. For w > 0, FW(w) = 1. For −1 ≤ w ≤ 0, the
CDF of W is

Y

X

1-w

½

1

Y=X+w

FW (w) = P [Y −X ≤ w]

=

∫ 1

−w

∫ x+w

0

6y dy dx

=

∫ 1

−w
3(x+ w)2 dx

= (x+ w)3
∣∣1
−w = (1 + w)3. (1)

Therefore, the complete CDF of W is

FW (w) =


0 w < −1,

(1 + w)3 −1 ≤ w ≤ 0,

1 w > 0.

(2)

By taking the derivative of fW(w) with respect to w, we obtain the PDF

fW (w) =

{
3(w + 1)2 −1 ≤ w ≤ 0,

0 otherwise.
(3)

Problem 6.4.7 Solution

Random variables X and Y have joint PDF
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Y

X

1

1

fX,Y (x, y) =

{
2 0 ≤ y ≤ x ≤ 1,

0 otherwise.
(1)

(a) Since fX,Y(x, y) = 0 for y > x, we can conclude that Y ≤ X and that
W = X/Y ≥ 1. Since Y can be arbitrarily small but positive, W can
be arbitrarily large. Hence the range of W is SW = {w|w ≥ 1}.

(b) For w ≥ 1, the CDF of W is
Y

X

1

1

1/w

P[Y<X/w]

FW (w) = P [X/Y ≤ w]

= 1− P [X/Y > w]

= 1− P [Y < X/w]

= 1− 1/w. (2)

Note that we have used the fact that P[Y < X/w] equals 1/2 times the
area of the corresponding triangle. The complete CDF is

FW (w) =

{
0 w < 1,

1− 1/w w ≥ 1.
(3)

The PDF of W is found by differentiating the CDF.

fW (w) =
dFW (w)

dw
=

{
1/w2 w ≥ 1,

0 otherwise.
(4)

To find the expected value E[W ], we write

E [W ] =

∫ ∞
−∞

wfW (w) dw =

∫ ∞
1

dw

w
. (5)

However, the integral diverges and E[W ] is undefined.
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Problem 6.4.9 Solution

Since X1 and X2 are iid Gaussian (0, 1), each has PDF

fXi(x) =
1√
2π
e−x

2/2. (1)

For w < 0, FW(w) = 0. For w ≥ 0, we define the disc

R(w) =
{

(x1, x2)|x2
1 + x2

2 ≤ w
}
. (2)

and we write

FW (w) = P
[
X2

1 +X2
2 ≤ w

]
=

∫∫
R(w)

fX1(x1) fX2(x2) dx1 dx2

=

∫∫
R(w)

1

2π
e−(x21+x22)/2 dx1 dx2. (3)

Changing to polar coordinates with r =
√
x2

1 + x2
2 yields

FW (w) =

∫ 2π

0

∫ √w
0

1

2π
e−r

2/2r dr dθ

=

∫ √w
0

re−r
2/2 dr = −e−r2/2

∣∣∣√w
0

= 1− e−w/2. (4)

Taking the derivative of FW(w), the complete expression for the PDF of W is

fW (w) =

{
0 w < 0,
1
2
e−w/2 w ≥ 0.

(5)

Thus W is an exponential (λ = 1/2) random variable.

Problem 6.4.11 Solution

Although Y is a function of two random variables X and Z, it is not similar
to other problems of the form Y = g(X,Z) because Z is discrete. However,
we can still use the same approach to find the CDF FY(y) by identifying those
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pairs (X,Z) that belong to the event {Y ≤ y}. In particular, since Y = ZX,
we can write the event {Y ≤ y} as the disjoint union

{Y ≤ y} = {X ≤ y, Z = 1} ∪ {X ≥ −y, Z = −1} . (1)

In particular, we note that if X ≥ −y and Z = −1, then Y = ZX = −X ≤ y.
It follows that

FY (y) = P [Y ≤ y]

= P [X ≤ y, Z = 1] + P [X ≥ −y, Z = −1]

= P [X ≤ y] P [Z = 1] + P [X ≥ −y] P [Z = −1] (2)

= pP [X ≤ y] + (1− p) P [−X ≤ y]

= pP [X ≤ y] + (1− p) P [−X ≤ y]

= pΦ(y) + (1− p)Φ(y) = Φ(y). (3)

Note that we use independence of X and Z to write (2). It follows that Y is
Gaussian (0, 1) and has PDF

fY (y) =
1√
2π
e−y

2/2. (4)

Note that what has happened here is that as often as Z turns a negative X
into a positive Y = −X, it also turns a positive X into a negative Y = −X.
Because the PDF of X is an even function, these switches probabilistically
cancel each other out.

Problem 6.4.13 Solution

Following the hint, we observe that either Y ≥ X or X ≥ Y , or, equivalently,
(Y/X) ≥ 1 or (X/Y ) ≥ 1. Hence, W ≥ 1. To find the CDF FW (w), we know
that FW (w) = 0 for w < 1. For w ≥ 1, we solve

FW (w) = P [max[(X/Y ), (Y/X)] ≤ w]

= P [(X/Y ) ≤ w, (Y/X) ≤ w]

= P [Y ≥ X/w, Y ≤ wX]

= P [X/w ≤ Y ≤ wX] . (1)
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Y

X

Y=wX

Y=X/w

a/w

a/w
a

a

We note that in the middle of the above steps, nonnega-
tivity ofX and Y was essential. We can depict the given
set {X/w ≤ Y ≤ wX} as the dark region on the X, Y
plane. Because the PDF is uniform over the square, it
is easier to use geometry to calculate the probability.
In particular, each of the lighter triangles that are not
part of the region of interest has area a2/2w.

This implies

P [X/w ≤ Y ≤ wX] = 1− a2/2w + a2/2w

a2
= 1− 1

w
. (2)

The final expression for the CDF of W is

FW (w) =

{
0 w < 1,

1− 1/w w ≥ 1.
(3)

By taking the derivative, we obtain the PDF

fW (w) =

{
0 w < 1,

1/w2 w ≥ 1.
(4)

Problem 6.4.15 Solution

(a) To find if W and X are independent, we must be able to factor the joint
density function fX,W(x,w) into the product fX(x)fW(w) of marginal
density functions. To verify this, we must find the joint PDF of X and
W . First we find the joint CDF.

FX,W (x,w) = P [X ≤ x,W ≤ w]

= P [X ≤ x, Y −X ≤ w] = P [X ≤ x, Y ≤ X + w] . (1)
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Since Y ≥ X, the CDF of W satisfies

FX,W (x,w) = P [X ≤ x,X ≤ Y ≤ X + w] . (2)

Thus, for x ≥ 0 and w ≥ 0,

Y

X

w

{X<x} {X<Y<X+w}∩

x

FX,W (x,w) =

∫ x

0

∫ x′+w

x′
λ2e−λy dy dx′

=

∫ x

0

(
−λe−λy

∣∣x′+w
x′

)
dx′

=

∫ x

0

(
−λe−λ(x′+w) + λe−λx

′
)
dx′

= e−λ(x′+w) − e−λx′
∣∣∣x
0

= (1− e−λx)(1− e−λw) (3)

We see that FX,W(x,w) = FX(x)FW(w). Moreover, by applying Theo-
rem 5.5,

fX,W (x,w) =
∂2FX,W (x,w)

∂x ∂w
= λe−λxλe−λw = fX (x) fW (w) . (4)

Since we have our desired factorization, W and X are independent.

(b) Following the same procedure, we find the joint CDF of Y and W .

FW,Y (w, y) = P [W ≤ w, Y ≤ y] = P [Y −X ≤ w, Y ≤ y]

= P [Y ≤ X + w, Y ≤ y] . (5)

The region of integration corresponding to the event {Y ≤ x+ w, Y ≤ y}
depends on whether y < w or y ≥ w. Keep in mind that although
W = Y − X ≤ Y , the dummy arguments y and w of fW,Y(w, y) need
not obey the same constraints. In any case, we must consider each case
separately.
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Y

X

w

{Y<y} {Y<X+w}Ç

y

yy-w

For y > w, the integration is

FW,Y (w, y) =

∫ y−w

0

∫ u+w

u

λ2e−λv dv du

+

∫ y

y−w

∫ y

u

λ2e−λv dv du

= λ

∫ y−w

0

[
e−λu − e−λ(u+w)

]
du

+ λ

∫ y

y−w

[
e−λu − e−λy

]
du. (6)

It follows that

FW,Y (w, y) =
[
−e−λu + e−λ(u+w)

]∣∣y−w
0

+
[
−e−λu − uλe−λy

]∣∣y
y−w

= 1− e−λw − λwe−λy. (7)

For y ≤ w,

Y

X

w

{Y<y}

y

FW,Y (w, y) =

∫ y

0

∫ y

u

λ2e−λv dv du

=

∫ y

0

[
−λe−λy + λe−λu

]
du

= −λue−λy − e−λu
∣∣y
0

= 1− (1 + λy)e−λy. (8)

The complete expression for the joint CDF is

FW,Y (w, y) =


1− e−λw − λwe−λy 0 ≤ w ≤ y,

1− (1 + λy)e−λy 0 ≤ y ≤ w,

0 otherwise.

(9)
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Applying Theorem 5.5 yields

fW,Y (w, y) =
∂2FW,Y (w, y)

∂w ∂y
=

{
2λ2e−λy 0 ≤ w ≤ y

0 otherwise.
(10)

The joint PDF fW,Y(w, y) doesn’t factor and thus W and Y are depen-
dent.

Problem 6.5.1 Solution

Since X and Y are take on only integer values, W = X + Y is integer valued
as well. Thus for an integer w,

PW (w) = P [W = w] = P [X + Y = w] . (1)

Suppose X = k, then W = w if and only if Y = w− k. To find all ways that
X +Y = w, we must consider each possible integer k such that X = k. Thus

PW (w) =
∞∑

k=−∞

P [X = k, Y = w − k] =
∞∑

k=−∞

PX,Y (k, w − k) . (2)

Since X and Y are independent, PX,Y(k, w − k) = PX(k)PY(w − k). It follows
that for any integer w,

PW (w) =
∞∑

k=−∞

PX (k)PY (w − k) . (3)

Problem 6.5.3 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
2 0 ≤ x ≤ y ≤ 1,

0 otherwise.
(1)

We wish to find the PDF of W where W = X + Y . First we find the
CDF of W , FW(w), but we must realize that the CDF will require different
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integrations for different values of w.
Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of 0 ≤ w ≤ 1 we look to integrate the
shaded area in the figure to the right.

FW (w) =

∫ w
2

0

∫ w−x

x

2 dy dx =
w2

2
. (2)

Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of w in the region 1 ≤ w ≤ 2 we look
to integrate over the shaded region in the graph
to the right. From the graph we see that we can
integrate with respect to x first, ranging y from
0 to w/2, thereby covering the lower right trian-
gle of the shaded region and leaving the upper
trapezoid, which is accounted for in the second
term of the following expression:

FW (w) =

∫ w
2

0

∫ y

0

2 dx dy +

∫ 1

w
2

∫ w−y

0

2 dx dy

= 2w − 1− w2

2
. (3)

Putting all the parts together gives the CDF

FW (w) =


0 w < 0,
w2

2
0 ≤ w ≤ 1,

2w − 1− w2

2
1 ≤ w ≤ 2,

1 w > 2,

(4)
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and (by taking the derivative) the PDF

fW (w) =


w 0 ≤ w ≤ 1,

2− w 1 ≤ w ≤ 2,

0 otherwise.

(5)

Problem 6.5.5 Solution

By using Theorem 6.9, we can find the PDF of W = X + Y by convolving
the two exponential distributions. For µ 6= λ,

fW (w) =

∫ ∞
−∞

fX (x) fY (w − x) dx

=

∫ w

0

λe−λxµe−µ(w−x) dx

= λµe−µw
∫ w

0

e−(λ−µ)x dx

=

{
λµ
λ−µ

(
e−µw − e−λw

)
w ≥ 0,

0 otherwise.
(1)

When µ = λ, the previous derivation is invalid because of the denominator
term λ− µ. For µ = λ, we have

fW (w) =

∫ ∞
−∞

fX (x) fY (w − x) dx

=

∫ w

0

λe−λxλe−λ(w−x) dx

= λ2e−λw
∫ w

0

dx

=

{
λ2we−λw w ≥ 0,

0 otherwise.
(2)

Note that when µ = λ, W is the sum of two iid exponential random variables
and has a second order Erlang PDF.
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Problem 6.5.7 Solution

We first find the CDF of W following the same procedure as in the proof of
Theorem 6.8.

FW (w) = P [X ≤ Y + w] =

∫ ∞
−∞

∫ y+w

−∞
fX,Y (x, y) dx dy. (1)

By taking the derivative with respect to w, we obtain

fW (w) =
dFW (w)

dw
=

∫ ∞
−∞

d

dw

(∫ y+w

−∞
fX,Y (x, y) dx

)
dy

=

∫ ∞
−∞

fX,Y (w + y, y) dy. (2)

With the variable substitution y = x− w, we have dy = dx and

fW (w) =

∫ ∞
−∞

fX,Y (x, x− w) dx. (3)

Problem 6.6.1 Solution

Given 0 ≤ u ≤ 1, we need to find the “inverse” function that finds the value
of w satisfying u = FW(w). The problem is that for u = 1/4, any w in
the interval [−3, 3] satisfies FW(w) = 1/4. However, in terms of generating
samples of random variable W , this doesn’t matter. For a uniform (0, 1)
random variable U , P[U = 1/4] = 0. Thus we can choose any w ∈ [−3, 3]. In
particular, we define the inverse CDF as

w = F−1
W (u) =

{
8u− 5 0 ≤ u ≤ 1/4,

(8u+ 7)/3 1/4 < u ≤ 1.
(1)

Note that because 0 ≤ FW(w) ≤ 1, the inverse F−1
W (u) is defined only for

0 ≤ u ≤ 1. Careful inspection will show that u = (w+ 5)/8 for −5 ≤ w < −3
and that u = 1/4 + 3(w − 3)/8 for −3 ≤ w ≤ 5. Thus, for a uniform (0, 1)
random variable U , the function W = F−1

W (U) produces a random variable
with CDF FW(w). To implement this solution in Matlab, we define
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function w=iwcdf(u);

w=((u>=0).*(u <= 0.25).*(8*u-5))+...

((u > 0.25).*(u<=1).*((8*u+7)/3));

so that the Matlab code W=icdfrv(@iwcdf,m) generates m samples of ran-
dom variable W .

Problem 6.6.3 Solution

In the first approach X is an exponential (λ) random variable, Y is an in-
dependent exponential (µ) random variable, and W = Y/X. we implement
this approach in the function wrv1.m shown below.

In the second approach, we use Theorem 6.5 and generate samples of a uni-
form (0, 1) random variable U and calculate W = F−1

W (U). In this problem,

FW (w) = 1− λ/µ

λ/µ+ w
. (1)

Setting u = FW(w) and solving for w yields

w = F−1
W (u) =

λ

µ

(
u

1− u

)
. (2)

We implement this solution in the function wrv2. Here are the two solutions:

function w=wrv1(lambda,mu,m)

%Usage: w=wrv1(lambda,mu,m)

%Return m samples of W=Y/X

%X is exponential (lambda)

%Y is exponential (mu)

x=exponentialrv(lambda,m);

y=exponentialrv(mu,m);

w=y./x;

function w=wrv2(lambda,mu,m)

%Usage: w=wrv1(lambda,mu,m)

%Return m samples of W=Y/X

%X is exponential (lambda)

%Y is exponential (mu)

%Uses CDF of F_W(w)

u=rand(m,1);

w=(lambda/mu)*u./(1-u);

We would expect that wrv2 would be faster simply because it does less
work. In fact, its instructive to account for the work each program does.
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• wrv1 Each exponential random sample requires the generation of a uni-
form random variable, and the calculation of a logarithm. Thus, we
generate 2m uniform random variables, calculate 2m logarithms, and
perform m floating point divisions.

• wrv2 Generate m uniform random variables and perform m floating
points divisions.

This quickie analysis indicates that wrv1 executes roughly 5m operations
while wrv2 executes about 2m operations. We might guess that wrv2 would
be faster by a factor of 2.5. Experimentally, we calculated the execution time
associated with generating a million samples:

>> t2=cputime;w2=wrv2(1,1,1000000);t2=cputime-t2

t2 =

0.2500

>> t1=cputime;w1=wrv1(1,1,1000000);t1=cputime-t1

t1 =

0.7610

>>

We see in our simple experiments that wrv2 is faster by a rough factor of 3.
(Note that repeating such trials yielded qualitatively similar results.)
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Problem Solutions – Chapter 7

Problem 7.1.1 Solution
Given the CDF FX(x), we can write

FX|X>0(x) = P [X ≤ x|X > 0]

=
P [X ≤ x,X > 0]

P [X > 0]

=
P [0 < X ≤ x]

P [X > 0]
=

{
0 x ≤ 0,
FX(x)−FX(0)

P[X>0]
. x > 0.

(1)

From FX(x), we know that FX(0) = 0.4 and P[X > 0] = 1 − FX(0) = 0.6.
Thus

FX|X>0(x) =

{
0 x ≤ 0,
FX(x)−0.4

0.6
x > 0,

=


0 x < 5,
0.8−0.4

0.6
= 2

3
5 ≤ x < 7,

1 x ≥ 7.

(2)

From the jumps in the conditional CDF FX|X>0(x), we can write down the
conditional PMF

PX|X>0(x) =


2/3 x = 5,

1/3 x = 7,

0 otherwise.

(3)

Alternatively, we can start with the jumps in FX(x) and read off the PMF of
X as

PX (x) =


0.4 x = −3,

0.4 x = 5,

0.2 x = 7,

0 otherwise.

(4)
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The event {X > 0} has probability P[X > 0] = PX(5) + PX(7) = 0.6. From
Theorem 7.1, the conditional PMF of X given X > 0 is

PX|X>0(x) =

{
PX(x)

P[X>0]
x ∈ B,

0 otherwise,
=


2/3 x = 5,

1/3 x = 7,

0 otherwise.

(5)

Problem 7.1.3 Solution

The event B = {X 6= 0} has probability P[B] = 1− P[X = 0] = 15/16. The
conditional PMF of X given B is

PX|B(x) =

{
PX(x)
P[B]

x ∈ B,
0 otherwise,

=

(
4

x

)
1

15
. (1)

Problem 7.1.5 Solution

(a) You run M = m miles if (with probability (1− q)m) you choose to run
the first m miles and then (with probability q) you choose to quite just
prior to mile m + 1. The PMF of M , the number of miles run on an
arbitrary day is

PM (m) =

{
q(1− q)m m = 0, 1, . . . ,

0 otherwise.
(1)

(b) The probability that we run a marathon on any particular day is the
probability that M ≥ 26.

r = P [M ≥ 26] =
∞∑

m=26

q(1− q)m = (1− q)26. (2)
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(c) We run a marathon on each day with probability equal to r, and we
do not run a marathon with probability 1 − r. Therefore in a year we
have 365 tests of our jogging resolve, and thus 365 chances to run a
marathon. So the PMF of the number of marathons run in a year, J ,
can be expressed as

PJ (j) =

(
365

j

)
rj(1− r)365−j. (3)

(d) The random variable K is defined as the number of miles we run above
that required for a marathon, K = M − 26. Given the event, A, that
we have run a marathon, we wish to know how many miles in excess of
26 we in fact ran. So we want to know the conditional PMF PK|A(k).

PK|A(k) =
P [K = k,A]

P [A]
=

P [M = 26 + k]

P [A]
. (4)

Since P[A] = r, for k = 0, 1, . . .,

PK|A(k) =
(1− q)26+kq

(1− q)26
= (1− q)kq. (5)

The complete expression of for the conditional PMF of K is

PK|A(k) =

{
(1− q)kq k = 0, 1, . . . ,

0 otherwise.
(6)

Problem 7.1.7 Solution

(a) Given that a person is healthy, X is a Gaussian (µ = 90, σ = 20)
random variable. Thus,

fX|H (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

=
1

20
√

2π
e−(x−90)2/800. (1)
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(b) Given the event H, we use the conditional PDF fX|H(x) to calculate
the required probabilities

P
[
T+|H

]
= P [X ≥ 140|H] = P [X − 90 ≥ 50|H]

= P

[
X − 90

20
≥ 2.5|H

]
= 1− Φ(2.5) = 0.006. (2)

Similarly,

P
[
T−|H

]
= P [X ≤ 110|H] = P [X − 90 ≤ 20|H]

= P

[
X − 90

20
≤ 1|H

]
= Φ(1) = 0.841. (3)

(c) Using Bayes Theorem, we have

P
[
H|T−

]
=

P [T−|H] P [H]

P [T−]
=

P [T−|H] P [H]

P [T−|D] P [D] + P [T−|H] P [H]
. (4)

In the denominator, we need to calculate

P
[
T−|D

]
= P [X ≤ 110|D] = P [X − 160 ≤ −50|D]

= P

[
X − 160

40
≤ −1.25|D

]
= Φ(−1.25) = 1− Φ(1.25) = 0.106. (5)

Thus,

P
[
H|T−

]
=

P [T−|H] P [H]

P [T−|D] P [D] + P [T−|H] P [H]

=
0.841(0.9)

0.106(0.1) + 0.841(0.9)
= 0.986. (6)
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(d) Since T−, T 0, and T+ are mutually exclusive and collectively exhaustive,

P
[
T 0|H

]
= 1− P

[
T−|H

]
− P

[
T+|H

]
= 1− 0.841− 0.006 = 0.153. (7)

We say that a test is a failure if the result is T 0. Thus, given the event
H, each test has conditional failure probability of q = 0.153, or success
probability p = 1− q = 0.847. Given H, the number of trials N until a
success is a geometric (p) random variable with PMF

PN |H (n) =

{
(1− p)n−1p n = 1, 2, . . . ,

0 otherwise.
(8)

Problem 7.1.9 Solution
For this problem, almost any non-uniform random variable X will yield a non-
uniform random variable Z. For example, suppose X has the “triangular”
PDF

fX (x) =

{
8x/r2 0 ≤ x ≤ r/2,

0 otherwise.
(1)

In this case, the event Bi that Y = i∆ + ∆/2 occurs if and only if i∆ ≤ X <
(i+ 1)∆. Thus

P [Bi] =

∫ (i+1)∆

i∆

8x

r2
dx =

8∆(i∆ + ∆/2)

r2
. (2)

It follows that the conditional PDF of X given Bi is

fX|Bi(x) =

{
fX(x)
P[Bi]

x ∈ Bi,

0 otherwise,
=

{
x

∆(i∆+∆/2)
i∆ ≤ x < (i+ 1)∆,

0 otherwise.
(3)

Given event Bi, Y = i∆ + ∆/2, so that Z = X − Y = X − i∆−∆/2. This
implies

fZ|Bi(z) = fX|Bi(z + i∆ + ∆/2) =

{
z+i∆+∆/2
∆(i∆+∆/2)

−∆/2 ≤ z < ∆/2,

0 otherwise.
(4)
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We observe that the PDF of Z depends on which event Bi occurs. Moreover,
fZ|Bi(z) is non-uniform for all Bi.

Problem 7.2.1 Solution

The probability of the event B is

P [B] = P [X ≥ µX ] = P [X ≥ 3] = PX (3) + PX (4) + PX (5)

=

(
5
3

)
+
(

5
4

)
+
(

5
5

)
32

= 21/32. (1)

The conditional PMF of X given B is

PX|B(x) =

{
PX(x)
P[B]

x ∈ B,
0 otherwise,

=

{(
5
x

)
1
21

x = 3, 4, 5,

0 otherwise.
(2)

The conditional first and second moments of X are

E [X|B] =
5∑

x=3

xPX|B(x) = 3

(
5

3

)
1

21
+ 4

(
5

4

)
1

21
+ 5

(
5

5

)
1

21

= [30 + 20 + 5]/21 = 55/21, (3)

E
[
X2|B

]
=

5∑
x=3

x2PX|B(x) = 32

(
5

3

)
1

21
+ 42

(
5

4

)
1

21
+ 52

(
5

5

)
1

21

= [90 + 80 + 25]/21 = 195/21 = 65/7. (4)

The conditional variance of X is

Var[X|B] = E
[
X2|B

]
− (E [X|B])2

= 65/7− (55/21)2 = 1070/441 = 2.43. (5)

Problem 7.2.3 Solution

The PDF of X is

fX (x) =

{
1/10 −5 ≤ x ≤ 5,

0 otherwise.
(1)
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(a) The event B has probability

P [B] = P [−3 ≤ X ≤ 3] =

∫ 3

−3

1

10
dx =

3

5
. (2)

From Definition 7.3, the conditional PDF of X given B is

fX|B(x) =

{
fX (x) /P [B] x ∈ B,
0 otherwise,

=

{
1/6 |x| ≤ 3,

0 otherwise.
(3)

(b) Given B, we see that X has a uniform PDF over [a, b] with a = −3
and b = 3. From Theorem 4.6, the conditional expected value of X is
E[X|B] = (a+ b)/2 = 0.

(c) From Theorem 4.6, the conditional variance of X is Var[X|B] = (b −
a)2/12 = 3.

Problem 7.2.5 Solution

The condition right side of the circle is R = [0, 1/2]. Using the PDF in
Example 4.5, we have

P [R] =

∫ 1/2

0

fY (y) dy =

∫ 1/2

0

3y2 dy = 1/8. (1)

Therefore, the conditional PDF of Y given event R is

fY |R(y) =

{
24y2 0 ≤ y ≤ 1/2

0 otherwise.
(2)

The conditional expected value and mean square value are

E [Y |R] =

∫ ∞
−∞

yfY |R(y) dy =

∫ 1/2

0

24y3 dy = 3/8 meter, (3)

E
[
Y 2|R

]
=

∫ ∞
−∞

y2fY |R(y) dy =

∫ 1/2

0

24y4 dy = 3/20 m2. (4)
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The conditional variance is

Var [Y |R] = E
[
Y 2|R

]
− (E [Y |R])2 =

3

20
−
(

3

8

)2

= 3/320 m2. (5)

The conditional standard deviation is σY |R =
√

Var[Y |R] = 0.0968 meters.

Problem 7.2.7 Solution

(a) Consider each circuit test as a Bernoulli trial such that a failed circuit
is called a success. The number of trials until the first success (i.e. a
failed circuit) has the geometric PMF

PN (n) =

{
(1− p)n−1p n = 1, 2, . . . ,

0 otherwise.
(1)

(b) The probability there are at least 20 tests is

P [B] = P [N ≥ 20] =
∞∑

n=20

PN (n) = (1− p)19. (2)

Note that (1− p)19 is just the probability that the first 19 circuits pass
the test, which is what we would expect since there must be at least 20
tests if the first 19 circuits pass. The conditional PMF of N given B is

PN |B(n) =

{
PN(n)
P[B]

n ∈ B,
0 otherwise,

=

{
(1− p)n−20p n = 20, 21, . . . ,

0 otherwise.
(3)
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(c) Given the event B, the conditional expectation of N is

E [N |B] =
∑
n

nPN |B(n) =
∞∑

n=20

n(1− p)n−20p. (4)

Making the substitution j = n− 19 yields

E [N |B] =
∞∑
j=1

(j + 19)(1− p)j−1p = 1/p+ 19. (5)

We see that in the above sum, we effectively have the expected value of
J + 19 where J is geometric random variable with parameter p. This
is not surprising since the N ≥ 20 iff we observed 19 successful tests.
After 19 successful tests, the number of additional tests needed to find
the first failure is still a geometric random variable with mean 1/p.

Problem 7.2.9 Solution

(a) We first find the conditional PDF of T . The PDF of T is

fT (t) =

{
100e−100t t ≥ 0,

0 otherwise.
(1)

The conditioning event has probability

P [T > 0.02] =

∫ ∞
0.02

fT (t) dt = −e−100t
∣∣∞
0.02

= e−2. (2)

From Definition 7.3, the conditional PDF of T is

fT |T>0.02(t) =

{
fT(t)

P[T>0.02]
t ≥ 0.02,

0 otherwise,

=

{
100e−100(t−0.02) t ≥ 0.02,

0 otherwise.
(3)
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The conditional expected value of T is

E [T |T > 0.02] =

∫ ∞
0.02

t(100)e−100(t−0.02) dt. (4)

The substitution τ = t− 0.02 yields

E [T |T > 0.02] =

∫ ∞
0

(τ + 0.02)(100)e−100τ dτ

=

∫ ∞
0

(τ + 0.02)fT (τ) dτ

= E [T + 0.02] = 0.03. (5)

(b) The conditional second moment of T is

E
[
T 2|T > 0.02

]
=

∫ ∞
0.02

t2(100)e−100(t−0.02) dt. (6)

The substitution τ = t− 0.02 yields

E
[
T 2|T > 0.02

]
=

∫ ∞
0

(τ + 0.02)2(100)e−100τ dτ

=

∫ ∞
0

(τ + 0.02)2fT (τ) dτ

= E
[
(T + 0.02)2

]
. (7)

Now we can calculate the conditional variance.

Var[T |T > 0.02] = E
[
T 2|T > 0.02

]
− (E [T |T > 0.02])2

= E
[
(T + 0.02)2

]
− (E [T + 0.02])2

= Var[T + 0.02]

= Var[T ] = 0.01. (8)
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Problem 7.2.11 Solution

(a) In Problem 4.7.8, we found that the PDF of D is

fD(y) =

{
0.3δ(y) y < 60,

0.07e−(y−60)/10 y ≥ 60.
(1)

First, we observe thatD > 0 if the throw is good so that P[D > 0] = 0.7.
A second way to find this probability is

P [D > 0] =

∫ ∞
0+

fD(y) dy = 0.7. (2)

From Definition 7.3, we can write

fD|D>0(y) =

{
fD(y)

P[D>0]
y > 0,

0 otherwise,

=

{
(1/10)e−(y−60)/10 y ≥ 60,

0 otherwise.
(3)

(b) If instead we learn that D ≤ 70, we can calculate the conditional PDF
by first calculating

P [D ≤ 70] =

∫ 70

0

fD(y) dy

=

∫ 60

0

0.3δ(y) dy +

∫ 70

60

0.07e−(y−60)/10 dy

= 0.3 + −0.7e−(y−60)/10
∣∣70

60
= 1− 0.7e−1. (4)
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The conditional PDF is

fD|D≤70(y) =

{
fD(y)

P[D≤70]
y ≤ 70,

0 otherwise,

=


0.3

1−0.7e−1 δ(y) 0 ≤ y < 60,
0.07

1−0.7e−1 e
−(y−60)/10 60 ≤ y ≤ 70,

0 otherwise.

(5)

Problem 7.3.1 Solution

X and Y each have the discrete uniform PMF

PX (x) = PY (x) =

{
0.1 x = 1, 2, . . . , 10,

0 otherwise.
(1)

The joint PMF of X and Y is

PX,Y (x, y) = PX (x)PY (y)

=

{
0.01 x = 1, 2, . . . , 10; y = 1, 2, . . . , 10,

0 otherwise.
(2)

The event A occurs iff X > 5 and Y > 5 and has probability

P [A] = P [X > 5, Y > 5] =
10∑
x=6

10∑
y=6

0.01 = 0.25. (3)

Alternatively, we could have used independence of X and Y to write P[A] =
P[X > 5] P[Y > 5] = 1/4. From Theorem 7.6,

PX,Y |A(x, y) =

{
PX,Y(x,y)

P[A]
(x, y) ∈ A,

0 otherwise,

=

{
0.04 x = 6, . . . , 10; y = 6, . . . , 20,

0 otherwise.
(4)
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Problem 7.3.3 Solution

Given the event A = {X + Y ≤ 1}, we wish to find fX,Y |A(x, y). First we find

P [A] =

∫ 1

0

∫ 1−x

0

6e−(2x+3y) dy dx = 1− 3e−2 + 2e−3. (1)

So then

fX,Y |A(x, y) =

{
6e−(2x+3y)

1−3e−2+2e−3 x+ y ≤ 1, x ≥ 0, y ≥ 0,

0 otherwise.
(2)

Problem 7.3.5 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
(x+ y)/3 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

0 otherwise.
(1)

(a) The probability that Y ≤ 1 is

Y

X

1

1

2

Y 1

P [A] = P [Y ≤ 1] =

∫∫
y≤1

fX,Y (x, y) dx dy

=

∫ 1

0

∫ 1

0

x+ y

3
dy dx

=

∫ 1

0

(
xy

3
+
y2

6

∣∣∣∣y=1

y=0

)
dx

=

∫ 1

0

2x+ 1

6
dx

=
x2

6
+
x

6

∣∣∣∣1
0

=
1

3
. (2)
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(b) By Definition 7.7, the conditional joint PDF of X and Y given A is

fX,Y |A(x, y) =

{
fX,Y(x,y)

P[A]
(x, y) ∈ A,

0 otherwise,

=

{
x+ y 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.
(3)

From fX,Y |A(x, y), we find the conditional marginal PDF fX|A(x). For
0 ≤ x ≤ 1,

fX|A(x) =

∫ ∞
−∞

fX,Y |A(x, y) dy

=

∫ 1

0

(x+ y) dy = xy +
y2

2

∣∣∣∣y=1

y=0

= x+
1

2
. (4)

The complete expression is

fX|A(x) =

{
x+ 1/2 0 ≤ x ≤ 1,

0 otherwise.
(5)

For 0 ≤ y ≤ 1, the conditional marginal PDF of Y is

fY |A(y) =

∫ ∞
−∞

fX,Y |A(x, y) dx

=

∫ 1

0

(x+ y) dx =
x2

2
+ xy

∣∣∣∣x=1

x=0

= y +
1

2
. (6)

The complete expression is

fY |A(y) =

{
y + 1/2 0 ≤ y ≤ 1,

0 otherwise.
(7)
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Problem 7.3.7 Solution

(a) For a woman, B and T are independent and thus

PB,T |W (b, t) = PB|W (b)PT |W (t) . (1)

Expressed in the form of a table, we have

PB,T |W (b, t) t = 0 t = 1 t = 2
b = 0 0.36 0.12 0.12
b = 1 0.18 0.06 0.06
b = 2 0.06 0.02 0.02

(2)

(b) For a man, B and T are independent and thus

PB,T |M (b, t) = PB|M (b)PT |M (t) . (3)

Expressed in the form of a table, we have

PB,T |M (b, t) t = 0 t = 1 t = 2
b = 0 0.04 0.04 0.12
b = 1 0.06 0.06 0.18
b = 2 0.10 0.10 0.30

(4)

(c) To find the joint PMF, we use the law of total probability to write

PB,T (b, t) = P [W ]PB,T |W (b, t) + P [M ]PB,T |M (b, t)

=
1

2
PB,T |W (b, t) +

1

2
PB,T |M (b, t) . (5)

Equation (5) amounts to adding the tables for PB,T |W(b, t) and PB,T |M(b, t)
and dividing by two. This yields

PB,T (b, t) t = 0 t = 1 t = 2
b = 0 0.20 0.08 0.12
b = 1 0.12 0.06 0.12
b = 2 0.08 0.06 0.16

(6)
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(d) To check independence, we compute the marginal PMFs by writing the
row and column sums:

PB,T (b, t) t = 0 t = 1 t = 2 PB(b)
b = 0 0.20 0.08 0.12 0.40
b = 1 0.12 0.06 0.12 0.30
b = 2 0.08 0.06 0.16 0.30
PT (t) 0.40 0.20 0.40

(7)

We see that B and T are dependent since PB,T(b, t) 6= PB(b)PT(t). For
example, PB,T(0, 0) = 0.20 but PB(0)PT(0) = (0.40)(0.40) = 0.16.

Now we calculate the covariance Cov[B, T ] = E[BT ]− E[B] E[T ] via

E [B] =
2∑
b=0

bPB(b) = (1)(0.30) + (2)(0.30) = 0.90, (8)

E [T ] =
2∑
t=0

tPT (t) = (1)(0.20) + (2)(0.40) = 1.0, (9)

E [BT ] =
2∑
b=0

2∑
t=0

btPB,T (b, t)

= (1 · 1)(0.06) + (1 · 2)(0.12)

+ (2 · 1)(0.06) + (2 · 2)(0.16)

= 1.06. (10)

Thus the covariance is

Cov [B, T ] = E [BT ]− E [B] E [T ] = 1.06− (0.90)(1.0) = 0.16. (11)

Thus baldness B and time watching football T are positively correlated.
This should seem odd since B and T are uncorrelated for men and also
uncorrelated for women. However, men tend to be balder and watch
more football while women tend to be not bald and watch less football.
Averaged over mean and women, the result is that baldness and football
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watching are positively correlated because given that a person watches
more football, the person is more likely to be a man and thus is more
likely to be balder than average (since the average includes women who
tend not to be bald.)

Problem 7.3.9 Solution

X and Y are independent random variables with PDFs

fX (x) =

{
2x 0 ≤ x ≤ 1,

0 otherwise,
fY (y) =

{
3y2 0 ≤ y ≤ 1,

0 otherwise.
(1)

For the event A = {X > Y }, this problem asks us to calculate the conditional
expectations E[X|A] and E[Y |A]. We will do this using the conditional joint
PDF fX,Y |A(x, y). Since X and Y are independent, it is tempting to argue
that the event X > Y does not alter the probability model for X and Y .
Unfortunately, this is not the case. When we learn that X > Y , it increases
the probability that X is large and Y is small. We will see this when we
compare the conditional expectations E[X|A] and E[Y |A] to E[X] and E[Y ].

