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• The Matlab section quizzes at the end of each chapter use programs avail-
able for download as the archive matcode.zip. This archive has general
purpose programs for solving probability problems as well as specific .m files
associated with examples or quizzes in the text. Also available is a manual
probmatlab.pdf describing the general purpose .m files in matcode.zip.

• We have made a substantial effort to check the solution to every quiz. Nev-
ertheless, there is a nonzero probability (in fact, a probability close to unity)
that errors will be found. If you find errors or have suggestions or comments,
please send email to ryates@winlab.rutgers.edu. When errors are found,
corrected solutions will be posted at the website.

• This manual uses a page size matched to the screen of an iPad tablet. If you
do print on paper and you have good eyesight, you may wish to print two
pages per sheet in landscape mode. On the other hand, a “Fit to Paper”
printing option will create “Large Print” output.
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Quiz 1.1 Solution
In the Venn diagrams for parts (a)-(g) below, the shaded area represents the
indicated set.

M O

T

M O

T

(a) N = T c (b) N ∪M

M O

T

M O

T

(c) N ∩M (d) T c ∩M c

Quiz 1.2 Solution

A1 = {vvv, vvd, dvv, dvd}
B1 = {vdv, vdd, ddv, ddd}
A2 = {vvv, ddd}
B2 = {vdv, dvd}
A3 = {vvv, vvd, vdv, dvv, vdd, dvd, ddv}
B3 = {ddd, ddv, dvd, vdd}

Recall that Ai and Bi are collectively exhaustive if Ai∪Bi = S. Also, Ai and
Bi are mutually exclusive if Ai ∩ Bi = φ. Since we have written down each
pair Ai and Bi above, we can simply check for these properties.

The pair A1 and B1 are mutually exclusive and collectively exhaustive. The
pair A2 and B2 are mutually exclusive but not collectively exhaustive. The
pair A3 and B3 are not mutually exclusive since dvd belongs to A3 and B3.
However, A3 and B3 are collectively exhaustive.
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Quiz 1.3 Solution

There are exactly 50 equally likely outcomes: s51 through s100. Each of these
outcomes has probability 1/50. It follows that

(a) P[{s100}] = 1/50 = 0.02.

(b) P[A] = P[{s90, s91, . . . , s100}] = 11/50 = 0.22.

(c) P[F ] = P[{s51, . . . , s59}] = 9/50 = 0.18.

(d) P[T < 90] = P[{s51, . . . , s89}] = 39/50. = 0.78.

(e) P[C or better] = P[{s70, . . . , s100}] = 31× 0.02 = 0.62.

(f) P[student passes] = P[{s60, . . . , s100}] = 41× 0.02 = 0.82.

Quiz 1.4 Solution

(a) The probability of exactly two voice packets is

P [NV = 2] = P [{vvd, vdv, dvv}] = 0.3. (1)

(b) The probability of at least one voice packet is

P [NV ≥ 1] = 1− P [NV = 0]

= 1− P [ddd] = 0.8. (2)

(c) The conditional probability of two voice packets followed by a data
packet given that there were two voice packets is

P [{vvd} |NV = 2] =
P [{vvd} , NV = 2]

P [NV = 2]

=
P [{vvd}]

P [NV = 2]
=

0.1

0.3
=

1

3
. (3)
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(d) The conditional probability of two data packets followed by a voice
packet given there were two voice packets is

P [{ddv} |NV = 2] =
P [{ddv} , NV = 2]

P [NV = 2]
= 0.

The joint event of the outcome ddv and exactly two voice packets has
probability zero since there is only one voice packet in the outcome ddv.

(e) The conditional probability of exactly two voice packets given at least
one voice packet is

P [NV = 2|Nv ≥ 1] =
P [NV = 2, NV ≥ 1]

P [NV ≥ 1]

=
P [NV = 2]

P [NV ≥ 1]
=

0.3

0.8
=

3

8
. (4)

(f) The conditional probability of at least one voice packet given there were
exactly two voice packets is

P [NV ≥ 1|NV = 2] =
P [NV ≥ 1, NV = 2]

P [NV = 2]
=

P [NV = 2]

P [NV = 2]
= 1. (5)

Given two voice packets, there must have been at least one voice packet.

Quiz 1.5 Solution

We can describe this experiment by the event space consisting of the four
possible events NL, NR, BL, and BR. We represent these events in the
table:

N B
L 0.35 ?
R ? ?

Once we fill in the table, finding the various probabilities will be simple.
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In a roundabout way, the problem statement tells us how to fill in the table.
In particular,

P[N ] = 0.7 = P[NL] + P[NR],

P[L] = 0.6 = P[NL] + P[BL].

Since P[NL] = 0.35, we can conclude that P[NR] = 0.7 − 0.35 = 0.35 and
that P[BL] = 0.6 − 0.35 = 0.25. This allows us to fill in two more table
entries:

N B
L 0.35 0.25
R 0.35 ?

The remaining table entry is filled in by observing that the probabilities must
sum to 1. This implies P[BR] = 0.05 and the complete table is

N B
L 0.35 0.25
R 0.35 0.05

The various probabilities are now simple:

(a) P [B ∪ L] = P [NL] + P [BL] + P [BR]

= 0.35 + 0.25 + 0.05 = 0.65.

(b) P [N ∪ L] = P [N ] + P [L]− P [NL]

= 0.7 + 0.6− 0.35 = 0.95.

(c) P [N ∪B] = P [S] = 1.

(d) P [LR] = P [LLc] = 0.
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Quiz 1.6 Solution

In this experiment, there are four outcomes with probabilities

P[{vv}] = (0.8)2 = 0.64, P[{vd}] = (0.8)(0.2) = 0.16,

P[{dv}] = (0.2)(0.8) = 0.16, P[{dd}] = (0.2)2 = 0.04.

When checking the independence of any two events A and B, it’s wise to
avoid intuition and simply check whether P[AB] = P[A] P[B]. Using the
probabilities of the outcomes, we now can test for the independence of events.

(a) First, we calculate the probability of the joint event:

P [NV = 2, NV ≥ 1] = P [NV = 2] = P [{vv}] = 0.64. (1)

Next, we observe that P[NV ≥ 1] = P[{vd, dv, vv}] = 0.96.. Finally, we
make the comparison

P [NV = 2] P [NV ≥ 1] = (0.64)(0.96) 6= P [NV = 2, NV ≥ 1] , (2)

which shows the two events are dependent.

(b) The probability of the joint event is

P [NV ≥ 1, C1 = v] = P [{vd, vv}] = 0.80. (3)

From part (a), P[NV ≥ 1] = 0.96. Further, P[C1 = v] = 0.8 so that

P [NV ≥ 1] P [C1 = v] = (0.96)(0.8) = 0.768 6= P [NV ≥ 1, C1 = v] .
(4)

Hence, the events are dependent.

(c) The problem statement that the packets were independent implies that
the events {C2 = v} and {C1 = d} are independent events. Just to be
sure, we can do the calculations to check:

P [C1 = d, C2 = v] = P [{dv}] = 0.16. (5)

6



Since P[C1 = d] P[C2 = v] = (0.2)(0.8) = 0.16, we confirm that the
events are independent. Note that this shouldn’t be surprising since we
used the information that the packets were independent in the problem
statement to determine the probabilities of the outcomes.

(d) The probability of the joint event is

P [C2 = v,NV is even] = P [{vv}] = 0.64. (6)

Also, each event has probability

P [C2 = v] = P [{dv, vv}] = 0.8, (7)

P [NV is even] = P [{dd, vv}] = 0.68. (8)

Thus,

P [C2 = v] P [NV is even] = (0.8)(0.68)

= 0.544 6= P [C2 = v,NV is even] . (9)

Thus the events are dependent.

Quiz 1.7 Solution

These two matlab instructions

>> T=randi(140,1000,5);

>> sum(T>120)

ans =

126 147 134 133 163

simulate 5 runs of an experiment each with 1000 tweets. In particular, we note
that T=randi(140,1000,5) generates a 1000 × 5 array T of pseudorandom
integers between 1 and 140. Each column of T has 1000 entries representing
an experimental run corresponding to the lengths of 1000 tweets. The com-
parison T>120 produces a 5×1000 binary matrix in which each 1 marks a long
tweet with length over 120 characters. Summing this binary array along the
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columns with the command sum(T>120) counts the number of long tweets in
each experimental run.