(a) We can calculate the unconditional expectations, E[X] and E[Y ], using
the marginal PDFs fX(x) and fY(y).

E [X] =

∫ ∞
−∞

fX (x) dx =

∫ 1

0

2x2 dx = 2/3, (2)

E [Y ] =

∫ ∞
−∞

fY (y) dy =

∫ 1

0

3y3 dy = 3/4. (3)

(b) First, we need to calculate the conditional joint PDF ipdfX, Y |Ax, y.
The first step is to write down the joint PDF of X and Y :

fX,Y (x, y) = fX (x) fY (y) =

{
6xy2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.
(4)
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Y

X

1

1

X>Y

The event A has probability

P [A] =

∫∫
x>y

fX,Y (x, y) dy dx

=

∫ 1

0

∫ x

0

6xy2 dy dx

=

∫ 1

0

2x4 dx = 2/5. (5)

Y

X

1

1

The conditional joint PDF of X and Y given A is

fX,Y |A(x, y) =

{
fX,Y(x,y)

P[A]
(x, y) ∈ A,

0 otherwise,

=

{
15xy2 0 ≤ y ≤ x ≤ 1,

0 otherwise.
(6)

The triangular region of nonzero probability is a signal that given A, X
and Y are no longer independent. The conditional expected value of X
given A is

E [X|A] =

∫ ∞
−∞

∫ ∞
−∞

xfX,Y |A(x, y|a)x, y dy dx

= 15

∫ 1

0

x2

∫ x

0

y2 dy dx

= 5

∫ 1

0

x5 dx = 5/6. (7)
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The conditional expected value of Y given A is

E [Y |A] =

∫ ∞
−∞

∫ ∞
−∞

yfX,Y |A(x, y) dy dx

= 15

∫ 1

0

x

∫ x

0

y3 dy dx

=
15

4

∫ 1

0

x5 dx = 5/8. (8)

We see that E[X|A] > E[X] while E[Y |A] < E[Y ]. That is, learning
X > Y gives us a clue that X may be larger than usual while Y may
be smaller than usual.

Problem 7.4.1 Solution

These conditional PDFs require no calculation. Straight from the problem
statement,

fY1|X (y1|1) =
1√
2π
e−(y1−x)2/2, (1)

fY2|X (y2|x) =
1√

2πx2
e−(y2−x)2/2x2 . (2)

Conditional PDFs like fY1|X(y1|x) occur often. Conditional PDFs resembling
fY2|X(y2|x) are fairly uncommon.

Problem 7.4.3 Solution

This problem is mostly about translating words to math. From the words,
we learned that

fX (x) =

{
1 0 ≤ x ≤ 1,

0 otherwise,
(1)

fY |X (y|x) =

{
1/(1 + x) 0 ≤ y ≤ 1 + x,

0 otherwise.
(2)
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It follows that the joint PDF is

fX,Y (x, y) = fY |X (y|x) fX (x)

=

{
1/(1 + x) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 + x,

0 otherwise.
(3)

Problem 7.4.5 Solution
The main part of this problem is just interpreting the problem statement. No
calculations are necessary. Since a trip is equally likely to last 2, 3 or 4 days,

PD(d) =

{
1/3 d = 2, 3, 4,

0 otherwise.
(1)

Given a trip lasts d days, the weight change is equally likely to be any value
between −d and d pounds. Thus,

PW |D(w|d) =

{
1/(2d+ 1) w = −d,−d+ 1, . . . , d,

0 otherwise.
(2)

The joint PMF is simply

PD,W (d, w) = PW |D(w|d)PD(d)

=

{
1/(6d+ 3) d = 2, 3, 4;w = −d, . . . , d,
0 otherwise.

(3)

Problem 7.4.7 Solution
We are told in the problem statement that if we know r, the number of feet a
student sits from the blackboard, then we also know that that student’s grade
is a Gaussian random variable with mean 80 − r and standard deviation r.
This is exactly

fX|R(x|r) =
1√

2πr2
e−(x−[80−r])2/2r2 . (1)
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Problem 7.4.9 Solution

This problem is fairly easy when we use conditional PMF’s. In particular,
given that N = n pizzas were sold before noon, each of those pizzas has
mushrooms with probability 1/3. The conditional PMF of M given N is the
binomial distribution

PM |N (m|n) =

(
n

m

)
(1/3)m(2/3)n−m. (1)

Since PM |N(m|n) depends on the event N = n, we see that M and N are
dependent.

The other fact we know is that for each of the 100 pizzas sold, the pizza is
sold before noon with probability 1/2. Hence, N has the binomial PMF

PN (n) =

(
100

n

)
(1/2)n(1/2)100−n. (2)

The joint PMF of N and M is for integers m,n,

PM,N (m,n) = PM |N (m|n)PN (n)

=

(
n

m

)(
100

n

)
(1/3)m(2/3)n−m(1/2)100. (3)

Problem 7.4.11 Solution

We can make a table of the possible outcomes and the corresponding values
of W and Y

outcome P [·] W Y
hh p2 0 2
ht p(1− p) 1 1
th p(1− p) −1 1
tt (1− p)2 0 0

(1)
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In the following table, we write the joint PMF PW,Y(w, y) along with the
marginal PMFs PY(y) and PW(w).

PW,Y (w, y) w = −1 w = 0 w = 1 PY (y)
y = 0 0 (1− p)2 0 (1− p)2

y = 1 p(1− p) 0 p(1− p) 2p(1− p)
y = 2 0 p2 0 p2

PW (w) p(1− p) 1− 2p+ 2p2 p(1− p)

(2)

Using the definition PW |Y(w|y) = PW,Y(w, y)/PY(y), we can find the condi-
tional PMFs of W given Y :

PW |Y (w|0) =

{
1 w = 0,

0 otherwise,
(3)

PW |Y (w|1) =

{
1/2 w = −1, 1,

0 otherwise,
(4)

PW |Y (w|2) =

{
1 w = 0,

0 otherwise.
(5)

Similarly, the conditional PMFs of Y given W are

PY |W (y| − 1) =

{
1 y = 1,

0 otherwise,
(6)

PY |W (y|0) =


(1−p)2

1−2p+2p2
y = 0,

p2

1−2p+2p2
y = 2,

0 otherwise,

(7)

PY |W (y|1) =

{
1 y = 1,

0 otherwise.
(8)

Problem 7.4.13 Solution
The key to solving this problem is to find the joint PMF of M and N . Note
that N ≥M . For n > m, the joint event {M = m,N = n} has probability
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P [M = m,N = n] = P [

m− 1
calls︷ ︸︸ ︷

dd · · · d v

n−m− 1
calls︷ ︸︸ ︷

dd · · · d v]

= (1− p)m−1p(1− p)n−m−1p

= (1− p)n−2p2. (1)

A complete expression for the joint PMF of M and N is

PM,N (m,n) =


(1− p)n−2p2 m = 1, 2, . . . , n− 1;

n = m+ 1,m+ 2, . . . ,

0 otherwise.

(2)

The marginal PMF of N satisfies

PN (n) =
n−1∑
m=1

(1− p)n−2p2 = (n− 1)(1− p)n−2p2, n = 2, 3, . . . . (3)

Similarly, for m = 1, 2, . . ., the marginal PMF of M satisfies

PM (m) =
∞∑

n=m+1

(1− p)n−2p2

= p2[(1− p)m−1 + (1− p)m + · · · ]
= (1− p)m−1p. (4)

The complete expressions for the marginal PMF’s are

PM (m) =

{
(1− p)m−1p m = 1, 2, . . . ,

0 otherwise,
(5)

PN (n) =

{
(n− 1)(1− p)n−2p2 n = 2, 3, . . . ,

0 otherwise.
(6)

Not surprisingly, if we view each voice call as a successful Bernoulli trial, M
has a geometric PMF since it is the number of trials up to and including
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the first success. Also, N has a Pascal PMF since it is the number of trials
required to see 2 successes. The conditional PMF’s are now easy to find.

PN |M (n|m) =
PM,N (m,n)

PM (m)
=

{
(1− p)n−m−1p n = m+ 1,m+ 2, . . . ,

0 otherwise.
(7)

The interpretation of the conditional PMF ofN givenM is that givenM = m,
N = m+N ′ where N ′ has a geometric PMF with mean 1/p. The conditional
PMF of M given N is

PM |N (m|n) =
PM,N (m,n)

PN (n)
=

{
1/(n− 1) m = 1, . . . , n− 1,

0 otherwise.
(8)

Given that call N = n was the second voice call, the first voice call is equally
likely to occur in any of the previous n− 1 calls.

Problem 7.4.15 Solution

If you construct a tree describing what type of packet (if any) that arrived
in any 1 millisecond period, it will be apparent that an email packet arrives
with probability α = pqr or no email packet arrives with probability 1 − α.
That is, whether an email packet arrives each millisecond is a Bernoulli trial
with success probability α. Thus, the time required for the first success has
the geometric PMF

PT (t) =

{
(1− α)t−1α t = 1, 2, . . .

0 otherwise.
(1)

Note that N is the number of trials required to observe 100 successes. More-
over, the number of trials needed to observe 100 successes is N = T + N ′

where N ′ is the number of trials needed to observe successes 2 through 100.
Since N ′ is just the number of trials needed to observe 99 successes, it has
the Pascal (k = 99, p) PMF

PN ′(n) =

(
n− 1

98

)
α99(1− α)n−99. (2)
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Since the trials needed to generate successes 2 though 100 are independent of
the trials that yield the first success, N ′ and T are independent. Hence

PN |T (n|t) = PN ′|T (n− t|t) = PN ′(n− t) . (3)

Applying the PMF of N ′ found above, we have

PN |T (n|t) =

(
n− t− 1

98

)
α99(1− α)n−t−99. (4)

Finally the joint PMF of N and T is

PN,T (n, t) = PN |T (n|t)PT (t)

=

(
n− t− 1

98

)
α100(1− α)n−100. (5)

This solution can also be found a consideration of the sample sequence of
Bernoulli trials in which we either observe or do not observe an email packet.

To find the conditional PMF PT |N(t|n), we first must recognize that N is
simply the number of trials needed to observe 100 successes and thus has the
Pascal PMF

PN (n) =

(
n− 1

99

)
α100(1− α)n−100. (6)

Hence for any integer n ≥ 100, the conditional PMF is

PT |N (t|n) =
PN,T (n, t)

PN (n)
. =

(
n−t−1

98

)(
n−1
99

) . (7)

Problem 7.5.1 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise.
(1)
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For 0 ≤ y ≤ 1,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 1

y

2 dx = 2(1− y). (2)

Also, for y < 0 or y > 1, fY(y) = 0. The complete expression for the marginal
PDF is

fY (y) =

{
2(1− y) 0 ≤ y ≤ 1,

0 otherwise.
(3)

By Theorem 7.10, the conditional PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

{
1

1−y y ≤ x ≤ 1,

0 otherwise.
(4)

That is, since Y ≤ X ≤ 1, X is uniform over [y, 1] when Y = y. The
conditional expectation of X given Y = y can be calculated as

E [X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx (5)

=

∫ 1

y

x

1− y dx =
x2

2(1− y)

∣∣∣∣1
y

=
1 + y

2
. (6)

In fact, since we know that the conditional PDF of X is uniform over [y, 1]
when Y = y, it wasn’t really necessary to perform the calculation.

Problem 7.5.3 Solution

(a) First we observe that A takes on the values SA = {−1, 1} while B takes
on values from SB = {0, 1}. To construct a table describing PA,B(a, b)
we build a table for all possible values of pairs (A,B). The general form
of the entries is

PA,B(a, b) b = 0 b = 1
a = −1 PB|A(0| − 1)PA(−1) PB|A(1| − 1)PA(−1)
a = 1 PB|A(0|1)PA(1) PB|A(1|1)PA(1)

(1)
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Now we fill in the entries using the conditional PMFs PB|A(b|a) and the
marginal PMF PA(a). This yields

PA,B(a, b) b = 0 b = 1
a = −1 (1/3)(1/3) (2/3)(1/3)
a = 1 (1/2)(2/3) (1/2)(2/3)

, (2)

which simplifies to

PA,B(a, b) b = 0 b = 1
a = −1 1/9 2/9
a = 1 1/3 1/3

. (3)

(b) Since PA(1) = PA,B(1, 0) + PA,B(1, 1) = 2/3,

PB|A(b|1) =
PA,B(1, b)

PA(1)
=

{
1/2 b = 0, 1,

0 otherwise.
(4)

If A = 1, the conditional expectation of B is

E [B|A = 1] =
1∑
b=0

bPB|A(b|1) = PB|A(1|1) = 1/2. (5)

(c) Before finding the conditional PMF PA|B(a|1), we first sum the columns
of the joint PMF table to find

PB(b) =


4/9 b = 0,

5/9 b = 1,

0 otherwise.

(6)

The conditional PMF of A given B = 1 is

PA|B(a|1) =
PA,B(a, 1)

PB(1)
=


2/5 a = −1,

3/5 a = 1,

0 otherwise.

(7)
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(d) Now that we have the conditional PMF PA|B(a|1), calculating condi-
tional expectations is easy.

E [A|B = 1] =
∑

a=−1,1

aPA|B(a|1) = −1(2/5) + (3/5) = 1/5, (8)

E
[
A2|B = 1

]
=
∑

a=−1,1

a2PA|B(a|1) = 2/5 + 3/5 = 1. (9)

The conditional variance is then

Var[A|B = 1] = E
[
A2|B = 1

]
− (E [A|B = 1])2

= 1− (1/5)2 = 24/25. (10)

(e) To calculate the covariance, we need

E [A] =
∑

a=−1,1

aPA(a) = −1(1/3) + 1(2/3) = 1/3, (11)

E [B] =
1∑
b=0

bPB(b) = 0(4/9) + 1(5/9) = 5/9, (12)

E [AB] =
∑

a=−1,1

1∑
b=0

abPA,B(a, b)

= −1(0)(1/9) +−1(1)(2/9) + 1(0)(1/3) + 1(1)(1/3)

= 1/9. (13)

The covariance is just

Cov [A,B] = E [AB]− E [A] E [B]

= 1/9− (1/3)(5/9) = −2/27. (14)

Problem 7.5.5 Solution
Random variables N and K have the joint PMF

PN,K (n, k) =


100ne−100

(n+1)!

k = 0, 1, . . . , n;

n = 0, 1, . . . ,

0 otherwise.

(1)
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(a) We can find the marginal PMF for N by summing over all possible K.
For n ≥ 0,

PN (n) =
n∑
k=0

100ne−100

(n+ 1)!
=

100ne−100

n!
. (2)

We see that N has a Poisson PMF with expected value 100. For n ≥ 0,
the conditional PMF of K given N = n is

PK|N (k|n) =
PN,K (n, k)

PN (n)
=

{
1/(n+ 1) k = 0, 1, . . . , n,

0 otherwise.
(3)

That is, given N = n, K has a discrete uniform PMF over {0, 1, . . . , n}.
Thus,

E [K|N = n] =
n∑
k=0

k/(n+ 1) = n/2. (4)

(b) Since E[K|N = n] = n/2, we can conclude that E[K|N ] = N/2. Thus,
by Theorem 7.13,

E [K] = E [E [K|N ]] = E [N/2] = 50, (5)

since N is Poisson with E[N ] = 100.

Problem 7.5.7 Solution

We are given that the joint PDF of X and Y is

fX,Y (x, y) =

{
1/(πr2) 0 ≤ x2 + y2 ≤ r2,

0 otherwise.
(1)

(a) The marginal PDF of X is

fX (x) = 2

∫ √r2−x2
0

1

πr2
dy =

{
2
√
r2−x2
πr2

−r ≤ x ≤ r,

0 otherwise.
(2)
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The conditional PDF of Y given X is

fY |X (y|x) =
fX,Y (x, y)

fX (x)
=

{
1/(2
√
r2 − x2) y2 ≤ r2 − x2,

0 otherwise.
(3)

(b) Given X = x, we observe that over the interval [−
√
r2 − x2,

√
r2 − x2],

Y has a uniform PDF. Since the conditional PDF fY |X(y|x) is symmetric
about y = 0,

E [Y |X = x] = 0. (4)

Problem 7.5.9 Solution

Since 50 cents of each dollar ticket is added to the jackpot,

Ji−1 = Ji +
Ni

2
. (1)

Given Ji = j, Ni has a Poisson distribution with mean j. It follows that
E[Ni|Ji = j] = j and that Var[Ni|Ji = j] = j. This implies

E
[
N2
i |Ji = j

]
= Var[Ni|Ji = j] + (E [Ni|Ji = j])2

= j + j2. (2)

In terms of the conditional expectations given Ji, these facts can be written
as

E [Ni|Ji] = Ji E
[
N2
i |Ji

]
= Ji + J2

i . (3)

This permits us to evaluate the moments of Ji−1 in terms of the moments of
Ji. Specifically,

E [Ji−1|Ji] = E [Ji|Ji] +
1

2
E [Ni|Ji] = Ji +

Ji
2

=
3Ji
2
. (4)

Using the iterated expectation, this implies

E [Ji−1] = E [E [Ji−1|Ji]] =
3

2
E [Ji] . (5)

220



We can use this the calculate E[Ji] for all i. Since the jackpot starts at
1 million dollars, J6 = 106 and E[J6] = 106. This implies

E [Ji] = (3/2)6−i106 (6)

Now we will find the second moment E[J2
i ]. Since

J2
i−1 = J2

i +NiJi +N2
i /4, (7)

we have

E
[
J2
i−1|Ji

]
= E

[
J2
i |Ji

]
+ E [NiJi|Ji] + E

[
N2
i |Ji

]
/4

= J2
i + Ji E [Ni|Ji] + (Ji + J2

i )/4

= (3/2)2J2
i + Ji/4. (8)

By taking the expectation over Ji we have

E
[
J2
i−1

]
= (3/2)2 E

[
J2
i

]
+ E [Ji] /4 (9)

This recursion allows us to calculate E[J2
i ] for i = 6, 5, . . . , 0. Since J6 = 106,

E[J2
6 ] = 1012. From the recursion, we obtain

E
[
J2

5

]
= (3/2)2 E

[
J2

6

]
+ E [J6] /4

= (3/2)21012 +
1

4
106, (10)

E
[
J2

4

]
= (3/2)2 E

[
J2

5

]
+ E [J5] /4

= (3/2)41012 +
1

4

[
(3/2)2 + (3/2)

]
106, (11)

E
[
J2

3

]
= (3/2)2 E

[
J2

4

]
+ E [J4] /4

= (3/2)61012 +
1

4

[
(3/2)4 + (3/2)3 + (3/2)2

]
106. (12)
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The same recursion will also allow us to show that

E
[
J2

2

]
= (3/2)81012 +

1

4

[
(3/2)6 + (3/2)5 + (3/2)4 + (3/2)3

]
106, (13)

E
[
J2

1

]
= (3/2)101012

+
1

4

[
(3/2)8 + (3/2)7 + (3/2)6 + (3/2)5 + (3/2)4

]
106, (14)

E
[
J2

0

]
= (3/2)121012 +

1

4

[
(3/2)10 + (3/2)9 + · · ·+ (3/2)5

]
106. (15)

Finally, day 0 is the same as any other day in that J = J0 +N0/2 where N0

is a Poisson random variable with mean J0. By the same argument that we
used to develop recursions for E[Ji] and E[J2

i ], we can show

E [J ] = (3/2) E [J0] = (3/2)7106 ≈ 17× 106. (16)

and

E
[
J2
]

= (3/2)2 E
[
J2

0

]
+ E [J0] /4

= (3/2)141012 +
1

4

[
(3/2)12 + (3/2)11 + · · ·+ (3/2)6

]
106

= (3/2)141012 +
106

2
(3/2)6[(3/2)7 − 1]. (17)

Finally, the variance of J is

Var[J ] = E
[
J2
]
− (E [J ])2 =

106

2
(3/2)6[(3/2)7 − 1]. (18)

Since the variance is hard to interpret, we note that the standard deviation of
J is σJ ≈ 9572. Although the expected jackpot grows rapidly, the standard
deviation of the jackpot is fairly small.

Problem 7.6.1 Solution

This problem is actually easy and short if you think carefully.
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(a) Since Z is Gaussian (0, 2) and Z and X are independent,

fZ|X (z|x) = fZ (z) =
1√
8π
e−z

2/8. (1)

(b) Using the hint, we observe that if X = 2, then Y = 2+Z. Furthermore,
independence of X and Z implies that given X = 2, Z still has the
Gaussian PDF fZ(z). Thus, given X = x = 2, Y = 2+Z is conditionally
Gaussian with

E [Y |X = 2] = 2 + E [Z|X = 2] = 2, (2)

Var[Y |X = 2] = Var[2 + Z|X = 2] = Var[Z|X = 2] = 2. (3)

The conditional PDF of Y is

fY |X (y|2) =
1√
8π
e−(y−2)2/8. (4)

Problem 7.6.3 Solution
We need to calculate

Cov
[
X̂, Ŷ

]
= E

[
X̂Ŷ

]
− E

[
X̂
]

E
[
Ŷ
]
. (1)

To do so, we need to condition on whether a cyclist is male (event M) or
female (event F ):

E
[
X̂
]

= pE
[
X̂|M

]
+ (1− p) E

[
X̂|F

]
= pE [X] + (1− p) E [X ′] = 0.8(20) + (0.2)(15) = 16, (2)

E
[
Ŷ
]

= pE [Y |M ] + (1− p) E [Y |F ]

= pE [Y ] + (1− p) E [Y ′] = 0.8(75) + (0.2)(50) = 70. (3)

Similarly, for the correlation term,

E
[
X̂Ŷ

]
= pE

[
X̂Ŷ |M

]
+ (1− p) E

[
X̂Ŷ |F

]
= 0.8 E [XY ] + 0.2 E [X ′Y ′] . (4)
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However, each of these terms needs some additional calculation:

E [XY ] = Cov [X, Y ] + E [X] E [Y ]

= ρXY σXσY + E [X] E [Y ]

= −0.6(10) + (20)(75) = 1494. (5)

and

E [X ′Y ′] = Cov [X ′, Y ′] + E [X ′] E [Y ′]

= ρX′Y ′σX′σY ′ + E [X ′] E [Y ′]

= −0.6(10) + (15)(50) = 744. (6)

Thus,

E
[
X̂Ŷ

]
= 0.8 E [XY ] + 0.2 E [X ′Y ′]

= 0.8(1494) + 0.2(744) = 1344. (7)

and

Cov [X, Y ] = E
[
X̂Ŷ

]
− E

[
X̂
]

E
[
Ŷ
]

= 1344− (70)(19) = 14. (8)

Thus we see that the covariance of X̂ and Ŷ is positive. It follows that ρX̂Ŷ >

0. Hence speed X̂ and weight Ŷ are positively correlated when we choose a
cyclist randomly among men and women even though they are negatively
correlated for women and negatively correlated for men. The reason for this
is that men are heavier but they also ride faster than women. When we mix
the populations, a fast rider is likely to be a male rider who is likely to be a
relatively heavy rider (compared to a woman).

Problem 7.6.5 Solution
The key to this problem is to see that the integrals in the given proof of
Theorem 5.19 are actually iterated expectation. We start with the definition

ρX,Y =
E [(X − µX)(Y − µY )]

σXσY
. (1)
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To evaluate this expected value, we use the method of iterated expectation
in Theorem 7.14 to write

ρX,Y =
E [E [(X − µX)(Y − µY )|Y ]]

σXσY

=
E [(Y − µY ) E [(X − µX)|Y ]]

σXσY
. (2)

In Equation (2), the “given Y ” conditioning allows us to treat Y − µY as
a given that comes outside of the inner expectation. Next, Theorem 7.16
implies

E [(X − µX)|Y ] = E [X|Y ]− µX = ρ
σX
σY

(Y − µY ). (3)

Therefore, (2) and (2) imply

ρX,Y =
E
[
(Y − µY )ρσX

σY
(Y − µY )

]
σXσY

=
ρE [(Y − µY )2]

σ2
Y

. = ρ. (4)

Problem 7.7.1 Solution
The modem receiver voltage is genrated by taking a ±5 voltage representing
data, and adding to it a Gaussian (0, 2) noise variable. Although siuations
in which two random variables are added together are not analyzed until
Chapter 5, generating samples of the receiver voltage is easy in Matlab.
Here is the code:

function x=modemrv(m);

%Usage: x=modemrv(m)

%generates m samples of X, the modem

%receiver voltage in Exampe 3.32.

%X=+-5 + N where N is Gaussian (0,2)

sb=[-5; 5]; pb=[0.5; 0.5];

b=finiterv(sb,pb,m);

noise=gaussrv(0,2,m);

x=b+noise;
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The commands

x=modemrv(10000); hist(x,100);

generate 10,000 sample of the modem receiver voltage and plots the relative
frequencies using 100 bins. Here is an example plot:
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As expected, the result is qualitatively similar (“hills” around X = −5 and
X = 5) to the sketch in Figure 4.3.
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Problem Solutions – Chapter 8

Problem 8.1.1 Solution

This problem is very simple. In terms of the vector X, the PDF is

fX(x) =

{
1 0 ≤ x ≤ 1,

0 otherwise.
(1)

However, just keep in mind that the inequalities 0 ≤ x and x ≤ 1 are vector
inequalities that must hold for every component xi.

Problem 8.1.3 Solution

Filling in the parameters in Problem 8.1.2, we obtain the vector PDF

fX(x) =

{
2
3
(x1 + x2 + x3) 0 ≤ x1, x2, x3 ≤ 1,

0 otherwise.
(1)

In this case, for 0 ≤ x3 ≤ 1, the marginal PDF of X3 is

fX3(x3) =
2

3

∫ 1

0

∫ 1

0

(x1 + x2 + x3) dx1 dx2

=
2

3

∫ 1

0

(
x2

1

2
+ x2x1 + x3x1

)∣∣∣∣x1=1

x1=0

dx2

=
2

3

∫ 1

0

(
1

2
+ x2 + x3

)
dx2

=
2

3

(
x2

2
+
x2

2

2
+ x3x2

)∣∣∣∣x2=1

x2=0

=
2

3

(
1

2
+

1

2
+ x3

)
(2)

The complete expresion for the marginal PDF of X3 is

fX3(x3) =

{
2(1 + x3)/3 0 ≤ x3 ≤ 1,

0 otherwise.
(3)

227



Problem 8.1.5 Solution
Since J1, J2 and J3 are independent, we can write

PK(k) = PJ1(k1)PJ2(k2 − k1)PJ3(k3 − k2) . (1)

Since PJi(j) > 0 only for integers j > 0, we have that PK(k) > 0 only for
0 < k1 < k2 < k3; otherwise PK(k) = 0. Finally, for 0 < k1 < k2 < k3,

PK(k) = (1− p)k1−1p(1− p)k2−k1−1p(1− p)k3−k2−1p

= (1− p)k3−3p3. (2)

Problem 8.1.7 Solution
In Example 5.21, random variables N1, . . . , Nr have the multinomial distri-
bution

PN1,...,Nr (n1, . . . , nr) =

(
n

n1, . . . , nr

)
pn1

1 · · · pnrr (1)

where n > r > 2.

(a) To evaluate the joint PMF of N1 and N2, we define a new experiment
with mutually exclusive events: s1, s2 and “other” Let N̂ denote the
number of trial outcomes that are “other”. In this case, a trial is in the
“other” category with probability p̂ = 1 − p1 − p2. The joint PMF of
N1, N2, and N̂ is

PN1,N2,N̂
(n1, n2, n̂) =

(
n

n1, n2, n̂

)
pn1

1 p
n2
2 (1− p1 − p2)n̂. (2)

Now we note that the following events are one in the same:

{N1 = n1, N2 = n2} =
{
N1 = n1, N2 = n2, N̂ = n− n1 − n2

}
. (3)

Hence,

PN1,N2(n1, n2) = PN1,N2,N̂
(n1, n2, n− n1 − n2)

=

(
n

n1, n2, n− n1 − n2

)
pn1

1 p
n2
2 (1− p1 − p2)n−n1−n2 . (4)
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From the definition of the multinomial coefficient, PN1,N2(n1, n2) is nonzero
only for non-negative integers n1 and n2 satisfying n1 + n2 ≤ n.

(b) We could find the PMF of Ti by summing PN1,...,Nr(n1, . . . , nr). However,
it is easier to start from first principles. Suppose we say a success occurs
if the outcome of the trial is in the set {s1, s2, . . . , si} and otherwise a
failure occurs. In this case, the success probability is qi = p1 + · · ·+ pi
and Ti is the number of successes in n trials. Thus, Ti has the binomial
PMF

PTi(t) =

{(
n
t

)
qti(1− qi)n−t t = 0, 1, . . . , n,

0 otherwise.
(5)

(c) The joint PMF of T1 and T2 satisfies

PT1,T2(t1, t2) = P [N1 = t1, N1 +N2 = t2]

= P [N1 = t1, N2 = t2 − t1]

= PN1,N2(t1, t2 − t1) . (6)

By the result of part (a),

PT1,T2(t1, t2) =

(
n

t1, t2 − t1, n− t2

)
pt11 p

t2−t1
2 (1− p1 − p2)n−t2 . (7)

Similar to the previous parts, keep in mind that PT1,T2(t1, t2) is nonzero
only if 0 ≤ t1 ≤ t2 ≤ n.

Problem 8.1.9 Solution

In Problem 8.1.5, we found that the joint PMF of K =
[
K1 K2 K3

]′
is

PK(k) =

{
p3(1− p)k3−3 k1 < k2 < k3,

0 otherwise.
(1)

In this problem, we generalize the result to n messages.
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(a) For k1 < k2 < · · · < kn, the joint event

{K1 = k1, K2 = k2, · · · , Kn = kn} (2)

occurs if and only if all of the following events occur

A1 k1 − 1 failures, followed by a successful transmission,
A2 (k2 − 1)− k1 failures followed by a successful transmission,
A3 (k3 − 1)− k2 failures followed by a successful transmission,
...
An (kn − 1)− kn−1 failures followed by a successful transmission.

Note that the events A1, A2, . . . , An are independent and

P [Aj] = (1− p)kj−kj−1−1p. (3)

Thus

PK1,...,Kn(k1, . . . , kn)

= P [A1] P [A2] · · ·P [An]

= pn(1− p)(k1−1)+(k2−k1−1)+(k3−k2−1)+···+(kn−kn−1−1)

= pn(1− p)kn−n. (4)

To clarify subsequent results, it is better to rename K as

Kn =
[
K1 K2 · · · Kn

]′
. (5)

We see that

PKn(kn) =

{
pn(1− p)kn−n 1 ≤ k1 < k2 < · · · < kn,

0 otherwise.
(6)

(b) For j < n,

PK1,K2,...,Kj (k1, k2, . . . , kj) = PKj
(kj) . (7)
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Since Kj is just Kn with n = j, we have

PKj
(kj) =

{
pj(1− p)kj−j 1 ≤ k1 < k2 < · · · < kj,

0 otherwise.
(8)

(c) Rather than try to deduce PKi(ki) from the joint PMF PKn(kn), it is
simpler to return to first principles. In particular, Ki is the number of
trials up to and including the ith success and has the Pascal (i, p) PMF

PKi(ki) =

(
ki − 1

i− 1

)
pi(1− p)ki−i. (9)

Problem 8.2.1 Solution

For i 6= j, Xi and Xj are independent and E[XiXj] = E[Xi] E[Xj] = 0 since
E[Xi] = 0. Thus the i, jth entry in the covariance matrix CX is

CX(i, j) = E [XiXj] =

{
σ2
i i = j,

0 otherwise.
(1)

Thus for random vector X =
[
X1 X2 · · · Xn

]′
, all the off-diagonal entries

in the covariance matrix are zero and the covariance matrix is

CX =


σ2

1

σ2
2

. . .

σ2
n

 . (2)

Problem 8.2.3 Solution

We will use the PDF

fX(x) =

{
6e−(x1+2x2+3x3) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

0 otherwise.
(1)
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to find the marginal PDFs fXi(xi). In particular, for x1 ≥ 0,

fX1(x1) =

∫ ∞
0

∫ ∞
0

fX(x) dx2 dx3

= 6e−x1
(∫ ∞

0

e−2x2dx2

)(∫ ∞
0

)
e−3x3 dx3

= 6e−x1
(
−1

2
e−2x2

∣∣∣∣∞
0

)(
−1

3
e−3x3

∣∣∣∣∞
0

)
= e−x1 . (2)

Thus,

fX1(x1) =

{
e−x1 x1 ≥ 0,

0 otherwise.
(3)

Following similar steps, one can show that

fX2(x2) =

∫ ∞
0

∫ ∞
0

fX(x) dx1 dx3 =

{
2−2x2 x2 ≥ 0,

0 otherwise,
(4)

fX3(x3) =

∫ ∞
0

∫ ∞
0

fX(x) dx1 dx2 =

{
3−3x3 x3 ≥ 0,

0 otherwise.
(5)

Thus

fX(x) = fX1(x1) fX2(x2) fX3(x3) . (6)

We conclude that X1, X2, and X3 are independent.

Problem 8.2.5 Solution

We find the marginal PDFs using Theorem 5.26. First we note that for x < 0,
fXi(x) = 0. For x1 ≥ 0,

fX1(x1) =

∫ ∞
x1

(∫ ∞
x2

e−x3 dx3

)
dx2 =

∫ ∞
x1

e−x2 dx2 = e−x1 . (1)
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Similarly, for x2 ≥ 0, X2 has marginal PDF

fX2(x2) =

∫ x2

0

(∫ ∞
x2

e−x3 dx3

)
dx1 =

∫ x2

0

e−x2 dx1 = x2e
−x2 . (2)

Lastly,

fX3(x3) =

∫ x3

0

(∫ x3

x1

e−x3 dx2

)
dx1

=

∫ x3

0

(x3 − x1)e−x3 dx1

= −1

2
(x3 − x1)2e−x3

∣∣∣∣x1=x3

x1=0

=
1

2
x2

3e
−x3 . (3)

The complete expressions for the three marginal PDFs are

fX1(x1) =

{
e−x1 x1 ≥ 0,

0 otherwise,
(4)

fX2(x2) =

{
x2e
−x2 x2 ≥ 0,

0 otherwise,
(5)

fX3(x3) =

{
(1/2)x2

3e
−x3 x3 ≥ 0,

0 otherwise.
(6)

In fact, each Xi is an Erlang (n, λ) = (i, 1) random variable.

Problem 8.3.1 Solution

For discrete random vectors, it is true in general that

PY(y) = P [Y = y] = P [AX + b = y] = P [AX = y − b] . (1)

For an arbitrary matrix A, the system of equations Ax = y−b may have no
solutions (if the columns of A do not span the vector space), multiple solutions
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(if the columns of A are linearly dependent), or, when A is invertible, exactly
one solution. In the invertible case,

PY(y) = P [AX = y − b] = P
[
X = A−1(y − b)

]
= PX

(
A−1(y − b)

)
. (2)

As an aside, we note that when Ax = y−b has multiple solutions, we would
need to do some bookkeeping to add up the probabilities PX(x) for all vectors
x satisfying Ax = y − b. This can get disagreeably complicated.

Problem 8.3.3 Solution

The response time Xi of the ith truck has PDF fXi(xi) and CDF FXi(xi) given
by

fXi(x) =

{
1
2
e−x/2 x ≥ 0,

0 otherwise,

FXi(x) =

{
1− e−x/2 x ≥ 0,

0 otherwise.
(1)

Let R = max(X1, X2, . . . , X6) denote the maximum response time. From
Theorem 8.2, R has PDF

FR(r) = (FX (r))6. (2)

(a) The probability that all six responses arrive within five seconds is

P [R ≤ 5] = FR(5) = (FX (5))6 = (1− e−5/2)6 = 0.5982. (3)

(b) This question is worded in a somewhat confusing way. The “expected
response time” refers to E[Xi], the response time of an individual truck,
rather than E[R]. If the expected response time of a truck is τ , then
each Xi has CDF

FXi(x) = FX (x) =

{
1− e−x/τ x ≥ 0,

0 otherwise.
(4)
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The goal of this problem is to find the maximum permissible value of
τ . When each truck has expected response time τ , the CDF of R is

FR(r) = (FX (x) r)6 =

{
(1− e−r/τ )6 r ≥ 0,

0 otherwise.
(5)

We need to find τ such that

P [R ≤ 3] = (1− e−3/τ )6 = 0.9. (6)

This implies

τ =
−3

ln (1− (0.9)1/6)
= 0.7406 s. (7)

Problem 8.4.1 Solution

(a) The coavariance matrix of X =
[
X1 X2

]′
is

CX =

[
Var[X1] Cov [X1, X2]

Cov [X1, X2] Var[X2]

]
=

[
4 3
3 9

]
. (1)

(b) From the problem statement,

Y =

[
Y1

Y2

]
=

[
1 −2
3 4

]
X = AX. (2)

By Theorem 8.8, Y has covariance matrix

CY = ACXA
′ =

[
1 −2
3 4

] [
4 3
3 9

] [
1 3
−2 4

]
=

[
28 −66
−66 252

]
. (3)
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Problem 8.4.3 Solution

Since X and Y are independent and E[Yj] = 0 for all components Yj, we ob-
serve that E[XiYj] = E[Xi] E[Yj] = 0. This implies that the cross-covariance
matrix is

E [XY′] = E [X] E [Y′] = 0. (1)

Problem 8.4.5 Solution

From CY we see that

ρY1Y2 =
Cov [Y1, Y2]√
Var[Y1] Var[Y2]

=
γ√

(25)(4)
= γ/10. (1)

The requirement |ρY1Y2| ≤ 1 implies |γ| ≤ 10. Note that you can instead
require that the eigenvalues of CY are non-negative. This will lead to the
same condition.

Problem 8.4.7 Solution

This problem is quite difficult unless one uses the observation that the vector
K can be expressed in terms of the vector J =

[
J1 J2 J3

]′
where Ji is the

number of transmissions of message i. Note that we can write

K = AJ =

1 0 0
1 1 0
1 1 1

J. (1)

We also observe that since each transmission is an independent Bernoulli trial
with success probability p, the components of J are iid geometric (p) random
variables. Thus E[Ji] = 1/p and Var[Ji] = (1 − p)/p2. Thus J has expected
value

E [J] = µJ =
[
E [J1] E [J2] E [J3]

]′
=
[
1/p 1/p 1/p

]′
. (2)
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Since the components of J are independent, it has the diagonal covariance
matrix

CJ =

Var[J1] 0 0
0 Var[J2] 0
0 0 Var[J3]

 =
1− p
p2

I. (3)

Given these properties of J, finding the same properties of K = AJ is simple.

(a) The expected value of K is

E [K] = AµJ =

1 0 0
1 1 0
1 1 1

1/p
1/p
1/p

 =

1/p
2/p
3/p

 . (4)

(b) From Theorem 8.8, the covariance matrix of K is

CK = ACJA
′

=
1− p
p2

AIA′

=
1− p
p2

1 0 0
1 1 0
1 1 1

1 1 1
0 1 1
0 0 1

 =
1− p
p2

1 1 1
1 2 2
1 2 3

 . (5)

(c) Given the expected value vector µK and the covariance matrix CK , we
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can use Theorem 8.7 to find the correlation matrix

RK = CK + µKµ
′
K

=
1− p
p2

1 1 1
1 2 2
1 2 3

+

1/p
2/p
3/p

 [1/p 2/p 3/p
]

(6)

=
1− p
p2

1 1 1
1 2 2
1 2 3

+
1

p2

1 2 3
2 4 6
3 6 9

 (7)

=
1

p2

2− p 3− p 4− p
3− p 6− 2p 8− 2p
4− p 8− 2p 12− 3p

 . (8)

Problem 8.4.9 Solution

In Example 5.23, we found the marginal PDF of Y3 is

fY3(y3) =

{
2(1− y3) 0 ≤ y3 ≤ 1,

0 otherwise.
(1)

We also need to find the marginal PDFs of Y1, Y2, and Y4. In Equation (5.78)
of Example 5.23, we found the marginal PDF

fY1,Y4(y1, y4) =

{
4(1− y1)y4 0 ≤ y1 ≤ 1, 0 ≤ y4 ≤ 1,

0 otherwise.
(2)

We can use this result to show that

fY1(y1) =

∫ 1

0

fY1,Y4(y1, y4) dy4 = 2(1− y1), 0 ≤ y1 ≤ 1, (3)

fY4(y4) =

∫ 1

0

fY1,Y4(y1, y4) dy1 = 2y4, 0 ≤ y4 ≤ 1. (4)
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The full expressions for the marginal PDFs are

fY1(y1) =

{
2(1− y1) 0 ≤ y1 ≤ 1,

0 otherwise,
(5)

fY4(y4) =

{
2y4 0 ≤ y4 ≤ 1,

0 otherwise.
(6)

Similarly, we found in Equation (5.80) of Example 5.23 the marginal PDF

fY2,Y3(y2, y3) =

{
4y2(1− y3) 0 ≤ y2 ≤ 1, 0 ≤ y3 ≤ 1,

0 otherwise.
(7)

This implies that for 0 ≤ y2 ≤ 1,

fY2(y2) =

∫ ∞
−∞

fY2,Y3(y2, y3) dy3 =

∫ 1

0

4y2(1− y3) dy3 = 2y2 (8)

It follows that the marginal PDF of Y2 is

fY2(y2) =

{
2y2 0 ≤ y2 ≤ 1,

0 otherwise.
(9)

Equations (1), (5), (6), and (9) imply

E [Y1] = E [Y3] =

∫ 1

0

2y(1− y) dy = 1/3, (10)

E [Y2] = E [Y4] =

∫ 1

0

2y2 dy = 2/3. (11)

Thus Y has expected value E[Y] =
[
1/3 2/3 1/3 2/3

]′
. The second part

of the problem is to find the correlation matrix RY. In fact, we need to find
RY(i, j) = E[YiYj] for each i, j pair. We will see that these are seriously
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tedious calculations. For i = j, the second moments are

E
[
Y 2

1

]
= E

[
Y 2

3

]
=

∫ 1

0

2y2(1− y) dy = 1/6, (12)

E
[
Y 2

2

]
= E

[
Y 2

4

]
=

∫ 1

0

2y3 dy = 1/2. (13)

In terms of the correlation matrix,

RY(1, 1) = RY(3, 3) = 1/6, RY(2, 2) = RY(4, 4) = 1/2. (14)

To find the off-diagonal terms RY(i, j) = E[YiYj], we need to find the marginal
PDFs fYi,Yj(yi, yj). Example 5.23 showed that

fY1,Y4(y1, y4) =

{
4(1− y1)y4 0 ≤ y1 ≤ 1, 0 ≤ y4 ≤ 1,

0 otherwise,
(15)

fY2,Y3(y2, y3) =

{
4y2(1− y3) 0 ≤ y2 ≤ 1, 0 ≤ y3 ≤ 1,

0 otherwise.
(16)

Inspection will show that Y1 and Y4 are independent since fY1,Y4(y1, y4) =
fY1(y1)fY4(y4). Similarly, Y2 and Y3 are independent since fY2,Y3(y2, y3) =
fY2(y2)fY3(y3). This implies

RY(1, 4) = E [Y1Y4] = E [Y1] E [Y4] = 2/9, (17)

RY(2, 3) = E [Y2Y3] = E [Y2] E [Y3] = 2/9. (18)

We also need to calculate the marginal PDFs

fY1,Y2(y1, y2) , fY3,Y4(y3, y4) , fY1,Y3(y1, y3) , and fY2,Y4(y2, y4) .

To start, for 0 ≤ y1 ≤ y2 ≤ 1,

fY1,Y2(y1, y2) =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2,Y3,Y4(y1, y2, y3, y4) dy3 dy4

=

∫ 1

0

∫ y4

0

4 dy3 dy4 =

∫ 1

0

4y4 dy4 = 2. (19)
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Similarly, for 0 ≤ y3 ≤ y4 ≤ 1,

fY3,Y4(y3, y4) =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2,Y3,Y4(y1, y2, y3, y4) dy1 dy2

=

∫ 1

0

∫ y2

0

4 dy1 dy2 =

∫ 1

0

4y2 dy2 = 2. (20)

In fact, these PDFs are the same in that

fY1,Y2(x, y) = fY3,Y4(x, y) =

{
2 0 ≤ x ≤ y ≤ 1,

0 otherwise.
(21)

This implies RY(1, 2) = RY(3, 4) = E[Y3Y4] and that

E [Y3Y4] =

∫ 1

0

∫ y

0

2xy dx dy =

∫ 1

0

(
yx2
∣∣y
0

)
dy =

∫ 1

0

y3 dy =
1

4
. (22)

Continuing in the same way, we see for 0 ≤ y1 ≤ 1 and 0 ≤ y3 ≤ 1 that

fY1,Y3(y1, y3) =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2,Y3,Y4(y1, y2, y3, y4) dy2 dy4

= 4

(∫ 1

y1

dy2

)(∫ 1

y3

dy4

)
= 4(1− y1)(1− y3). (23)

We observe that Y1 and Y3 are independent since fY1,Y3(y1, y3) = fY1(y1)fY3(y3).
It follows that

RY(1, 3) = E [Y1Y3] = E [Y1] E [Y3] = 1/9. (24)

Finally, we need to calculate

fY2,Y4(y2, y4) =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2,Y3,Y4(y1, y2, y3, y4) dy1 dy3

= 4

(∫ y2

0

dy1

)(∫ y4

0

dy3

)
= 4y2y4. (25)
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We observe that Y2 and Y4 are independent since fY2,Y4(y2, y4) = fY2(y2)fY4(y4).
It follows that RY(2, 4) = E[Y2Y4] = E[Y2] E[Y4] = 4/9. The above results
give RY(i, j) for i ≤ j. Since RY is a symmetric matrix,

RY =


1/6 1/4 1/9 2/9
1/4 1/2 2/9 4/9
1/9 2/9 1/6 1/4
2/9 4/9 1/4 1/2

 . (26)

Since µX =
[
1/3 2/3 1/3 2/3

]′
, the covariance matrix is

CY = RY − µXµ
′
X

=

1/6 1/4 1/9 2/9
1/4 1/2 2/9 4/9
2/9 4/9 1/4 1/2

−


1/3
2/3
1/3
2/3

 [1/3 2/3 1/3 2/3
]

=


1/18 1/36 0 0
1/36 1/18 0 0

0 0 1/18 1/36
0 0 1/36 1/18

 . (27)

The off-diagonal zero blocks are a consequence of
[
Y1 Y2

]′
being indepen-

dent of
[
Y3 Y4

]′
. Along the diagonal, the two identical sub-blocks occur

because fY1,Y2(x, y) = fY3,Y4(x, y). In short, the matrix structure is the result

of
[
Y1 Y2

]′
and

[
Y3 Y4

]′
being iid random vectors.

Problem 8.4.11 Solution
The 2-dimensional random vector Y has PDF

fY(y) =

{
2 y ≥ 0,

[
1 1

]
y ≤ 1,

0 otherwise.
(1)

Rewritten in terms of the variables y1 and y2,

fY1,Y2(y1, y2) =

{
2 y1 ≥ 0, y2 ≥ 0, y1 + y2 ≤ 1,

0 otherwise.
(2)
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In this problem, the PDF is simple enough that we can compute E[Y n
i ] for

arbitrary integers n ≥ 0.

E [Y n
1 ] =

∫ ∞
−∞

∫ ∞
−∞

yn1 fY1,Y2(y1, y2) dy1 dy2 =

∫ 1

0

∫ 1−y2

0

2yn1 dy1 dy2. (3)

A little calculus yields

E [Y n
1 ] =

∫ 1

0

(
2

n+ 1
yn+1

1

∣∣∣∣1−y2
0

)
dy2

=
2

n+ 1

∫ 1

0

(1− y2)n+1 dy2 =
2

(n+ 1)(n+ 2)
. (4)

Symmetry of the joint PDF fY1,2(y1,2) implies that E[Y n
2 ] = E[Y n

1 ]. Thus,
E[Y1] = E[Y2] = 1/3 and

E [Y] = µY =
[
1/3 1/3

]′
. (5)

In addition,

RY(1, 1) = E
[
Y 2

1

]
= 1/6, RY(2, 2) = E

[
Y 2

2

]
= 1/6. (6)

To complete the correlation matrix, we find

RY(1, 2) = E [Y1Y2]

=

∫ ∞
−∞

∫ ∞
−∞

y1y2fY1,Y2(y1, y2) dy1 dy2

=

∫ 1

0

∫ 1−y2

0

2y1y2 dy1 dy2. (7)

Following through on the calculus, we obtain

RY(1, 2) =

∫ 1

0

(
y2

1

∣∣1−y−2

0

)
y2 dy2

=

∫ 1

0

y2(1− y2)2 dy2

=
1

2
y2

2 −
2

3
y3

2 +
1

4
y4

2

∣∣∣∣1
0

=
1

12
. (8)
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Thus we have found that

RY =

[
E [Y 2

1 ] E [Y1Y2]
E [Y2Y1] E [Y 2

2 ]

]
=

[
1/6 1/12
1/12 1/6

]
. (9)

Lastly, Y has covariance matrix

CY = RY − µYµ
′
Y =

[
1/6 1/12
1/12 1/6

]
−
[
1/3
1/3

] [
1/3 1/3

]
=

[
1/9 −1/36
−1/36 1/9

]
. (10)

Problem 8.5.1 Solution

(a) From Theorem 8.7, the correlation matrix of X is

RX = CX + µXµ
′
X

=

 4 −2 1
−2 4 −2
1 −2 4

+

4
8
6

 [4 8 6
]

=

 4 −2 1
−2 4 −2
1 −2 4

+

16 32 24
32 64 48
24 48 36

 =

20 30 25
30 68 46
25 46 40

 . (1)

(b) Let Y =
[
X1 X2

]′
. Since Y is a subset of the components of X, it is

a Gaussian random vector with expected velue vector

µY =
[
E [X1] E [X2]

]′
=
[
4 8

]′
. (2)

and covariance matrix

CY =

[
Var[X1] Cov [X1, X2]
CX1X2 Var[X2]

]
=

[
4 −2
−2 4

]
. (3)
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We note that det(CY ) = 12 and that

C−1
Y =

1

12

[
4 2
2 4

]
=

[
1/3 1/6
1/6 1/3

]
. (4)

This implies that

(y − µY )′C−1
Y (y − µY ) =

[
y1 − 4 y2 − 8

] [1/3 1/6
1/6 1/3

] [
y1 − 4
y2 − 8

]
=
[
y1 − 4 y2 − 8

] [ y1/3 + y2/6− 8/3
y1/6 + y2/3− 10/3

]
=
y2

1

3
+
y1y2

3
− 16y1

3
− 20y2

3
+
y2

2

3
+

112

3
. (5)

The PDF of Y is

fY(y) =
1

2π
√

12
e−(y−µY )′C−1

Y (y−µY )/2

=
1√

48π2
e−(y21+y1y2−16y1−20y2+y22+112)/6 (6)

Since Y =
[
X1, X2

]′
, the PDF of X1 and X2 is simply

fX1,X2(x1, x2) = fY1,Y2(x1, x2)

=
1√

48π2
e−(x21+x1x2−16x1−20x2+x22+112)/6. (7)

(c) We can observe directly from µX and CX that X1 is a Gaussian (4, 2)
random variable. Thus,

P [X1 > 8] = P

[
X1 − 4

2
>

8− 4

2

]
= Q(2) = 0.0228. (8)
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Problem 8.5.3 Solution

We are given that X is a Gaussian random vector with

µX =

4
8
6

 , CX =

 4 −2 1
−2 4 −2
1 −2 4

 . (1)

We are also given that Y = AX + b where

A =

[
1 1/2 2/3
1 −1/2 2/3

]
, b =

[
−4
−4

]
. (2)

Since the two rows of A are linearly independent row vectors, A has rank
2. By Theorem 8.11, Y is a Gaussian random vector. Given these facts,
the various parts of this problem are just straightforward calculations using
Theorem 8.11.

(a) The expected value of Y is

µY = AµX + b

=

[
1 1/2 2/3
1 −1/2 2/3

]4
8
6

+

[
−4
−4

]
=

[
8
0

]
. (3)

(b) The covariance matrix of Y is

CY = ACXA

=

[
1 1/2 2/3
1 −1/2 2/3

] 4 −2 1
−2 4 −2
1 −2 4

 1 1
1/2 −1/2
2/3 2/3


=

1

9

[
43 55
55 103

]
. (4)
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(c) Y has correlation matrix

RY = CY + µYµ
′
Y

=
1

9

[
43 55
55 103

]
+

[
8
0

] [
8 0

]
=

1

9

[
619 55
55 103

]
. (5)

(d) From µY, we see that E[Y2] = 0. From the covariance matrix CY,
we learn that Y2 has variance σ2

2 = CY(2, 2) = 103/9. Since Y2 is a
Gaussian random variable,

P [−1 ≤ Y2 ≤ 1] = P

[
− 1

σ2

≤ Y2

σ2

≤ 1

σ2

]
= Φ

(
1

σ2

)
− Φ

(−1

σ2

)
= 2Φ

(
1

σ2

)
− 1

= 2Φ

(
3√
103

)
− 1 = 0.2325. (6)

Problem 8.5.5 Solution

(a) C must be symmetric since

α = β = E [X1X2] . (1)

In addition, α must be chosen so that C is positive semi-definite. Since
the characteristic equation is

det (C− λI) = (1− λ)(4− λ)− α2

= λ2 − 5λ+ 4− α2 = 0, (2)
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the eigenvalues of C are

λ1,2 =
5±

√
25− 4(4− α2)

2
. (3)

The eigenvalues are non-negative as long as α2 ≤ 4, or |α| ≤ 2. Another
way to reach this conclusion is through the requirement that |ρX1X2| ≤
1.

(b) It remains true that α = β and C must be positive semi-definite. For
X to be a Gaussian vector, C also must be positive definite. For the
eigenvalues of C to be strictly positive, we must have |α| < 2.

(c) Since X is a Gaussian vector, W is a Gaussian random variable. Thus,
we need only calculate

E [W ] = 2 E [X1]− E [X2] = 0, (4)

and

Var[W ] = E
[
W 2
]

= E
[
4X2

1 − 4X1X2 +X2
2

]
= 4 Var[X1]− 4 Cov [X1, X2] + Var[X2]

= 4− 4α + 4 = 4(2− α). (5)

The PDF of W is

fW (w) =
1√

8(2− α)π
e−w

2/8(2−α). (6)

Problem 8.5.7 Solution

(a) Since X is Gaussian, W is also Gaussian. Thus we need only compute
the expected value

E[W ] = E[X1] + 2 E[X2] = 0
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and variance

Var[W ] = E
[
W 2
]

= E
[
(X1 + 2X2)2

]
= E

[
X2

1 + 4X1X2 + 4X2
2

]
= C11 + 4C12 + 4C22 = 10. (1)

Thus W has the Gaussian (0,
√

10) PDF

fW(w) =
1√
20π

e−w
2/20.

(b) We first calculate

E [V ] = 0, Var[V ] = 4 Var[X1] = 8, (2)

E [W ] = 0, Var[W ] = 10, (3)

and that V and W have correlation coefficient

ρVW =
E [VW ]√

Var[V ] Var[W ]

=
E [2X1(X1 + 2X2)]√

80

=
2C11 + 4C12√

80
=

8√
80

=
2√
5
. (4)

Now we recall that the conditional PDF fV |W(v|w) is Gaussian with
conditional expected value

E [V |W = w] = E [V ] + ρVW
σV
σW

(w − E [W ])

=
2√
5

√
8√
10
w = 4w/5 (5)

and conditional variance

Var[V |W ] = Var[V ](1− ρ2
VW ) =

8

5
. (6)
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It follows that

fV |W (v|w) =
1√

2πVar[V |W ]
e−(v−E[V |W ])2/2 Var[V |W ]

=

√
5

16π
e−5(v−4w/5)2/16. (7)

Problem 8.5.9 Solution

(a) First b = c since a covariance matrix is always symmetric. Second,
a = Var[X1] and b = Var[X2]. Hence we must have a > 0 and d > 0.
Third, C must be positive definite, i.e. the eigenvalues of C must be
positive. This can be tackled directly from first principles by solving for
the eigenvalues using det(()C − λI) = 0. If you do this, you will find,
after some algebra that the eigenvalues are

λ =
(a+ d)±

√
(a− d)2 + 4b2

2
. (1)

The requirement λ > 0 holds iff b2 < ad. As it happens, this is pre-
cisely the same conditon as requiring the correlation coefficient to have
magnitude less than 1:

|ρX1X2| =
∣∣∣∣ b√
ad

∣∣∣∣ < 1. (2)

To summarize, there are four requirements:

a > 0, d > 0, b = c, b2 < ad. (3)

(b) This is easy: for Gaussian random variables, zero covariance implies X1

and X2 are independent. Hence the answer is b = 0.

(c) X1 and X2 are identical if they have the same variance: a = d.
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Problem 8.5.11 Solution

(a) From Theorem 8.8, Y has covariance matrix

CY = QCXQ
′

=

[
cos θ − sin θ
sin θ cos θ

] [
σ2

1 0
0 σ2

2

] [
cos θ sin θ
− sin θ cos θ

]
=

[
σ2

1 cos2 θ + σ2
2 sin2 θ (σ2

1 − σ2
2) sin θ cos θ

(σ2
1 − σ2

2) sin θ cos θ σ2
1 sin2 θ + σ2

2 cos2 θ

]
. (1)

We conclude that Y1 and Y2 have covariance

Cov [Y1, Y2] = CY(1, 2) = (σ2
1 − σ2

2) sin θ cos θ. (2)

Since Y1 and Y2 are jointly Gaussian, they are independent if and only
if Cov[Y1, Y2] = 0. Thus, Y1 and Y2 are independent for all θ if and only
if σ2

1 = σ2
2. In this case, when the joint PDF fX(x) is symmetric in x1

and x2. In terms of polar coordinates, the PDF fX(x) = fX1,X2(x1, x2)

depends on r =
√
x2

1 + x2
2 but for a given r, is constant for all φ =

tan−1(x2/x1). The transformation of X to Y is just a rotation of the
coordinate system by θ preserves this circular symmetry.

(b) If σ2
2 > σ2

1, then Y1 and Y2 are independent if and only if sin θ cos θ = 0.
This occurs in the following cases:

• θ = 0: Y1 = X1 and Y2 = X2

• θ = π/2: Y1 = −X2 and Y2 = −X1

• θ = π: Y1 = −X1 and Y2 = −X2

• θ = −π/2: Y1 = X2 and Y2 = X1

In all four cases, Y1 and Y2 are just relabeled versions, possibly with
sign changes, of X1 and X2. In these cases, Y1 and Y2 are independent
because X1 and X2 are independent. For other values of θ, each Yi
is a linear combination of both X1 and X2. This mixing results in
correlation between Y1 and Y2.
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Problem 8.5.13 Solution

As given in the problem statement, we define the m-dimensional vector X,

the n-dimensional vector Y and W =

[
X′

Y′

]′
. Note that W has expected

value

µW = E [W] = E

[[
X
Y

]]
=

[
E [X]
E [Y]

]
=

[
µX

µY

]
. (1)

The covariance matrix of W is

CW = E [(W − µW)(W − µW)′]

= E

[[
X− µX

Y − µY

] [
(X− µX)′ (Y − µY)′

]]
=

[
E [(X− µX)(X− µX)′] E [(X− µX)(Y − µY)′]
E [(Y − µY)(X− µX)′] E [(Y − µY)(Y − µY)′]

]
=

[
CX CXY

CYX CY

]
. (2)

The assumption that X and Y are independent implies that

CXY = E [(X− µX)(Y′ − µ′Y)] = (E [(X− µX)] E [(Y′ − µ′Y)] = 0. (3)

This also implies CYX = C′XY = 0′. Thus

CW =

[
CX 0
0′ CY

]
. (4)

Problem 8.6.1 Solution

We can use Theorem 8.11 since the scalar Y is also a 1-dimensional vector.
To do so, we write

Y =
[
1/3 1/3 1/3

]
X = AX. (1)
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By Theorem 8.11, Y is a Gaussian vector with expected value

E [Y ] = AµX = (E [X1] + E [X2] + E [X3])/3

= (4 + 8 + 6)/3 = 6. (2)

and covariance matrix

CY = Var[Y ] = ACXA
′

=
[
1/3 1/3 1/3

]  4 −2 1
−2 4 −2
1 −2 4

1/3
1/3
1/3

 =
2

3
. (3)

Thus Y is a Gaussian (6,
√

2/3) random variable, implying

P [Y > 4] = P

[
Y − 6√

2/3
>

4− 6√
2/3

]
= 1− Φ(−

√
6) = Φ(

√
6) = 0.9928. (4)

Problem 8.6.3 Solution

Under the model of Quiz 8.6, the temperature on day i and on day j have
covariance

Cov [Ti, Tj] = CT [i− j] =
36

1 + |i− j| . (1)

From this model, the vector T =
[
T1 · · · T31

]′
has covariance matrix

CT =


CT [0] CT [1] · · · CT [30]

CT [1] CT [0]
. . .

...
...

. . . . . . CT [1]
CT [30] · · · CT [1] CT [0]

 . (2)

If you have read the solution to Quiz 8.6, you know that CT is a symmet-
ric Toeplitz matrix and that Matlab has a toeplitz function to generate
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Toeplitz matrices. Using the toeplitz function to generate the covariance
matrix, it is easy to use gaussvector to generate samples of the random
vector T.Here is the code for estimating P[A] using m samples.

function p=julytemp583(m);

c=36./(1+(0:30));

CT=toeplitz(c);

mu=80*ones(31,1);

T=gaussvector(mu,CT,m);

Y=sum(T)/31;

Tmin=min(T);

p=sum((Tmin>=72) & (Y <= 82))/m;

julytemp583(100000)

ans =

0.0684

>> julytemp583(100000)

ans =

0.0706

>> julytemp583(100000)

ans =

0.0714

>> julytemp583(100000)

ans =

0.0701

We see from repeated experiments with m = 100,000 trials that P[A] ≈
0.07.

Problem 8.6.5 Solution

When we built poissonrv.m, we went to some trouble to be able to generate
m iid samples at once. In this problem, each Poisson random variable that we
generate has an expected value that is different from that of any other Poisson
random variables. Thus, we must generate the daily jackpots sequentially.
Here is a simple program for this purpose.
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function jackpot=lottery1(jstart,M,D)

%Usage: function j=lottery1(jstart,M,D)

%Perform M trials of the D day lottery

%of Problem 5.5.5 and initial jackpot jstart

jackpot=zeros(M,1);

for m=1:M,

disp(’trm)

jackpot(m)=jstart;

for d=1:D,

jackpot(m)=jackpot(m)+(0.5*poissonrv(jackpot(m),1));

end

end

The main problem with lottery1 is that it will run very slowly. Each call
to poissonrv generates an entire Poisson PMF PX(x) for x = 0, 1, . . . , xmax

where xmax ≥ 2 · 106. This is slow in several ways. First, we repeating the
calculation of

∑xmax

j=1 log j with each call to poissonrv. Second, each call to

poissonrv asks for a Poisson sample value with expected value α > 1 · 106.
In these cases, for small values of x, PX(x) = αxe−αx/x! is so small that it is
less than the smallest nonzero number that Matlab can store!

To speed up the simulation, we have written a program bigpoissonrv

which generates Poisson (α) samples for large α. The program makes an
approximation that for a Poisson (α) random variable X, PX(x) ≈ 0 for
|x − α| > 6

√
α. Since X has standard deviation

√
α, we are assuming

that X cannot be more than six standard deviations away from its mean
value. The error in this approximation is very small. In fact, for a Poisson
(a) random variable, the program poissonsigma(a,k) calculates the error
P[|X − a| > k

√
a]. Here is poissonsigma.m and some simple calculations:

255



function err=poissonsigma(a,k);

xmin=max(0,floor(a-k*sqrt(a)));

xmax=a+ceil(k*sqrt(a));

sx=xmin:xmax;

logfacts =cumsum([0,log(1:xmax)]);

%logfacts includes 0 in case xmin=0

%Now we extract needed values:

logfacts=logfacts(sx+1);

%pmf(i,:) is a Poisson a(i) PMF

% from xmin to xmax

pmf=exp(-a+ (log(a)*sx)-(logfacts));

err=1-sum(pmf);

>> poissonsigma(1,6)

ans =

1.0249e-005

>> poissonsigma(10,6)

ans =

2.5100e-007

>> poissonsigma(100,6)

ans =

1.2620e-008

>> poissonsigma(1000,6)

ans =

2.6777e-009

>> poissonsigma(10000,6)

ans =

1.8081e-009

>> poissonsigma(100000,6)

ans =

-1.6383e-010

The error reported by poissonsigma(a,k) should always be positive. In
fact, we observe negative errors for very large a.For large α and x, numerical
calculation of PX(x) = αxe−α/x! is tricky because we are taking ratios of very
large numbers. In fact, for α = x = 1,000,000, Matlab calculation of αx

and x! will report infinity while e−α will evaluate as zero. Our method of
calculating the Poisson (α) PMF is to use the fact that ln x! =

∑x
j=1 ln j to

calculate

exp (lnPX (x)) = exp

(
x lnα− α−

x∑
j=1

ln j

)
. (1)

This method works reasonably well except that the calculation of the loga-
rithm has finite precision. The consequence is that the calculated sum over
the PMF can vary from 1 by a very small amount, on the order of 10−7 in
our experiments. In our problem, the error is inconsequential, however, one
should keep in mind that this may not be the case in other other experi-
ments using large Poisson random variables. In any case, we can conclude
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that within the accuracy of Matlab’s simulated experiments, the approxi-
mations to be used by bigpoissonrv are not significant.

The other feature of bigpoissonrv is that for a vector alpha corresponding
to expected values

[
α1 · · · αm

]′
, bigpoissonrv returns a vector X such

that X(i) is a Poisson alpha(i) sample. The work of calculating the sum
of logarithms is done only once for all calculated samples. The result is a
significant savings in cpu time as long as the values of alpha are reasonably
close to each other.

function x=bigpoissonrv(alpha)

%for vector alpha, returns a vector x such that

% x(i) is a Poisson (alpha(i)) rv

%set up Poisson CDF from xmin to xmax for each alpha(i)

alpha=alpha(:);

amin=min(alpha(:));

amax=max(alpha(:));

%Assume Poisson PMF is negligible +-6 sigma from the average

xmin=max(0,floor(amin-6*sqrt(amax)));

xmax=amax+ceil(6*sqrt(amax));%set max range

sx=xmin:xmax;

%Now we include the basic code of poissonpmf (but starting at xmin)

logfacts =cumsum([0,log(1:xmax)]); %include 0 in case xmin=0

logfacts=logfacts(sx+1); %extract needed values

%pmf(i,:) is a Poisson alpha(i) PMF from xmin to xmax

pmf=exp(-alpha*ones(size(sx))+ ...

(log(alpha)*sx)-(ones(size(alpha))*logfacts));

cdf=cumsum(pmf,2); %each row is a cdf

x=(xmin-1)+sum((rand(size(alpha))*ones(size(sx)))<=cdf,2);

Finally, given bigpoissonrv, we can write a short program lottery that sim-
ulates trials of the jackpot experiment. Ideally, we would like to use lottery

to perform m = 1,000 trials in a single pass. In general, Matlab is more
efficient when calculations are executed in parallel using vectors. However, in
bigpoissonrv, the matrix pmf will have m rows and at least 12

√
α = 12,000

columns. For m more than several hundred, Matlab running on my laptop
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reported an “Out of Memory” error. Thus, we wrote the program lottery
to perform M trials at once and to repeat that N times. The output is an
M ×N matrix where each i, j entry is a sample jackpot after seven days.

function jackpot=lottery(jstart,M,N,D)

%Usage: function j=lottery(jstart,M,N,D)

%Perform M trials of the D day lottery

%of Problem 5.5.5 and initial jackpot jstart

jackpot=zeros(M,N);

for n=1:N,

jackpot(:,n)=jstart*ones(M,1);

for d=1:D,

disp(d);

jackpot(:,n)=jackpot(:,n)+(0.5*bigpoissonrv(jackpot(:,n)));

end

end

Executing J=lottery(1e6,200,10,7) generates a matrix J of 2,000 sample
jackpots. The command hist(J(:),50) generates a histogram of the values
with 50 bins. An example is shown here:
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Problem Solutions – Chapter 9

Problem 9.1.1 Solution
Let Y = X1 −X2.

(a) Since Y = X1 + (−X2), Theorem 9.1 says that the expected value of
the difference is

E [Y ] = E [X1] + E [−X2] = E [X]− E [X] = 0. (1)

(b) By Theorem 9.2, the variance of the difference is

Var[Y ] = Var[X1] + Var[−X2] = 2 Var[X]. (2)

Problem 9.1.3 Solution

(a) The PMF of N1, the number of phone calls needed to obtain the correct
answer, can be determined by observing that if the correct answer is
given on the nth call, then the previous n − 1 calls must have given
wrong answers so that

PN1(n) =

{
(3/4)n−1(1/4) n = 1, 2, . . . ,

0 otherwise.
(1)

(b) N1 is a geometric random variable with parameter p = 1/4. In Theo-
rem 3.5, the mean of a geometric random variable is found to be 1/p.
For our case, E[N1] = 4.

(c) Using the same logic as in part (a) we recognize that in order for n to
be the fourth correct answer, that the previous n − 1 calls must have
contained exactly 3 correct answers and that the fourth correct answer
arrived on the n-th call. This is described by a Pascal random variable.

PN4(n4) =

{(
n−1

3

)
(3/4)n−4(1/4)4 n = 4, 5, . . . ,

0 otherwise.
(2)
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(d) Using the hint given in the problem statement we can find the mean of
N4 by summing up the means of the 4 identically distributed geometric
random variables each with mean 4. This gives E[N4] = 4 E[N1] = 16.

Problem 9.1.5 Solution
We can solve this problem using Theorem 9.2 which says that

Var[W ] = Var[X] + Var[Y ] + 2 Cov [X, Y ] . (1)

The first two moments of X are

E [X] =

∫ 1

0

∫ 1−x

0

2x dy dx =

∫ 1

0

2x(1− x) dx = 1/3, (2)

E
[
X2
]

=

∫ 1

0

∫ 1−x

0

2x2 dy dx =

∫ 1

0

2x2(1− x) dx = 1/6. (3)

Thus the variance of X is Var[X] = E[X2]− (E[X])2 = 1/18. By symmetry,
it should be apparent that E[Y ] = E[X] = 1/3 and Var[Y ] = Var[X] = 1/18.
To find the covariance, we first find the correlation

E [XY ] =

∫ 1

0

∫ 1−x

0

2xy dy dx =

∫ 1

0

x(1− x)2 dx = 1/12. (4)

The covariance is

Cov [X, Y ] = E [XY ]− E [X] E [Y ] = 1/12− (1/3)2 = −1/36. (5)

Finally, the variance of the sum W = X + Y is

Var[W ] = Var[X] + Var[Y ]− 2 Cov [X, Y ]

= 2/18− 2/36 = 1/18. (6)

For this specific problem, it’s arguable whether it would easier to find Var[W ]
by first deriving the CDF and PDF of W . In particular, for 0 ≤ w ≤ 1,

FW (w) = P [X + Y ≤ w]

=

∫ w

0

∫ w−x

0

2 dy dx

=

∫ w

0

2(w − x) dx = w2. (7)
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Hence, by taking the derivative of the CDF, the PDF of W is

fW (w) =

{
2w 0 ≤ w ≤ 1,

0 otherwise.
(8)

From the PDF, the first and second moments of W are

E [W ] =

∫ 1

0

2w2 dw = 2/3, E
[
W 2
]

=

∫ 1

0

2w3 dw = 1/2. (9)

The variance of W is Var[W ] = E[W 2] − (E[W ])2 = 1/18. Not surprisingly,
we get the same answer both ways.

Problem 9.2.1 Solution

For a constant a > 0, a zero mean Laplace random variable X has PDF

fX (x) =
a

2
e−a|x| −∞ < x <∞ (1)

The moment generating function of X is

φX(s) = E
[
esX
]

=
a

2

∫ 0

−∞
esxeax dx+

a

2

∫ ∞
0

esxe−ax dx

=
a

2

e(s+a)x

s+ a

∣∣∣∣0
−∞

+
a

2

e(s−a)x

s− a

∣∣∣∣∞
0

=
a

2

(
1

s+ a
− 1

s− a

)
=

a2

a2 − s2
. (2)

Problem 9.2.3 Solution

We find the MGF by calculating E[esX ] from the PDF fX(x).

φX(s) = E
[
esX
]

=

∫ b

a

esX
1

b− a dx =
ebs − eas
s(b− a)

. (1)
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Now to find the first moment, we evaluate the derivative of φX(s) at s = 0.

E [X] =
dφX(s)

ds

∣∣∣∣
s=0

=
s
[
bebs − aeas

]
−
[
ebs − eas

]
(b− a)s2

∣∣∣∣∣
s=0

. (2)

Direct evaluation of the above expression at s = 0 yields 0/0 so we must
apply l’Hôpital’s rule and differentiate the numerator and denominator.

E [X] = lim
s→0

bebs − aeas + s
[
b2ebs − a2eas

]
−
[
bebs − aeas

]
2(b− a)s

= lim
s→0

b2ebs − a2eas

2(b− a)
=
b+ a

2
. (3)

To find the second moment of X, we first find that the second derivative of
φX(s) is

d2φX(s)

ds2
=
s2
[
b2ebs − a2eas

]
− 2s

[
bebs − aeas

]
+ 2

[
bebs − aeas

]
(b− a)s3

. (4)

Substituting s = 0 will yield 0/0 so once again we apply l’Hôpital’s rule and
differentiate the numerator and denominator.

E
[
X2
]

= lim
s→0

d2φX(s)

ds2
= lim

s→0

s2
[
b3ebs − a3eas

]
3(b− a)s2

=
b3 − a3

3(b− a)
= (b2 + ab+ a2)/3. (5)

In this case, it is probably simpler to find these moments without using the
MGF.