The experiment in which we examine the length of one tweet has sample
space S = {s1, s2, . . . , s140} with si denoting the outcome that a tweet has
length i. Note that P[si] = 1/140 and thus

P [tweet length > 120] = P [{s121, s122, . . . , s140}] =
20

140
=

1

7
. (1)

Thus in each run of 1000 tweets, we would expect to see about 1/7 of the
tweets, or about 143 tweets, to be be long tweets with length of over 120
characters. However, because the lengths are random, we see that we observe
in the neighborhood of 143 long tweets in each run.
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Quiz 2.1 Solution
Let Fi denote the event that that the user is found on page i. The tree for
the experiment is

�
��

��
F10.8

F c10.2
�
��

��
F20.8

F c20.2
�
��

��
F30.8

F c30.2

The user is found unless all three paging attempts fail. Thus the probability
the user is found is

P [F ] = 1− P [F c
1F

c
2F

c
3 ] = 1− (0.2)3 = 0.992. (1)

Quiz 2.2 Solution

(a) We can view choosing each bit in the code word as a subexperiment.
Each subexperiment has two possible outcomes: 0 and 1. Thus by the
fundamental principle of counting, there are 2 × 2 × 2 × 2 = 24 = 16
possible code words.

(b) An experiment that can yield all possible code words with two zeroes is
to choose which 2 bits (out of 4 bits) will be zero. The other two bits
then must be ones. There are

(
4
2

)
= 6 ways to do this. Hence, there

are six code words with exactly two zeroes. For this problem, it is also
possible to simply enumerate the six code words:

1100, 1010, 1001,
0101, 0110, 0011.

(c) When the first bit must be a zero, then the first subexperiment of
choosing the first bit has only one outcome. For each of the next three
bits, we have two choices. In this case, there are 1× 2× 2× 2 = 8 ways
of choosing a code word.
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(d) For the constant ratio code, we can specify a code word by choosing
M of the bits to be ones. The other N −M bits will be zeroes. The
number of ways of choosing such a code word is

(
N
M

)
. For N = 8 and

M = 3, there are
(
8
3

)
= 56 code words.

Quiz 2.3 Solution

(a) In this problem, k bits received in error is the same as k failures in 100
trials. The failure probability is ε = 1 − p and the success probability
is 1 − ε = p. That is, the probability of k bits in error and 100 − k
correctly received bits is

P [Ek,100−k] =

(
100

k

)
εk(1− ε)100−k. (1)

For ε = 0.01,

P [E0,100] = (1− ε)100 = (0.99)100 = 0.3660. (2)

P [E1,99] = 100(0.01)(0.99)99 = 0.3700. (3)

P [E2,98] = 4950(0.01)2(0.99)98 = 0.1849. (4)

P [E3,97] = 161, 700(0.01)3(0.99)97 = 0.0610. (5)

(b) The probability a packet is decoded correctly is just

P [C] = P [E0,100] + P [E1,99] + P [E2,98] + P [E3,97] = 0.9819. (6)

Quiz 2.4 Solution

(a) Since the chip works only if all n transistors work, the transistors in
the chip are like devices in series. The probability that a chip works is
P[C] = pn.
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(b) The module works if either 8 chips work or 9 chips work. Let Ck denote
the event that exactly k chips work. Since transistor failures are inde-
pendent of each other, chip failures are also independent. Thus each
P[Ck] has the binomial probability

P [C8] =

(
9

8

)
(P [C])8 (1− P [C])9−8 = 9p8n(1− pn), (1)

P [C9] = (P [C])9 = p9n. (2)

The probability a memory module works is

P [M ] = P [C8] + P [C9] = p8n(9− 8pn). (3)

(c) Given that p = 0.999. For and we need to find the largest value of n
such that P[M ] > 0.9. Although this quiz is not a Matlab quiz, this
matlab script is an easy way to calculate the largest n:

%chipsize1.m

n=1:80;

PM=(p.^(8*n)).*(9-8*(p.^n));

plot(n,PM)

nmax = sum(PM>0.9)

The script includes a plot command to verify that P[M ] is a decreasing
function of n. The output is

>> chipsize1

nmax =

62

(d) Now the event C7 that seven chips works also yields an acceptable mod-
ule. Since each chip works with probability P[C] = pn,

P [C7] =

(
9

7

)
(P [C])7(1− P [C])2 = 36p7n(1− pn)2

= 36p7n − 72p8n + 36p9n. (4)
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The probability a memory module works is

P [M ] = P [C7] + P [C8] + P [C9]

= 36p7n − 72p8n + 36p9n + p8n(9− 8pn) (5)

= 36p7n − 63p8n + 28p9n. (6)

Just as we did in the previous part, we use Matlab to find the maxi-
mum n:

%chipsize2.m

n=1:150;

PM=36*(p.^(7*n))-(63*p.^(8*n))+(28*p.^(9*n));

plot(n,PM)

nmax = sum(PM>0.9)

The answer is

>> chipsize2

nmax =

138

The additional redundancy at the chip level to enable one more defective
chip allows us to more than double the number of transistors per chip.

Quiz 2.5 Solution

For a Matlab simulation, we first generate a vector R of 100 random num-
bers. Second, we generate vector X as a function of R to represent the 3
possible outcomes of a flip. That is, X(i)=1 if flip i was heads, X(i)=2 if flip
i was tails, and X(i)=3) is flip i landed on the edge. The matlab code is

R=rand(1,100);

X=(R<= 0.4) ...

+ (2*(R>0.4).*(R<=0.9)) ...

+ (3*(R>0.9));

Y=hist(X,1:3)
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To see how this works, we note there are three cases:

• If R(i) <= 0.4, then X(i)=1.

• If 0.4 < R(i) and R(i)<=0.9, then X(i)=2.

• If 0.9 < R(i), then X(i)=3.

These three cases will have probabilities 0.4, 0.5 and 0.1. Lastly, we use the
hist function to count how many occurences of each possible value of X(i).
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Quiz 3.1 Solution
The sample space, probabilities and corresponding grades for the experiment
are

Outcomes BB BC CB CC
G2 3.0 2.5 2.5 2.0

Quiz 3.2 Solution

(a) To find c, we recall that the PMF must sum to 1. That is,

3∑
n=1

PN (n) = c

(
1 +

1

2
+

1

3

)
= 1. (1)

This implies c = 6/11. Now that we have found c, the remaining parts
are straightforward.

(b) P[N = 1] = PN(1) = c = 6/11.

(c) P [N ≥ 2] = PN (2) + PN (3)

= c/2 + c/3 = 5/11.

(d) P[N > 3] =
∑∞

n=4 PN(n) = 0.

Quiz 3.3 Solution
Decoding each transmitted bit is an independent trial where we call a bit
error a “success.” Each bit is in error, that is, the trial is a success, with
probability p. Now we can interpret each experiment in the generic context
of independent trials.

(a) The random variable X is the number of trials up to and including the
first success. Similar to Example 3.9, X has the geometric PMF

PX(x) =

{
p(1− p)x−1 x = 1, 2, . . .

0 otherwise.
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(b) If p = 0.1, then the probability exactly 10 bits are sent is

PX (10) = (0.1)(0.9)9 = 0.0387. (1)

The probability that at least 10 bits are sent is

P [X ≥ 10] =
∞∑

x=10

PX (x) . (2)

This sum is not too hard to calculate. However, its even easier to
observe that X ≥ 10 if the first 10 bits are transmitted correctly. That
is,

P [X ≥ 10] = P [first 10 bits correct] = (1− p)10. (3)

For p = 0.1,

P [X ≥ 10] = 0.910 = 0.3487. (4)

(c) The random variable Y is the number of successes in 100 independent
trials. Just as in Example 3.11, Y has the binomial PMF

PY (y) =

(
100

y

)
py(1− p)100−y. (5)

If p = 0.01, the probability of exactly 2 errors is

PY (2) =

(
100

2

)
(0.01)2(0.99)98 = 0.1849. (6)

(d) The probability of no more than 2 errors is

P [Y ≤ 2] = PY (0) + PY (1) + PY (2)

= (0.99)100 + 100(0.01)(0.99)99 +

(
100

2

)
(0.01)2(0.99)98

= 0.9207. (7)
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(e) Random variable Z is the number of trials up to and including the third
success. Thus Z has the Pascal PMF (see Example 3.13)

PZ (z) =

(
z − 1

2

)
p3(1− p)z−3. (8)

Note that PZ(z) > 0 for z = 3, 4, 5, . . ..