Problem 9.2.5 Solution

The PMF of K is

PK (k) =

{
1/n k = 1, 2, . . . , n,

0 otherwise.
(1)
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The corresponding MGF of K is

φK(s) = E
[
esK
]

=
1

n

(
es + e2s+ · · ·+ ens

)
=
es

n

(
1 + es + e2s + · · ·+ e(n−1)s

)
=
es(ens − 1)

n(es − 1)
. (2)

We can evaluate the moments of K by taking derivatives of the MGF. Some
algebra will show that

dφK(s)

ds
=
ne(n+2)s − (n+ 1)e(n+1)s + es

n(es − 1)2
. (3)

Evaluating dφK(s)/ds at s = 0 yields 0/0. Hence, we apply l’Hôpital’s rule
twice (by twice differentiating the numerator and twice differentiating the
denominator) when we write

dφK(s)

ds

∣∣∣∣
s=0

= lim
s→0

n(n+ 2)e(n+2)s − (n+ 1)2e(n+1)s + es

2n(es − 1)

= lim
s→0

n(n+ 2)2e(n+2)s − (n+ 1)3e(n+1)s + es

2nes

= (n+ 1)/2. (4)

A significant amount of algebra will show that the second derivative of the
MGF is

d2φK(s)

ds2

=
n2e(n+3)s − (2n2 + 2n− 1)e(n+2)s + (n+ 1)2e(n+1)s − e2s − es

n(es − 1)3
. (5)

Evaluating d2φK(s)/ds2 at s = 0 yields 0/0.Because (es − 1)3 appears in the
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denominator, we need to use l’Hôpital’s rule three times to obtain our answer.

d2φK(s)

ds2

∣∣∣∣
s=0

= lim
s→0

n2(n+ 3)3e(n+3)s − (2n2 + 2n− 1)(n+ 2)3e(n+2)s + (n+ 1)5 − 8e2s − es
6nes

=
n2(n+ 3)3 − (2n2 + 2n− 1)(n+ 2)3 + (n+ 1)5 − 9

6n
= (2n+ 1)(n+ 1)/6. (6)

We can use these results to derive two well known results. We observe that
we can directly use the PMF PK(k) to calculate the moments

E [K] =
1

n

n∑
k=1

k, E
[
K2
]

=
1

n

n∑
k=1

k2. (7)

Using the answers we found for E[K] and E[K2], we have the formulas

n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
. (8)

Problem 9.3.1 Solution

N is a binomial (n = 100, p = 0.4) random variable. M is a binomial (n =
50, p = 0.4) random variable. Thus N is the sum of 100 independent Bernoulli
(p = 0.4) and M is the sum of 50 independent Bernoulli (p = 0.4) random
variables. Since M and N are independent, L = M + N is the sum of 150
independent Bernoulli (p = 0.4) random variables. Hence L is a binomial
n = 150, p = 0.4) and has PMF

PL(l) =

(
150

l

)
(0.4)l(0.6)150−l. (1)

264



Problem 9.3.3 Solution

In the iid random sequence K1, K2, . . ., each Ki has PMF

PK (k) =


1− p k = 0,

p k = 1,

0 otherwise.

(1)

(a) The MGF of K is φK(s) = E[esK ] = 1− p+ pes.

(b) By Theorem 9.6, M = K1 +K2 + . . .+Kn has MGF

φM(s) = [φK(s)]n = [1− p+ pes]n . (2)

(c) Although we could just use the fact that the expectation of the sum
equals the sum of the expectations, the problem asks us to find the
moments using φM(s). In this case,

E [M ] =
dφM(s)

ds

∣∣∣∣
s=0

= n(1− p+ pes)n−1pes
∣∣
s=0

= np. (3)

The second moment of M can be found via

E
[
M2
]

=
dφM(s)

ds

∣∣∣∣
s=0

= np
(
(n− 1)(1− p+ pes)pe2s + (1− p+ pes)n−1es

)∣∣
s=0

= np[(n− 1)p+ 1]. (4)

The variance of M is

Var[M ] = E
[
M2
]
− (E [M ])2 = np(1− p) = nVar[K]. (5)
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Problem 9.3.5 Solution

Ki has PMF

PKi(k) =

{
2ke−2/k! k = 0, 1, 2, . . . ,

0 otherwise.
(1)

Let Ri = K1 +K2 + . . .+Ki

(a) From Table 9.1, we find that the Poisson (α = 2) random variable K
has MGF φK(s) = e2(es−1).

(b) The MGF of Ri is the product of the MGFs of the Ki’s.

φRi(s) =
i∏

n=1

φK(s) = e2i(es−1). (2)

(c) Since the MGF of Ri is of the same form as that of the Poisson with
parameter, α = 2i. Therefore we can conclude that Ri is in fact a
Poisson random variable with parameter α = 2i. That is,

PRi(r) =

{
(2i)re−2i/r! r = 0, 1, 2, . . . ,

0 otherwise.
(3)

(d) Because Ri is a Poisson random variable with parameter α = 2i, the
mean and variance of Ri are then both 2i.

Problem 9.3.7 Solution

By Theorem 9.6, we know that φM(s) = [φK(s)]n.

(a) The first derivative of φM(s) is

dφM(s)

ds
= n [φK(s)]n−1 dφK(s)

ds
. (1)
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We can evaluate dφM(s)/ds at s = 0 to find E[M ].

E [M ] =
dφM(s)

ds

∣∣∣∣
s=0

= n [φK(s)]n−1 dφK(s)

ds

∣∣∣∣
s=0

= nE [K] . (2)

(b) The second derivative of φM(s) is

d2φM(s)

ds2
= n(n− 1) [φK(s)]n−2

(
dφK(s)

ds

)2

+ n [φK(s)]n−1 d
2φK(s)

ds2
. (3)

Evaluating the second derivative at s = 0 yields

E
[
M2
]

=
d2φM(s)

ds2

∣∣∣∣
s=0

= n(n− 1) (E [K])2 + nE
[
K2
]
. (4)

Problem 9.4.1 Solution

(a) From Table 9.1, we see that the exponential random variable X has
MGF

φX(s) =
λ

λ− s. (1)

(b) Note that K is a geometric random variable identical to the geometric
random variable X in Table 9.1 with parameter p = 1 − q. From
Table 9.1, we know that random variable K has MGF

φK(s) =
(1− q)es
1− qes . (2)

267



Since K is independent of each Xi, V = X1 + · · · + XK is a random
sum of random variables. From Theorem 9.10,

φV (s) = φK(lnφX(s))

=
(1− q) λ

λ−s

1− q λ
λ−s

=
(1− q)λ

(1− q)λ− s. (3)

We see that the MGF of V is that of an exponential random variable
with parameter (1− q)λ. The PDF of V is

fV (v) =

{
(1− q)λe−(1−q)λv v ≥ 0,

0 otherwise.
(4)

Problem 9.4.3 Solution
In this problem, Y = X1 + · · ·+XN is not a straightforward random sum of
random variables because N and the Xi’s are dependent. In particular, given
N = n, then we know that there were exactly 100 heads in N flips. Hence,
given N , X1 + · · ·+XN = 100 no matter what is the actual value of N . Hence
Y = 100 every time and the PMF of Y is

PY (y) =

{
1 y = 100,

0 otherwise.
(1)

Problem 9.4.5 Solution
Since each ticket is equally likely to have one of

(
46
6

)
combinations, the prob-

ability a ticket is a winner is

q =
1(
46
6

) . (1)

Let Xi = 1 if the ith ticket sold is a winner; otherwise Xi = 0. Since the
number K of tickets sold has a Poisson PMF with E[K] = r, the number of
winning tickets is the random sum

V = X1 + · · ·+XK . (2)
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From Appendix A,

φX(s) = (1− q) + qes, φK(s) = er[e
s−1]. (3)

By Theorem 9.10,

φV (s) = φK(lnφX(s)) = er[φX(s)−1]. = erq(e
s−1) (4)

Hence, we see that V has the MGF of a Poisson random variable with mean
E[V ] = rq. The PMF of V is

PV (v) =

{
(rq)ve−rq/v! v = 0, 1, 2, . . . ,

0 otherwise.
(5)

Problem 9.4.7 Solution

The way to solve for the mean and variance of U is to use conditional expec-
tations. Given K = k, U = X1 + · · ·+Xk and

E [U |K = k] = E [X1 + · · ·+Xk|X1 + · · ·+Xn = k]

=
k∑
i=1

E [Xi|X1 + · · ·+Xn = k] . (1)

Since Xi is a Bernoulli random variable,

E [Xi|X1 + · · ·+Xn = k] = P

[
Xi = 1|

n∑
j=1

Xj = k

]

=
P
[
Xi = 1,

∑
j 6=iXj = k − 1

]
P
[∑n

j=1Xj = k
] . (2)

Note that
∑n

j=1Xj is just a binomial random variable for n trials while∑
j 6=iXj is a binomial random variable for n − 1 trials. In addition, Xi
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and
∑

j 6=iXj are independent random variables. This implies

E [Xi|X1 + · · ·+Xn = k] =
P [Xi = 1] P

[∑
j 6=iXj = k − 1

]
P
[∑n

j=1Xj = k
]

=
p
(
n−1
k−1

)
pk−1(1− p)n−1−(k−1)(
n
k

)
pk(1− p)n−k =

k

n
. (3)

A second way is to argue that symmetry implies

E [Xi|X1 + · · ·+Xn = k] = γ, (4)

the same for each i. In this case,

nγ =
n∑
i=1

E [Xi|X1 + · · ·+Xn = k]

= E [X1 + · · ·+Xn|X1 + · · ·+Xn = k] = k. (5)

Thus γ = k/n. At any rate, the conditional mean of U is

E [U |K = k] =
k∑
i=1

E [Xi|X1 + · · ·+Xn = k]

=
k∑
i=1

k

n
=
k2

n
. (6)

This says that the random variable E[U |K] = K2/n. Using iterated expecta-
tions, we have

E [U ] = E [E [U |K]] = E
[
K2/n

]
. (7)

SinceK is a binomial random variable, we know that E[K] = np and Var[K] =
np(1− p). Thus,

E [U ] =
E [K2]

n
=

Var[K] + (E [K])2

n
= p(1− p) + np2. (8)

On the other hand, V is just and ordinary random sum of independent random
variables and the mean of E[V ] = E[X] E[M ] = np2.
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Problem 9.5.1 Solution

We know that the waiting time, W is uniformly distributed on [0,10] and
therefore has the following PDF.

fW (w) =

{
1/10 0 ≤ w ≤ 10,

0 otherwise.
(1)

We also know that the total time is 3 milliseconds plus the waiting time, that
is X = W + 3.

(a) The expected value of X is E[X] = E[W + 3] = E[W ] + 3 = 5 + 3 = 8.

(b) The variance of X is Var[X] = Var[W + 3] = Var[W ] = 25/3.

(c) The expected value of A is E[A] = 12 E[X] = 96.

(d) The standard deviation of A is σA =
√

Var[A] =
√

12(25/3) = 10.

(e) P[A > 116] = 1− Φ(116−96
10

) = 1− Φ(2) = 0.02275.

(f) P[A < 86] = Φ(86−96
10

) = Φ(−1) = 1− Φ(1) = 0.1587.

Problem 9.5.3 Solution

(a) Let X1, . . . , X120 denote the set of call durations (measured in min-
utes) during the month. From the problem statement, each X − I is
an exponential (λ) random variable with E[Xi] = 1/λ = 2.5 min and
Var[Xi] = 1/λ2 = 6.25 min2. The total number of minutes used during
the month is Y = X1 + · · ·+X120. By Theorem 9.1 and Theorem 9.3,

E [Y ] = 120 E [Xi] = 300

Var[Y ] = 120 Var[Xi] = 750. (1)
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The subscriber’s bill is 30 + 0.4(y − 300)+ where x+ = x if x ≥ 0 or
x+ = 0 if x < 0. the subscribers bill is exactly $36 if Y = 315. The
probability the subscribers bill exceeds $36 equals

P [Y > 315] = P

[
Y − 300

σY
>

315− 300

σY

]
= Q

(
15√
750

)
= 0.2919. (2)

(b) If the actual call duration is Xi, the subscriber is billed for Mi = dXie
minutes. Because each Xi is an exponential (λ) random variable, The-
orem 4.9 says that Mi is a geometric (p) random variable with p =
1− e−λ = 0.3297. Since Mi is geometric,

E [Mi] =
1

p
= 3.033, Var[Mi] =

1− p
p2

= 6.167. (3)

The number of billed minutes in the month is B = M1 + · · · + M120.
Since M1, . . . ,M120 are iid random variables,

E [B] = 120 E [Mi] = 364.0, Var[B] = 120 Var[Mi] = 740.08. (4)

Similar to part (a), the subscriber is billed $36 if B = 315 minutes. The
probability the subscriber is billed more than $36 is

P [B > 315] = P

[
B − 364√

740.08
>

315− 365√
740.08

]
= Q(−1.8) = Φ(1.8) = 0.964. (5)

Problem 9.5.5 Solution
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(a) Since the number of requests N has expected value E[N ] = 300 and
variance Var[N ] = 300, we need C to satisfy

P [N > C] = P

[
N − 300√

300
>
C − 300√

300

]
= 1− Φ

(
C − 300√

300

)
= 0.05. (1)

From Table 4.2, we note that Φ(1.65) = 0.9505. Thus,

C = 300 + 1.65
√

300 = 328.6. (2)

(b) For C = 328.6, the exact probability of overload is

P [N > C] = 1− P [N ≤ 328]

= 1− poissoncdf(300,328) = 0.0516, (3)

which shows the central limit theorem approximation is reasonable.

(c) This part of the problem could be stated more carefully. Re-examining
Definition 3.9 for the Poisson random variable and the accompanying
discussion in Chapter 3, we observe that the webserver has an arrival
rate of λ = 300 hits/min, or equivalently λ = 5 hits/sec. Thus in a one
second interval, the number of requests N ′ is a Poisson (α = 5) random
variable.

However, since the server “capacity” in a one second interval is not pre-
cisely defined, we will make the somewhat arbitrary definition that the
server capacity is C ′ = 328.6/60 = 5.477 packets/sec. With this some-
what arbitrary definition, the probability of overload in a one second
interval is

P [N ′ > C ′] = 1− P [N ′ ≤ 5.477] = 1− P [N ′ ≤ 5] . (4)

Because the number of arrivals in the interval is small, it would be a
mistake to use the Central Limit Theorem to estimate this overload
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probability. However, the direct calculation of the overload probability
is not hard. For E[N ′] = α = 5,

1− P [N ′ ≤ 5] = 1−
5∑

n=0

PN (n)

= 1− e−α
5∑

n=0

αn

n!
= 0.3840. (5)

(d) Here we find the smallest C such that P[N ′ ≤ C] ≥ 0.95. From the
previous step, we know that C > 5. Since N ′ is a Poisson (α = 5)
random variable, we need to find the smallest C such that

P [N ≤ C] =
C∑
n=0

αne−α/n! ≥ 0.95. (6)

Some experiments with poissoncdf(alpha,c) will show that

P [N ≤ 8] = 0.9319, P [N ≤ 9] = 0.9682. (7)

Hence C = 9.

(e) If we use the Central Limit theorem to estimate the overload probability
in a one second interval, we would use the facts that E[N ′] = 5 and
Var[N ′] = 5 to estimate the the overload probability as

1− P [N ′ ≤ 5] = 1− Φ

(
5− 5√

5

)
= 0.5, (8)

which overestimates the overload probability by roughly 30 percent.
We recall from Chapter 3 that a Poisson random is the limiting case
of the (n, p) binomial random variable when n is large and np = α.In
general, for fixed p, the Poisson and binomial PMFs become closer as
n increases. Since large n is also the case for which the central limit
theorem applies, it is not surprising that the the CLT approximation
for the Poisson (α) CDF is better when α = np is large.
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Comment: Perhaps a more interesting question is why the overload prob-
ability in a one-second interval is so much higher than that in a one-minute
interval? To answer this, consider a T -second interval in which the number
of requests NT is a Poisson (λT ) random variable while the server capac-
ity is cT hits. In the earlier problem parts, c = 5.477 hits/sec. We make
the assumption that the server system is reasonably well-engineered in that
c > λ. (In fact, to assume otherwise means that the backlog of requests will
grow without bound.) Further, assuming T is fairly large, we use the CLT to
estimate the probability of overload in a T -second interval as

P [NT ≥ cT ] = P

[
NT − λT√

λT
≥ cT − λT√

λT

]
= Q

(
k
√
T
)
, (9)

where k = (c− λ)/
√
λ. As long as c > λ, the overload probability decreases

with increasing T . In fact, the overload probability goes rapidly to zero as T
becomes large. The reason is that the gap cT − λT between server capacity
cT and the expected number of requests λT grows linearly in T while the
standard deviation of the number of requests grows proportional to

√
T .

However, one should add that the definition of a T -second overload is some-
what arbitrary. In fact, one can argue that as T becomes large, the require-
ment for no overloads simply becomes less stringent. Using more advanced
techniques found in the Markov Chains Supplement, a system such as this
webserver can be evaluated in terms of the average backlog of requests and
the average delay in serving in serving a request. These statistics won’t de-
pend on a particular time period T and perhaps better describe the system
performance.

Problem 9.5.7 Solution

Random variable Kn has a binomial distribution for n trials and success
probability P[V ] = 3/4.

(a) The expected number of video packets out of 48 packets is

E [K48] = 48 P [V ] = 36. (1)
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(b) The variance of K48 is

Var[K48] = 48 P [V ] (1− P [V ]) = 48(3/4)(1/4) = 9 (2)

Thus K48 has standard deviation σK48 = 3.

(c) Using the ordinary central limit theorem and Table 4.2 yields

P [30 ≤ K48 ≤ 42] ≈ Φ

(
42− 36

3

)
− Φ

(
30− 36

3

)
= Φ(2)− Φ(−2) (3)

Recalling that Φ(−x) = 1− Φ(x), we have

P [30 ≤ K48 ≤ 42] ≈ 2Φ(2)− 1 = 0.9545. (4)

(d) Since K48 is a discrete random variable, we can use the De Moivre-
Laplace approximation to estimate

P [30 ≤ K48 ≤ 42] ≈ Φ

(
42 + 0.5− 36

3

)
− Φ

(
30− 0.5− 36

3

)
= 2Φ(2.16666)− 1 = 0.9687. (5)

Problem 9.5.9 Solution
By symmetry, E[X] = 0. Since X is a continuous (a = −1, b = 1) uniform
random variable, its variance is Var[X] = (b − a)2/12 = 1/3. Working with
the moments of X, we can write

E [Y ] = E
[
20 + 15X2

]
= 20 + 15 E

[
X2
]

= 20 + 15 Var[X2] = 25, (1)

where we recall that E[X] = 0 implies E[X2] = Var[X]. Next we observe that

Var[Y ] = Var[20 + 15X2]

= Var[15X2]

= 225 Var[X2] = 225
(
E
[
(X2)2

]
− (E

[
X2
]
)2
)

(2)
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Since E[X2] = Var[X] = 1/3, and since E[(X2)2] = E[X4], it follows that

Var[Y ] = 225
(
E
[
X4
]
− (Var[X])2

)
= 225

(∫ 1

−1

1

2
x4 dx−

(
1

3

)2
)

= 225

(
1

5
− 1

9

)
= 20. (3)

To use the central limit theorem, we approximate the CDF of W by a Gaus-
sian CDF with expected value E[W ] and variance Var[W ]. Since the expec-
tation of the sum equals the sum of the expectations,

E [W ] = E

[
1

100

100∑
i=1

Yi

]

=
1

100

100∑
i=1

E [Yi] = E [Y ] = 25. (4)

Since the independence of the Yi follows from the independence of the Xi, we
can write

Var[W ] =
1

1002
Var

[
100∑
i=1

Yi

]
=

1

1002

100∑
i=1

Var[Yi] =
Var[Y ]

100
= 0.2. (5)

By a CLT approximation,

P [W ≤ 25.4] = P

[
W − 25√

0.2
≤ 25.4− 25√

0.2

]
≈ Φ

(
0.4√
0.2

)
= Φ(2/

√
5) = 0.8145. (6)

Problem 9.5.11 Solution

(a) On quiz i, your score Xi is the sum of n = 10 independent Bernoulli
trials and so Xi is a binomial (n = 10, p = 0.8) random variable, which
has PMF

PXi(x) =

(
10

x

)
(0.8)x(0.2)10−x. (1)
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(b) First we note that E[Xi] = np = 8 and that

Var[Xi] = np(1− p) = 10(0.8)(0.2) = 1.6. (2)

Since X is a scaled sum of 100 Bernoulli trials, it is appropriate to use
a central limit theorem approximation. All we need to do is calculate
the expected value and variance of X:

µX = E [X] = 0.01
10∑
i=1

E [Xi] = 0.8, (3)

σ2
X = Var[X] = (0.01)2 Var

[
10∑
i=1

Xi

]

= 10−4

10∑
i=1

Var[Xi] = 16× 10−4. (4)

To use the central limit theorem, we write

P [A] = P [X ≥ 0.9] = P

[
X − µX
σX

≥ 0.9− µX
σX

]
≈ P

[
Z ≥ 0.9− 0.8

0.04

]
= P [Z ≥ 2.5] = Q(2.5). (5)

A nicer way to do this same calculation is to observe that

P [A] = P [X ≥ 0.9] = P

[
10∑
i=1

Xi ≥ 90

]
. (6)

Now we define W =
∑10

i=1 Xi and use the central limit theorem on W .
In this case,

E [W ] = 10 E [Xi] = 80, Var[W ] = 10 Var[Xi] = 16. (7)
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Our central limit theorem approximation can now be written as

P [A] = P [W ≥ 90] = P

[
W − 80√

16
≥ 90− 80√

16

]
≈ P [Z ≥ 2.5] = Q(2.5). (8)

We will see that this second approach is more useful in the next problem.

(c) With n attendance quizzes,

P [A] = P [X ′ ≥ 0.9]

= P

[
10n+

10∑
i=1

Xi ≥ 9n+ 90

]
= P [W ≥ 90− n] , (9)

where W =
∑10

i=1Xi is the same as in the previous part. Thus

P [A] = P

[
W − E [W ]√

Var[W ]
≥ 90− n− E [W ]√

Var[W ]

]

= Q

(
10− n

4

)
= Q(2.5− 0.25n). (10)

(d) Without the scoring change on quiz 1, your grade will be based on

X =
8 +

∑10
i=2 Xi

100
=

8 + Y

100
. (11)

With the corrected scoring, your grade will be based on

X ′ =
9 +

∑10
i=2Xi

100
=

9 + Y

100
= 0.01 +X. (12)

The only time this change will matter is when X is on the border-
line between two grades. Specifically, your grade will change if X ∈
{0.59, 0.69, 0.79, 0.89}. Equivalently,

P [U c] = P [Y = 51] + P [Y = 61] + P [Y = 71] + P [Y = 81]

= PY (51) + PY (61) + PY (71) + PY (81) . (13)
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If you’re curious, we note that since Y is binomial with E[Y ] = 72, the
dominant term in the above sum is PY(71) and that

P [U c] ≈
(

90

71

)
(0.8)71(0.2)19 ≈ 0.099. (14)

This near 10 percent probability is fairly high because the student is
a borderline B/C student. That is, the point matters if you are a
borderline student. Of course, in real life, you don’t know if you’re a
borderline student.

Problem 9.6.1 Solution

Note that Wn is a binomial (10n, 0.5) random variable. We need to calculate

P [Bn] = P [0.499× 10n ≤ Wn ≤ 0.501× 10n]

= P [Wn ≤ 0.501× 10n]− P [Wn < 0.499× 10n] . (1)

A complication is that the event Wn < w is not the same as Wn ≤ w when
w is an integer. In this case, we observe that

P [Wn < w] = P [Wn ≤ dwe − 1] = FWn(dwe − 1) . (2)

Thus

P [Bn] = FWn(0.501× 10n)− FWn

(⌈
0.499× 109

⌉
− 1
)
. (3)

For n = 1, . . . , N , we can calculate P[Bn] in this Matlab program:

function pb=binomialcdftest(N);

pb=zeros(1,N);

for n=1:N,

w=[0.499 0.501]*10^n;

w(1)=ceil(w(1))-1;

pb(n)=diff(binomialcdf(10^n,0.5,w));

end
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Unfortunately, on this user’s machine (a Windows XP laptop), the program
fails for N = 4. The problem, as noted earlier is that binomialcdf.m uses
binomialpmf.m, which fails for a binomial (10000, p) random variable. Of
course, your mileage may vary. A slightly better solution is to use the
bignomialcdf.m function, which is identical to binomialcdf.m except it calls
bignomialpmf.m rather than binomialpmf.m. This enables calculations for
larger values of n, although at some cost in numerical accuracy. Here is the
code:

function pb=bignomialcdftest(N);

pb=zeros(1,N);

for n=1:N,

w=[0.499 0.501]*10^n;

w(1)=ceil(w(1))-1;

pb(n)=diff(bignomialcdf(10^n,0.5,w));

end

For comparison, here are the outputs of the two programs:

>> binomialcdftest(4)

ans =

0.2461 0.0796 0.0756 NaN

>> bignomialcdftest(6)

ans =

0.2461 0.0796 0.0756 0.1663 0.4750 0.9546

The result 0.9546 for n = 6 corresponds to the exact probability in Exam-
ple 9.14 which used the CLT to estimate the probability as 0.9544. Unfortu-
nately for this user, bignomialcdftest(7) failed.

Problem 9.6.3 Solution

In this problem, we re-create the plots of Figure 9.3 except we use the binomial
PMF and corresponding Gaussian PDF. Here is a Matlab program that
compares the binomial (n, p) PMF and the Gaussian PDF with the same
expected value and variance.
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function y=binomcltpmf(n,p)

x=-1:17;

xx=-1:0.05:17;

y=binomialpmf(n,p,x);

std=sqrt(n*p*(1-p));

clt=gausspdf(n*p,std,xx);

hold off;

pmfplot(x,y,’\it x’,’\it p_X(x) f_X(x)’);

hold on; plot(xx,clt); hold off;

Here are the output plots for p = 1/2 and n = 2, 4, 8, 16.

−5 0 5 10 15 20
0

0.5

1

 x

 p
X
(x

) 
   

f X
(x

)

−5 0 5 10 15 20
0

0.2

0.4

 x

 p
X
(x

) 
   

f X
(x

)

binomcltpmf(2,0.5) binomcltpmf(4,0.5)

−5 0 5 10 15 20
0

0.2

0.4

 x

 p
X
(x

) 
   

f X
(x

)

−5 0 5 10 15 20
0

0.1

0.2

 x

 p
X
(x

) 
   

f X
(x

)

binomcltpmf(8,0.5) binomcltpmf(16,0.5)

To see why the values of the PDF and PMF are roughly the same, consider
the Gaussian random variable Y . For small ∆,

fY (x) ∆ ≈ FY (x+ ∆/2)− FY (x−∆/2)

∆
. (1)

For ∆ = 1, we obtain

fY (x) ≈ FY (x+ 1/2)− FY (x− 1/2) . (2)
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Since the Gaussian CDF is approximately the same as the CDF of the bino-
mial (n, p) random variable X, we observe for an integer x that

fY (x) ≈ FX (x+ 1/2)− FX (x− 1/2) = PX (x) . (3)

Although the equivalence in heights of the PMF and PDF is only an approx-
imation, it can be useful for checking the correctness of a result.

Problem 9.6.5 Solution
In Example 10.4, the height of a storm surge X is a Gaussian (5.5, 1) random
variable. Here were are asked to estimate

P [X > 7] = P [X − 5.5 > 1.5] = 1− Φ(1.5). (1)

using the uniform12.m function defined in Example 9.18.

The exact correct value is 1− Φ(1.5) = 0.0668. You may wonder why this
problem asks you to estimate 1 − Φ(1.5) when we can calculate it exactly.
The goal of this exercise is really to understand the limitations of using a sum
of 12 uniform random variables as an approximation to a Gaussian.

Unfortunately, in the function uniform12.m, the vector T=(-3:3) is hard-
coded, making it hard to directly reuse the function to solve our problem. So
instead, let’s redefine a new unif12sum.m function that accepts the number
of trials m and the threshold value T as arguments:

function FT = unif12sum(m,T)

%Using m samples of a sum of 12 uniform random variables,

%FT is an estimate of P(X<T) for a Gaussian (0,1) rv X

x=sum(rand(12,m))-6;

FT=(count(x,T)/m)’;

end

Before looking at some experimental runs, we note that unif12sum is making
two different approximations. First, samples consisting of the sum of 12
uniform random variables are being used as an approximation for a Gaussian
(0, 1) random variable X. Second, we are using the relative frequency of
samples below the threshold T as an approximation or estimate of P[X < T ].
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(a) Here are some sample runs for m = 1000 sample values:

>> m=1000;t=1.5;

>> 1-[unif12sum(m,t) unif12sum(m,t) unif12sum(m,t)]

ans =

0.0640 0.0620 0.0610

>> 1-[unif12sum(m,t) unif12sum(m,t) unif12sum(m,t)]

ans =

0.0810 0.0670 0.0690

We see that six trials yields six close but different estimates.

(b) Here are some sample runs for m = 10,000 sample values:

>> m=10000;t=1.5;

>> 1-[unif12sum(m,t) unif12sum(m,t) unif12sum(m,t)]

ans =

0.0667 0.0709 0.0697

>> 1-[unif12sum(m,t) unif12sum(m,t) unif12sum(m,t)]

ans =

0.0686 0.0672 0.0708

Casual inspection gives the impression that 10,000 samples provide bet-
ter estimates than 1000 samples. Although the small number of tests
here is definitely not sufficient to make such an assertion, we will see in
Chapter 10 that this is indeed true.

Problem 9.6.7 Solution

The function sumfinitepmf generalizes the method of Example 9.17.

function [pw,sw]=sumfinitepmf(px,sx,py,sy);

[SX,SY]=ndgrid(sx,sy);

[PX,PY]=ndgrid(px,py);

SW=SX+SY;PW=PX.*PY;

sw=unique(SW);

pw=finitepmf(SW,PW,sw);
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The only difference is that the PMFs px and py and ranges sx and sy are
not hard coded, but instead are function inputs.

As an example, suppose X is a discrete uniform (0, 20) random variable and
Y is an independent discrete uniform (0, 80) random variable. The following
program sum2unif will generate and plot the PMF of W = X + Y .

%sum2unif.m

sx=0:20;px=ones(1,21)/21;

sy=0:80;py=ones(1,81)/81;

[pw,sw]=sumfinitepmf(px,sx,py,sy);

h=pmfplot(sw,pw,’\it w’,’\it P_W(w)’);

set(h,’LineWidth’,0.25);

Here is the graph generated by sum2unif.

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

 w

 P
W

(w
)

285



Problem Solutions – Chapter 10

Problem 10.1.1 Solution

Recall that X1, X2 . . . Xn are independent exponential random variables with
mean value µX = 5 so that for x ≥ 0, FX(x) = 1− e−x/5.

(a) Using Theorem 10.1, σ2
Mn(x) = σ2

X/n. Realizing that σ2
X = 25, we obtain

Var[M9(X)] =
σ2
X

9
=

25

9
. (1)

(b)

P [X1 ≥ 7] = 1− P [X1 ≤ 7]

= 1− FX (7)

= 1− (1− e−7/5) = e−7/5 ≈ 0.247. (2)

(c) First we express P[M9(X) > 7] in terms of X1, . . . , X9.

P [M9(X) > 7] = 1− P [M9(X) ≤ 7]

= 1− P [(X1 + . . .+X9) ≤ 63] . (3)

Now the probability that M9(X) > 7 can be approximated using the
Central Limit Theorem (CLT).

P [M9(X) > 7] = 1− P [(X1 + . . .+X9) ≤ 63]

≈ 1− Φ

(
63− 9µX√

9σX

)
= 1− Φ(6/5). (4)

Consulting with Table 4.2 yields P[M9(X) > 7] ≈ 0.1151.

286



Problem 10.1.3 Solution

This problem is in the wrong section since the standard error isn’t defined
until Section 10.4. However is we peek ahead to this section, the problem
isn’t very hard. Given the sample mean estimate Mn(X), the standard error
is defined as the standard deviation en =

√
Var[Mn(X)]. In our problem, we

use samples Xi to generate Yi = X2
i . For the sample mean Mn(Y ), we need

to find the standard error

en =
√

Var[Mn(Y )] =

√
Var[Y ]

n
. (1)

Since X is a uniform (0, 1) random variable,

E [Y ] = E
[
X2
]

=

∫ 1

0

x2 dx = 1/3, (2)

E
[
Y 2
]

= E
[
X4
]

=

∫ 1

0

x4 dx = 1/5. (3)

Thus Var[Y ] = 1/5−(1/3)2 = 4/45 and the sample mean Mn(Y ) has standard
error

en =

√
4

45n
. (4)

Problem 10.2.1 Solution

If the average weight of a Maine black bear is 500 pounds with standard
deviation equal to 100 pounds, we can use the Chebyshev inequality to upper
bound the probability that a randomly chosen bear will be more then 200
pounds away from the average.

P [|W − E [W ] | ≥ 200] ≤ Var[W ]

2002
≤ 1002

2002
= 0.25. (1)

287



Problem 10.2.3 Solution

The arrival time of the third elevator is W = X1 + X2 + X3. Since each
Xi is uniform (0, 30), E[Xi] = 15 and Var[Xi] = (30 − 0)2/12 = 75. Thus
E[W ] = 3 E[Xi] = 45, and Var[W ] = 3 Var[Xi] = 225.

(a) By the Markov inequality,

P [W > 75] ≤ E [W ]

75
=

45

75
=

3

5
. (1)

(b) By the Chebyshev inequality,

P [W > 75] = P [W − E [W ] > 30]

≤ P [|W − E [W ]| > 30]

≤ Var [W ]

302
=

1

4
. (2)

Problem 10.2.5 Solution

On each roll of the dice, a success, namely snake eyes, occurs with probability
p = 1/36. The number of trials, R, needed for three successes is a Pascal
(k = 3, p) random variable with

E [R] =
3

p
= 108, Var[R] =

3(1− p)
p2

= 3780. (1)

(a) By the Markov inequality,

P [R ≥ 250] ≤ E [R]

250
=

54

125
= 0.432. (2)

(b) By the Chebyshev inequality,

P [R ≥ 250] = P [R− 108 ≥ 142] = P [|R− 108| ≥ 142]

≤ Var[R]

(142)2
= 0.1875. (3)

288



(c) The exact value is P[R ≥ 250] = 1 −∑249
r=3 PR(r). Since there is no

way around summing the Pascal PMF to find the CDF, this is what
pascalcdf does.

>> 1-pascalcdf(3,1/36,249)

ans =

0.0299

Thus the Markov and Chebyshev inequalities are valid bounds but not
good estimates of P[R ≥ 250].

Problem 10.2.7 Solution

For an N [µ, σ2] random variable X, we can write

P [X ≥ c] = P [(X − µ)/σ ≥ (c− µ)/σ] = P [Z ≥ (c− µ)/σ] . (1)

Since Z is N [0, 1], we can apply the result of Problem 10.2.6 with c replaced
by (c− µ)/σ. This yields

P [X ≥ c] = P [Z ≥ (c− µ)/σ] ≤ e−(c−µ)2/2σ2

(2)

Problem 10.2.9 Solution

This problem is solved completely in the solution to Quiz 10.2! We repeat
that solution here. Since W = X1 + X2 + X3 is an Erlang (n = 3, λ = 1/2)
random variable, Theorem 4.11 says that for any w > 0, the CDF of W
satisfies

FW (w) = 1−
2∑

k=0

(λw)ke−λw

k!
(1)

Equivalently, for λ = 1/2 and w = 20,

P [W > 20] = 1− FW (20)

= e−10

(
1 +

10

1!
+

102

2!

)
= 61e−10 = 0.0028. (2)
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Problem 10.3.1 Solution
X1, X2, . . . are iid random variables each with mean 75 and standard deviation
15.

(a) We would like to find the value of n such that

P [74 ≤Mn(X) ≤ 76] = 0.99. (1)

When we know only the mean and variance of Xi, our only real tool is
the Chebyshev inequality which says that

P [74 ≤Mn(X) ≤ 76] = 1− P [|Mn(X)− E [X]| ≥ 1]

≥ 1− Var [X]

n
= 1− 225

n
≥ 0.99. (2)

This yields n ≥ 22,500.

(b) If each Xi is a Gaussian, the sample mean, Mn(X) will also be Gaussian
with mean and variance

E [Mn′(X)] = E [X] = 75, (3)

Var [Mn′(X)] = Var [X] /n′ = 225/n′ (4)

In this case,

P [74 ≤Mn′(X) ≤ 76] = Φ

(
76− µ
σ

)
− Φ

(
74− µ
σ

)
= Φ(

√
n′/15)− Φ(−

√
n′/15)

= 2Φ(
√
n′/15)− 1 = 0.99. (5)

Thus, n′ = 1,521.

Since even under the Gaussian assumption, the number of samples n′ is so
large that even if the Xi are not Gaussian, the sample mean may be approx-
imated by a Gaussian. Hence, about 1500 samples probably is about right.
However, in the absence of any information about the PDF of Xi beyond the
mean and variance, we cannot make any guarantees stronger than that given
by the Chebyshev inequality.
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Problem 10.3.3 Solution

(a) As n → ∞, Y2n is a sum of a large number of iid random variables, so
we can use the central limit theorem. Since E[Y2n] = n and Var[Y2n] =
2np(1− p) = n/2,

P
[
|Y2n − n| ≤

√
n/2
]

= P
[
Y2n − E [Y2n] ≤

√
n/2
]

= P

[
|Y2n − E [Y2n]|√

Var[Y2n]
≤ 1

]
= P [−1 ≤ Zn ≤ 1] . (1)

By the central limit theorem, Zn = (Y2n − E[Y2n])/
√

Var[Y2n] is con-
verging to a Gaussian (0, 1) random variable Z. Thus

lim
n→∞

P
[
|Y2n − n| ≤

√
n/2
]

= P [−1 ≤ Z ≤ 1]

= Φ(1)− Φ(−1)

= 2Φ(1)− 1 = 0.68. (2)

(b) Note that Y2n/(2n) is a sample mean for 2n samples of Xn. Since
E[Xn] = 1/2, the weak law says that given any ε > 0,

lim
n→∞

P

[∣∣∣∣Y2n

2n
− 1

2

∣∣∣∣ > ε

]
= 0. (3)

An equivalent statement is

lim
n→∞

P [|Y2n − n| > 2nε] = 0. (4)
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Problem 10.3.5 Solution

Given N0, N1, . . ., there are jNj chips used in cookies with j chips. The total
number of chips used is

∑∞
k=0 kNk. You are equally likely to be any one of

the chips in a cookie, so the probability you landed in a cookie with j chips
is

P [J = j] =
jNj∑∞
k=0 kNk

=
j
Nj
n∑∞

k=0 k
Nk
n

. (1)

First, we note that P[J = 0] = 0 since a chip cannot land in a cookie that has
zero chips. Second, we note that Nj/n is the relative frequency of cookies with
j chips out of all cookies. By comparison, PK(j) is the probability a cookie
has j chips. As n→∞, the law of large numbers implies Nj/n→ PK(j). It
follows for j ≥ 1 that as n→∞,

PJ (j)→ jPK (j)∑∞
k=0 kPK (k)

=
j(10)je−10/j!

E [K]
=

(10)j−1e−10

(j − 1)!
. (2)

Problem 10.3.7 Solution

(a) We start by observing that E[R1] = E[X1] = q. Next, we write

Rn =
(n− 1)Rn−1

n
+
Xn

n
. (1)

If follows that

E [Rn|Rn−1 = r] =
(n− 1) E [Rn−1|Rn−1 = r]

n
+

E [Xn|Rn−1 = r]

n

=
(n− 1)r

n
+
r

n
= r. (2)

Thus E[Rn|Rn−1] = Rn−1 and by iterated expectation, E[Rn] = E[Rn−1].
By induction, it follows that E[Rn] = E[R1] = q.
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(b) From the start, R1 = X1 is Gaussian. Given R1 = r, R2 = R1/2+X2/2
where X2 is conditionally Gaussian given R1. Since R1 is Gaussian,
it follows that R1 and X2 are jointly Gaussian. It follows that R2

is also Gaussian since it is a linear combination of jointly Gaussian
random variables. Similarly, Xn is conditionally Gaussian given Rn−1

and thus Xn and Rn−1 are jointly Gaussian. Thus Rn which is a linear
combination of Xn and Rn−1 is Gaussian. Since E[Rn] = q, we can
define σ2

n = Var[Rn] and write the PDF of Rn as

fRn(r) =
1√

2πσ2
n

e−(r−q)2/2σ2
n . (3)

The parameter σ2
n still needs to be determined.

(c) Following the hint, given Rn−1 = r, Rn = (n−1)r/n+Xn/n. It follows
that

E
[
R2
n|Rn−1 = r

]
= E

[(
(n− 1)r

n
+
Xn

n

)2

|Rn−1 = r

]

= E

[
(n− 1)2r2

n2
+ 2r

(n− 1)Xn

n2
+
X2
n

n2
|Rn−1 = r

]
=

(n− 1)2r2

n2
+

2(n− 1)r2

n2
+

E [X2
n|Rn−1 = r]

n2
. (4)

Given Rn−1 = r, Xn is Gaussian (r, 1). Since Var[Xn|Rn−1 = r] = 1,

E
[
X2
n|Rn−1 = r

]
= Var[Xn|Rn−1 = r] + (E [Xn|Rn−1 = r])2

= 1 + r2. (5)

This implies

E
[
R2
n|Rn−1 = r

]
=

(n− 1)2r2

n2
+

2(n− 1)r2

n2
+

1 + r2

n2

= r2 +
1

n2
, (6)
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and thus

E
[
R2
n|Rn−1

]
= R2

n−1 +
1

n2
. (7)

By the iterated expectation,

E
[
R2
n

]
= E

[
R2
n−1

]
+

1

n2
. (8)

Since E[R2
1] = E[X2

1 ] = 1 + q2, it follows that

E
[
R2
n

]
= q2 +

n∑
j=1

1

j2
. (9)

Hence

Var[Rn] = E
[
R2
n

]
− (E [Rn])2 =

n∑
j=1

1

j2
. (10)

Note that Var[Rn] is an increasing sequence and that limn→∞Var[Rn] ≈
1.645.

(d) When the prior ratings have no influence, the review scores Xn are
iid and by the law of large numbers, Rn will converge to q, the “true
quality” of the movie. In our system, the possibility of early mis-
judgments will lead to randomness in the final rating. The eventual
rating Rn = limn→∞Rn is a random variable with E[R] = q and
Var[R] ≈ 1.645. This may or may not be representative of how bad
movies can occasionally get high ratings.

Problem 10.4.1 Solution
For an an arbitrary Gaussian (µ, σ) random variable Y ,

P [µ− σ ≤ Y ≤ µ+ σ] = P [−σ ≤ Y − µ ≤ σ]

= P

[
−1 ≤ Y − µ

σ
≤ 1

]
= Φ(1)− Φ(−1) = 2Φ(1)− 1 = 0.6827. (1)
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Note that Y can be any Gaussian random variable, including, for example,
Mn(X) when X is Gaussian. When X is not Gaussian, the same claim holds
to the extent that the central limit theorem promises that Mn(X) is nearly
Gaussian for large n.

Problem 10.4.3 Solution

This problem is really very simple. If we let Y = X1X2 and for the ith trial,
let Yi = X1(i)X2(i), then R̂n = Mn(Y ), the sample mean of random variable
Y . By Theorem 10.9, Mn(Y ) is unbiased. Since Var[Y ] = Var[X1X2] < ∞,
Theorem 10.11 tells us that Mn(Y ) is a consistent sequence.

Problem 10.4.5 Solution

Note that we can write Yk as

Yk =

(
X2k−1 −X2k

2

)2

+

(
X2k −X2k−1

2

)2

=
(X2k −X2k−1)2

2
. (1)

Hence,

E [Yk] =
1

2
E
[
X2

2k − 2X2kX2k−1 +X2
2k−1

]
= E

[
X2
]
− (E [X])2 = Var[X]. (2)

Next we observe that Y1, Y2, . . . is an iid random sequence. If this indepen-
dence is not obvious, consider that Y1 is a function of X1 and X2, Y2 is a func-
tion of X3 and X4, and so on. Since X1, X2, . . . is an idd sequence, Y1, Y2, . . .
is an iid sequence. Hence, E[Mn(Y )] = E[Y ] = Var[X], implying Mn(Y ) is
an unbiased estimator of Var[X]. We can use Theorem 10.9 to prove that
Mn(Y ) is consistent if we show that Var[Y ] is finite.Since Var[Y ] ≤ E[Y 2], it
is sufficient to prove that E[Y 2] <∞. Note that

Y 2
k =

X4
2k − 4X3

2kX2k−1 + 6X2
2kX

2
2k−1 − 4X2kX

3
2k−1 +X4

2k−1

4
. (3)
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Taking expectations yields

E
[
Y 2
k

]
=

1

2
E
[
X4
]
− 2 E

[
X3
]

E [X] +
3

2

(
E
[
X2
])2

. (4)

Hence, if the first four moments of X are finite, then Var[Y ] ≤ E[Y 2] < ∞.
By Theorem 10.9, the sequence Mn(Y ) is consistent.

Problem 10.5.1 Solution

X has the Bernoulli (0.9) PMF

PX (x) =


0.1 x = 0,

0.9 x = 1,

0 otherwise.

(1)

(a) E[X] is in fact the same as PX(1) because X is Bernoulli.

(b) We can use the Chebyshev inequality to find

P [|M90(X)− PX(1)| ≥ .05] = P [|M90(X)− E [X] | ≥ .05]

≤ α. (2)

In particular, the Chebyshev inequality states that

α =
σ2
X

90(.05)2
=

.09

90(.05)2
= 0.4. (3)

(c) Now we wish to find the value of n such that

P [|Mn(X)− PX(1)| ≥ .03] ≤ 0.1. (4)

From the Chebyshev inequality, we write

0.1 =
σ2
X

n(.03)2
. (5)

Since σ2
X = 0.09, solving for n yields n = 100.
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Problem 10.5.3 Solution

First we observe that the interval estimate can be expressed as∣∣∣P̂n(A)− P [A]
∣∣∣ < 0.05. (1)

Since P̂n(A) = Mn(XA) and E[Mn(XA)] = P[A], we can use Theorem 10.5(b)
to write

P
[∣∣∣P̂n(A)− P [A]

∣∣∣ < 0.05
]
≥ 1− Var[XA]

n(0.05)2
. (2)

Note that Var[XA] = P[A](1 − P[A]) ≤ 0.25. Thus for confidence coefficient
0.9, we require that

1− Var[XA]

n(0.05)2
≥ 1− 0.25

n(0.05)2
≥ 0.9. (3)

This implies n ≥ 1,000 samples are needed.

Problem 10.6.1 Solution

In this problem, we have to keep straight that the Poisson expected value
α = 1 is a different α than the confidence coefficient 1 − α. That said, we
will try avoid using α for the confidence coefficient. Using X to denote the
Poisson (α = 1) random variable, the trace of the sample mean is the sequence
M1(X),M2(X), . . . The confidence interval estimate of α has the form

Mn(X)− c ≤ α ≤Mn(X) + c. (1)

The confidence coefficient of the estimate based on n samples is

P [Mn(X)− c ≤ α ≤Mn(X) + c] = P [α− c ≤Mn(X) ≤ α + c]

= P [−c ≤Mn(X)− α ≤ c] . (2)

Since Var[Mn(X)] = Var[X]/n = 1/n, the 0.9 confidence interval shrinks
with increasing n. In particular, c = cn will be a decreasing sequence. Using
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a Central Limit Theorem approximation, a 0.9 confidence implies

0.9 = P

[
−cn√

1/n
≤ Mn(X)− α√

1/n
≤ cn√

1/n

]
= Φ(cn

√
n)− Φ(−cn

√
n) = 2Φ(cn

√
n)− 1. (3)

Equivalently, Φ(cn
√
n) = 0.95 or cn = 1.65/

√
n.

Thus, as a function of the number of samples n, we plot three functions:
the sample mean Mn(X), and the upper limit Mn(X) + 1.65/

√
n and lower

limit Mn(X)− 1.65/
√
n of the 0.9 confidence interval. We use the Matlab

function poissonmeanseq(n) to generate these sequences for n sample values.

function M=poissonmeanseq(n);

x=poissonrv(1,n);

nn=(1:n)’;

M=cumsum(x)./nn;

r=(1.65)./sqrt(nn);

plot(nn,M,nn,M+r,nn,M-r);

Here are two output graphs:
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Problem 10.6.3 Solution
First, we need to determine whether the relative performance of the two
estimators depends on the actual value of λ. To address this, we observe that
if Y is an exponential (1) random variable, then Theorem 6.3 tells us that
X = Y/λ is an exponential (λ) random variable. Thus if Y1, Y2, . . . are iid
samples of Y , then Y1/λ, Y2/λ, . . . are iid samples of X. Moreover, the sample
mean of X is

Mn(X) =
1

nλ

n∑
i=1

Yi =
1

λ
Mn(Y ). (1)

Similarly, the sample variance of X satisfies

V ′n(X) =
1

n− 1

n∑
i=1

(Xi −Mn(X))2

=
1

n− 1

n∑
i=1

(
Yi
λ
− 1

λ
Mn(Y )

)2

=
V ′n(Y )

λ2
. (2)

We can conclude that

λ̂ =
λ

Mn(Y )
, λ̃ =

λ√
V ′n(Y )

. (3)

For λ 6= 1, the estimators λ̂ and λ̃ are just scaled versions of the estimators
for the case λ = 1. Hence it is sufficient to consider only the λ = 1 case. The
function z=lamest(n,m) returns the estimation errors for m trials of each
estimator where each trial uses n iid exponential (1) samples.

function z=lamest(n,m);

x=exponentialrv(1,n*m);

x=reshape(x,n,m);

mx=sum(x)/n;

MX=ones(n,1)*mx;

vx=sum((x-MX).^2)/(n-1);

z=[(1./mx); (1./sqrt(vx))]-1;

In lamest.m, each column of matrix
x represents one trial. Note that mx

is a row vector such that mx(i) is the
sample mean for trial i. The matrix MX

has mx(i) for every element in column
i. Thus vx is a row vector such that
vx(i) is the sample variance for trial
i.
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Finally, z is a 2×m matrix such that column i of z records the estimation
errors for trial i. If λ̂i and λ̃i are the estimates for for trial i, then z(1,i) is
the error Ẑi = λ̂i − 1 while z(2,i) is the error Z̃i = λ̃i − 1.

Now that we can simulate the errors generated by each estimator, we need
to determine which estimator is better. We start by using the commands

z=lamest(1000,1000);

plot(z(1,:),z(2,:),’bd’)

to perform 1,000 trials, each using 1,000 samples. The plot command gener-
ates a scatter plot of the error pairs (Ẑi, Z̃i) for each trial. Here is an example
of the resulting scatter plot:

−0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.1

0

0.1

0.2

z(1,i)

z(
2,

i)

In the scatter plot, each diamond marks an independent pair (Ẑ, Z̃) where Ẑ
is plotted on the x-axis and Z̃ is plotted on the y-axis. (Although it is outside
the scope of this solution, it is interesting to note that the errors Ẑ and Z̃
appear to be positively correlated.) From the plot, it may not be obvious that
one estimator is better than the other. However, by reading the axis ticks
carefully, one can observe that it appears that typical values for Ẑ are in the
interval (−0.05, 0.05) while typical values for Z̃ are in the interval (−0.1, 0.1).
This suggests that Ẑ may be superior.To verify this observation, we calculate
the sample mean for each squared errors

Mm(Ẑ2) =
1

m

m∑
i=1

Ẑ2
i , Mm(Z̃2) =

1

m

m∑
i=1

Z̃2
i . (4)

From our Matlab experiment with m = 1,000 trials, we calculate
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>> sum(z.^2,2)/1000

ans =

0.0010

0.0021

That is, M1,000(Ẑ2) = 0.0010 and M1,000(Z̃2) = 0.0021. In fact, one can show
(with a lot of work) for large m that

Mm(Ẑ2) ≈ 1/m, Mm(Z̃2) = 2/m, (5)

and that

lim
m→∞

Mm(Z̃2)

Mm(Ẑ2)
= 2. (6)

In short, the mean squared error of the λ̃ estimator is twice that of the λ̂
estimator.

Problem 10.6.5 Solution

The difficulty in this problem is that although E[X] exists, EX2 and higher
order moments are infinite. Thus Var[X] is also infinite. It also follows for
any finite n that the sample mean Mn(X) has infinite variance. In this case,
we cannot apply the Chebyshev inequality to the sample mean to show the
convergence in probability of Mn(X) to E[X].

If limn→∞ P[|Mn(X)− E[X]| ≥ ε] = p, then there are two distinct possibil-
ities:

• p > 0, or

• p = 0 but the Chebyshev inequality isn’t a sufficient powerful technique
to verify this fact.

To resolve whether p = 0 (and the sample mean converges to the expected
value) one can spend time trying to prove either p = 0 or p > 0. At this point,
we try some simulation experiments to see if the experimental evidence points
one way or the other.
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As requested by the problem, the Matlab function samplemeantest(n,a)

simulates one hundred traces of the sample mean when E[X] = a. Each trace
is a length n sequence M1(X),M2(X), . . . ,Mn(X).

function mx=samplemeantest(n,a);

u=rand(n,100);

x=a-2+(1./sqrt(1-u));

d=((1:n)’)*ones(1,100);

mx=cumsum(x)./d;

plot(mx);

xlabel(’\it n’); ylabel(’\it M_n(X)’);

axis([0 n a-1 a+1]);

The n× 100 matrix x consists of iid samples of X. Taking cumulative sums
along each column of x, and dividing row i by i, each column of mx is a length
n sample mean trace. we then plot the traces.

The following graph was generated by samplemeantest(1000,5):
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 M
n(X

)

Frankly, it is difficult to draw strong conclusions from the graph. If the
sample sequences Mn(X) are converging to E[X], the convergence is fairly
slow. Even after averaging 1,000 samples, typical values for the sample mean
appear to range from a− 0.5 to a+ 0.5. There may also be outlier sequences
which are still off the charts since we truncated the y-axis range. On the
other hand, the sample mean sequences do not appear to be diverging (which
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is also possible since Var[X] = ∞.) Note the above graph was generated
using 105 sample values. Repeating the experiment with more samples, say
samplemeantest(10000,5), will yield a similarly inconclusive result. Even
if your version of Matlab can support the generation of 100 times as many
samples, you won’t know for sure whether the sample mean sequence always
converges. On the other hand, the experiment is probably enough that if you
pursue the analysis, you should start by trying to prove that p = 0.
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Problem Solutions – Chapter 11

Problem 11.1.1 Solution

Assuming the coin is fair, we must choose a rejection region R such that
α = P[R] = 0.05. We can choose a rejection region R = {L > r}. What
remains is to choose r so that P[R] = 0.05. Note that L > l if we first observe
l tails in a row. Under the hypothesis that the coin is fair, l tails in a row
occurs with probability

P [L > l] = (1/2)l. (1)

Thus, we need

P [R] = P [L > r] = 2−r = 0.05. (2)

Thus, r = − log2(0.05) = log2(20) = 4.32. In this case, we reject the hy-
pothesis that the coin is fair if L ≥ 5. The significance level of the test is
α = P[L > 4] = 2−4 = 0.0625 which close to but not exactly 0.05.

The shortcoming of this test is that we always accept the hypothesis that
the coin is fair whenever heads occurs on the first, second, third or fourth flip.
If the coin was biased such that the probability of heads was much higher than
1/2, say 0.8 or 0.9, we would hardly ever reject the hypothesis that the coin
is fair. In that sense, our test cannot identify that kind of biased coin.

Problem 11.1.3 Solution

We reject the null hypothesis when the call rate M is too high. Note that

E [M ] = E [Ni] = 2.5, Var[M ] =
Var[Ni]

T
=

2.5

T
. (1)

For large T , we use a central limit theorem approximation to calculate the
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rejection probability

P [R] = P [M ≥ m0]

= P

[
M − 2.5

σM
≥ m0 − 2.5

σM

]

= 1− Φ

m0 − 2.5√
2.5
T

 = 0.05. (2)

It follows that

m0 − 2.5√
2.5/T

= 1.65 =⇒ m0 = 2.5 +
1.65
√

2.5√
T

= 2.5 +
2.6√
T
. (3)

That is, we reject the null hypothesis whenever

M ≥ 2.5 +
2.6√
T
. (4)

As T gets larger, smaller deviations ofM above the expected value E[M ] = 2.5
are sufficient to reject the null hypothesis.

Problem 11.1.5 Solution

In order to test just a small number of pacemakers, we test n pacemakers and
we reject the null hypothesis if any pacemaker fails the test. Moreover, we
choose the smallest n such that we meet the required significance level of the
test.

The number of pacemakers that fail the test is X, a binomial (n, q0 = 10−4)
random variable. The significance level of the test is

α = P [X > 0] = 1− P [X = 0] = 1− (1− q0)n. (1)

For a significance level α = 0.01, we have that

n =
ln(1− α)

ln(1− q0)
= 100.5. (2)
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Comment: For α = 0.01, keep in mind that there is a one percent proba-
bility that a normal factory will fail the test. That is, a test failure is quite
unlikely if the factory is operating normally.

Problem 11.1.7 Solution

A reasonable test would reject the null hypothesis that the plant is operating
normally if one or more of the chips fail the one-day test. Exactly how
many shold be tested and how many failures N are needed to reject the null
hypothesis would depend on the significance level of the test.

(a) The lifetime of a chip is X, an exponential (λ) random variable with
λ = (T/200)2. The probability p that a chip passes the one-day test is

p = P [X ≥ 1/365] = e−λ/365. (1)

For an m chip test, the significance level of the test is

α = P [N > 0] = 1− P [N = 0]

= 1− pm = 1− e−mλ/365. (2)

(b) At T = 100◦, λ = 1/4 and we obtain a significance level of α = 0.01 if

m = −365 ln(0.99)

λ
=

3.67

λ
= 14.74. (3)

In fact, at m = 15 chips, the significance level is α = 0.0102.

(c) Raising T raises the failure rate λ = (T/200)2 and thus lowers m =
3.67/λ. In essence, raising the temperature makes a “tougher” test and
thus requires fewer chips to be tested for the same significance level.
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Problem 11.1.9 Solution

Since the null hypothesis H0 asserts that the two exams have the same mean
and variance, we reject H0 if the difference in sample means is large. That is,
R = {|D| ≥ d0}.

Under H0, the two sample means satisfy

E [MA] = E [MB] = µ,

Var[MA] = Var[MB] =
σ2

n
=

100

n
. (1)

Since n is large, it is reasonable to use the Central Limit Theorem to ap-
proximate MA and MB as Gaussian random variables. Since MA and MB are
independent, D is also Gaussian with

E [D] = E [MA]− E [MB] = 0,

Var[D] = Var[MA] + Var[MB] =
200

n
. (2)

Under the Gaussian assumption, we can calculate the significance level of the
test as

α = P [|D| ≥ d0] = 2 (1− Φ(d0/σD)) . (3)

For α = 0.05, Φ(d0/σD) = 0.975, or d0 = 1.96σD = 1.96
√

200/n. If n = 100
students take each exam, then d0 = 2.77 and we reject the null hypothesis
that the exams are the same if the sample means differ by more than 2.77
points.

Problem 11.2.1 Solution

For the MAP test, we must choose acceptance regions A0 and A1 for the two
hypotheses H0 and H1. From Theorem 11.2, the MAP rule is

n ∈ A0 if
PN |H0(n)

PN |H1(n)
≥ P [H1]

P [H0]
; n ∈ A1 otherwise. (1)
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Since PN |Hi(n) = λni e
−λi/n!, the MAP rule becomes

n ∈ A0 if

(
λ0

λ1

)n
e−(λ0−λ1) ≥ P [H1]

P [H0]
; n ∈ A1 otherwise. (2)

By taking logarithms and assuming λ1 > λ0 yields the final form of the MAP
rule

n ∈ A0 if n ≤ n∗ =
λ1 − λ0 + ln(P [H0] /P [H1])

ln(λ1/λ0)
; n ∈ A1 otherwise. (3)

From the MAP rule, we can get the ML rule by setting the a priori probabil-
ities to be equal. This yields the ML rule

n ∈ A0 if n ≤ n∗ =
λ1 − λ0

ln(λ1/λ0)
; n ∈ A1 otherwise. (4)

Problem 11.2.3 Solution

By Theorem 11.5, the decision rule is

n ∈ A0 if L(n) =
PN |H0(n)

PN |H1(n)
≥ γ; n ∈ A1 otherwise, (1)

where γ is the largest possible value such that
∑

L(n)<γ PN |H0(n) ≤ α.

Given H0, N is Poisson (a0 = 1,000) while given H1, N is Poisson (a1 =
1,300). We can solve for the acceptance set A0 by observing that n ∈ A0 if

PN |H0(n)

PN |H1(n)
=
an0e

−a0/n!

an1e
−a1/n!

≥ γ. (2)

Cancelling common factors and taking the logarithm, we find that n ∈ A0 if

n ln
a0

a1

≥ (a0 − a1) + ln γ. (3)

Since ln(a0/a1) < 0, dividing through reverses the inequality and shows that

n ∈ A0 if n ≤ n∗ =
(a0 − a1) + ln γ

ln(a0/a1)
=

(a1 − a0)− ln γ

ln(a1/a0)
; n ∈ A1 otherwise.
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However, we still need to determine the constant γ. In fact, it is easier to
work with the threshold n∗ directly. Note that L(n) < γ if and only if n > n∗.
Thus we choose the smallest n∗ such that

P [N > n∗|H0] =
∑
n>n∗

PN |H0(n)α ≤ 10−6. (4)

To find n∗ a reasonable approach would be to use Central Limit Theorem
approximation since given H0, N is a Poisson (1,000) random variable, which
has the same PDF as the sum on 1,000 independent Poisson (1) random
variables. Given H0, N has expected value a0 and variance a0. From the
CLT,

P [N > n∗|H0] = P

[
N − a0√

a0

>
n∗ − a0√

a0

|H0

]
≈ Q

(
n∗ − a0√

a0

)
≤ 10−6. (5)

From Table 4.3, Q(4.75) = 1.02× 10−6 and Q(4.76) < 10−6, implying

n∗ = a0 + 4.76
√
a0 = 1150.5. (6)

On the other hand, perhaps the CLT should be used with some caution since
α = 10−6 implies we are using the CLT approximation far from the center
of the distribution. In fact, we can check out answer using the poissoncdf

functions:

>> nstar=[1150 1151 1152 1153 1154 1155];

>> (1.0-poissoncdf(1000,nstar))’

ans =

1.0e-005 *

0.1644 0.1420 0.1225 0.1056 0.0910 0.0783

>>

Thus we see that n∗1154. Using this threshold, the miss probability is

P [N ≤ n∗|H1] = P [N ≤ 1154|H1]

= poissoncdf(1300,1154) = 1.98× 10−5. (7)

Keep in mind that this is the smallest possible PMISS subject to the constraint
that PFA ≤ 10−6.
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Problem 11.2.5 Solution

Given H0, X is Gaussian (0, 1). Given H1, X is Gaussian (v, 1). By Theo-
rem 11.4, the Neyman-Pearson test is

x ∈ A0 if L(x) =
fX|H0(x)

fX|H1(x)
=

e−x
2/2

e−(x−v)2/2
≥ γ; x ∈ A1 otherwise. (1)

This rule simplifies to

x ∈ A0 if L(x) = e−[x2−(x−v)2]/2 = e−vx+v2/2 ≥ γ; x ∈ A1 otherwise. (2)

Taking logarithms, the Neyman-Pearson rule becomes

x ∈ A0 if x ≤ x0 =
v

2
− 1

v
ln γ; x ∈ A1 otherwise. (3)

The choice of γ has a one-to-one correspondence with the choice of the thresh-
old x0. Moreoever L(x) ≥ γ if and only if x ≤ x0. In terms of x0, the false
alarm probability is

PFA = P [L(X) < γ|H0] = P [X ≥ x0|H0] = Q(x0). (4)

Thus we choose x0 such that Q(x0) = α.

Problem 11.2.7 Solution

Given H0, Mn(T ) has expected value E[V ]/n = 3/n and variance Var[V ]/n =
9/n. Given H1, Mn(T ) has expected value E[D]/n = 6/n and variance
Var[D]/n = 36/n.

(a) Using a Central Limit Theorem approximation, the false alarm proba-
bility is

PFA = P [Mn(T ) > t0|H0]

= P

[
Mn(T )− 3√

9/n
>
t0 − 3√

9/n

]
= Q(

√
n[t0/3− 1]). (1)

310



(b) Again, using a CLT Approximation, the miss probability is

PMISS = P [Mn(T ) ≤ t0|H1]

= P

[
Mn(T )− 6√

36/n
≤ t0 − 6√

36/n

]
= Φ(

√
n[t0/6− 1]). (2)

(c) From Theorem 11.6, the maximum likelihood decision rule is

t ∈ A0 if
fMn(T )|H0(t)

fMn(T )|H1(t)
≥ 1; t ∈ A1 otherwise. (3)

We will see shortly that using a CLT approximation for the likelihood
functions is something of a detour. Nevertheless, with a CLT approxi-
mation, the likelihood functions are

fMn(T )|H0(t) =

√
n

18π
e−n(t−3)2/18,

fMn(T )|H1(t) =

√
n

72π
e−n(t−6)2/72. (4)

From the CLT approximation, the ML decision rule is

t ∈ A0 if

√
72

18

e−n(t−3)2/18

e−n(t−6)2/72
≥ 1; t ∈ A1 otherwise. (5)

This simplifies to

t ∈ A0 if 2e−n[4(t−3)2−(t−6)2]/72 ≥ 1; t ∈ A1 otherwise. (6)

After more algebra, this rule further simplifies to

t ∈ A0 if t2 − 4t− 24 ln 2

n
≤ 0; t ∈ A1 otherwise. (7)
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Since the quadratic t2 − 4t − 24 ln(2)/n has two zeros, we use the
quadratic formula to find the roots. One root corresponds to a neg-
ative value of t and can be discarded since Mn(T ) ≥ 0. Thus the ML
rule (for n = 9) becomes

t ∈ A0 if t ≤ tML = 2 + 2
√

1 + 6 ln(2)/n = 4.42; t ∈ A1 otherwise.

The negative root of the quadratic is the result of the Gaussian as-
sumption which allows for a nonzero probability that Mn(T ) will be
negative. In this case, hypothesis H1 which has higher variance be-
comes more likely. However, since Mn(T ) ≥ 0, we can ignore this root
since it is just an artifact of the CLT approximation.

In fact, the CLT approximation gives an incorrect answer. Note that
Mn(T ) = Yn/n where Yn is a sum of iid exponential random variables.
Under hypothesis H0, Yn is an Erlang (n, λ0 = 1/3) random variable.
Under hypothesis H1, Yn is an Erlang (n, λ1 = 1/6) random variable.
Since Mn(T ) = Yn/n is a scaled version of Yn, Theorem 6.3 tells us
that given hypothesis Hi, Mn(T ) is an Erlang (n, nλi) random variable.
Thus Mn(T ) has likelihood functions

fMn(T )|Hi(t) =

{
(nλi)

ntn−1e−nλit

(n−1)!
t ≥ 0,

0 otherwise.
(8)

Using the Erlang likelihood functions, the ML rule becomes

t ∈

A0 if
fMn(T )|H0(t)

fMn(T )|H1(t)
=

(
λ0

λ1

)n
e−n(λ0−λ1)t ≥ 1;

A1 otherwise.

. (9)

This rule simplifies to

t ∈ A0 if t ≤ tML; t ∈ A1 otherwise. (10)

where

tML =
ln(λ0/λ1)

λ0 − λ1

= 6 ln 2 = 4.159. (11)
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Since 6 ln 2 = 4.159, this rule is not the same as the rule derived using
a CLT approximation. Using the exact Erlang PDF, the ML rule does
not depend on n. Moreoever, even if n→∞, the exact Erlang-derived
rule and the CLT approximation rule remain different. In fact, the
CLT-based rule is simply an approximation to the correct rule. This
highlights that we should first check whether a CLT approximation is
necessary before we use it.

(d) In this part, we will use the exact Erlang PDFs to find the MAP decision
rule. From 11.2, the MAP rule is

t ∈

A0 if
fMn(T )|H0(t)

fMn(T )|H1(t)
=

(
λ0

λ1

)n
e−n(λ0−λ1)t ≥ P [H1]

P [H0]
;

A1 otherwise.

(12)

Since P[H0] = 0.8 and P[H1] = 0.2, the MAP rule simplifies to

t ∈

A0 if t ≤ tMAP =
ln λ0

λ1
− 1

n
ln P[H1]

P[H0]

λ0 − λ1

= 6

[
ln 2 +

ln 4

n

]
;

A1 otherwise.

(13)

For n = 9, tMAP = 5.083.

(e) Although we have seen it is incorrect to use a CLT approximation to
derive the decision rule, the CLT approximation used in parts (a) and
(b) remains a good way to estimate the false alarm and miss probabili-
ties. However, given Hi, Mn(T ) is an Erlang (n, nλi) random variable.
In particular, given H0, Mn(T ) is an Erlang (n, n/3) random variable
while given H1, Mn(T ) is an Erlang (n, n/6). Thus we can also use
erlangcdf for an exact calculation of the false alarm and miss proba-
bilities. To summarize the results of parts (a) and (b), a threshold t0
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implies that

PFA = P [Mn(T ) > t0|H0]

= 1-erlangcdf(n,n/3,t0) ≈ Q(
√
n[t0/3− 1]), (14)

PMISS = P [Mn(T ) ≤ t0|H1]

= erlangcdf(n,n/6,t0) ≈ Φ(
√
n[t0/6− 1]). (15)

Here is a program that generates the receiver operating curve.

%voicedatroc.m

t0=1:0.1:8’;

n=9;

PFA9=1.0-erlangcdf(n,n/3,t0);

PFA9clt=1-phi(sqrt(n)*((t0/3)-1));

PM9=erlangcdf(n,n/6,t0);

PM9clt=phi(sqrt(n)*((t0/6)-1));

n=16;

PFA16=1.0-erlangcdf(n,n/3,t0);

PFA16clt=1.0-phi(sqrt(n)*((t0/3)-1));

PM16=erlangcdf(n,n/6,t0);

PM16clt=phi(sqrt(n)*((t0/6)-1));

plot(PFA9,PM9,PFA9clt,PM9clt,PFA16,PM16,PFA16clt,PM16clt);

axis([0 0.8 0 0.8]);

legend(’Erlang n=9’,’CLT n=9’,’Erlang n=16’,’CLT n=16’);

Here are the resulting ROCs.
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Both the true curve and CLT-based approximations are shown. The
graph makes it clear that the CLT approximations are somewhat in-
naccurate. It is also apparent that the ROC for n = 16 is clearly better
than for n = 9.