(f) If p = 0.25, the probability that the third error occurs on bit 12 is

PZ (12) =

(
11

2

)
(0.25)3(0.75)9 = 0.0645. (9)

Quiz 3.4 Solution

Each of these probabilities can be read from the graph of the CDF FY(y).
However, we must keep in mind that when FY(y) has a discontinuity at y0,
FY(y) takes the upper value FY(y+0 ).

(a) P[Y < 1] = FY(1−) = 0.

(b) P[Y ≤ 1] = FY(1) = 0.6.

(c) P[Y > 2] = 1− P[Y ≤ 2] = 1− FY(2) = 1− 0.8 = 0.2.

(d) P[Y ≥ 2] = 1− P[Y < 2] = 1− FY(2−) = 1− 0.6 = 0.4.

(e) P[Y = 1] = P[Y ≤ 1]− P[Y < 1] = FY(1+)− FY(1−) = 0.6.

(f) P[Y = 3] = P[Y ≤ 3]− P[Y < 3] = FY(3+)− FY(3−) = 0.8− 0.8 = 0.

Quiz 3.5 Solution
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(a) With probability 1/3, the subscriber sends a text and the cost is C = 10
cents. Otherwise, with probability 2/3, the subscriber receives a text
and the cost is C = 5 cents. This corresponds to the PMF

PC (c) =


2/3 c = 5,

1/3 c = 10,

0 otherwise.

(1)

(b) The expected value of C is

E [C] = (2/3)(5) + (1/3)(10) = 6.67 cents. (2)

(c) For the next two parts we think of each text as a Bernoulli trial such
that the trial is a “success” if the subscriber sends a text. The success
probability is p = 1/3. Let R denote the number of texts received before
sending a text. In terms of Bernoulli trials, R is the number of failures
before the first success. R is similar to a geometric random variable
except R = 0 is possible if the first text is sent rather than received. In
general R = r if the first r trials are failures (i.e. the first r texts are
received) and trial r + 1 is a success. Thus R has PMF

PR(r) =

{
(1− p)rp r = 0, 1, 2 . . .

0 otherwise.
(3)

The probability of receiving four texts before sending a text is

PR(4) = (1− p)4p. (4)

(d) The expected number of texts received before sending a text is

E [R] =
∞∑
r=0

rPR(r) =
∞∑
r=0

r(1− p)rp. (5)
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Letting q = 1− p and observing that the r = 0 term in the sum is zero,

E [R] = p
∞∑
r=1

rqr. (6)

Using Math Fact B.7, we have

E [R] = p
q

(1− q)2
=

1− p
p

= 2. (7)

Quiz 3.6 Solution

(a) As a function of N , the money spent by the three customers is

M = 450N + 300(3−N) = 900 + 150N.

(b) To find the PMF of M , we can draw the following tree and map the
outcomes to values of M :

�
��

�
��
�N=0

0.4

HH
HHH

HHN=3
0.2

��
���

��N=10.2

XXXXXXXN=20.2

•M=900

•M=1050

•M=1200

•M=1350

From this tree,

PM (m) =


0.4 m = 900,

0.2 m = 1050, 1200, 1350

0 otherwise.

(1)
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From the PMF PM(m), the expected value of M is

E [M ] = 900PM (900) + 1050PM (1050)

+ 1200PM (1200) + 1350PM (1350) (2)

= (900)(0.4) + (1050 + 1200 + 1350)(0.2) = 1080. (3)

Quiz 3.7 Solution

(a) Using Definition 3.13, the expected number of applications is

E [A] =
4∑

a=1

aPA(a)

= 1(0.4) + 2(0.3) + 3(0.2) + 4(0.1)

= 2. (1)

(b) The number of memory chips is

M = g(A) =


4 A = 1, 2,

6 A = 3,

8 A = 4.

(2)

(c) By Theorem 3.10, the expected number of memory chips is

E [M ] =
4∑

a=1

g(A)PA(a)

= 4(0.4) + 4(0.3) + 6(0.2) + 8(0.1)

= 4.8. (3)

Since E[A] = 2,
g(E[A]) = g(2) = 4.

However, E[M ] = 4.8 6= g(E[A]). The two quantities are different
because g(A) is not of the form αA+ β.
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Quiz 3.8 Solution

For this problem, it is helpful to wrote out the PMF of N in the table

n 0 1 2 3
PN (n) 0.4 0.3 0.2 0.1

The PMF PN(n) allows us to calculate each of the desired quantities.

(a) The expected value is

E [N ] =
3∑

n=0

nPN (n)

= 0(0.4) + 1(0.3) + 2(0.2) + 3(0.1) = 1. (1)

(b) The second moment of N is

E
[
N2
]

=
3∑

n=0

n2PN (n)

= 02(0.4) + 12(0.3) + 22(0.2) + 32(0.1) = 2. (2)

(c) The variance of N is

Var[N ] = E
[
N2
]
− (E [N ])2 = 2− 12 = 1. (3)

(d) The standard deviation is σN =
√

Var[N ] = 1.

Quiz 3.9 Solution

The function samplemean(k) generates and plots five mn sequences for n =
1, 2, . . . , k. The ith column M(:,i) of M holds a sequence m1,m2, . . . ,mk.
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function M=samplemean(k);

K=(1:k)’;

M=zeros(k,5);

for i=1:5,

X=duniformrv(0,10,k);

M(:,i)=cumsum(X)./K;

end;

plot(K,M);

Here are two examples of samplemean:

0 50 100
0

2

4

6

8

10

0 500 1000
0

2

4

6

8

10

(a) samplemean(100) (b) samplemean(1000)

Each time samplemean(k) is called produces a random output. What is
observed in these figures is that for small n, mn is fairly random but as n gets
large, mn gets close to E[X] = 5. Although each sequence m1,m2, . . . that we
generate is random, the sequences always converges to E[X]. This random
convergence is analyzed in Chapter 10.
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Quiz 4.2 Solution
The CDF of Y is

0 2 4

0

0.5

1

y

F
Y
(y

)

FY (y) =


0 y < 0,

y/4 0 ≤ y ≤ 4,

1 y > 4.

(1)

From the CDF FY(y), we can calculate the probabilities:

(a) P[Y ≤ −1] = FY(−1) = 0

(b) P[Y ≤ 1] = FY(1) = 1/4

(c) P [2 < Y ≤ 3] = FY (3)− FY (2)

= 3/4− 2/4 = 1/4.

(d) P [Y > 1.5] = 1− P [Y ≤ 1.5]

= 1− FY (1.5)

= 1− (1.5)/4 = 5/8.

Quiz 4.3 Solution

(a) First we will find the constant c and then we will sketch the PDF. To
find c, we use the fact that

1 =

∫ ∞
−∞

fX (x) dx =

∫ ∞
0

cxe−x/2 dx. (1)

We evaluate this integral using integration by parts:

1 = −2cxe−x/2
∣∣∞
0︸ ︷︷ ︸

=0

+

∫ ∞
0

2ce−x/2 dx

= −4ce−x/2
∣∣∞
0

= 4c. (2)
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Thus c = 1/4 and X has the Erlang (n = 2, λ = 1/2) PDF

0 5 10 15
0

0.1

0.2

x

f X
(x

)

fX (x) =

{
(x/4)e−x/2 x ≥ 0,

0 otherwise.

(b) To find the CDF FX(x), we first noteX is a nonnegative random variable
so that FX(x) = 0 for all x < 0. For x ≥ 0,

FX (x) =

∫ x

0

fX (y) dy =

∫ x

0

y

4
e−y/2 dy

= −y
2
e−y/2

∣∣∣x
0

+

∫ x

0

1

2
e−y/2 dy

= 1− x

2
e−x/2 − e−x/2. (3)

The complete expression for the CDF is

0 5 10 15
0

0.5

1

x

F
X
(x

)

FX (x) =

{
1−

(
x
2

+ 1
)
e−x/2 x ≥ 0,

0 ow.

(c) From the CDF FX(x),

P [0 ≤ X ≤ 4] = FX (4)− FX (0)

= 1− 3e−2. (4)

(d) Similarly,

P [−2 ≤ X ≤ 2] = FX (2)− FX (−2)

= 1− 3e−1. (5)

23



Quiz 4.4 Solution
The PDF of Y is

−2 0 2
0

1

2

3

y

f Y
(y

)

fY (y) =

{
3y2/2 −1 ≤ y ≤ 1,

0 otherwise.
(1)

(a) The expected value of Y is

E [Y ] =

∫ ∞
−∞

yfY (y) dy =

∫ 1

−1
(3/2)y3 dy = (3/8)y4

∣∣1
−1 = 0. (2)

Note that the above calculation wasn’t really necessary because E[Y ] =
0 whenever the PDF fY(y) is an even function, i.e., fY(y) = fY(−y).

(b) The second moment of Y is

E
[
Y 2
]

=

∫ ∞
−∞

y2fY (y) dy =

∫ 1

−1
(3/2)y4 dy = (3/10)y5

∣∣1
−1 = 3/5. (3)

(c) The variance of Y is

Var[Y ] = E
[
Y 2
]
− (E [Y ])2 = 3/5. (4)

(d) The standard deviation of Y is σY =
√

Var[Y ] =
√

3/5.

Quiz 4.5 Solution

(a) When X is an exponential (λ) random variable, E[X] = 1/λ and
Var[X] = 1/λ2. Since E[X] = 3 and Var[X] = 9, we must have λ = 1/3.
The PDF of X is

fX (x) =

{
(1/3)e−x/3 x ≥ 0,

0 otherwise.
(1)
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(b) We know X is a uniform (a, b) random variable. To find a and b, we
apply Theorem 4.6 to write

E [X] =
a+ b

2
= 3 (2)

Var[X] =
(b− a)2

12
= 9. (3)

This implies

a+ b = 6, b− a = ±6
√

3. (4)

The only valid solution with a < b is

a = 3− 3
√

3, b = 3 + 3
√

3. (5)

The complete expression for the PDF of X is

fX (x) =

{
1/(6
√

3) 3− 3
√

3 < x < 3 + 3
√

3,

0 otherwise.
(6)

(c) We know that the Erlang (n, λ) random variable has PDF

fX (x) =

{
λnxn−1e−λx

(n−1)! x ≥ 0,

0 otherwise.
(7)

The expected value and variance are E[X] = n/λ and Var[X] = n/λ2.
This implies

n

λ
= 3,

n

λ2
= 9. (8)

It follows that

n = 3λ = 9λ2. (9)

Thus λ = 1/3 and n = 1. As a result, the Erlang (n, λ) random variable
must be the exponential (λ = 1/3) random variable with PDF

fX (x) =

{
(1/3)e−x/3 x ≥ 0,

0 otherwise.
(10)
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Quiz 4.6 Solution

The PDFs of X and Y are:

−5 0 5
0

0.2

0.4

x         y
f X

(x
) 

   
   

  f
Y
(y

)

← f
X
(x)

← f
Y
(y)

The fact that Y has twice the standard deviation of X is reflected in the
greater spread of fY(y). However, it is important to remember that as the
standard deviation increases, the peak value of the Gaussian PDF goes down.

Each of the requested probabilities can be calculated using Φ(z) function
and Table 4.2 or Q(z) and Table 4.3.

(a) Since X is Gaussian (0, 1),

P [−1 < X ≤ 1] = FX (1)− FX (−1)

= Φ(1)− Φ(−1)

= 2Φ(1)− 1

= 0.6826. (1)

(b) Since Y is Gaussian (0, 2),

P [−1 < Y ≤ 1] = FY (1)− FY (−1)

= Φ

(
1

σY

)
− Φ

(
−1

σY

)
= 2Φ

(
1

2

)
− 1 = 0.383. (2)

(c) Again, since X is Gaussian (0, 1), P[X > 3.5] = Q(3.5) = 2.33× 10−4.
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(d) Since Y is Gaussian (0, 2),

P [Y > 3.5] = Q

(
3.5

2

)
= 1− Φ(1.75) = 0.04. (3)

Quiz 4.7 Solution

The CDF of X is

−2 0 2

0

0.5

1

x

F
X
(x

)

FX (x) =


0 x < −1,

(x+ 1)/4 −1 ≤ x < 1,

1 x ≥ 1.

(1)

The following probabilities can be read directly from the CDF:

(a) P[X ≤ 1] = FX(1) = 1.

(b) P[X < 1] = FX(1−) = 1/2.

(c) P[X = 1] = FX(1+)− FX(1−) = 1/2.

(d) We find the PDF fY(y) by taking the derivative of FY(y). The resulting
PDF is

−2 0 2
0

0.5

x

f X
(x

)

0.5

fX (x) =


1
4

−1 ≤ x < 1,
δ(x−1)

2
x = 1,

0 otherwise.

(2)

Quiz 4.8 Solution

A natural way to produce random variables with PDF fT |T>2(t) is to generate
samples of T with PDF fT(t) and then to discard those samples which fail
to satisfy the condition T > 2. Here is a Matlab function that uses this
method:
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function t=t2rv(m)

i=0;lambda=1/3;

t=zeros(m,1);

while (i<m),

x=exponentialrv(lambda,1);

if (x>2)

t(i+1)=x;

i=i+1;

end

end

A second method exploits the fact that if T is an exponential (λ) random
variable, then T ′ = T + 2 has PDF fT ′(t) = fT |T>2(t). In this case the
command

t=2.0+exponentialrv(1/3,m)

generates the vector t.
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Quiz 5.1 Solution

Each value of the joint CDF can be found by considering the corresponding
probability.

(a) FX,Y(−∞, 2) = P[X ≤ −∞, Y ≤ 2] ≤ P[X ≤ −∞] = 0 since X cannot
take on the value −∞.

(b) FX,Y(∞,∞) = P[X ≤ ∞, Y ≤ ∞] = 1.

This result is given in Theorem 5.1.

(c) FX,Y(∞, y) = P[X ≤ ∞, Y ≤ y] = P[Y ≤ y] = FY(y).

(d) FX,Y(∞,−∞) = P[X ≤ ∞, Y ≤ −∞] = P[Y ≤ −∞] = 0 since Y can-
not take on the value −∞.

Quiz 5.2 Solution

From the joint PMF of Q and G given in the table, we can calculate the
requested probabilities by summing the PMF over those values of Q and G
that correspond to the event.

(a) The probability that Q = 0 is

P [Q = 0] = PQ,G(0, 0) + PQ,G(0, 1) + PQ,G(0, 2) + PQ,G(0, 3)

= 0.06 + 0.18 + 0.24 + 0.12 = 0.6. (1)

(b) The probability that Q = G is

P [Q = G] = PQ,G(0, 0) + PQ,G(1, 1) = 0.18. (2)

(c) The probability that G > 1 is

P [G > 1] =
3∑
g=2

1∑
q=0

PQ,G(q, g)

= 0.24 + 0.16 + 0.12 + 0.08 = 0.6. (3)
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(d) The probability that G > Q is

P [G > Q] =
1∑
q=0

3∑
g=q+1

PQ,G(q, g)

= 0.18 + 0.24 + 0.12 + 0.16 + 0.08 = 0.78. (4)

Quiz 5.3 Solution
By Theorem 5.4, the marginal PMF of H is

PH (h) =
∑
b=0,2,4

PH,B(h, b) . (1)

For each value of h, this corresponds to calculating the row sum across the
table of the joint PMF. Similarly, the marginal PMF of B is

PB(b) =
1∑

h=−1

PH,B(h, b) . (2)

For each value of b, this corresponds to the column sum down the table of the
joint PMF. The easiest way to calculate these marginal PMFs is to simply
sum each row and column:

PH,B(h,b) b = 0 b = 2 b = 4 PH(h)

h = −1 0 0.4 0.2 0.6
h = 0 0.1 0 0.1 0.2
h = 1 0.1 0.1 0 0.2
PB(b) 0.2 0.5 0.3

Quiz 5.4 Solution
To find the constant c, we apply

1 =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy

=

∫ 2

0

∫ 1

0

cxy dx dy = c

∫ 2

0

y

(
x2

2

∣∣∣∣1
0

)
dy =

c

2

∫ 2

0

y dy =
cy2

4

∣∣∣∣2
0

= c. (1)
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Thus c = 1.
To calculate P[A], we write

P [A] =

∫∫
A

fX,Y (x, y) dx dy (2)

To integrate over A, we convert to polar coordinates using the
substitutions x = r cos θ, y = r sin θ and dx dy = r dr dθ.