Problem 11.2.9 Solution

Given hypothesis H0 that X = 0, Y = W is an exponential (λ = 1) random
variable. Given hypothesis H1 that X = 1, Y = V + W is an Erlang (n =
2, λ = 1) random variable. That is,

fY |H0(y) =

{
e−y y ≥ 0,

0 otherwise,
fY |H1(y) =

{
ye−y y ≥ 0,

0 otherwise.
(1)

The probability of a decoding error is minimized by the MAP rule. Since
P[H0] = P[H1] = 1/2, the MAP rule is

y ∈ A0 if
fY |H0(y)

fY |H1(y)
=

e−y

ye−y
≥ P [H1]

P [H0]
= 1; y ∈ A1 otherwise. (2)

Thus the MAP rule simplifies to

y ∈ A0 if y ≤ 1; y ∈ A1 otherwise. (3)

The probability of error is

PERR = P [Y > 1|H0] P [H0] + P [Y ≤ 1|H1] P [H1]

=
1

2

∫ ∞
1

e−y dy +
1

2

∫ 1

0

ye−y dy

=
e−1

2
+

1− 2e−1

2
=

1− e−1

2
. (4)

Problem 11.2.11 Solution
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(a) Since Y is continuous, the conditioning event is y < Y ≤ y + dy. We
then write

P [X = 1|y < Y ≤ y + dy]

=
P [y < Y ≤ y + dy|X = 1] P [X = 1]

P [y < Y ≤ y + dy]

=
1
2
fY|X (y|1) dy

1
2
fY|X (y|1) dy + 1

2
fY|X (y| − 1) dy

. (1)

We conclude that

P [X = 1|Y = y] =
fY|X (y|1)

fY|X (y|1) + fY|X (y| − 1)
=

1

1 +
fY|X(y|−1)

fY|X(y|1)

. (2)

Given X = x, Yi = x+Wi and

fYi|X (yi|x) =
1√
2π
e(yi−x)2/2. (3)

Since the Wi are iid and independent of X, given X = x, the Yi are
conditionally iid. That is,

fY|X (y|x) =
n∏
i=1

fYi|X (yi|x) =
1

(2π)n/2
e−

∑n
i=1(yi−x)2/2. (4)

This implies

L(y) =
fY|X (y| − 1)

fY|X (y|1)
=
e−

∑n
i=1(yi+1)2/2

e−
∑n
i=1(yi−1)2/2

= e−
∑n
i=1[(yi+1)2−(yi−1)2]/2 = e−2

∑n
i=1 yi (5)

and that

P [X = 1|Y = y] =
1

1 + L(y)
=

1

1 + e−2
∑n
i=1 yi

. (6)
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(b)

Pe = P [X∗ 6= X|X = 1] = P [X∗ = −1|X = 1]

= P

[
1

1 + L(Y)
<

1

2
|X = 1

]
= P [L(Y) > 1|X = 1]

= P
[
e−2

∑n
i=1 Yi > 1|X = 1

]
= P

[
n∑
i=1

Yi < 0|X = 1

]
. (7)

Given X = 1, Yi = 1 +Wi and
∑n

i=1 Yi = n+W where W =
∑n

i=1Wn

is a Gaussian (0,
√
n) random variable. Since, W is independent of X,

Pe = P [n+W < 0|X = 1] = P [W < −n] = P [W > n] = Q(
√
n). (8)

(c) First we observe that we decide X∗ = 1 on stage n iff

X̂n(Y) > 1− ε⇒ 2 P [X = 1|Y = y]− 1 < 1− ε
⇒ P [X = 1|Y = y] > 1− ε/2 = ε2. (9)

However, when we decide X∗ = 1 given Y = y, the probability of a
correct decision is P[X = 1|Y = y]. The probability of an error thus
satisfies

Pe = 1− P [X = 1|Y = y] < ε/2. (10)

This answer is simple if the logic occurs to you. In some ways, the
following lower bound derivation is more straightforward. If X = 1, an
error occurs after transmission n = 1 if X̂1(y) < −1 + ε. Thus

Pe ≥ P
[
X̂1(y) < −1 + ε|X = 1

]
= P

[
1− L(y)

1 + L(y)
< −1 + ε|X = 1

]
= P [L(y) > (2/ε)− 1|X = 1] . (11)
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For n = 1, L(y) = e−2Y1 = e−2(X+W1). This implies

Pe ≥ P
[
e−2(X+W1) > 2/ε− 1|X = 1

]
= P

[
1 +W1 < −

1

2
ln

(
2

ε
− 1

)]
= P

[
W1 < −1− ln

√
2

ε
− 1

]
= Q

(
1 +

√
2

ε
− 1

)
= ε1. (12)

Problem 11.2.13 Solution

The key to this problem is to observe that

P [A0|H0] = 1− P [A1|H0] , P [A1|H1] = 1− P [A0|H1] . (1)

The total expected cost can be written as

E [C ′] = P [A1|H0] P [H0]C ′10 + (1− P [A1|H0]) P [H0]C ′00

+ P [A0|H1] P [H1]C ′01 + (1− P [A0|H1]) P [H1]C ′11. (2)

Rearranging terms, we have

E [C ′] = P [A1|H0] P [H0] (C ′10 − C ′00) + P [A0|H1] P [H1] (C ′01 − C ′11)

+ P [H0]C ′00 + P [H1]C ′11. (3)

Since P[H0]C ′00+P[H1]C ′11 does not depend on the acceptance sets A0 and A1,
the decision rule that minimizes E[C ′] is the same decision rule that minimizes

E [C ′′] = P [A1|H0] P [H0] (C ′10 − C ′00) + P [A0|H1] P [H1] (C ′01 − C ′11). (4)

The decision rule that minimizes E[C ′′] is the same as the minimum cost test
in Theorem 11.3 with the costs C01 and C10 replaced by the differential costs
C ′01 − C ′11 and C ′10 − C ′00.
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Problem 11.3.1 Solution
Since the three hypotheses H0, H1, and H2 are equally likely, the MAP and
ML hypothesis tests are the same. From Theorem 11.8, the MAP rule is

x ∈ Am if fX|Hm(x) ≥ fX|Hj (x) for all j. (1)

Since N is Gaussian with zero mean and variance σ2
N , the conditional PDF

of X given Hi is

fX|Hi(x) =
1√

2πσ2
N

e−(x−a(i−1))2/2σ2
N . (2)

Thus, the MAP rule is

x ∈ Am if (x− a(m− 1))2 ≤ (x− a(j − 1))2 for all j. (3)

This implies that the rule for membership in A0 is

x ∈ A0 if (x+ a)2 ≤ x2 and (x+ a)2 ≤ (x− a)2. (4)

This rule simplifies to

x ∈ A0 if x ≤ −a/2. (5)

Similar rules can be developed for A1 and A2. These are:

x ∈ A1 if −a/2 ≤ x ≤ a/2, (6)

x ∈ A2 if x ≥ a/2. (7)

To summarize, the three acceptance regions are

A0 = {x|x ≤ −a/2} , A1 = {x| − a/2 < x ≤ a/2} , A2 = {x|x > a/2} . (8)

Graphically, the signal space is one dimensional and the acceptance regions
are
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Just as in the QPSK system of Example 11.13, the additive Gaussian noise
dictates that the acceptance region Ai is the set of observations x that are
closer to si = (i− 1)a than any other sj.
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Problem 11.3.3 Solution
Let Hi denote the hypothesis that symbol ai was transmitted. Since the four
hypotheses are equally likely, the ML tests will maximize the probability of a
correct decision. Given Hi, N1 and N2 are independent and thus X1 and X2

are independent. This implies

fX1,X2|Hi(x1, x2) = fX1|Hi(x1) fX2|Hi(x2)

=
1

2πσ2
e−(x1−si1)2/2σ2

e−(x2−si2)2/2σ2

=
1

2πσ2
e−[(x1−si1)2+(x2−si2)2]/2σ2

. (1)

From Definition 11.2 the acceptance regions Ai for the ML multiple hypothesis
test must satisfy

(x1, x2) ∈ Ai if fX1,X2|Hi(x1, x2) ≥ fX1,X2|Hj (x1, x2) for all j. (2)

Equivalently, the ML acceptance regions are

(x1, x2) ∈ Ai if (x1 − si1)2 + (x2 − si2)2 ≤ min
j

(x1 − sj1)2 + (x2 − sj2)2. (3)

In terms of the vectors x and si, the acceptance regions are defined by the
rule

x ∈ Ai if ‖x− si‖2 ≤ ‖x− sj‖2. (4)

Just as in the case of QPSK, the acceptance region Ai is the set of vectors x
that are closest to si.

Problem 11.3.5 Solution

(a) Hypothesis Hi is that X = si+N, where N is a Gaussian random vector
independent of which signal was transmitted. Thus, given Hi, X is a
Gaussian (si, σ

2I) random vector. Since X is two-dimensional,

fX|Hi(x) =
1

2πσ2
e−

1
2

(x−si)′σ2I−1(x−si) =
1

2πσ2
e−

1
2σ2
‖x−si‖2 . (1)
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Since the hypotheses Hi are equally likely, the MAP and ML rules are
the same and achieve the minimum probability of error. In this case,
from the vector version of Theorem 11.8, the MAP rule is

x ∈ Am if fX|Hm(x) ≥ fX|Hj (x) for all j. (2)

Using the conditional PDFs fX|Hi(x), the MAP rule becomes

x ∈ Am if ‖x− sm‖2 ≤ ‖x− sj‖2 for all j. (3)
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In terms of geometry, the interpretation is
that all vectors x closer to sm than to any
other signal sj are assigned to Am. In this
problem, the signal constellation (i.e., the set
of vectors si) is the set of vectors on the circle
of radius E. The acceptance regions are the
“pie slices” around each signal vector.

(b) Consider the following sketch to determine d.

X
1

X
2

s
0

d

E
1/2

q/2

Geometrically, the largest d such that ‖x− si‖ ≤
d defines the largest circle around si that can be
inscribed into the pie slice Ai. By symmetry,
this is the same for every Ai, hence we exam-
ine A0. Each pie slice has angle θ = 2π/M .
Since the length of each signal vector is

√
E,

the sketch shows that sin(θ/2) = d/
√
E. Thus

d =
√
E sin(π/M).

(c) By symmetry, PERR is the same as the conditional probability of error
1− P[Ai|Hi], no matter which si is transmitted. Let B denote a circle
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of radius d at the origin and let Bi denote the circle of radius d around
si. Since B0 ⊂ A0,

P [A0|H0] = P [X ∈ A0|H0] ≥ P [X ∈ B0|H0] = P [N ∈ B] . (4)

Since the components of N are iid Gaussian (0, σ2) random variables,

P [N ∈ B] =

∫∫
B

fN1,N2(n1, n2) dn1 dn2

=
1

2πσ2

∫∫
B

e−(n2
1+n2

2)/2σ2

dn1 dn2. (5)

By changing to polar coordinates,

P [N ∈ B] =
1

2πσ2

∫ d

0

∫ 2π

0

e−r
2/2σ2

r dθ dr

=
1

σ2

∫ d

0

re−r
2/2σ2

r dr

= −e−r2/2σ2
∣∣∣d
0

= 1− e−d2/2σ2

= 1− e−E sin2(π/M)/2σ2

. (6)

Thus

PERR = 1− P [A0|H0] ≤ 1− P [N ∈ B] = e−E sin2(π/M)/2σ2

. (7)

Problem 11.3.7 Solution

Let pi = P[Hi]. From Theorem 11.8, the MAP multiple hypothesis test is

(x1, x2) ∈ Ai if pifX1,X2|Hi(x1, x2) ≥ pjfX1,X2|Hj (x1, x2) for all j. (1)

From Example 11.13, the conditional PDF of X1, X2 given Hi is

fX1,X2|Hi(x1, x2) =
1

2πσ2
e−[(x1−

√
E cos θi)

2+(x2−
√
E sin θi)

2]/2σ2

. (2)

Using this conditional joint PDF, the MAP rule becomes
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• (x1, x2) ∈ Ai if for all j,

− (x1 −
√
E cos θi)

2 + (x2 −
√
E sin θi)

2

2σ2

+
(x1 −

√
E cos θj)

2 + (x2 −
√
E sin θj)

2

2σ2
≥ ln

pj
pi
. (3)

Expanding the squares and using the identity cos2 θ + sin2 θ = 1 yields the
simplified rule

• (x1, x2) ∈ Ai if for all j,

x1[cos θi − cos θj] + x2[sin θi − sin θj] ≥
σ2

√
E

ln
pj
pi
. (4)

Note that the MAP rules define linear constraints in x1 and x2. Since θi =
π/4 + iπ/2, we use the following table to enumerate the constraints:

cos θi sin θi

i = 0 1/
√

2 1/
√

2

i = 1 −1/
√

2 1/
√

2

i = 2 −1/
√

2 −1/
√

2

i = 3 1/
√

2 −1/
√

2

(5)

To be explicit, to determine whether (x1, x2) ∈ Ai, we need to check the MAP
rule for each j 6= i. Thus, each Ai is defined by three constraints. Using the
above table, the acceptance regions are

• (x1, x2) ∈ A0 if

x1 ≥
σ2

√
2E

ln
p1

p0

, x2 ≥
σ2

√
2E

ln
p3

p0

, x1 + x2 ≥
σ2

√
2E

ln
p2

p0

. (6)
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• (x1, x2) ∈ A1 if

x1 ≤
σ2

√
2E

ln
p1

p0

, x2 ≥
σ2

√
2E

ln
p2

p1

, −x1 + x2 ≥
σ2

√
2E

ln
p3

p1

. (7)

• (x1, x2) ∈ A2 if

x1 ≤
σ2

√
2E

ln
p2

p3

, x2 ≤
σ2

√
2E

ln
p2

p1

, x1 + x2 ≥
σ2

√
2E

ln
p2

p0

. (8)

• (x1, x2) ∈ A3 if

x1 ≥
σ2

√
2E

ln
p2

p3

, x2 ≤
σ2

√
2E

ln
p3

p0

, −x1 + x2 ≥
σ2

√
2E

ln
p2

p3

. (9)

Using the parameters

σ = 0.8, E = 1, p0 = 1/2, p1 = p2 = p3 = 1/6, (10)

the acceptance regions for the MAP rule are

A0 = {(x1, x2)|x1 ≥ −0.497, x2 ≥ −0.497, x1 + x2 ≥ −0.497} , (11)

A1 = {(x1, x2)|x1 ≤ −0.497, x2 ≥ 0,−x1 + x2 ≥ 0} , (12)

A2 = {(x1, x2)|x1 ≤ 0, x2 ≤ 0, x1 + x2 ≥ −0.497} , (13)

A3 = {(x1, x2)|x1 ≥ 0, x2 ≤ −0.497,−x1 + x2 ≥ 0} . (14)

Here is a sketch of these acceptance regions:
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Note that the boundary between A1 and A3 defined by −x1 + x2 ≥ 0 plays
no role because of the high value of p0.

Problem 11.3.9 Solution

A short answer is that the decorrelator cannot be the same as the optimal
maximum likelihood (ML) detector. If they were the same, that means we
have reduced the 2k comparisons of the optimal detector to a linear transfor-
mation followed by k single bit comparisons.

However, as this is not a satisfactory answer, we will build a simple example
with k = 2 users and precessing gain n = 2 to show the difference between
the ML detector and the decorrelator. In particular, suppose user 1 transmits
with code vector S1 =

[
1 0

]′
and user transmits with code vector S2 =[

cos θ sin θ
]′

In addition, we assume that the users powers are p1 = p2 = 1.
In this case, P = I and

S =

[
1 cos θ
0 sin θ

]
. (1)

For the ML detector, there are four hypotheses corresponding to each possible
transmitted bit of each user. Using Hi to denote the hypothesis that X = xi,
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we have

X = x1 =

[
1
1

]
, X = x3 =

[
−1
1

]
, (2)

X = x2 =

[
1
−1

]
, X = x4 =

[
−1
−1

]
. (3)

When X = xi, Y = yi + N where yi = Sxi. Thus under hypothesis Hi,
Y = yi + N is a Gaussian (yi, σ

2I) random vector with PDF

fY|Hi(y) =
1

2πσ2
e−(y−yi)′(σ2I)−1(y−yi)/2 =

1

2πσ2
e−‖y−yi‖

2/2σ2

. (4)

With the four hypotheses equally likely, the MAP and ML detectors are the
same and minimize the probability of error. From Theorem 11.8, this decision
rule is

y ∈ Am if fY|Hm(y) ≥ fY|Hj (y) for all j. (5)

This rule simplifies to

y ∈ Am if ‖y − ym‖ ≤ ‖y − yj‖ for all j. (6)

It is useful to show these acceptance sets graphically. In this plot, the area
around yi is the acceptance set Ai and the dashed lines are the boundaries
between the acceptance sets.
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y1 =

[
1 + cos θ

sin θ

]
, y3 =

[
−1 + cos θ

sin θ

]
,

y2 =

[
1− cos θ
− sin θ

]
, y4 =

[
−1− cos θ
− sin θ

]
.

The probability of a correct decision is

P [C] =
1

4

4∑
i=1

∫
Ai

fY|Hi(y) dy. (7)

326



Even though the components of Y are conditionally independent given Hi,
the four integrals

∫
Ai
fY|Hi(y) dy cannot be represented in a simple form.

Moreoever, they cannot even be represented by the Φ(·) function. Note that
the probability of a correct decision is the probability that the bits X1 and
X2 transmitted by both users are detected correctly.

The probability of a bit error is still somewhat more complex. For example
if X1 = 1, then hypotheses H1 and H3 are equally likely. The detector guesses
X̂1 = 1 if Y ∈ A1∪A3. Given X1 = 1, the conditional probability of a correct
decision on this bit is

P
[
X̂1 = 1|X1 = 1

]
=

1

2
P [Y ∈ A1 ∪ A3|H1] +

1

2
P [Y ∈ A1 ∪ A3|H3]

=
1

2

∫
A1∪A3

fY|H1(y) dy +
1

2

∫
A1∪A3

fY|H3(y) dy. (8)

By comparison, the decorrelator does something simpler. Since S is a square
invertible matrix,

(S′S)−1S′ = S−1(S′)−1S′ = S−1 =
1

sin θ

[
1 − cos θ
0 1

]
. (9)

We see that the components of Ỹ = S−1Y are

Ỹ1 = Y1 −
cos θ

sin θ
Y2, Ỹ2 =

Y2

sin θ
. (10)

Assuming (as in earlier sketch) that 0 < θ < π/2, the decorrelator bit deci-
sions are

X̂1 = sgn (Ỹ1) = sgn

(
Y1 −

cos θ

sin θ
Y2

)
, (11)

X̂2 = sgn (Ỹ2) = sgn

(
Y2

sin θ

)
= sgn (Y2). (12)

Graphically, these regions are:
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Because we chose a coordinate system such that S1 lies along the x-axis,
the effect of the decorrelator on the rule for bit X2 is particularly easy to
understand. For bit X2, we just check whether the vector Y is in the upper
half plane. Generally, the boundaries of the decorrelator decision regions are
determined by straight lines, they are easy to implement and probability of
error is easy to calculate. However, these regions are suboptimal in terms of
probability of error.

Problem 11.4.1 Solution

Under hypothesis Hi, the conditional PMF of X is

PX|Hi(x) =

{
(1− pi)px−1

i /(1− p20
i ) x = 1, 2, . . . , 20,

0 otherwise,
(1)

where p0 = 0.99 and p1 = 0.9. It follows that for x0 = 0, 1, . . . , 19 that

P [X > x0|Hi] =
1− pi
1− p20

i

20∑
x=x0+1

px−1
i

=
1− pi
1− p20

i

[
px0i + · · ·+ p19

i

]
=
px0i (1− pi)

1− p20
i

[
1 + pi + · · ·+ p19−x0

i

]
=
px0i (1− p20−x0

i )

1− p20
i

=
px0i − p20

i

1− p20
i

. (2)

328



We note that the above formula is also correct for x0 = 20. Using this formula,
the false alarm and miss probabilities are

PFA = P [X > x0|H0] =
px00 − p20

0

1− p20
0

, (3)

PMISS = 1− P [X > x0|H1] =
1− px01

1− p20
1

. (4)

The Matlab program rocdisc(p0,p1) returns the false alarm and miss
probabilities and also plots the ROC. Here is the program and the output for
rocdisc(0.9,0.99):

function [PFA,PMISS]=rocdisc(p0,p1);

x=0:20;

PFA= (p0.^x-p0^(20))/(1-p0^(20));

PMISS= (1.0-(p1.^x))/(1-p1^(20));

plot(PFA,PMISS,’k.’);

xlabel(’\itP_{\rm FA}’);

ylabel(’\itP_{\rm MISS}’);
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From the receiver operating curve, we learn that we have a fairly lousy sen-
sor. No matter how we set the threshold x0, either the false alarm probability
or the miss probability (or both!) exceed 0.5.

Problem 11.4.3 Solution

With v = 1.5 and d = 0.5, it appeared in Example 11.14 that T = 0.5
was best among the values tested. However, it also seemed likely the error
probability Pe would decrease for larger values of T . To test this possibility
we use sqdistor with 100,000 transmitted bits by trying the following:

>> T=[0.4:0.1:1.0];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.80000000000000
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Thus among {0.4, 0.5, · · · , 1.0}, it appears that T = 0.8 is best. Now we test
values of T in the neighborhood of 0.8:

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>>[Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

This suggests that T = 0.78 is best among these values. However, inspection
of the vector Pe shows that all values are quite close. If we repeat this
experiment a few times, we obtain:

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.80000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.76000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

This suggests that the best value of T is in the neighborhood of 0.78. If
someone were paying you to find the best T , you would probably want to do
more testing. The only useful lesson here is that when you try to optimize
parameters using simulation results, you should repeat your experiments to
get a sense of the variance of your results.
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Problem 11.4.5 Solution
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In the solution to Problem 11.3.5, we found that
the signal constellation and acceptance regions
shown in the adjacent figure. We could solve this
problem by a general simulation of an M -PSK
system. This would include a random sequence
of data sysmbols, mapping symbol i to vector si,
adding the noise vector N to produce the receiver
output X = si + N.

However, we are only asked to find the probability of symbol error, but not
the probability that symbol i is decoded as symbol j at the receiver. Because
of the symmetry of the signal constellation and the acceptance regions, the
probability of symbol error is the same no matter what symbol is transmitted.

N1

N2

( )-E , 0
1/2

q/2
(0,0)

Thus it is simpler to assume that s0 is transmitted
every time and check that the noise vector N is in
the pie slice around s0. In fact by translating s0

to the origin, we obtain the “pie slice” geometry
shown in the figure. Because the lines marking the
boundaries of the pie slice have slopes ± tan θ/2.

The pie slice region is given by the constraints

N2 ≤ tan(θ/2)
[
N1 +

√
E
]
, N2 ≥ − tan(θ/2)

[
N1 +

√
E
]
. (1)

We can rearrange these inequalities to express them in vector form as[
− tan θ/2 1
− tan θ/2 −1

] [
N1

N2

]
≤
[
1
1

]√
E tan θ/2. (2)

Finally, since each Ni has variance σ2, we define the Gaussian (0, I) random
vector Z = N/σ and write our constraints as[

− tan θ/2 1
− tan θ/2 −1

] [
Z1

Z2

]
≤
[
1
1

]√
γ tan θ/2, (3)
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where γ = E/σ2 is the signal to noise ratio of the system.

The Matlab “simulation” simply generates many pairs
[
Z1 Z2

]′
and

checks what fraction meets these constraints. the function mpsksim(M,snr,n)

simulates the M -PSK system with SNR snr for n bit transmissions. The
script mpsktest graphs the symbol error probability for M = 8, 16, 32.

function Pe=mpsksim(M,snr,n);

%Problem 8.4.5 Solution:

%Pe=mpsksim(M,snr,n)

%n bit M-PSK simulation

t=tan(pi/M);

A =[-t 1; -t -1];

Z=randn(2,n);

PC=zeros(length(snr));

for k=1:length(snr),

B=(A*Z)<=t*sqrt(snr(k));

PC(k)=sum(min(B))/n;

end

Pe=1-PC;

%mpsktest.m;

snr=10.^((0:30)/10);

n=500000;

Pe8=mpsksim(8,snr,n);

Pe16=mpsksim(16,snr,n);

Pe32=mpsksim(32,snr,n);

loglog(snr,Pe8,snr,Pe16,snr,Pe32);

legend(’M=8’,’M=16’,’M=32’,3);

In mpsksim, each column of the matrix Z corresponds to a pair of noise
variables

[
Z1 Z2

]′
. The code B=(A*Z)<=t*sqrt(snr(k)) checks whether

each pair of noise variables is in the pie slice region. That is, B(1,j) and
B(2,j) indicate if the ith pair meets the first and second constraints. Since
min(B) operates on each column of B, min(B) is a row vector indicating which
pairs of noise variables passed the test.

Here is the output of mpsktest:
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The curves for M = 8 and M = 16 end prematurely because for high SNR,
the error rate is so low that no errors are generated in 500,000 symbols. In
this case, the measured Pe is zero and since log 0 = −∞, the loglog function
simply ignores the zero values.

Problem 11.4.7 Solution

For the CDMA system of Problem 11.3.9, the received signal resulting from
the transmissions of k users was given by

Y = SP1/2X + N, (1)

where S is an n×k matrix with ith column Si and P1/2 = diag[
√
p1, . . . ,

√
pk]

is a k × k diagonal matrix of received powers, and N is a Gaussian (0, σ2I)
Gaussian noise vector.

(a) When S has linearly independent columns, S′S is invertible. In this case,
the decorrelating detector applies a transformation to Y to generate

Ỹ = (S′S)−1S′Y = P1/2X + Ñ, (2)

where Ñ = (S′S)−1S′N is still a Gaussian noise vector with expected
value E[Ñ] = 0. Decorrelation separates the signals in that the ith
component of Ỹ is

Ỹi =
√
piXi + Ñi. (3)
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This is the same as a single user-receiver output of the binary commu-
nication system of Example 11.6. The single-user decision rule X̂i =
sgn (Ỹi) for the transmitted bit Xi has probability of error

Pe,i = P
[
Ỹi > 0|Xi = −1

]
= P

[
−√pi + Ñi > 0

]
= Q

(√
pi

Var[Ñi]

)
. (4)

However, since Ñ = AN where A = (S′S)−1S′, Theorem 8.11 tells
us that Ñ has covariance matrix CÑ = ACNA

′. We note that the
general property that (B−1)′ = (B′)−1 implies that A′ = S((S′S)′)−1 =
S(S′S)−1. These facts imply

CÑ = (S′S)−1S′(σ2I)S(S′S)−1 = σ2(S′S)−1. (5)

Note that S′S is called the correlation matrix since its i, jth entry is
S′iSj is the correlation between the signal of user i and that of user j.
Thus Var[Ñi] = σ2(S′S)−1

ii and the probability of bit error for user i is
for user i is

Pe,i = Q

(√
pi

Var[Ñi]

)
= Q

(√
pi

(S′S)−1
ii

)
. (6)

To find the probability of error for a randomly chosen but, we average
over the bits of all users and find that

Pe =
1

k

k∑
i=1

Pe,i =
1

k

k∑
i=1

Q

(√
pi

(S′S)−1
ii

)
. (7)

(b) When S′S is not invertible, the detector flips a coin to decide each bit.
In this case, Pe,i = 1/2 and thus Pe = 1/2.

(c) When S is chosen randomly, we need to average over all possible matri-
ces S to find the average probability of bit error. However, there are 2kn
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possible matrices S and averaging over all of them is too much work.
Instead, we randomly generate m matrices S and estimate the average
Pe by averaging over these m matrices.

A function berdecorr uses this method to evaluate the decorrelator
BER. The code has a lot of lines because it evaluates the BER using
m signal sets for each combination of users k and SNRs snr. However,
because the program generates signal sets and calculates the BER ass-
sociated with each, there is no need for the simulated transmission of
bits. Thus the program runs quickly. Since there are only 2n distinct
columns for matrix S, it is quite possible to generate signal sets that
are not linearly independent. In this case, berdecorr assumes the “flip
a coin” rule is used. Just to see whether this rule dominates the error
probability, we also display counts of how often S is rank deficient.

Here is the (somewhat tedious) code:

function Pe=berdecorr(n,k,snr,m);

%Problem 8.4.7 Solution: R-CDMA with decorrelation

%proc gain=n, users=k, average Pe for m signal sets

count=zeros(1,length(k)); %counts rank<k signal sets

Pe=zeros(length(k),length(snr)); snr=snr(:)’;

for mm=1:m,

for i=1:length(k),

S=randomsignals(n,k(i)); R=S’*S;

if (rank(R)<k(i))

count(i)=count(i)+1;

Pe(i,:)=Pe(i,:)+0.5*ones(1,length(snr));

else

G=diag(inv(R));

Pe(i,:)=Pe(i,:)+sum(qfunction(sqrt((1./G)*snr)))/k(i);

end

end

end

disp(’Rank deficiency count:’);disp(k);disp(count);

Pe=Pe/m;
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Running berdecorr with processing gains n = 16 and n = 32 yields
the following output:

>> k=[1 2 4 8 16 32];

>> pe16=berdecorr(16,k,4,10000);

Rank deficiency count:

1 2 4 8 16 32

0 2 2 12 454 10000

>> pe16’

ans =

0.0228 0.0273 0.0383 0.0755 0.3515 0.5000

>> pe32=berdecorr(32,k,4,10000);

Rank deficiency count:

1 2 4 8 16 32

0 0 0 0 0 0

>> pe32’

ans =

0.0228 0.0246 0.0290 0.0400 0.0771 0.3904

>>

As you might expect, the BER increases as the number of users in-
creases. This occurs because the decorrelator must suppress a large
set of interferers. Also, in generating 10,000 signal matrices S for each
value of k we see that rank deficiency is fairly uncommon, however it
occasionally occurs for processing gain n = 16, even if k = 4 or k = 8.
Finally, here is a plot of these same BER statistics for n = 16 and
k ∈ {2, 4, 8, 16}. Just for comparison, on the same graph is the BER
for the matched filter detector and the maximum likelihood detector
found in Problem 11.4.6.
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We see from the graph that the decorrelator is better than the matched
filter for a small number of users. However, when the number of users
k is large (relative to the processing gain n), the decorrelator suffers
because it must suppress all interfering users. Finally, we note that
these conclusions are specific to this scenario when all users have equal
SNR. When some users have very high SNR, the decorrelator is good
for the low-SNR user because it zeros out the interference from the
high-SNR user.

Problem 11.4.9 Solution

(a) For the M -PSK communication system with additive Gaussian noise,
Aj denoted the hypothesis that signal sj was transmitted. The solution
to Problem 11.3.5 derived the MAP decision rule

X
1

X
2

s
0

s
1

s
2

s
M-1

s
M-2

A
0

A
1

A
M-1

A
2

A
M-2

x ∈ Am if ‖x− sm‖2 ≤ ‖x− sj‖2 for all j.

In terms of geometry, the interpretation is
that all vectors x closer to sm than to any
other signal sj are assigned to Am. In this
problem, the signal constellation (i.e., the set
of vectors si) is the set of vectors on the circle
of radius E. The acceptance regions are the
“pie slices” around each signal vector.
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We observe that

‖x− sj‖2 = (x− sj)
′(x− sj) = x′x− 2x′sj + s′js

′. (1)

Since all the signals are on the same circle, s′jsj is the same for all j.
Also, x′x is the same for all j. Thus

min
j
‖x− sj‖2 = min

j
−x′sj = max

j
x′sj. (2)

Since x′sj = ‖x‖ ‖sj‖ cosφ where φ is the angle between x and sj. Thus
maximizing x′sj is equivalent to minimizing the angle between x and
sj.

(b) In Problem 11.4.5, we estimated the probability of symbol error without
building a complete simulation of the M -PSK system. In this problem,
we need to build a more complete simulation to determine the prob-
abilities Pij. By symmetry, it is sufficient to transmit s0 repeatedly
and count how often the receiver guesses sj. This is done by the func-
tionp=mpskerr(M,snr,n).

function p=mpskerr(M,snr,n);

%Problem 8.4.5 Solution:

%Pe=mpsksim(M,snr,n)

%n bit M-PSK simulation

t=(2*pi/M)*(0:(M-1));

S=sqrt(snr)*[cos(t);sin(t)];

X=repmat(S(:,1),1,n)+randn(2,n);

[y,e]=max(S’*X);

p=countequal(e-1,(0:(M-1)))’/n;

Note that column i of S is
the signal si−1. The kth
column of X corresponds to
Xk = s0 + Nk, the received
signal for the kth transmis-
sion. Thus y(k) corresponds
to maxj X

′
ksj and e(k) re-

ports the receiver decision for
the kth transmission. The
vector p calculates the rel-
ative frequency of each re-
ceiver decision.

The next step is to translate the vector
[
P00 P01 · · · P0,M−1

]′
(cor-

responding to p in Matlab) into an entire matrix P with elements Pij.
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The symmetry of the phase rotiation dictates that each row of P should
be a one element cyclic rotation of the previous row. Moreover, by sym-
metry we observe that P01 = P0,M−1, P02 = P0,M−2 and so on. However,
because p is derived from a simulation experiment, it will exhibit this
symmetry only approximately.

function P=mpskmatrix(p);

M=length(p);

r=[0.5 zeros(1,M-2)];

A=toeplitz(r)+...

hankel(fliplr(r));

A=[zeros(1,M-1);A];

A=[[1; zeros(M-1,1)] A];

P=toeplitz(A*(p(:)));

Our ad hoc (and largely unjustified)
solution is to take the average of esti-
mates of probabilities that symmetry
says should be identical. (Why this
is might be a good thing to do would
make an interesting exam problem.)
In mpskmatrix(p), the matrix A im-
plements the averaging. The code
will become clear by examining the
matrices A and the output P.

(c) The next step is to determine the effect of the mapping of bits to trans-
mission vectors sj. The matrix D with i, jth element dij that indicates
the number of bit positions in which the bit string assigned to si differs
from the bit string assigned to sj. In this case, the integers provide a
compact representation of this mapping. For example the binary map-
ping is

s0 s1 s2 s3 s4 s5 s6 s7

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

The Gray mapping is

s0 s1 s2 s3 s4 s5 s6 s7

000 001 011 010 110 111 101 100
0 1 3 2 6 7 5 4
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Thus the binary mapping can be represented by a vector

c1 =
[
0 1 · · · 7

]′
, (3)

while the Gray mapping is described by

c2 =
[
0 1 3 2 6 7 5 4

]′
. (4)

function D=mpskdist(c);

L=length(c);m=log2(L);

[C1,C2]=ndgrid(c,c);

B1=dec2bin(C1,m);

B2=dec2bin(C2,m);

D=reshape(sum((B1~=B2),2),L,L);

The function D=mpskdist(c)

translates the mapping vec-
tor c into the matrix D with
entries dij. The method is
to generate grids C1 and C2

for the pairs of integers, con-
vert each integer into a length
log2M binary string, and then
to count the number of bit po-
sitions in which each pair dif-
fers.

Given matrices P and D, the rest is easy. We treat BER as as a
finite random variable that takes on value dij with probability Pij. the
expected value of this finite random variable is the expected number of
bit errors. Note that the BER is a “rate” in that

BER =
1

M

∑
i

∑
j

Pijdij. (5)

is the expected number of bit errors per transmitted symbol.
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function Pb=mpskmap(c,snr,n);

M=length(c);

D=mpskdist(c);

Pb=zeros(size(snr));

for i=1:length(snr),

p=mpskerr(M,snr(i),n);

P=mpskmatrix(p);

Pb(i)=finiteexp(D,P)/M;

end

Given the integer mapping
vector c, we estimate the
BER of the a mapping us-
ing just one more function
Pb=mpskmap(c,snr,n). First
we calculate the matrix D with
elements dij. Next, for each
value of the vector snr, we
use n transmissions to estimate
the probabilities Pij. Last, we
calculate the expected number
of bit errors per transmission.

(d) We evaluate the binary mapping with the following commands:

>> c1=0:7;

>>snr=[4 8 16 32 64];

>>Pb=mpskmap(c1,snr,1000000);

>> Pb

Pb =

0.7640 0.4878 0.2198 0.0529 0.0038

(e) Here is the performance of the Gray mapping:

>> c2=[0 1 3 2 6 7 5 4];

>>snr=[4 8 16 32 64];

>>Pg=mpskmap(c2,snr,1000000);

>> Pg

Pg =

0.4943 0.2855 0.1262 0.0306 0.0023

Experimentally, we observe that the BER of the binary mapping is
higher than the BER of the Gray mapping by a factor in the neighbor-
hood of 1.5 to 1.7
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In fact, this approximate ratio can be derived by a quick and dirty
analysis. For high SNR, suppose that that si is decoded as si+1 or si−1

with probability q = Pi,i+1 = Pi,i−1 and all other types of errors are
negligible. In this case, the BER formula based on this approximation
corresponds to summing the matrix D for the first off-diagonals and the
corner elements. Here are the calculations:

>> D=mpskdist(c1);

>> sum(diag(D,1))+sum(diag(D,-1))+D(1,8)+D(8,1)

ans =

28

>> DG=mpskdist(c2);

>> sum(diag(DG,1))+sum(diag(DG,-1))+DG(1,8)+DG(8,1)

ans =

16

Thus in high SNR, we would expect

BER(binary) ≈ 28q/M, BER(Gray) ≈ 16q/M. (6)

The ratio of BERs is 28/16 = 1.75. Experimentally, we found at high
SNR that the ratio of BERs was 0.0038/0.0023 = 1.65, which seems to
be in the right ballpark.
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Problem Solutions – Chapter 12

Problem 12.1.1 Solution
First we note that the event T > t0 has probability

P [T > t0] =

∫ ∞
t0

λe−λt dt = e−λt0 . (1)

Given T > t0, the conditional PDF of T is

fT |T>t0(t) =

{
fT(t)

P[T>t0]
t > t0,

0 otherwise,
=

{
λe−λ(t−t0) t > t0,

0 otherwise.
(2)

Given T > t0, the minimum mean square error estimate of T is

T̂ = E [T |T > t0] =

∫ ∞
−∞

tfT |T>t0(t) dt =

∫ ∞
t0

λte−λ(t−t0) dt. (3)

With the substitution t′ = t− t0, we obtain

T̂ =

∫ ∞
0

λ(t0 + t′)e−λt
′
dt′

= t0

∫ ∞
0

λe−λt
′
dt′︸ ︷︷ ︸

1

+

∫ ∞
0

t′λe−λt
′
dt′︸ ︷︷ ︸

E[T ]

= t0 + E [T ] . (4)

Problem 12.1.3 Solution

(a) For 0 ≤ x ≤ 1,

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1

x

2 dy = 2(1− x). (1)

The complete expression of the PDF of X is

fX (x) =

{
2(1− x) 0 ≤ x ≤ 1,

0 otherwise.
(2)
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(b) The blind estimate of X is

X̂B = E [X] =

∫ 1

0

2x(1− x) dx =

(
x2 − 2x3

3

)∣∣∣∣1
0

=
1

3
. (3)

(c) First we calculate

P [X > 1/2] =

∫ 1

1/2

fX (x) dx

=

∫ 1

1/2

2(1− x) dx = (2x− x2)
∣∣1
1/2

=
1

4
. (4)

Now we calculate the conditional PDF of X given X > 1/2.

fX|X>1/2(x) =

{
fX(x)

P[X>1/2]
x > 1/2,

0 otherwise,

=

{
8(1− x) 1/2 < x ≤ 1,

0 otherwise.
(5)

The minimum mean square error estimate of X given X > 1/2 is

E [X|X > 1/2] =

∫ ∞
−∞

xfX|X>1/2(x) dx

=

∫ 1

1/2

8x(1− x) dx =

(
4x2 − 8x3

3

)∣∣∣∣1
1/2

=
2

3
. (6)

(d) For 0 ≤ y ≤ 1, the marginal PDF of Y is

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ y

0

2 dx = 2y. (7)

The complete expression for the marginal PDF of Y is

fY (y) =

{
2y 0 ≤ y ≤ 1,

0 otherwise.
(8)
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(e) The blind estimate of Y is

ŷB = E [Y ] =

∫ 1

0

2y2 dy =
2

3
. (9)

(f) We already know that P[X > 1/2] = 1/4. However, this problem differs
from the other problems in this section because we will estimate Y
based on the observation of X. In this case, we need to calculate the
conditional joint PDF

fX,Y |X>1/2(x, y) =

{
fX,Y(x,y)

P[X>1/2]
x > 1/2,

0 otherwise,

=

{
8 1/2 < x ≤ y ≤ 1,

0 otherwise.
(10)

The MMSE estimate of Y given X > 1/2 is

E [Y |X > 1/2] =

∫ ∞
−∞

∫ ∞
−∞

yfX,Y |X>1/2(x, y) dx dy

=

∫ 1

1/2

y

(∫ y

1/2

8 dx

)
dy

=

∫ 1

1/2

y(8y − 4) dy =
5

6
. (11)

Problem 12.1.5 Solution

(a) First we find the marginal PDF fY(y). For 0 ≤ y ≤ 2,
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x

y

1

1

x=y

x=0

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ y

0

2 dx = 2y. (1)

Hence, for 0 ≤ y ≤ 2, the conditional PDF of X given
Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

{
1/y 0 ≤ x ≤ y,

0 otherwise.
(2)

(b) The optimum mean squared error estimate of X given Y = y is

x̂M(y) = E [X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx =

∫ y

0

x

y
dx = y/2. (3)

(c) The MMSE estimator of X given Y is X̂M(Y ) = E[X|Y ] = Y/2. The
mean squared error is

e∗X,Y = E
[
(X − X̂M(Y ))2

]
= E

[
(X − Y/2)2

]
= E

[
X2 −XY + Y 2/4

]
. (4)

Of course, the integral must be evaluated.

e∗X,Y =

∫ 1

0

∫ y

0

2(x2 − xy + y2/4) dx dy

=

∫ 1

0

(
2x3/3− x2y + xy2/2

)∣∣x=y

x=0
dy

=

∫ 1

0

y3

6
dy = 1/24. (5)

Another approach to finding the mean square error is to recognize that
the MMSE estimator is a linear estimator and thus must be the optimal
linear estimator. Hence, the mean square error of the optimal linear
estimator given by Theorem 12.3 must equal e∗X,Y . That is, e∗X,Y =
Var[X](1 − ρ2

X,Y ). However, calculation of the correlation coefficient
ρX,Y is at least as much work as direct calculation of e∗X,Y .
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Problem 12.1.7 Solution

We need to find the conditional estimate

E [X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx. (1)

Replacing y by Y in E[X|Y = y] will yield the requested E[X|Y ]. We start
by finding fY |X(y|x). Given X = x, Y = x− Z so that

P [Y ≤ y|X = x] = P [x− Z ≤ y|X = x]

= P [Z ≥ x− y|X = x] = 1− FZ (x− y) . (2)

Note the last inequality follows because Z and X are independent random
variables. Taking derivatives, we have

fY |X (y|x) =
dP [Z ≤ x− y|X = x]

dy

=
d

dy
(1− FZ (x− y)) = fZ (x− y) . (3)

It follows that X and Y have joint PDF

fX,Y (x, y) = fY |X (y|x) fX (x) = fZ (x− y) fX (x) . (4)

By the definition of conditional PDF,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
fZ (x− y) fX (x)

fY (y)
, (5)

and thus

E [X|Y = y] =

∫ ∞
−∞

x
fZ (x− y) fX (x)

fY (y)
dx

=
1

fY (y)

∫ ∞
−∞

xfZ (x− y) fX (x) dx. (6)
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Without more information, this is the simplest possible answer. Also note
that the denominator fY(y) is given by

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ ∞
−∞

fZ (x− y) fX (x) dx. (7)

For a given PDF fZ(z), it is sometimes possible to compute these integrals in
closed form; Gaussian Z is one such example.