Y

X

1

1

2

A

This yields

P [A] =

∫ π/2

0

∫ 1

0

r2 sin θ cos θ r dr dθ

=

(∫ 1

0

r3 dr

)∫ π/2

0

sin θ cos θ dθ =
(
r4/4

∣∣1
0

)( sin2 θ

2

∣∣∣∣π/2
0

)
=

1

8
. (3)

Quiz 5.5 Solution
By Theorem 5.8, the marginal PDF of X is

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy (1)

Note that fX(x) = 0 for x < 0 or x > 1. For 0 ≤ x ≤ 1,

fX (x) =
6

5

∫ 1

0

(x+ y2) dy =
6

5

(
xy + y3/3

)∣∣y=1

y=0
=

6x+ 2

5
(2)

The complete expression for the PDF of X is

fX (x) =

{
(6x+ 2)/5 0 ≤ x ≤ 1

0 otherwise
(3)

By the same method we obtain the marginal PDF for Y . For 0 ≤ y ≤ 1,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dy

=
6

5

∫ 1

0

(x+ y2) dx =
6

5

(
x2

2
+ xy2

)∣∣∣∣x=1

x=0

=
6y2 + 3

5
. (4)
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Since fY(y) = 0 for y < 0 or y > 1, the complete expression for the PDF of
Y is

fY (y) =

{
(3 + 6y2)/5 0 ≤ y ≤ 1,

0 otherwise.
(5)

Quiz 5.6(A) Solution

(a) For random variables X and Y from Example 5.3, we observe that
PY(1) = 0.09 and PX(0) = 0.01. However,

PX,Y (0, 1) = 0 6= PX (0)PY (1) (1)

Since we have found a pair x, y such that PX,Y(x, y) 6= PX(x)PY(y),
we can conclude that X and Y are dependent. Note that whenever
PX,Y(x, y) = 0, independence requires that either PX(x) = 0 or PY(y) =
0.

(b) For random variables Q and G from Quiz 5.2, it is not obvious whether
they are independent. Unlike X and Y in part (a), there are no obvi-
ous pairs q, g that fail the independence requirement. In this case, we
calculate the marginal PMFs from the table of the joint PMF PQ,G(q, g)
in Quiz 5.2. In transposed form, this table is

PQ,G(q, g) q = 0 q = 1 PG(g)
g = 0 0.06 0.04 0.10
g = 1 0.18 0.12 0.30
g = 2 0.24 0.16 0.40
g = 3 0.12 0.08 0.20
PQ(q) 0.60 0.40

Careful study of the table will verify that PQ,G(q, g) = PQ(q)PG(g) for
every pair q, g. Hence Q and G are independent.
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Quiz 5.6(B) Solution

Since X1 and X2 are identical, fX1(x) = fX2(x) = fX(x). Since X1 and X2 are
independent,

fX1,X2(x1, x2) = fX1(x1) fX2(x2) =

{
x1
2
· x2

2
0 ≤ x1, x2 ≤ 2,

0 otherwise.
(1)

Quiz 5.7 Solution

You may have noticed that this quiz was inadvertently missing in the book.
Here is the missing quiz:

Quiz 5.7: The company’s cost C of transmitting a page depends
on page length L (in kilobytes) and transmission rate R (in Mb/s).
Specifically, C = h(L,R) = 0.001L+0.1R cents. Just as in Exam-
ple 5.15, the probability model is that L and R are independent
with PMFs

PR(r) =


0.4 r = 5,

0.6 r = 10,

0 otherwise,

PL(l) =


0.3 l = 750,

0.5 l = 1500,

0.2 l = 2500,

0 otherwise.

(1)

Derive the expected cost E[C] = E[h(L,R)].
Does E[(h(L,R)] = h(E[L],E[R])?

Quiz Solution 5.7: Since L and R are independent,

E [h(L,R)] =
∑
l

∑
r

PL(l)PR(r)h(l, r)

=
∑
l

∑
r

PL(l)PR(r) (0.001l + 0.1r)

=
∑
l

∑
r

PL(l)PR(r) 0.001l +
∑
l

∑
r

PL(l)PR(r) 0.1r. (2)
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In each double summation, the sums over l and r can be separated, yielding

E [h(L,R)] =

(∑
l

PL(l) 0.001l

)∑
r

PR(r)︸ ︷︷ ︸
=1

+
∑
l

PL(l)︸ ︷︷ ︸
=1

(∑
r

PR(r) 0.1r

)

=
∑
l

PL(l) 0.001l +
∑
r

PR(r) 0.1r

= 0.001 E [L] + 0.1 E [R]

= h(E [L] ,E [R]). (3)

Thus, we see we have answered the second question first in showing that
E[h(L,R)] = h(E[L],E[R]). To finish the quiz, we recall from Example 5.15
that E[R] =

∑
r rPR(r) = 8 Mb/s and E[L] =

∑
l lPL(l) = 1475 kilobytes.

This implies

E [h(L,R)] = 0.001(1475) + 0.1(8) = 2.275 cents. (4)

We note that writing out the above double summations may or may not be in-
structive but is definitely time consuming. Instead, we can use Theorem 5.10
to bypass those steps by writing

E [h(L,R)] = E [0.001L+ 0.1R]

= 0.001 E [L] + 0.1 E [R] = h(E [L] ,E [R]). (5)

Quiz 5.8(A) Solution

It is helpful to first make a table that includes the marginal PMFs.

PL,T(l, t) t = 40 t = 60 PL(l)
l = 1 0.15 0.1 0.25
l = 2 0.3 0.2 0.5
l = 3 0.15 0.1 0.25
PT(t) 0.6 0.4
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(a) The expected value of L is

E [L] = 1(0.25) + 2(0.5) + 3(0.25) = 2. (1)

Since the second moment of L is

E
[
L2
]

= 12(0.25) + 22(0.5) + 32(0.25) = 4.5, (2)

the variance of L is

Var [L] = E
[
L2
]
− (E [L])2 = 0.5. (3)

(b) The expected value of T is

E [T ] = 40(0.6) + 60(0.4) = 48. (4)

The second moment of T is

E
[
T 2
]

= 402(0.6) + 602(0.4) = 2400. (5)

Thus

Var[T ] = E
[
T 2
]
− (E [T ])2 = 96. (6)

(c) First we need to find

E [LT ] =
∑

t=40,60

3∑
l=1

ltPLT (lt)

= 1(40)(0.15) + 2(40)(0.3) + 3(40)(0.15)

+ 1(60)(0.1) + 2(60)(0.2) + 3(60)(0.1)

= 96. (7)

The covariance of L and T is

Cov [L, T ] = E [LT ]− E [L] E [T ] = 96− 2(48) = 0. (8)

(d) Since Cov[L, T ] = 0, the correlation coefficient is ρL,T = 0.
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Quiz 5.8(B) Solution
As in the discrete case, the calculations become easier if we first calculate the
marginal PDFs fX(x) and fY(y). For 0 ≤ x ≤ 1,

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 2

0

xy dy =
1

2
xy2
∣∣∣∣y=2

y=0

= 2x. (1)

Similarly, for 0 ≤ y ≤ 2,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 2

0

xy dx =
1

2
x2y

∣∣∣∣x=1

x=0

=
y

2
. (2)

The complete expressions for the marginal PDFs are

fX (x) =

{
2x 0 ≤ x ≤ 1,

0 otherwise,
fY (y) =

{
y/2 0 ≤ y ≤ 2,

0 otherwise.
(3)

From the marginal PDFs, it is straightforward to calculate the various expec-
tations.

(a) The first and second moments of X are

E [X] =

∫ ∞
−∞

xfX (x) dx =

∫ 1

0

2x2 dx =
2

3
. (4)

E
[
X2
]

=

∫ ∞
−∞

x2fX (x) dx =

∫ 1

0

2x3 dx =
1

2
. (5)

The variance of X is

Var[X] = E[X2]− (E[X])2 =
1

18
.

(b) The first and second moments of Y are

E [Y ] =

∫ ∞
−∞

yfY (y) dy =

∫ 2

0

1

2
y2 dy =

4

3
, (6)

E
[
Y 2
]

=

∫ ∞
−∞

y2fY (y) dy =

∫ 2

0

1

2
y3 dy = 2. (7)
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The variance of Y is

Var[Y ] = E
[
Y 2
]
− (E [Y ])2 = 2− 16

9
=

2

9
. (8)

(c) We start by finding

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y) dx, dy

=

∫ 1

0

∫ 2

0

x2y2 dx, dy =
x3

3

∣∣∣∣1
0

y3

3

∣∣∣∣2
0

=
8

9
. (9)

The covariance of X and Y is then

Cov [X, Y ] = E [XY ]− E [X] E [Y ] =
8

9
− 2

3
· 4

3
= 0. (10)

(d) Since Cov[X, Y ] = 0, the correlation coefficient is ρX,Y = 0.

Quiz 5.9 Solution

This problem just requires identifying the various parameters in Definition 5.10.
Specifically, from the problem statement, we know ρ = 1/2 and

µX = 0, µY = 0,

σX = 1, σY = 1.

Applying these facts to Definition 5.10, we have

fX,Y (x, y) =
e−2(x

2−xy+y2)/3
√

3π2
. (1)
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Quiz 5.10 Solution

We find P[C] by integrating the joint PDF over the region of interest. Specif-
ically,

P [C] =

∫ 1
2

0

dy2

∫ y2

0

dy1

∫ 1
2

0

dy4

∫ y4

0

4dy3

= 4

(∫ 1
2

0

y2 dy2

)(∫ 1
2

0

y4 dy4

)

= 4

(
1

2
y22

∣∣∣∣ 12
0

)(
1

2
y24

∣∣∣∣ 12
0

)
= 4

(
1

8

)2

=
1

16
. (1)
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Quiz 6.2 Solution

Since Y =
√
X, the fact that X is nonegative implies Y is non-negative. This

implies FY(y) = 0 for y < 0. For y ≥ 0, we find

FY (y) = P
[√

X ≤ y
]

= P
[
X ≤ y2

]
= FX

(
y2
)
. (1)

For x ≥ 0, FX(x) = 1− e−λx. Thus,

FY (y) =

{
1− e−λy2 y ≥ 0

0 otherwise
(2)

By taking the derivative with respect to y, it follows that the PDF of Y is

fY (y) =

{
2λye−λy

2
y ≥ 0

0 otherwise
(3)

In comparing this result to the Rayleigh PDF given in Appendix A, we observe
that Y is a Rayleigh (a) random variable with a =

√
2λ.

Quiz 6.3 Solution

(a) Since X is always nonnegative, FX(x) = 0 for x < 0. Also, FX(x) = 1
for x ≥ 2 since its always true that x ≤ 2. Lastly, for 0 ≤ x ≤ 2,

FX (x) =

∫ x

−∞
fX (y) dy =

∫ x

0

(1− y/2) dy = x− x2/4. (1)

The complete CDF of X is

−1 0 1 2 3
0

0.5

1

x

F
X
(x

)

FX (x) =


0 x < 0,

x− x2/4 0 ≤ x ≤ 2,

1 x > 2.

(2)
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(b) The probability that Y = 1 is

P [Y = 1] = P [X ≥ 1]

= 1− FX (1) = 1/4. (3)

(c) Since X is nonnegative, Y is also nonnegative. Thus FY(y) = 0 for
y < 0. Also, because Y ≤ 1, FY(y) = 1 for all y ≥ 1. Finally, for
0 < y < 1,

FY (y) = P [Y ≤ y]

= P [X ≤ y] = FX (y) . (4)

Using the CDF FX(x), the complete expression for the CDF of Y is

−1 0 1 2 3
0

0.5

1

y

F
Y
(y

)

FY (y) =


0 y < 0,

y − y2/4 0 ≤ y < 1,

1 y ≥ 1.

(5)

As expected, we see that the jump in FY(y) at y = 1 is exactly equal to
P[Y = 1].

(d) By taking the derivative of FY(y), we obtain the PDF fY(y). Note that
when y < 0 or y > 1, the PDF is zero.

−1 0 1 2 3
0

0.5

1

1.5

y

f Y
(y

)

0.25

fY (y) =

{
1− y

2
+ δ(y−1)

4
0 ≤ y ≤ 1

0 otherwise

Quiz 6.4(A) Solution
The time required for the transfer is T = 8L/B. For each pair of values of
L and B, we can calculate the time T needed for the transfer. We can write
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these down on the table for the joint PMF of L and B as follows:

PL,B(l, b) b=512 b=1024 b=2048

l = 256 0.20
(T=4)

0.10
(T=2)

0.05
(T=1)

l = 768 0.05
(T=12)

0.10
(T=6)

0.20
(T=3)

l = 1536 0.00
(T=24)

0.10
(T=12)

0.20
(T=6)

From the table, writing down the PMF of T is just bookkeeping. For example
P[T = 6] = 0.1 + 0.2 = 0.3. The complete table of the PMF is

t 1 2 3 4 6 12
PT(t) 0.05 0.1 0.2 0.2 0.3 0.15

Quiz 6.4(B) Solution

First, we observe that since 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1, W = XY satisfies
0 ≤ W ≤ 1. Thus fW(0) = 0 and fW(1) = 1.

Y

X

1

1

XY > w

w

w XY = w

Y

X

1

1

XY > w

w

w

For 0 < w < 1, we calculate the CDF FW(w) = P[W ≤ w].
As we see in the figure, the calculus is simpler if we inte-
grate over the region XY > w. The calculus is

FW (w) = 1− P [XY > w]

= 1−
∫ 1

w

∫ 1

w/x

dy dx

= 1−
∫ 1

w

(1− w/x) dx

=
(
x− w lnx|x=1

x=w

)
= w − w lnw. (1)

For 0 ≤ w ≤ 1, the PDF is

fW (w) =
dFW (w)

dw
= − lnw. (2)
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The complete PDF of W is

fW (w) =


0 w < 0,

− lnw 0 ≤ w ≤ 1,

0 w > 1.

(3)

Quiz 6.5 Solution

Random variables X and Y have PDFs

fX (x) =

{
3e−3x x ≥ 0,

0 otherwise,
fY (y) =

{
2e−2y y ≥ 0,

0 otherwise.
(1)

Since X and Y are nonnegative, W = X + Y is nonnegative and fW(w) = 0
for w < 0. For w > 0, we use Theorem 6.9 to write

fW (w) =

∫ ∞
−∞

fX (w − y) fY (y) dy

= 6

∫ w

0

e−3(w−y)e−2y dy = 6e−3w
∫ w

0

ey dy = 6e−3w (ew − 1) . (2)

The complete PDF of W is

fW (w) =

{
6(e−2w − e−3w) w ≥ 0,

0 otherwise.

Quiz 6.6 Solution

Your printing of this textbook may have typo. The PDF of V should be

fV (v) =

{
(v + 5)/72 −5 ≤ v ≤ 7,

0 otherwise.
(1)
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First we find the corresponding CDF FV(v). For −5 ≤ v ≤ 7,

FV (v) =

∫ v

−∞
fV (u) du =

∫ v

−5

u+ 5

72
du (2)

=
(u+ 5)2

144

∣∣∣∣v
−5

=
(v + 5)2

144
. (3)

The complete CDF of V is

FV (v) =


0 v < −5,

(v + 5)2/144 −5 ≤ v ≤ 7,

1 v > 7.

(4)

Now that we found the CDF FV(v), we can use Theorem 6.5. Over the interval
−5 ≤ v ≤ 7, we find the inverse of the CDF by solving

u = FV (v) =
(v + 5)2

144
(5)

for v as a function of u. This yields v = 12
√
u−5. Thus, when U is a uniform

(0, 1) random variable, the function

V = 12
√
U − 5 (6)

generates samples of random variable V . In terms of Matlab, the code is
simple:

function V = Vsample(m)

V=12*sqrt(rand(1,m))-5;

In Vsample.m, m samples of a uniform (0, 1) random variable are given by
rand(1,m). Here is a sample output

>> V=Vsample(5)

V =

6.7402 3.3603 5.7350 -0.4799 2.7932
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Quiz 7.1(A) Solution

(a) From the problem statement, we learn that the conditional PMF of N
given the event I is

PN |I (n) =

{
0.02 n = 1, 2, . . . , 50,

0 otherwise.

(b) Also from the problem statement, the conditional PMF of N given the
event T is

PN |T (n) =

{
0.2 n = 1, . . . , 5,

0 otherwise.

(c) The problem statement tells us that P[T ] = 1 − P[I] = 3/4. From
Theorem 7.2, we find the PMF of N is

PN (n) = PN |T (n) P [T ] + PN |I (n) P [I] =


0.155 n = 1, . . . , 5,

0.005 n = 6, . . . , 50,

0 otherwise.