Problem 12.2.1 Solution

(a) The marginal PMFs of X and Y are listed below

PX (x) =

{
1/3 x = −1, 0, 1,

0 otherwise,
(1)

PY (y) =

{
1/4 y = −3,−1, 0, 1, 3,

0 otherwise.
(2)

(b) No, the random variables X and Y are not independent since

PX,Y (1,−3) = 0 6= PX (1)PY (−3) (3)

(c) Direct evaluation leads to

E [X] = 0, Var [X] = 2/3, (4)

E [Y ] = 0, Var [Y ] = 5. (5)

This implies

Cov [X, Y ] = E [XY ]− E [X] E [Y ] = E [XY ] = 7/6. (6)

(d) From Theorem 12.3, the optimal linear estimate of X given Y is

X̂L(Y ) = ρX,Y
σX
σY

(Y − µY ) + µX =
7

30
Y + 0. (7)

Therefore, a∗ = 7/30 and b∗ = 0.

348



(e) From the previous part, X and Y have correlation coefficient

ρX,Y = Cov [X, Y ] /
√

Var[X] Var[Y ] =
√

49/120. (8)

From Theorem 12.3, the minimum mean square error of the optimum
linear estimate is

e∗L = σ2
X(1− ρ2

X,Y ) =
2

3

71

120
=

71

180
. (9)

(f) The conditional probability mass function is

PX|Y (x| − 3) =
PX,Y (x,−3)

PY (−3)
=


1/6
1/4

= 2/3 x = −1,
1/12
1/4

= 1/3 x = 0,

0 otherwise.

(10)

(g) The minimum mean square estimator of X given that Y = 3 is

x̂M(−3) = E [X|Y = −3] =
∑
x

xPX|Y (x| − 3) = −2/3. (11)

(h) The mean squared error of this estimator is

êM(−3) = E
[
(X − x̂M(−3))2|Y = −3

]
=
∑
x

(x+ 2/3)2PX|Y (x| − 3)

= (−1/3)2(2/3) + (2/3)2(1/3) = 2/9. (12)

Problem 12.2.3 Solution

The solution to this problem is to simply calculate the various quantities
required for the optimal linear estimator given by Theorem 12.3. First we
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calculate the necessary moments of X and Y .

E [X] = −1(1/4) + 0(1/2) + 1(1/4) = 0, (1)

E
[
X2
]

= (−1)2(1/4) + 02(1/2) + 12(1/4) = 1/2, (2)

E [Y ] = −1(17/48) + 0(17/48) + 1(14/48) = −1/16, (3)

E
[
Y 2
]

= (−1)2(17/48) + 02(17/48) + 12(14/48) = 31/48, (4)

E [XY ] = 3/16− 0− 0 + 1/8 = 5/16. (5)

The variances and covariance are

Var[X] = E
[
X2
]
− (E [X])2 = 1/2, (6)

Var[Y ] = E
[
Y 2
]
− (E [Y ])2 = 493/768, (7)

Cov [X, Y ] = E [XY ]− E [X] E [Y ] = 5/16, (8)

ρX,Y =
Cov [X, Y ]√
Var[X] Var[Y ]

=
5
√

6√
493

. (9)

By reversing the labels of X and Y in Theorem 12.3, we find that the optimal
linear estimator of Y given X is

ŶL(X) = ρX,Y
σY
σX

(X − E [X]) + E [Y ] =
5

8
X − 1

16
. (10)

The mean square estimation error is

e∗L = Var[Y ](1− ρ2
X,Y ) = 343/768. (11)

Problem 12.2.5 Solution

The linear mean square estimator of X given Y is

X̂L(Y ) =

(
E [XY ]− µXµY

Var[Y ]

)
(Y − µY ) + µX . (1)
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To find the parameters of this estimator, we calculate

fY (y) =

∫ y

0

6(y − x) dx = 6xy − 3x2
∣∣y
0

= 3y2 (0 ≤ y ≤ 1), (2)

fX (x) =

∫ 1

x

6(y − x) dy =

{
3(1 +−2x+ x2) 0 ≤ x ≤ 1,

0 otherwise.
(3)

The moments of X and Y are

E [Y ] =

∫ 1

0

3y3 dy = 3/4, (4)

E [X] =

∫ 1

0

3x(1− 2x+ x2) dx = 1/4, (5)

E
[
Y 2
]

=

∫ 1

0

3y4 dy = 3/5, (6)

E
[
X2
]

=

∫ 1

0

3x2(1 +−2x+ x2) dx = 1/10. (7)

The correlation between X and Y is

E [XY ] = 6

∫ 1

0

∫ 1

x

xy(y − x) dy dx = 1/5. (8)

Putting these pieces together, the optimal linear estimate of X given Y is

X̂L(Y ) =

(
1/5− 3/16

3/5− (3/4)2

)(
Y − 3

4

)
+

1

4
=
Y

3
. (9)

Problem 12.2.7 Solution
From the problem statement, we learn the following facts:

fR(r) =

{
e−r r ≥ 0,

0 otherwise,
fX|R(x|r) =

{
re−rx x ≥ 0,

0 otherwise.
(1)

Note that fX,R(x, r) > 0 for all non-negative X and R. Hence, for the re-
mainder of the problem, we assume both X and R are non-negative and we
omit the usual “zero otherwise” considerations.
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(a) To find r̂M(X), we need the conditional PDF

fR|X (r|x) =
fX|R(x|r) fR(r)

fX (x)
. (2)

The marginal PDF of X is

fX (x) =

∫ ∞
0

fX|R(x|r) fR(r) dr =

∫ ∞
0

re−(x+1)r dr. (3)

We use the integration by parts formula
∫
u dv = uv−

∫
v du by choosing

u = r and dv = e−(x+1)r dr. Thus v = −e−(x+1)r/(x+ 1) and

fX (x) =
−r
x+ 1

e−(x+1)r

∣∣∣∣∞
0

+
1

x+ 1

∫ ∞
0

e−(x+1)r dr

=
−1

(x+ 1)2
e−(x+1)r

∣∣∣∣∞
0

=
1

(x+ 1)2
. (4)

Now we can find the conditional PDF of R given X.

fR|X (r|x) =
fX|R(x|r) fR(r)

fX (x)
= (x+ 1)2re−(x+1)r. (5)

By comparing, fR|X(r|x) to the Erlang PDF shown in Appendix A, we
see that given X = x, the conditional PDF of R is an Erlang PDF with
parameters n = 1 and λ = x+ 1. This implies

E [R|X = x] =
1

x+ 1
, Var [R|X = x] =

1

(x+ 1)2
. (6)

Hence, the MMSE estimator of R given X is

r̂M(X) = E [R|X] =
1

X + 1
. (7)
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(b) The MMSE estimate of X given R = r is E[X|R = r]. From the initial
problem statement, we know that given R = r, X is exponential with
expectred value 1/r. That is, E[X|R = r] = 1/r. Another way of
writing this statement is

x̂M(R) = E [X|R] = 1/R. (8)

(c) Note that the expected value of X is

E [X] =

∫ ∞
0

xfX (x) dx =

∫ ∞
0

x

(x+ 1)2
dx =∞. (9)

Because E[X] doesn’t exist, the LMSE estimate of X given R doesn’t
exist.

(d) Just as in part (c), because E[X] doesn’t exist, the LMSE estimate of
R given X doesn’t exist.

Problem 12.2.9 Solution

These four joint PMFs are actually related to each other. In particular,
completing the row sums and column sums shows that each random variable
has the same marginal PMF. That is,

PX (x) = PY (x) = PU (x) = PV (x) = PS(x) = PT (x) = PQ(x) = PR(x)

=

{
1/3 x = −1, 0, 1,

0 otherwise.
(1)

This implies

E [X] = E [Y ] = E [U ] = E [V ] = E [S] = E [T ] = E [Q] = E [R] = 0, (2)

and that

E
[
X2
]

= E
[
Y 2
]

= E
[
U2
]

= E
[
V 2
]

= E
[
S2
]

= E
[
T 2
]

= E
[
Q2
]

= E
[
R2
]

= 2/3. (3)
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Since each random variable has zero expected value, the second moment
equals the variance. Also, the standard deviation of each random variable
is
√

2/3. These common properties will make it much easier to answer the
questions.

(a) Random variables X and Y are independent since for all x and y,

PX,Y (x, y) = PX (x)PY (y) . (4)

Since each other pair of random variables has the same marginal PMFs
as X and Y but a different joint PMF, all of the other pairs of random
variables must be dependent. Since X and Y are independent, ρX,Y = 0.
For the other pairs, we must compute the covariances.

Cov [U, V ] = E [UV ] = (1/3)(−1) + (1/3)(−1) = −2/3, (5)

Cov [S, T ] = E [ST ] = 1/6− 1/6 + 0 +−1/6 + 1/6 = 0, (6)

Cov [Q,R] = E [QR] = 1/12− 1/6− 1/6 + 1/12 = −1/6 (7)

The correlation coefficient of U and V is

ρU,V =
Cov [U, V ]√

Var[U ]
√

Var[V ]
=

−2/3√
2/3
√

2/3
= −1 (8)

In fact, since the marginal PMF’s are the same, the denominator of the
correlation coefficient will be 2/3 in each case. The other correlation
coefficients are

ρS,T =
Cov [S, T ]

2/3
= 0, ρQ,R =

Cov [Q,R]

2/3
= −1/4. (9)

(b) From Theorem 12.3, the least mean square linear estimator of U given
V is

ÛL(V ) = ρU,V
σU
σV

(V − E [V ]) + E [U ] = ρU,V V = −V. (10)
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Similarly for the other pairs, all expected values are zero and the ratio
of the standard deviations is always 1. Hence,

X̂L(Y ) = ρX,Y Y = 0, (11)

ŜL(T ) = ρS,TT = 0, (12)

Q̂L(R) = ρQ,RR = −R/4. (13)

From Theorem 12.3, the mean square errors are

e∗L(X, Y ) = Var[X](1− ρ2
X,Y ) = 2/3, (14)

e∗L(U, V ) = Var[U ](1− ρ2
U,V ) = 0, (15)

e∗L(S, T ) = Var[S](1− ρ2
S,T ) = 2/3, (16)

e∗L(Q,R) = Var[Q](1− ρ2
Q,R) = 5/8. (17)

Problem 12.3.1 Solution
In this case, the joint PDF of X and R is

fX,R(x, r) = fX|R(x|r) fR(r)

=

{
1

r0
√

128π
e−(x+40+40 log10 r)

2/128 0 ≤ r ≤ r0,

0 otherwise.
(1)

From Theorem 12.5, the MAP estimate of R given X = x is the value of r
that maximizes fX|R(x|r)fR(r). Since R has a uniform PDF over [0, 1000],

r̂MAP(x) = arg max
0≤r

fX|R(x|r) fR(r) = arg max
0≤r≤1000

fX|R(x|r) (2)

Hence, the maximizing value of r is the same as for the ML estimate in
Quiz 12.3 unless the maximizing r exceeds 1000 m. In this case, the max-
imizing value is r = 1000 m. From the solution to Quiz 12.3, the resulting
ML estimator is

r̂ML(x) =

{
1000 x < −160,

(0.1)10−x/40 x ≥ −160.
(3)
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Problem 12.3.3 Solution

Both parts (a) and (b) rely on the conditional PDF of R given N = n.
When dealing with situations in which we mix continuous and discrete random
variables, its often helpful to start from first principles.

fR|N (r|n) dr = P [r < R ≤ r + dr|N = n]

=
P [r < R ≤ r + dr,N = n]

P [N = n]

=
P [N = n|R = r] P [r < R ≤ r + dr]

P [N = n]
. (1)

In terms of PDFs and PMFs, we have

fR|N (r|n) =
PN |R(n|r) fR(r)

PN (n)
. (2)

To find the value of n that maximizes fR|N(r|n), we need to find the denomi-
nator PN(n).

PN (n) =

∫ ∞
−∞

PN |R(n|r) fR(r) dr

=

∫ ∞
0

(rT )ne−rT

n!
µe−µr dr

=
µT n

n!(µ+ T )

∫ ∞
0

rn(µ+ T )e−(µ+T )r dr

=
µT n

n!(µ+ T )
E [Xn] . (3)

where X is an exponential random variable with expected value 1/(µ +
T ).There are several ways to derive the nth moment of an exponential ran-
dom variable including integration by parts. In Example 9.4, the MGF is
used to show that E[Xn] = n!/(µ+ T )n. Hence, for n ≥ 0,

PN (n) =
µT n

(µ+ T )n+1
. (4)
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Finally, the conditional PDF of R given N is

fR|N (r|n) =
PN |R(n|r) fR(r)

PN (n)

=
(rT )ne−rT

n!
µe−µr

µTn

(µ+T )n+1

=
(µ+ T )n+1rne−(µ+T )r

n!
. (5)

(a) The MMSE estimate of R given N = n is the conditional expected
value E[R|N = n]. Given N = n, the conditional PDF oF R is that of
an Erlang random variable or order n + 1. From Appendix A, we find
that E[R|N = n] = (n + 1)/(µ + T ). The MMSE estimate of R given
N is

R̂M(N) = E [R|N ] =
N + 1

µ+ T
. (6)

(b) The MAP estimate of R given N = n is the value of r that maximizes
fR|N(r|n).

R̂MAP(n) = arg max
r≥0

fR|N (r|n)

= arg max
r≥0

(µ+ T )n+1

n!
rne−(µ+T )r. (7)

By setting the derivative with respect to r to zero, we obtain the MAP
estimate

R̂MAP(n) =
n

µ+ T
. (8)

(c) The ML estimate of R given N = n is the value of R that maximizes
PN |R(n|r). That is,

R̂ML(n) = arg max
r≥0

(rT )ne−rT

n!
. (9)

Seting the derivative with respect to r to zero yields

R̂ML(n) = n/T. (10)
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Problem 12.4.1 Solution

(a) Since Y1 = X +N1, we see that

D1 = Y1 −X = (X +N1)−X = N1. (1)

Thus E[D1] = E[N1] = 0 and E[D2
1] = E[N2

1 ]. Since E[N1] = 0, we know
that E[N2

1 ] = Var[N1] = 1. That is, E[D2
1] = 1.

(b) Note that

Y3 =
Y1

2
+
Y2

2
=
X +N1

2
+
X +N2

2

= X +
N1

2
+
N2

2
. (2)

It follows that

D3 = Y3 −X =
N1

2
+
N2

2
. (3)

Since N1 and N2 are independent Gaussian random variables, D3 is
Gaussian with expected value and variance

E [D3] =
E [N1]

2
+

E [N2]

2
= 0, (4)

Var[D3] =
Var[N1]

4
+

Var[N2]

4
=

1

4
+

4

4
=

5

4
. (5)

Since E[D3] = 0, D3 has second moment E[D2
3] = Var[D2

3] = 5/4. In
terms of expected squared error, the estimator Y3 is worse than the
estimator Y1. Even though Y3 gets to average two noisy observations
Y1 and Y2, the large variance of N2 makes Y2 a lousy estimate. As a
result, including Y2 as part of the estimate Y3 is worse than just using
the estimate of Y1 by itself.
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(c) In this problem,

Y4 = aY1 + (1− a)Y2

= a(X +N1) + (1− a)(X +N2)

= X + aN1 + (1− a)N2. (6)

This implies

D4 = Y4 −X = aN1 + (1− a)N2. (7)

Thus the error D4 is a linear combination of the errors N1 and N2. Since
N1 and N2 are independent, E[D4] = 0 and

Var[D4] = a2 Var[N1] + (1− a)2 Var[N2]

= a2 + 4(1− a)2. (8)

Since E[D4] = 0, the second moment of the error is simply

E
[
D2

4

]
= Var[D4] = a2 + 4(1− a)2. (9)

Since E[D2
4] is a quadratic function in a, we can choose a to minimize the

error. In this case, taking the derivative with respect to a and setting it
equal to zero yields 2a− 8(1− a) = 0, implying a = 0.8. Although the
problem does not request this, it is interesting to note that for a = 0.8,
the expected squared error is E[D2

4] = 0.80, which is significantly less
than the error obtained by using either just Y1 or an average of Y1 and
Y2.

Problem 12.4.3 Solution

From the problem statement, we learn for vectors X =
[
X1 X2 X3

]′
and

Y =
[
Y1 Y2

]′
that

E [X] = 0, RX =

 1 3/4 1/2
3/4 1 3/4
1/2 3/4 1

 , (1)
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and

Y = AX =

[
1 1 0
0 1 1

]
X. (2)

(a) Since E[Y] = AE[X] = 0, we can apply Theorem 12.6 which states that
the minimum mean square error estimate of X1 is X̂1(Y) = RX1YR

−1
Y Y

where â =. The rest of the solution is just calculation. (We note that
even in the case of a 3× 3 matrix, its convenient to use Matlab with
format rat mode to perform the calculations and display the results
as nice fractions.) From Theorem 8.8,

RY = ARXA
′ =

[
1 1 0
0 1 1

] 1 3/4 1/2
3/4 1 3/4
1/2 3/4 1

1 0
1 1
0 1


=

[
7/2 3
3 7/2

]
. (3)

In addition, since RX1Y = E[X1Y
′] = E[X1X

′A′] = E[X1X
′]A′,

RX1Y =
[
E [X2

1 ] E [X1X2] E [X1X3]
]
A′

=
[
RX(1, 1) RX(2, 1) RX(3, 1)

]
A′

=
[
1 3/4 1/2

] 1 0
1 1
0 1

 =
[
7/4 5/4

]
. (4)

Finally,

RX1YR
−1
Y =

[
7/4 5/4

] [ 14/13 −12/13
−12/13 14/13

]
=
[
19/26 −7/26

]
. (5)

Thus the linear MMSE estimator of X1 given Y is

X̂1(Y) = RX1YR
−1
Y Y =

19

26
Y1 −

7

26
Y2

= 0.7308Y1 − 0.2692Y2. (6)
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(b) By Theorem 12.6(b), the mean squared error of the optimal estimator
is

e∗L = Var[X1]− â′RYX1

= RX(1, 1)−R′YX1
R−1

Y RYX1

= 1−
[
7/4 5/4

] [ 14/13 −12/13
−12/13 14/13

] [
7/4
5/4

]
=

3

52
. (7)

(c) We can estimate random variable X1 based on the observation of ran-
dom variable Y1 using Theorem 12.3. Note that Theorem 12.3 is just
a special case of Theorem 12.7 in which the observation is a random
vector. In any case, from Theorem 12.3, the optimum linear estimate
is X̂1(Y1) = a∗Y1 + b∗ where

a∗ =
Cov [X1, Y1]

Var[Y1]
, b∗ = µX1 − a∗µY1 . (8)

Since Y1 = X1 +X2, we see that

µX1 = E [X1] = 0, (9)

µY1 = E [Y1] = E [X1] + E [X2] = 0. (10)

These facts, along with RX and RY from part (a), imply

Cov [X1, Y1] = E [X1Y1]

= E [X1(X1 +X2)]

= RX(1, 1) +RX(1, 2) = 7/4, (11)

Var[Y1] = E
[
Y 2

1

]
= RY(1, 1) = 7/2 (12)

Thus

a∗ =
Cov [X1, Y1]

Var[Y1]
=

7/4

7/2
=

1

2
, (13)

b∗ = µX1 − a∗µY1 = 0. (14)
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Thus the optimum linear estimate of X1 given Y1 is

X̂1(Y1) =
1

2
Y1. (15)

From Theorem 12.3(a), the mean square error of this estimator is

e∗L = σ2
X1

(1− ρ2
X1,Y1

). (16)

Since X1 and Y1 have zero expected value, σ2
X1

= RX(1, 1) = 1 and
σ2
Y1

= RY(1, 1) = 7/2. Also, since Cov[X1, Y1] = 7/4, we see that

ρX1,Y1 =
Cov [X1, Y1]

σX1σY1
=

7/4√
7/2

=

√
7

8
. (17)

Thus e∗L = 1 − (
√

7/8)2 = 1/8. Note that 1/8 > 3/52. As we would
expect, the estimate of X1 based on just Y1 has larger mean square error
than the estimate based on both Y1 and Y2.

Problem 12.4.5 Solution

The key to this problem is to write Y in terms of Q. First we observe that

Y1 = q0 + 1q1 + 12q2 + Z1, (1)

Y2 = q0 + 2q1 + 22q2 + Z2, (2)

...
...

Yn = q0 + nq1 + n2q2 + Zn. (3)

In terms of the vector Q, we can write

Y =


1 1 12

1 2 22

...
...

...
1 n n2


︸ ︷︷ ︸

Kn

Q + Z = KnQ + Z. (4)
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From the problem statement we know that E[Q] = 0, E[Z] = 0, RQ = I, and
RZ = I. Applying Theorem 12.8 as expressed in Equation (12.77), we obtain

Q̂L(Y) = RQYR
−1
Y Y. (5)

Since Q and the noise Z are independent,

E [QZ′] = E [Q] E [Z′] = 0. (6)

This implies

RQY = E [QY′]

= E [Q(KnQ + Z)′]

= E [QQ′K′n + QZ′] = RQK
′
n. (7)

Again using (6), we have that

RY = E [YY′]

= E [(KnQ + Z)(KnQ + Z)′]

= E [(KnQ + Z)(Q′K′n + Z′)]

= Kn E [QQ′]K′n + Kn E [QZ′] + E [ZQ′]K′n + E [ZZ′]

= KnK
′
n + I. (8)

It follows that

Q̂ = RQYR
−1
Y Y = K′n(KnK

′
n + I)−1Y. (9)

Problem 12.4.7 Solution

From Theorem 12.6, we know that the minimum mean square error estimate
of X given Y is X̂L(Y) = â′Y, where â = R−1

Y RYX . In this problem, Y is
simply a scalar Y and â is a scalar â. Since E[Y ] = 0,

RY = E [YY′] = E
[
Y 2
]

= σ2
Y . (1)
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Similarly,

RYX = E [YX] = E [Y X] = Cov [X, Y ] . (2)

It follows that

â = R−1
Y RYX =

(
σ2
Y

)−1
Cov [X, Y ] =

σX
σY

Cov [X, Y ]

σXσY
=
σX
σY

ρX,Y . (3)

Problem 12.4.9 Solution

(a) In this case, we use the observation Y to estimate each Xi. Since
E[Xi] = 0,

E [Y] =
k∑
j=1

E [Xj]
√
pjSj + E [N] = 0. (1)

Thus, Theorem 12.6 tells us that the MMSE linear estimate of Xi is
X̂i(Y) = RXiYR

−1
Y Y. First we note that

RXiY = E [XiY
′] = E

[
Xi

(
k∑
j=1

Xj
√
pjS

′
j + N′

)]
(2)

Since N and Xi are independent, E[XiN
′] = E[Xi] E[N′] = 0. Because

Xi and Xj are independent for i 6= j, E[XiXj] = E[Xi] E[Xj] = 0 for
i 6= j. In addition, E[X2

i ] = 1, and it follows that

RXiY =
k∑
j=1

E [XiXj]
√
pjS

′
j + E [XiN

′] =
√
piS
′
i. (3)
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For the same reasons,

RY = E [YY′]

= E

[(
k∑
j=1

√
pjXjSj + N

)(
k∑
l=1

√
plXlS

′
l + N′

)]

=
k∑
j=1

k∑
l=1

√
pjpl E [XjXl]SjS

′
l

+
k∑
j=1

√
pj E [XjN]︸ ︷︷ ︸

=0

Sj +
k∑
l=1

√
pl E [XlN

′]︸ ︷︷ ︸
=0

S′l + E [NN′]

=
k∑
j=1

pjSjS
′
j + σ2I. (4)

Now we use a linear algebra identity. For a matrix S with columns
S1,S2, . . . ,Sk, and a diagonal matrix P = diag[p1, p2, . . . , pk],

k∑
j=1

pjSjS
′
j = SPS′. (5)

Although this identity may be unfamiliar, it is handy in manipulating
correlation matrices. (Also, if this is unfamiliar, you may wish to work
out an example with k = 2 vectors of length 2 or 3.) Thus,

RY = SPS′ + σ2I, (6)

and

RXiYR
−1
Y =

√
piS
′
i

(
SPS′ + σ2I

)−1
. (7)

Recall that if C is symmetric, then C−1 is also symmetric. This implies
the MMSE estimate of Xi given Y is

X̂i(Y) = RXiYR
−1
Y Y =

√
piS
′
i

(
SPS′ + σ2I

)−1
Y. (8)

365



(b) We observe that V = (SPS′ + σ2I)−1Y is a vector that does not depend
on which bit Xi that we want to estimate. Since X̂i =

√
piS
′
iV, we can

form the vector of estimates

X̂ =

X̂1
...

X̂k

 =


√
p1S

′
1V

...√
pkS

′
kV

 =


√
p1

. . . √
pk


S
′
1

...
S′k

V

= P1/2S′V

= P1/2S′
(
SPS′ + σ2I

)−1
Y. (9)

Problem 12.5.1 Solution

This problem can be solved using the function mse defined in Example 12.10.
All we need to do is define the correlation structure of the vector X =[
X1 · · · X21

]′
. Just as in Example 12.10, we do this by defining just the

first row of the correlation matrix. Here are the commands we need, and the
resulting plot.

r1=sinc(0.1*(0:20)); mse(r1);

hold on;

r5=sinc(0.5*(0:20)); mse(r5);

r9=sinc(0.9*(0:20)); mse(r9);
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1

Although the plot lacks labels, there are three curves for the mean square er-
ror MSE(n) corresponding to φ0 ∈ {0.1, 0.5, 0.9}. Keep in mind that MSE(n)
is the MSE of the linear estimate of X21 using random variables X1, . . . , Xn.

If you run the commands, you’ll find that the φ0 = 0.1 yields the lowest
mean square error while φ0 = 0.9 results in the highest mean square error.
When φ0 = 0.1, random variables Xn for n = 10, 11, . . . , 20 are increasingly
correlated with X21. The result is that the MSE starts to decline rapidly
for n > 10. As φ0 increases, fewer observations Xn are correlated with X21.
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The result is the MSE is simply worse as φ0 increases. For example, when
φ0 = 0.9, even X20 has only a small correlation with X21. We only get a good
estimate of X21 at time n = 21 when we observe X21 +W21.

Problem 12.5.3 Solution

The solution to this problem is almost the same as the solution to Exam-
ple 12.10, except perhaps the Matlab code is somewhat simpler. As in
the example, let W(n), X(n), and Y(n) denote the vectors, consisting of the
first n components of W, X, and Y. Just as in Examples 12.8 and 12.10,
independence of X(n) and W(n) implies that the correlation matrix of Y(n) is

RY(n) = E
[
(X(n) + W(n))(X(n) + W(n))′

]
= RX(n) + RW(n) (1)

Note that RX(n) and RW(n) are the n× n upper-left submatrices of RX and
RW. In addition,

RY(n)X = E


X1 +W1

...
Xn +Wn

X1

 =

 r0
...

rn−1

 . (2)

Compared to the solution of Example 12.10, the only difference in the solution
is in the reversal of the vector RY(n)X . The optimal filter based on the first
n observations is â(n) = R−1

Y(n)RY(n)X , and the mean square error is

e∗L = Var[X1]− (â(n))′RY(n)X . (3)
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function e=mse953(r)

N=length(r);

e=[];

for n=1:N,

RYX=r(1:n)’;

RY=toeplitz(r(1:n))+0.1*eye(n);

a=RY\RYX;

en=r(1)-(a’)*RYX;

e=[e;en];

end

plot(1:N,e);

The program mse953.m simply
calculates the mean square er-
ror e∗L. The input is the vec-
tor r corresponding to the vec-
tor

[
r0 · · · r20

]
, which holds

the first row of the Toeplitz
correlation matrix RX. Note
that RX(n) is the Toeplitz ma-
trix whose first row is the first
n elements of r.

To plot the mean square error as a function of the number of observations,
n, we generate the vector r and then run mse953(r). For the requested
cases (a) and (b), the necessary Matlab commands and corresponding mean
square estimation error output as a function of n are shown here:

0 5 10 15 20 25
0

0.05

0.1

 n

M
SE

0 5 10 15 20 25
0

0.05

0.1

 n

M
SE

ra=sinc(0.1*pi*(0:20));

mse953(ra)

rb=cos(0.5*pi*(0:20));

mse953(rb)

(a) (b)

In comparing the results of cases (a) and (b), we see that the mean square
estimation error depends strongly on the correlation structure given by r|i−j|.
For case (a), Y1 is a noisy observation of X1 and is highly correlated with
X1. The MSE at n = 1 is just the variance of W1. Additional samples of Yn
mostly help to average the additive noise. Also, samples Xn for n ≥ 10 have
very little correlation with X1. Thus for n ≥ 10, the samples of Yn result in
almost no improvement in the estimate of X1.
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In case (b), Y1 = X1 +W1, just as in case (a), is simply a noisy copy of X1

and the estimation error is due to the variance of W1. On the other hand,
for case (b), X5, X9, X13 and X17 and X21 are completely correlated with
X1. Other samples also have significant correlation with X1. As a result, the
MSE continues to go down with increasing n.
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Problem Solutions – Chapter 13

Problem 13.1.1 Solution

There are many correct answers to this question. A correct answer specifies
enough random variables to specify the sample path exactly. One choice for
an alternate set of random variables that would specify m(t, s) is

• m(0, s), the number of ongoing calls at the start of the experiment

• N , the number of new calls that arrive during the experiment

• X1, . . . , XN , the interarrival times of the N new arrivals

• H, the number of calls that hang up during the experiment

• D1, . . . , DH , the call completion times of the H calls that hang up

Problem 13.1.3 Solution

The sample space of the underlying experiment is S = {s0, s1, s2, s3}. The
four elements in the sample space are equally likely. The ensemble of sample
functions is {x(t, si)|i = 0, 1, 2, 3} where

x(t, si) = cos(2πf0t+ π/4 + iπ/2), 0 ≤ t ≤ T. (1)

For f0 = 5/T , this ensemble is shown below.
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Problem 13.1.5 Solution

The statement is false. As a counterexample, consider the rectified co-
sine waveform X(t) = R| cos 2πft| of Example 13.9. When t = π/2, then
cos 2πft = 0 so that X(π/2) = 0. Hence X(π/2) has PDF

fX(π/2)(x) = δ(x). (1)

That is, X(π/2) is a discrete random variable.

Problem 13.2.1 Solution

In this problem, we start from first principles. What makes this problem
fairly straightforward is that the ramp is defined for all time. That is, the
ramp doesn’t start at time t = W . Thus,

P [X(t) ≤ x] = P [t−W ≤ x] = P [W ≥ t− x] . (1)
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Since W ≥ 0, if x ≥ t then P[W ≥ t− x] = 1. When x < t,

P [W ≥ t− x] =

∫ ∞
t−x

fW (w) dw = e−(t−x). (2)

Combining these facts, we have

FX(t)(x) = P [W ≥ t− x] =

{
e−(t−x) x < t,

1 t ≤ x.
(3)

We note that the CDF contain no discontinuities. Taking the derivative of
the CDF FX(t)(x) with respect to x, we obtain the PDF

fX(t)(x) =

{
ex−t x < t,

0 otherwise.
(4)

Problem 13.2.3 Solution

Once we find the first one part in 104 oscillator, the number of additional tests
needed to find the next one part in 104 oscillator once again has a geometric
PMF with mean 1/p since each independent trial is a success with probability
p. That is T2 = T1 + T ′ where T ′ is independent and identically distributed
to T1. Thus,

E [T2|T1 = 3] = E [T1|T1 = 3] + E [T ′|T1 = 3]

= 3 + E [T ′] = 23 minutes. (1)

Problem 13.3.1 Solution

Each Yk is the sum of two identical independent Gaussian random variables.
Hence, each Yk must have the same PDF. That is, the Yk are identically
distributed. Next, we observe that the sequence of Yk is independent. To
see this, we observe that each Yk is composed of two samples of Xk that are
unused by any other Yj for j 6= k.
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Problem 13.3.3 Solution

The number Yk of failures between successes k − 1 and k is exactly y ≥ 0
iff after success k − 1, there are y failures followed by a success. Since the
Bernoulli trials are independent, the probability of this event is (1 − p)yp.
The complete PMF of Yk is

PYk (y) =

{
(1− p)yp y = 0, 1, . . . ,

0 otherwise.
(1)

Since this argument is valid for all k including k = 1, we can conclude that
Y1, Y2, . . . are identically distributed. Moreover, since the trials are indepen-
dent, the failures between successes k − 1 and k and the number of failures
between successes k′ − 1 and k′ are independent. Hence, Y1, Y2, . . . is an iid
sequence.

Problem 13.4.1 Solution

This is a very straightforward problem. The Poisson process has rate λ = 4
calls per second. When t is measured in seconds, each N(t) is a Poisson
random variable with mean 4t and thus has PMF

PN(t)(n) =

{
(4t)n

n!
e−4t n = 0, 1, 2, . . . ,

0 otherwise.
(1)

Using the general expression for the PMF, we can write down the answer for
each part.

(a) PN(1)(0) = 40e−4/0! = e−4 ≈ 0.0183.

(b) PN(1)(4) = 44e−4/4! = 32e−4/3 ≈ 0.1954.