(1)

(d) First we find

P [N ≤ 10] =
10∑
n=1

PN (n) = (0.155)(5) + (0.005)(5) = 0.80. (2)

By Theorem 7.1, the conditional PMF of N given N ≤ 10 is

PN |N≤10(n) =

{
PN(n)

P[N≤10] n ≤ 10,

0 otherwise,

=


0.155
0.8

= 0.19375 n = 1, . . . , 5,
0.005
0.8

= 0.00625 n = 6, . . . , 10,

0 otherwise.

(3)
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Quiz 7.1(B) Solution
From the problem statement,

fY (y) =

{
1/10 0 < y < 10,

0 otherwise.
(1)

Using this PDF and Definition 7.3, the parts are straightforward.

(a) P[Y ≤ 6] =
∫ 6

−∞ fY(y) dy =
∫ 6

0
(1/10) dy = 0.6 .

(b) From Definition 7.3, the conditional PDF of Y given Y ≤ 6 is

fY |Y≤6(y) =

{
fY(y)
P[Y≤6] y ≤ 6,

0 otherwise,
=

{
1/6 0 ≤ y ≤ 6,

0 otherwise.
(2)

(c) The probability Y > 8 is

P [Y > 8] =

∫ 10

8

1

10
dy = 0.2. (3)

(d) From Definition 7.3, the conditional PDF of Y given Y > 8 is

fY |Y >8(y) =

{
fY(y)
P[Y >8]

y > 8,

0 otherwise,
=

{
1
2

8 < y ≤ 10,

0 otherwise.
(4)

Quiz 7.2(A) Solution
We refer to the solution of Quiz 7.1(A) for PN |N≤10(n).

(a) Given PN |N≤10(n), calculating a conditional expected value is the same
as for any other expected value except we use the conditional PMF.

E [N |N ≤ 10] =
∑
n

nPN |N≤10(n)

=
5∑

n=1

0.19375n+
10∑
n=6

0.00625n = 3.15625. (1)

45



(b) For the conditional variance, we first find the conditional second mo-
ment

E
[
N2|N ≤ 10

]
=
∑
n

n2PN |N≤10(n)

=
5∑

n=1

0.19375n2 +
10∑
n=6

0.00625n2

= 0.19375(55) + 0.00625(330) = 12.719. (2)

The conditional variance is

Var[N |N ≤ 10] = E
[
N2|N ≤ 10

]
− (E [N |N ≤ 10])2

= 12.719− (3.156)2 = 2.757. (3)

Quiz 7.2(B) Solution

We refer to the solution of Quiz 7.1(B) for the conditional PDFs fY |Y≤6(y)
and fY |Y >8(y).

(a) From fY |Y≤6(y), the conditional expectation is

E [Y |Y ≤ 6] =

∫ ∞
−∞

yfY |Y≤6(y) dy =

∫ 6

0

y

6
dy = 3. (1)

(b) From the conditional PDF fY |Y >8(y), we see that given Y > 8, Y is
conditionally a continuous uniform (a = 8, b = 10) random variable.
Thus,

Var[Y |Y > 8] = (b− a)2/12 = 1/3. (2)
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Quiz 7.3(A) Solution

Since the event V > 80 occurs only for the pairs (L,X) = (2, 60), (L,X) =
(3, 40) and (L,X) = (3, 60),

P [A] = P [V > 80] = PL,X (2, 60) + PL,X (3, 40) + PL,X (3, 60) = 0.45. (1)

By Definition 7.6,

PL,X|A(l, X) =

{
PL,X(l,x)

P[A]
lx > 80,

0 otherwise.

We can represent this conditional PMF in the following table:

PL,X|A(l, x) x = 40 x = 60
l = 1 0 0
l = 2 0 4/9
l = 3 1/3 2/9

The conditional expectation of V can be found from the conditional PMF.

E [V |A] =
∑
l

∑
x

lxPL,X|A(l, x) = (120)
4

9
+ (120)

1

3
+ (180)

2

9
= 133

1

3
. (2)

For the conditional variance Var[V |A], we first find the conditional second
moment

E
[
V 2|A

]
=
∑
l

∑
x

(lx)2PL,X|A(l, x)

= (120)2
4

9
+ (120)2

1

3
+ (180)2

2

9
= 18, 400. (3)

It follows that

Var [V |A] = E
[
V 2|A

]
− (E [V |A])2 = 622

2

9
(4)
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Quiz 7.3(B) Solution

For continuous random variables X and Y , we first calculate the probability
of the conditioning event.

P [B] =

∫∫
B

fX,Y (x, y) dx dy =

∫ 60

40

∫ 3

80/y

xy

4000
dx dy. (1)

A little calculus yields

P [B] =

∫ 60

40

y

4000

(
x2

2

∣∣∣∣3
80/y

)
dy

=

∫ 60

40

y

4000

(
9

2
− 3200

y2

)
dy =

9

8
− 4

5
ln

3

2
. (2)

In fact, P[B] ≈ 0.801. The conditional PDF of X and Y is

fX,Y |B(x, y) =

{
fX,Y(x,y)

P[B]
(x, y) ∈ B,

0 otherwise,
=

{
Kxy 40≤y≤60,

80/y≤x≤3,

0 otherwise.
(3)

where K = (4000 P[B])−1. The conditional expectation of W given event B
is

E [W |B] =

∫∫
xyfX,Y |B(x, y) dx dy =

∫ 60

40

∫ 3

80/y

Kx2y2 dx dy. (4)

These next steps are just calculus:

E [W |B] =
K

3

∫ 60

40

y2x3
∣∣x=3

x=80/y
dy

=
K

3

∫ 60

40

(
27y2 − 803/y

)
dy =

K

3

(
9y3 − 803 ln y

)∣∣60
40
≈ 120.78. (5)

The conditional second moment of K given B is

E
[
W 2|B

]
=

∫∫
(xy)2fX,Y |B(x, y) dx dy =

∫ 60

40

∫ 3

80/y

Kx3y3 dx dy. (6)
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With a final bit of calculus,

E
[
W 2|B

]
=
K

4

∫ 60

40

y3x4
∣∣x=3

x=80/y
dy

=
K

4

∫ 60

40

(
81y3 − 804/y

)
dy =

K

4

(
81

4
y4 − 804 ln y

)∣∣∣∣60
40

≈ 16,116.10. (7)

It follows that Var[W |B] = E[W 2|B]− (E[W |B])2 ≈ 1528.30.

Quiz 7.4(A) Solution

(a) The joint PMF of X and Y can be found from the marginal and con-
ditional PMFs via PX,Y(x, y) = PY |X(y|x)PX(x). Incorporating the in-
formation from the given conditional PMFs can be confusing, however.
Consequently, we note that X has range SX = {0, 2} and Y has range
SY = {0, 1}. A table of the joint PMF will include all four possible
combinations of X and Y . The general form of the table is

PX,Y(x,y) y = 0 y = 1
x = 0 PY |X(0|0)PX(0) PY |X(1|0)PX(0)

x = 2 PY |X(0|2)PX(2) PY |X(1|2)PX(2)

Substituting values from PY |X(y|x) and PX(x), we have

PX,Y (x, y) y = 0 y = 1
x = 0 (0.8)(0.4) (0.2)(0.4)
x = 2 (0.5)(0.6) (0.5)(0.6)

,

which simplifies to

PX,Y (x, y) y = 0 y = 1
x = 0 0.32 0.08
x = 2 0.3 0.3

.
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(b) From the joint PMF PX,Y(x, y), we can calculate PY(0) = 0.32 + 0.3 =
0.62 and the conditional PMF

PX|Y (x|0) =
PX,Y (x, 0)

PY (0)
=


0.32
0.62

= 16
31

x = 0,
0.3
0.62

= 15
31

x = 2,

0 otherwise.

Quiz 7.4(B) Solution

(a) The joint PDF of X and Y is

fX,Y (x, y) = fY |X (y|x) fX (x) =

{
6y 0 ≤ y ≤ x, 0 ≤ x ≤ 1,

0 otherwise.

(b) To find fX|Y(x|1/2), we first find

fY (1/2) =

∫ ∞
−∞

fX,Y (x, 1/2) dx.