(c) PN(2)(2) = 82e−8/2! = 32e−8 ≈ 0.0107.
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Problem 13.4.3 Solution

Since there is always a backlog an the service times are iid exponential ran-
dom variables, The time between service completions are a sequence of iid
exponential random variables. that is, the service completions are a Poisson
process. Since the expected service time is 30 minutes, the rate of the Pois-
son process is λ = 1/30 per minute. Since t hours equals 60t minutes, the
expected number serviced is λ(60t) or 2t. Moreover, the number serviced in
the first t hours has the Poisson PMF

PN(t)(n) =

{
(2t)ne−2t

n!
n = 0, 1, 2, . . . ,

0 otherwise.
(1)

Problem 13.4.5 Solution

Note that it matters whether t ≥ 2 minutes. If t ≤ 2, then any customers
that have arrived must still be in service. Since a Poisson number of arrivals
occur during (0, t],

PN(t)(n) =

{
(λt)ne−λt/n! n = 0, 1, 2, . . . ,

0 otherwise,
(0 ≤ t ≤ 2.) (1)

For t ≥ 2, the customers in service are precisely those customers that arrived
in the interval (t − 2, t]. The number of such customers has a Poisson PMF
with mean λ[t− (t− 2)] = 2λ. The resulting PMF of N(t) is

PN(t)(n) =

{
(2λ)ne−2λ/n! n = 0, 1, 2, . . . ,

0 otherwise,
(t ≥ 2.) (2)

Problem 13.4.7 Solution

(a) Nτ is a Poisson (α = 10τ) random variable. You should know that
E[Nτ ] = 10τ . Thus E[N60] = 10 · 60 = 600.

374



(b) In a τ = 10 minute interval N10 hamburgers are sold. Thus,

P [N10 = 0] = PN10(0) = (100)0e−100/0! = e−100. (1)

(c) Let t denote the time 12 noon. In this case, for w > 0, W > w if and
only if no burgers are sold in the time interval [t, t+ w]. That is,

P [W > w] = P [No burgers are sold in [t, t+ w]]

= P [Nw = 0]

= PNw (0) = (10w)0e−10w/0! = e−10w. (2)

For w > 0, FW(w) = 1 − P[W > w] = 1 − e−10w. That is, the CDF of
W is

FW (w) =

{
0 w < 0,

1− e−10w w ≥ 0.
(3)

Taking a derivative, we have

fW (w) =

{
0 w < 0,

10e−10w w ≥ 0.
(4)

We see that W is an exponential λ = 10 random variable.

Problem 13.4.9 Solution

This proof is just a simplified version of the proof given for Theorem 13.3.
The first arrival occurs at time X1 > x ≥ 0 iff there are no arrivals in the
interval (0, x]. Hence, for x ≥ 0,

P [X1 > x] = P [N(x) = 0] = (λx)0e−λx/0! = e−λx. (1)

Since P[X1 ≤ x] = 0 for x < 0, the CDF of X1 is the exponential CDF

FX1(x) =

{
0 x < 0,

1− e−λx x ≥ 0.
(2)
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Problem 13.5.1 Solution

Customers entering (or not entering) the casino is a Bernoulli decomposition
of the Poisson process of arrivals at the casino doors. By Theorem 13.6,
customers entering the casino are a Poisson process of rate 100/2 = 50 cus-
tomers/hour. Thus in the two hours from 5 to 7 PM, the number, N , of
customers entering the casino is a Poisson random variable with expected
value α = 2 · 50 = 100. The PMF of N is

PN (n) =

{
100ne−100/n! n = 0, 1, 2, . . . ,

0 otherwise.
(1)

Problem 13.5.3 Solution

(a) The trains (red and blue together) arrive as a Poisson process of rate
λR + λB = 0.45 trains per minute. In one hour, the number of trains
that arrive N is a Poisson (α = 27) random variable. The PMF is

PN (=)

{
27ne−27/n! n = 0, 1, 2, . . . ,

0 otherwise.
(1)

(b) Each train that arrives is a red train with probability p = λR/(λR +
λB) = 1/3. Given that N = 30 trains arrive, R is conditionally a
binomial (30, p) random variable. The conditional PMF is

PR|N (r|30) =

(
30

r

)
pr(1− p)30−r. (2)

Problem 13.5.5 Solution

In an interval (t, t + ∆] with an infinitesimal ∆, let Ai denote the event of
an arrival of the process Ni(t). Also, let A = A1 ∪ A2 denote the event of
an arrival of either process. Since Ni(t) is a Poisson process, the alternative
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model says that P[Ai] = λi∆. Also, since N1(t) +N2(t) is a Poisson process,
the proposed Poisson process model says

P [A] = (λ1 + λ2)∆. (1)

Lastly, the conditional probability of a type 1 arrival given an arrival of either
type is

P [A1|A] =
P [A1A]

P [A]
=

P [A1]

P [A]
=

λ1∆

(λ1 + λ2)∆
=

λ1

λ1 + λ2

. (2)

This solution is something of a cheat in that we have used the fact that the
sum of Poisson processes is a Poisson process without using the proposed
model to derive this fact.

Problem 13.5.7 Solution

(a) The last runner’s finishing time is L = max(R1, . . . , R10) and

P [L ≤ 20] = P [max(R1, . . . , R10) ≤ 20]

= P [R1 ≤ 20, R2 ≤ 20, . . . , R10 ≤ 20]

= P [R1 ≤ 20] P [R2 ≤ 20] · · ·P [R10 ≤ 20]

= (P [R1 ≤ 20])10

=
(
1− e−20µ

)10
=
(
1− e−2

)10 ≈ 0.234. (1)

(b) At the start at time zero, we can view each runner as the first arrival
of an independent Poisson process of rate µ. Thus, at time zero, the
arrival of the first runner can be viewed as the first arrival of a process
of rate 10µ. Hence, X1 is exponential with expected value 1/(10µ) = 1
and has PDF

fX1(x1) =

{
e−x1 x1 ≥ 0,

0 otherwise.
(2)
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(c) We can view Y as the 10th arrival of a Poisson process of rate µ. Thus
Y has the Erlang (n = 10, µ) PDF

fY (y) =

{
µ10y9e−µy

9!
y ≥ 0,

0 otherwise.
(3)

(d) We already found the PDF of X1. We observe that after the first runner
finishes, there are still 9 runners on the course. Because each runner’s
time is memoryless, each runner has a residual running time that is an
exponential (µ) random variable. Because these residual running times
are independent X2 is exponential with expected value 1/(9µ) = 1/0.9
and has PDF

fX2(x2) =

{
9µe−9µx2 x2 ≥ 0,

0 otherwise,
=

{
0.9e−0.9x2 x2 ≥ 0,

0 otherwise.
(4)

Similarly, for the ith arrival, there are 10− i+1 = 11− i runners left on
the course. The interarrival time for the ith arriving runner is the same
as waiting for the first arrival of a Poisson process of rate (11 − i)µ.
Thus Xi has PDF

fXi(xi) =

{
(11− i)µe−(11−i)µxi xi ≥ 0

0 otherwise.
(5)

Finally, we observe that the memoryless property of the runners’ ex-
ponential running times ensures that the Xi are independent random
variables. Hence,

fX1,...,X10(x1, . . . , x10)

= fX1(x1) fX2(x2) · · · fX10(x10)

=

{
10!µ10e−µ(10x1+9x2+···+2x9+x10) xi ≥ 0,

0 otherwise.
(6)
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Problem 13.6.1 Solution
From the problem statement, the change in the stock price is X(8) − X(0)
and the standard deviation of X(8)−X(0) is 1/2 point. In other words, the
variance of X(8) − X(0) is Var[X(8) − X(0)] = 1/4. By the definition of
Brownian motion. Var[X(8)−X(0)] = 8α. Hence α = 1/32.

Problem 13.6.3 Solution
We need to verify that Y (t) = X(ct) satisfies the conditions given in Defini-
tion 13.10. First we observe that Y (0) = X(c · 0) = X(0) = 0. Second, we
note that since X(t) is Brownian motion process implies that Y (t)− Y (s) =
X(ct)−X(cs) is a Gaussian random variable. Further, X(ct)−X(cs) is inde-
pendent of X(t′) for all t′ ≤ cs. Equivalently, we can say that X(ct)−X(cs) is
independent of X(cτ) for all τ ≤ s. In other words, Y (t)−Y (s) is independent
of Y (τ) for all τ ≤ s. Thus Y (t) is a Brownian motion process.

Problem 13.6.5 Solution
Recall that the vector X of increments has independent components Xn =
Wn −Wn−1. Alternatively, each Wn can be written as the sum

W1 = X1, (1)

W2 = X1 +X2, (2)

...

Wk = X1 +X2 + · · ·+Xk. (3)

In terms of matrices, W = AX where A is the lower triangular matrix

A =


1
1 1
...

. . .

1 · · · · · · 1

 . (4)

Since E[W] = AE[X] = 0, it folows from Theorem 8.11 that

fW(w) =
1

|det (A)|fX
(
A−1w

)
. (5)
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Since A is a lower triangular matrix, det(A) is the product of its diagonal
entries. In this case, det(A) = 1. In addition, reflecting the fact that each
Xn = Wn −Wn−1,

A−1 =


1
−1 1
0 −1 1
...

. . . . . . . . .

0 · · · 0 −1 1

 and A−1W =


W1

W2 −W1

W3 −W2
...

Wk −Wk−1

 . (6)

Combining these facts with the observation that fX(x) =
∏k

n=1 fXn(xn), we
can write

fW(w) = fX
(
A−1w

)
=

k∏
n=1

fXn(wn − wn−1) , (7)

which completes the missing steps in the proof of Theorem 13.8.

Problem 13.7.1 Solution

The discrete time autocovariance function is

CX [m, k] = E [(Xm − µX)(Xm+k − µX)] . (1)

For k = 0, CX [m, 0] = Var[Xm] = σ2
X . For k 6= 0, Xm and Xm+k are

independent so that

CX [m, k] = E [(Xm − µX)] E [(Xm+k − µX)] = 0. (2)

Thus the autocovariance of Xn is

CX [m, k] =

{
σ2
X k = 0,

0 k 6= 0.
(3)
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Problem 13.7.3 Solution

In this problem, the daily temperature process results from

Cn = 16

[
1− cos

2πn

365

]
+ 4Xn, (1)

where Xn is an iid random sequence of N [0, 1] random variables. The hard-
est part of this problem is distinguishing between the process Cn and the
covariance function CC [k].

(a) The expected value of the process is

E [Cn] = 16 E

[
1− cos

2πn

365

]
+ 4 E [Xn]

= 16

[
1− cos

2πn

365

]
. (2)

(b) Note that (1) and (2) imply

Cn − E [Cn] = 4Xn. (3)

This implies that the autocovariance of Cn is

CC [m, k] = E [(Cm − E [Cm]) (Cm+k − E [Cm+k])]

= 16 E [XmXm+k] =

{
16 k = 0,

0 otherwise.
(4)

(c) A model of this type may be able to capture the mean and variance of
the daily temperature. However, one reason this model is overly simple
is because day to day temperatures are uncorrelated. A more realistic
model might incorporate the effects of “heat waves” or “cold spells”
through correlated daily temperatures.
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Problem 13.7.5 Solution

This derivation of the Poisson process covariance is almost identical to the
derivation of the Brownian motion autocovariance since both rely on the use
of independent increments. From the definition of the Poisson process, we
know that µN(t) = λt. When τ ≥ 0, we can write

CN(t, τ) = E [N(t)N(t+ τ)]− (λt)[λ(t+ τ)]

= E [N(t)[(N(t+ τ)−N(t)) +N(t)]]− λ2t(t+ τ)

= E [N(t)[N(t+ τ)−N(t)]] + E
[
N2(t)

]
− λ2t(t+ τ). (1)

By the definition of the Poisson process, N(t + τ) − N(t) is the number of
arrivals in the interval [t, t + τ) and is independent of N(t) for τ > 0. This
implies

E [N(t)[N(t+ τ)−N(t)]] = E [N(t)] E [N(t+ τ)−N(t)]

= λt[λ(t+ τ)− λt]. (2)

Note that since N(t) is a Poisson random variable, Var[N(t)] = λt. Hence

E
[
N2(t)

]
= Var[N(t)] + (E [N(t)]2 = λt+ (λt)2. (3)

Therefore, for τ ≥ 0,

CN(t, τ) = λt[λ(t+ τ)− λt) + λt+ (λt)2 − λ2t(t+ τ) = λt. (4)

If τ < 0, then we can interchange the labels t and t+ τ in the above steps to
show CN(t, τ) = λ(t + τ). For arbitrary t and τ , we can combine these facts
to write

CN(t, τ) = λmin(t, t+ τ). (5)

Problem 13.7.7 Solution

Since the Xn are independent,

E [Yn] = E [Xn−1Xn] = E [Xn−1] E [Xn] = 0. (1)
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Thus the autocovariance function is

CY [n, k] = E [YnYn+k] = E [Xn−1XnXn+k−1Xn+k] . (2)

To calculate this expectation, what matters is whether any of the four terms
in the product are the same. This reduces to five cases:

1. n+ k − 1 > n, or equivalently k > 1:

In this case, we have

n− 1 < n < n+ k − 1 < n+ k, (3)

implying that Xn−1, Xn, Xn+k−1 and Xn+k are independent. It follows
that

E [Xn−1XnXn+k−1Xn+k] = E [Xn−1] E [Xn] E [Xn+k−1] E [Xn+k]

= 0. (4)

2. n+ k < n− 1, or equivalently k < −1:

In this case, we have

n+ k − 1 < n+ k < n− 1 < n, (5)

implying that Xn+k−1 Xn+k, Xn−1, and Xn are independent. It follows
that

E [Xn−1XnXn+k−1Xn+k] = E [Xn−1] E [Xn] E [Xn+k−1] E [Xn+k]

= 0. (6)

3. k = −1:

In this case, we have

E [Xn−1XnXn+k−1Xn+k] = E
[
X2
n−1XnXn−2

]
= E

[
X2
n−1

]
E [Xn] E [Xn−2] = 0. (7)
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4. k = 0:

In this case, we have

E [Xn−1XnXn+k−1Xn+k] = E
[
X2
n−1X

2
n

]
= E

[
X2
n−1

]
E
[
X2
n

]
= 9. (8)

5. k = 1:

In this case, we have

E [Xn−1XnXn+k−1Xn+k] = E
[
Xn−1X

2
nXn+1

]
= E [Xn−1] E

[
X2
n

]
E [Xn+1] = 0. (9)

Combining these case, we find that

CY [n, k] =

{
9 k = 0,

0 otherwise.
(10)

Problem 13.8.1 Solution
For a set of samples Y (t1), . . . , Y (tk), we observe that Y (tj) = X(tj+a). This
implies

fY (t1),...,Y (tk)(y1, . . . , yk) = fX(t1+a),...,X(tk+a)(y1, . . . , yk) . (1)

Thus,

fY (t1+τ),...,Y (tk+τ)(y1, . . . , yk) = fX(t1+τ+a),...,X(tk+τ+a)(y1, . . . , yk) . (2)

Since X(t) is a stationary process,

fX(t1+τ+a),...,X(tk+τ+a)(y1, . . . , yk) = fX(t1+a),...,X(tk+a)(y1, . . . , yk) . (3)

This implies

fY (t1+τ),...,Y (tk+τ)(y1, . . . , yk) = fX(t1+a),...,X(tk+a)(y1, . . . , yk)

= fY (t1),...,Y (tk)(y1, . . . , yk) . (4)

We can conclude that Y (t) is a stationary process.

384



Problem 13.8.3 Solution

For an arbitrary set of samples Y (t1), . . . , Y (tk), we observe that Y (tj) =
X(atj). This implies

fY (t1),...,Y (tk)(y1, . . . , yk) = fX(at1),...,X(atk)(y1, . . . , yk) . (1)

Thus,

fY (t1+τ),...,Y (tk+τ)(y1, . . . , yk) = fX(at1+aτ),...,X(atk+aτ)(y1, . . . , yk) . (2)

We see that a time offset of τ for the Y (t) process corresponds to an offset of
time τ ′ = aτ for the X(t) process. Since X(t) is a stationary process,

fY (t1+τ),...,Y (tk+τ)(y1, . . . , yk) = fX(at1+τ ′),...,X(atk+τ ′)(y1, . . . , yk)

= fX(at1),...,X(atk)(y1, . . . , yk)

= fY (t1),...,Y (tk)(y1, . . . , yk) . (3)

We can conclude that Y (t) is a stationary process.

Problem 13.8.5 Solution

Since Yn = Xkn,

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fXkn1+kl,...,Xknm+kl

(y1, . . . , ym) (1)

Stationarity of the Xn process implies

fXkn1+kl,...,Xknm+kl
(y1, . . . , ym) = fXkn1 ,...,Xknm (y1, . . . , ym)

= fYn1 ,...,Ynm (y1, . . . , ym) . (2)

We combine these steps to write

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fYn1 ,...,Ynm (y1, . . . , ym) . (3)

Thus Yn is a stationary process.
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Problem 13.8.7 Solution
Since g(·) is an unspecified function, we will work with the joint CDF of
Y (t1 + τ), . . . , Y (tn + τ). To show Y (t) is a stationary process, we will show
that for all τ ,

FY (t1+τ),...,Y (tn+τ)(y1, . . . , yn) = FY (t1),...,Y (tn)(y1, . . . , yn) . (1)

By taking partial derivatives with respect to y1, . . . , yn, it should be appar-
ent that this implies that the joint PDF fY (t1+τ),...,Y (tn+τ)(y1, . . . , yn) will not
depend on τ . To proceed, we write

FY (t1+τ),...,Y (tn+τ)(y1, . . . , yn)

= P [Y (t1 + τ) ≤ y1, . . . , Y (tn + τ) ≤ yn]

= P

g(X(t1 + τ)) ≤ y1, . . . , g(X(tn + τ)) ≤ yn︸ ︷︷ ︸
Aτ

 . (2)

In principle, we can calculate P[Aτ ] by integrating fX(t1+τ),...,X(tn+τ)(x1, . . . , xn)
over the region corresponding to event Aτ . Since X(t) is a stationary process,

fX(t1+τ),...,X(tn+τ)(x1, . . . , xn) = fX(t1),...,X(tn)(x1, . . . , xn) . (3)

This implies P[Aτ ] does not depend on τ . In particular,

FY (t1+τ),...,Y (tn+τ)(y1, . . . , yn) = P [Aτ ]

= P [g(X(t1)) ≤ y1, . . . , g(X(tn)) ≤ yn]

= FY (t1),...,Y (tn)(y1, . . . , yn) . (4)

Problem 13.9.1 Solution
The autocorrelation function RX(τ) = δ(τ) is mathematically valid in the
sense that it meets the conditions required in Theorem 13.12. That is,

RX(τ) = δ(τ) ≥ 0, (1)

RX(τ) = δ(τ) = δ(−τ) = RX(−τ), (2)

RX(τ) ≤ RX(0) = δ(0). (3)
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However, for a process X(t) with the autocorrelation RX(τ) = δ(τ), Defini-
tion 13.16 says that the average power of the process is

E
[
X2(t)

]
= RX(0) = δ(0) =∞. (4)

Processes with infinite average power cannot exist in practice.

Problem 13.9.3 Solution

TRUE: First we observe that E[Yn] = E[Xn] − E[Xn−1] = 0, which doesn’t
depend on n. Second, we verify that

CY [n, k] = E [YnYn+k]

= E [(Xn −Xn−1)(Xn+k −Xn+k−1)]

= E [XnXn+k]− E [XnXn+k−1]

− E [Xn−1Xn+k]− E [Xn−1Xn+k−1]

= CX [k]− CX [k − 1]− CX [k + 1] + CX [k] , (1)

which doesn’t depend on n. Hence Yn is WSS.

Problem 13.9.5 Solution

For k 6= 0, Xn and Xn+k are independent so that

RX [n, k] = E [XnXn+k] = E [Xn] E [Xn+k] = µ2. (1)

For k = 0,

RX [n, 0] = E [XnXn] = E
[
X2
n

]
= σ2 + µ2. (2)

Combining these expressions, we obtain

RX [n, k] = RX [k] = µ2 + σ2δ[k], (3)

where δ[k] = 1 if k = 0 and is otherwise zero.
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Problem 13.9.7 Solution

FALSE: The autocorrelation of Yn is

RY [n, k] = E [YnYn+k]

= E
[
(Xn + (−1)n−1Xn−1)(Xn+k + (−1)n+k−1Xn+k−1)

]
= E [XnXn+k] + E

[
(−1)n−1Xn−1Xn+k

]
+ E

[
Xn(−1)n+k−1Xn+k−1

]
+ E

[
(−1)2n+k−2Xn−1Xn+k−1

]
= RX [k] + (−1)n−1RX [k + 1]

+ (−1)n+k−1RX [k + 1] + (−1)kRX [k]

= [1 + (−1)k](RX [k] + (−1)n−1RX [k + 1]), (1)

which depends on n.

Problem 13.9.9 Solution

(a) In the problem statement, we are told thatX(t) has average power equal
to 1. By Definition 13.16, the average power of X(t) is E[X2(t)] = 1.

(b) Since Θ has a uniform PDF over [0, 2π],

fΘ(θ) =

{
1/(2π) 0 ≤ θ ≤ 2π,

0 otherwise.
(1)

The expected value of the random phase cosine is

E [cos(2πfct+ Θ)] =

∫ ∞
−∞

cos(2πfct+ θ)fΘ(θ) dθ

=

∫ 2π

0

cos(2πfct+ θ)
1

2π
dθ

=
1

2π
sin(2πfct+ θ)|2π0

=
1

2π
(sin(2πfct+ 2π)− sin(2πfct)) = 0. (2)
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(c) Since X(t) and Θ are independent,

E [Y (t)] = E [X(t) cos(2πfct+ Θ)]

= E [X(t)] E [cos(2πfct+ Θ)] = 0. (3)

Note that the mean of Y (t) is zero no matter what the mean of X(t)
since the random phase cosine has zero mean.

(d) Independence of X(t) and Θ results in the average power of Y (t) being

E
[
Y 2(t)

]
= E

[
X2(t) cos2(2πfct+ Θ)

]
= E

[
X2(t)

]
E
[
cos2(2πfct+ Θ)

]
= E

[
cos2(2πfct+ Θ)

]
. (4)

Note that we have used the fact from part (a) that X(t) has unity
average power. To finish the problem, we use the trigonometric identity
cos2 φ = (1 + cos 2φ)/2. This yields

E
[
Y 2(t)

]
= E

[
1

2
(1 + cos(2π(2fc)t+ Θ))

]
= 1/2. (5)

Note that E[cos(2π(2fc)t+ Θ)] = 0 by the argument given in part (b)
with 2fc replacing fc.

Problem 13.9.11 Solution

The solution to this problem is essentially the same as the proof of Theo-
rem 13.13 except integrals are replaced by sums. First we verify that Xm is
unbiased:

E
[
Xm

]
=

1

2m+ 1
E

[
m∑

n=−m

Xn

]

=
1

2m+ 1

m∑
n=−m

E [Xn] =
1

2m+ 1

m∑
n=−m

µX = µX . (1)
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To show consistency, it is sufficient to show that limm→∞Var[Xm] = 0. First,
we observe that Xm − µX = 1

2m+1

∑m
n=−m(Xn − µX). This implies

Var[X(T )] = E

( 1

2m+ 1

m∑
n=−m

(Xn − µX)

)2


= E

[
1

(2m+ 1)2

(
m∑

n=−m

(Xn − µX)

)(
m∑

n′=−m

(Xn′ − µX)

)]

=
1

(2m+ 1)2

m∑
n=−m

m∑
n′=−m

E [(Xn − µX)(Xn′ − µX)]

=
1

(2m+ 1)2

m∑
n=−m

m∑
n′=−m

CX [n′ − n] . (2)

We note that
m∑

n′=−m

CX [n′ − n] ≤
m∑

n′=−m

|CX [n′ − n]|

≤
∞∑

n′=−∞

|CX [n′ − n]| =
∞∑

k=−∞

|CX(k)| <∞. (3)

Hence there exists a constant K such that

Var[Xm] ≤ 1

(2m+ 1)2

m∑
n=−m

K =
K

2m+ 1
. (4)

Thus limm→∞Var[Xm] ≤ limm→∞
K

2m+1
= 0.

Problem 13.10.1 Solution

(a) Since X(t) and Y (t) are independent processes,

E [W (t)] = E [X(t)Y (t)] = E [X(t)] E [Y (t)] = µXµY . (1)
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In addition,

RW (t, τ) = E [W (t)W (t+ τ)]

= E [X(t)Y (t)X(t+ τ)Y (t+ τ)]

= E [X(t)X(t+ τ)] E [Y (t)Y (t+ τ)]

= RX(τ)RY (τ). (2)

We can conclude that W (t) is wide sense stationary.

(b) To examine whether X(t) and W (t) are jointly wide sense stationary,
we calculate

RWX(t, τ) = E [W (t)X(t+ τ)] = E [X(t)Y (t)X(t+ τ)] . (3)

By independence of X(t) and Y (t),

RWX(t, τ) = E [X(t)X(t+ τ)] E [Y (t)] = µYRX(τ). (4)

Since W (t) and X(t) are both wide sense stationary and since RWX(t, τ)
depends only on the time difference τ , we can conclude from Defini-
tion 13.18 that W (t) and X(t) are jointly wide sense stationary.

Problem 13.10.3 Solution

(a) Y (t) has autocorrelation function

RY (t, τ) = E [Y (t)Y (t+ τ)]

= E [X(t− t0)X(t+ τ − t0)]

= RX(τ). (1)

(b) The cross correlation of X(t) and Y (t) is

RXY (t, τ) = E [X(t)Y (t+ τ)]

= E [X(t)X(t+ τ − t0)]

= RX(τ − t0). (2)
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(c) We have already verified that RY (t, τ) depends only on the time differ-
ence τ . Since E[Y (t)] = E[X(t− t0)] = µX , we have verified that Y (t)
is wide sense stationary.

(d) Since X(t) and Y (t) are wide sense stationary and since we have shown
that RXY (t, τ) depends only on τ , we know that X(t) and Y (t) are
jointly wide sense stationary.

Comment: This problem is badly designed since the conclusions don’t
depend on the specific RX(τ) given in the problem text. (Sorry about that!)

Problem 13.11.1 Solution
For the X(t) process to be stationary, we must have fX(t1)(x) = fX(t2)(x).
Since X(t1) and X(t2) are both Gaussian and zero mean, this requires that

σ2
1 = Var[X(t1)] = Var[X(t2)] = σ2

2. (1)

In addition the correlation coefficient of X(t1) and X(t2) must satisfy∣∣ρX(t1),X(t2)

∣∣ ≤ 1. (2)

This implies

ρX(t1),X(t2) =
Cov [X(t1), X(t2)]

σ1σ2

=
1

σ2
2

≤ 1. (3)

Thus σ2
1 = σ2

2 ≥ 1.

Problem 13.11.3 Solution
Writing Y (t + τ) =

∫ t+τ
0

N(v) dv permits us to write the autocorrelation of
Y (t) as

RY (t, τ) = E [Y (t)Y (t+ τ)] = E

[∫ t

0

∫ t+τ

0

N(u)N(v) dv du

]
=

∫ t

0

∫ t+τ

0

E [N(u)N(v)] dv du

=

∫ t

0

∫ t+τ

0

αδ(u− v) dv du. (1)
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At this point, it matters whether τ ≥ 0 or if τ < 0. When τ ≥ 0, then v
ranges from 0 to t + τ and at some point in the integral over v we will have
v = u. That is, when τ ≥ 0,

RY (t, τ) =

∫ t

0

α du = αt. (2)

When τ < 0, then we must reverse the order of integration. In this case,
when the inner integral is over u, we will have u = v at some point so that

RY (t, τ) =

∫ t+τ

0

∫ t

0

αδ(u− v) du dv =

∫ t+τ

0

α dv = α(t+ τ). (3)

Thus we see the autocorrelation of the output is

RY (t, τ) = αmin {t, t+ τ} . (4)

Perhaps surprisingly, RY (t, τ) is what we found in Example 13.19 to be the
autocorrelation of a Brownian motion process. In fact, Brownian motion is
the integral of the white noise process.

Problem 13.11.5 Solution
Let W =

[
W (t1) W (t2) · · · W (tn)

]′
denote a vector of samples of a Brow-

nian motion process. To prove that W (t) is a Gaussian random process, we
must show that W is a Gaussian random vector. To do so, let

X =
[
X1 · · · Xn

]′
=
[
W (t1) W (t2)−W (t1) · · · W (tn)−W (tn−1)

]′
(1)

denote the vector of increments. By the definition of Brownian motion,
X1, . . . , Xn is a sequence of independent Gaussian random variables. Thus X
is a Gaussian random vector. Finally,

W =


W1

W2
...
Wn

 =


X1

X1 +X2
...

X1 + · · ·+Xn

 =


1
1 1
...

. . .

1 · · · · · · 1


︸ ︷︷ ︸

A

X. (2)
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Since X is a Gaussian random vector and W = AX with A a rank n matrix,
Theorem 8.11 implies that W is a Gaussian random vector.

Problem 13.12.1 Solution
From the instructions given in the problem, the program noisycosine.m will
generate the four plots.

n=1000; t=0.001*(-n:n);

w=gaussrv(0,0.01,(2*n)+1);

%Continuous Time, Continuous Value

xcc=2*cos(2*pi*t) + w’;

plot(t,xcc);

xlabel(’\it t’);ylabel(’\it X_{cc}(t)’);

axis([-1 1 -3 3]);

figure; %Continuous Time, Discrete Value

xcd=round(xcc); plot(t,xcd);

xlabel(’\it t’);ylabel(’\it X_{cd}(t)’);

axis([-1 1 -3 3]);

figure; %Discrete time, Continuous Value

ts=subsample(t,100); xdc=subsample(xcc,100);

plot(ts,xdc,’b.’);

xlabel(’\it t’);ylabel(’\it X_{dc}(t)’);

axis([-1 1 -3 3]);

figure; %Discrete Time, Discrete Value

xdd=subsample(xcd,100); plot(ts,xdd,’b.’);

xlabel(’\it t’);ylabel(’\it X_{dd}(t)’);

axis([-1 1 -3 3]);

In noisycosine.m, we use a function subsample.m to obtain the discrete
time sample functions. In fact, subsample is hardly necessary since it’s such
a simple one-line Matlab function:

function y=subsample(x,n)

%input x(1), x(2) ...

%output y(1)=x(1), y(2)=x(1+n), y(3)=x(2n+1)

y=x(1:n:length(x));
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However, we use it just to make noisycosine.m a little more clear.

Problem 13.12.3 Solution

In this problem, our goal is to find out the average number of ongoing calls
in the switch. Before we use the approach of Problem 13.12.2, its worth a
moment to consider the physical situation. In particular, calls arrive as a
Poisson process of rate λ = 100 call/minute and each call has duration of
exactly one minute. As a result, if we inspect the system at an arbitrary time
t at least one minute past initialization, the number of calls at the switch will
be exactly the number of calls N1 that arrived in the previous minute. Since
calls arrive as a Poisson proces of rate λ = 100 calls/minute. N1 is a Poisson
random variable with E[N1] = 100.

In fact, this should be true for every inspection time t. Hence it should
surprising if we compute the time average and find the time average number
in the queue to be something other than 100. To check out this quickie
analysis, we use the method of Problem 13.12.2. However, unlike Prob-
lem 13.12.2, we cannot directly use the function simswitch.m because the
call duration are no longer exponential random variables. Instead, we must
modify simswitch.m for the deterministic one minute call durations, yielding
the function simswitchd.m:
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function M=simswitchd(lambda,T,t)

%Poisson arrivals, rate lambda

%Deterministic (T) call duration

%For vector t of times

%M(i) = no. of calls at time t(i)

s=poissonarrivals(lambda,max(t));

y=s+T;

A=countup(s,t);

D=countup(y,t);

M=A-D;

Note that if you compare
simswitch.m in the text with
simswitchd.m here, two changes
occurred. The first is that the
exponential call durations are
replaced by the deterministic
time T . The other change is
that count(s,t) is replaced
by countup(s,t). In fact,
n=countup(x,y) does exactly the
same thing as n=count(x,y); in
both cases, n(i) is the number
of elements less than or equal
to y(i). The difference is that
countup requires that the vectors
x and y be nondecreasing.

Now we use the same procedure as in Problem 13.12.2 and form the time
average

M(T ) =
1

T

T∑
t=1

M(t). (1)

>> t=(1:600)’;

>> M=simswitchd(100,1,t);

>> Mavg=cumsum(M)./t;

>> plot(t,Mavg);

We form and plot the time average using
these commands will yield a plot vaguely
similar to that shown below.
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We used the word “vaguely” because at t = 1, the time average is simply the
number of arrivals in the first minute, which is a Poisson (α = 100) random
variable which has not been averaged. Thus, the left side of the graph will be
random for each run. As expected, the time average appears to be converging
to 100.

Problem 13.12.5 Solution
Following the problem instructions, we can write the function newarrivals.m.
For convenience, here are newarrivals and poissonarrivals side by side.

function s=newarrivals(lam,T)

%Usage s=newarrivals(lam,T)

%Returns Poisson arrival times

%s=[s(1) ... s(n)] over [0,T]

n=poissonrv(lam*T,1);

s=sort(T*rand(n,1));

function s=poissonarrivals(lam,T)

%arrival times s=[s(1) ... s(n)]

% s(n)<= T < s(n+1)

n=ceil(1.1*lam*T);

s=cumsum(exponentialrv(lam,n));

while (s(length(s))< T),

s_new=s(length(s))+ ...

cumsum(exponentialrv(lam,n));

s=[s; s_new];

end

s=s(s<=T);

Clearly the code for newarrivals is shorter, more readable, and perhaps,
with the help of Problem 13.5.8, more logical than poissonarrivals. Un-
fortunately this doesn’t mean the code runs better. Here are some cputime

comparisons:
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>> t=cputime;s=poissonarrivals(1,100000);t=cputime-t

t =

0.1110

>> t=cputime;s=newarrivals(1,100000);t=cputime-t

t =

0.5310

>> t=cputime;poissonrv(100000,1);t=cputime-t

t =

0.5200

>>

Unfortunately, these results were highly repeatable. The function poissonarrivals

generated 100,000 arrivals of a rate 1 Poisson process required roughly 0.1 sec-
onds of cpu time. The same task took newarrivals about 0.5 seconds, or
roughly 5 times as long! In the newarrivals code, the culprit is the way
poissonrv generates a single Poisson random variable with expected value
100,000. In this case, poissonrv generates the first 200,000 terms of the Pois-
son PMF! This required calculation is so large that it dominates the work need
to generate 100,000 uniform random numbers. In fact, this suggests that a
more efficient way to generate a Poisson (α) random variable N is to generate
arrivals of a rate α Poisson process until the Nth arrival is after time 1.

Problem 13.12.7 Solution
In this problem, we start with the simswitch.m code to generate the vector of
departure times y. We then construct the vector I of inter-departure times.
The command hist,20 will generate a 20 bin histogram of the departure
times. The fact that this histogram resembles an exponential PDF suggests
that perhaps it is reasonable to try to match the PDF of an exponential (µ)
random variable against the histogram.

In most problems in which one wants to fit a PDF to measured data, a key
issue is how to choose the parameters of the PDF. In this problem, choosing
µ is simple. Recall that the switch has a Poisson arrival process of rate λ so
interarrival times are exponential (λ) random variables. If 1/µ < 1/λ, then
the average time between departures from the switch is less than the average
time between arrivals to the switch. In this case, calls depart the switch
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faster than they arrive which is impossible because each departing call was
an arriving call at an earlier time. Similarly, if 1/µ > 1/λ , then calls would
be departing from the switch more slowly than they arrived. This can happen
to an overloaded switch; however, it’s impossible in this system because each
arrival departs after an exponential time. Thus the only possibility is that
1/µ = 1/λ. In the program simswitchdepart.m, we plot a histogram of
departure times for a switch with arrival rate λ against the scaled exponential
(λ) PDF λe−λxb where b is the histogram bin size. Here is the code:

function I=simswitchdepart(lambda,mu,T)

%Usage: I=simswitchdepart(lambda,mu,T)

%Poisson arrivals, rate lambda

%Exponential (mu) call duration

%Over time [0,T], returns I,

%the vector of inter-departure times

%M(i) = no. of calls at time t(i)

s=poissonarrivals(lambda,T);

y=s+exponentialrv(mu,length(s));

y=sort(y);

n=length(y);

I=y-[0; y(1:n-1)]; %interdeparture times

imax=max(I);b=ceil(n/100);

id=imax/b; x=id/2:id:imax;

pd=hist(I,x); pd=pd/sum(pd);

px=exponentialpdf(lambda,x)*id;

plot(x,px,x,pd);

xlabel(’\it x’);ylabel(’Probability’);

legend(’Exponential PDF’,’Relative Frequency’);

Here is an example of the simswitchdepart(10,1,1000) output:
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As seen in the figure, the match is quite good. Although this is not a carefully
designed statistical test of whether the inter-departure times are exponential
random variables, it is enough evidence that one may want to pursue whether
such a result can be proven.

In fact, the switch in this problem is an example of an M/M/∞ queuing
system for which it has been shown that not only do the inter-departure
have an exponential distribution, but the steady-state departure process is a
Poisson process. For the curious reader, details can be found, for example, in
the text Stochastic Processes: Theory for Applications by Gallager.
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