For this integral, we keep in mind that fX,Y(x, y) is nonzero for y ≤ x ≤
1, Specifically, for y = 1/2, we integrate over 1/2 ≤ x ≤ 1:

fY (1/2) =

∫ 1

1/2

6(1/2) dx = 3/2. (1)

For 1/2 ≤ x ≤ 1, the conditional PDF of X given Y = 1/2 is

fX|Y (x|1/2) =
fX,Y (x, 1/2)

fY (1/2)
=

6(1/2)

3/2
= 2. (2)

For x < 1/2 or x > 1, fX|Y(x|1/2) = 0. Thus given Y = 1/2, the X has
the continuous uniform (1/2, 1) PDF

fX|Y (x|1/2) =

{
2 1

2
≤ x ≤ 1,

0 otherwise.
(3)
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Quiz 7.5(A) Solution

(a) Given the conditional PMF PY |X(y|2), it is easy to calculate the condi-
tional expectation

E [Y |X = 2] =
1∑
y=0

yPY |X (y|2) = (0)(0.5) + (1)(0.5) = 0.5. (1)

(b) We can calculate the conditional variance Var[X|Y = 0] using the con-
ditional PMF PX|Y(x|0). First we calculate the conditional expected
value

E [X|Y = 0] =
∑
x

xPX|Y (x|0) = 0 · 16

31
+ 2 · 15

31
=

30

31
. (2)

The conditional second moment is

E
[
X2|Y = 0

]
=
∑
x

x2PX|Y (x|0) = 0216

31
+ 2215

31
=

60

31
. (3)

The conditional variance is then

Var[X|Y = 0] = E
[
X2|Y = 0

]
− (E [X|Y = 0])2 = 960/961. (4)

Quiz 7.5(B) Solution

(a) From the conditional PDF fY |X(y|x) given in Quiz 7.4(B),

fY |X (y|1/2) =

{
8y 0 ≤ y ≤ 1/2,

0 otherwise.
(1)

Now we calculate the conditional expected value

E [Y |X = 1/2] =

∫ 1/2

0

y(8y) dy = 8y3/3
∣∣1/2
0

= 1/3. (2)
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(b) From the solution to Quiz 7.4(B), we see that given Y = 1/2, the
conditional PDF of X is uniform (1/2, 1). Thus, by the definition of
the uniform (a, b) PDF,

Var [X|Y = 1/2] =
(1− 1/2)2

12
=

1

48
.

Quiz 7.6 Solution

Since X and Y are bivariate Gaussian random variables with ρ = 1/2, µX =
µY = 0, and σX = σY = 1, Theorem 7.16 tells us that given Y = y, X is
conditionally Gaussian with parameters

µ̃X(y) = ρy =
y

2
, σ̃2

X = 1− ρ2. (1)

For y = 2, we have

µ̃X = µ̃X(2) = 1 σ̃2
X = 3/4. (2)

The conditional PDF of X is

fX|Y (x|2) =
1√

2πσ̃2
X

e−(x−µ̃X)2/2σ̃2
X =

1√
3π/2

e−2(x−1)
2/3. (3)

Quiz 7.7 Solution

One straightforward method is to follow the approach of Example 5.27. In-
stead, we use an alternate approach. First we observe that X has the discrete
uniform (1, 4) PMF. Also, given X = x, Y has a discrete uniform (1, x) PMF.
That is,

PX (x) =

{
1/4 x = 1, 2, 3, 4,

0 otherwise,
PY |X (y|x) =

{
1/x y = 1, . . . , x,

0 otherwise.
(1)

Given X = x, and an independent uniform (0, 1) random variable U , we
can generate a sample value of Y with a discrete uniform (1, x) PMF via
Y = dxUe. This observation prompts the following program:
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function xy=dtrianglerv(m)

sx=[1;2;3;4];

px=0.25*ones(4,1);

x=finiterv(sx,px,m);

y=ceil(x.*rand(m,1));

xy=[x’;y’];
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Quiz 8.1 Solution
By definition of A, Y1 = X1, Y2 = X2 − X1 and Y3 = X3 − X2. Since
0 < X1 < X2 < X3, each Yi must be a strictly positive integer. Thus, for
y1, y2, y3 ∈ {1, 2, . . .},

PY(y) = P [Y1 = y1, Y2 = y2, Y3 = y3]

= P

 X1 = y1,
X2 −X1 = y2,
X3 −X2 = y3


= P

 X1 = y1,
X2 = y2 + y1,
X3 = y3 + y2 + y1


= PX(y1, y2 + y1, y3 + y2 + y1) (1)

= (1− p)3py1+y2+y3 . (2)

With a =
[
1 1 1

]′
and q = 1− p, the joint PMF of Y is

PY(y) =

{
qpa

′y y1, y2, y3 ∈ {1, 2, . . .} ,
0 otherwise.

Quiz 8.2 Solution
In the PDF fY(y), the components have dependencies as a result of the
ordering constraints Y1 ≤ Y2 and Y3 ≤ Y4. We can separate these constraints
by creating the vectors

V =

[
Y1
Y2

]
, W =

[
Y3
Y4

]
. (1)

The joint PDF of V and W is

fV,W(v,w) =

4
0 ≤ v1 ≤ v2 ≤ 1;

0 ≤ w1 ≤ w2 ≤ 1,

0 otherwise.

(2)
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We must verify that V and W are independent. For 0 ≤ v1 ≤ v2 ≤ 1,

fV(v) =

∫∫
fV,W(v,w) dw1 dw2

=

∫ 1

0

(∫ 1

w1

4 dw2

)
dw1

=

∫ 1

0

4(1− w1) dw1 = 2. (3)

Similarly, for 0 ≤ w1 ≤ w2 ≤ 1,

fW(w) =

∫∫
fV,W(v,w) dv1 dv2

=

∫ 1

0

(∫ 1

v1

4 dv2

)
dv1 = 2. (4)

It follows that V and W have PDFs

fV(v) =

{
2 0 ≤ v1 ≤ v2 ≤ 1,

0 otherwise.
(5)

fW(w) =

{
2 0 ≤ w1 ≤ w2 ≤ 1,

0 otherwise.
(6)

It is easy to verify that fV,W(v,w) = fV(v)fW(w), confirming that V and
W are independent vectors.

Quiz 8.3(A) Solution

Referring to Theorem 2.9, each test is a subexperiment with three possible
outcomes: L, A and R. In five trials, the vector X =

[
X1 X2 X3

]′
indi-

cating the number of outcomes of each subexperiment has the multinomial
PMF

PX(x) =

(
5

x1, x2, x3

)
0.3x10.6x20.1x3 .
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We can find the marginal PMF for eachXi from the joint PMF PX(x); however
it is simpler to just start from first principles and observe that X1 is the
number of occurrences of L in five independent tests. If we view each test
as a trial with success probability P[L] = 0.3, we see that X1 is a binomial
(n, p) = (5, 0.3) random variable. Similarly, X2 is a binomial (5, 0.6) random
variable and X3 is a binomial (5, 0.1) random variable. That is, for p1 = 0.3,
p2 = 0.6 and p3 = 0.1,

PXi(x) =

(
5

x

)
pxi (1− pi)5−x. (1)

From the marginal PMFs, we see that X1, X2 and X3 are not independent.
Hence, we must use Theorem 8.1 to find the PMF of W . In particular, since
X1 + X2 + X3 = 5 and since each Xi is non-negative, PW(0) = PW(1) = 0.
Furthermore,

PW (2) = PX(1, 2, 2) + PX(2, 1, 2) + PX(2, 2, 1)

=
5!0.3(0.6)2(0.1)2

2!2!1!
+

5!0.32(0.6)(0.1)2

2!2!1!
+

5!0.32(0.6)2(0.1)

2!2!1!
= 0.1458. (2)

In addition, for w = 3, w = 4, and w = 5, the event W = w occurs if and
only if one of the mutually exclusive events X1 = w, X2 = w, or X3 = w
occurs. Thus,

PW (3) =
3∑
i=1

PXi(3) = 0.486, (3)

PW (4) =
3∑
i=1

PXi(4) = 0.288, (4)

PW (5) =
3∑
i=1

PXi(5) = 0.0802. (5)
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Quiz 8.3(B) Solution

Since each Yi = 2Xi + 4, we can apply Theorem 8.5 to write

fY(y) =
1

23
fX

(
y1 − 4

2
,
y2 − 4

2
,
y3 − 4

2

)
=

{
(1/8)e−(y3−4)/2 4 ≤ y1 ≤ y2 ≤ y3,

0 otherwise.
(1)

Note that for other matrices A, the constraints on y resulting from the con-
straints 0 ≤ X1 ≤ X2 ≤ X3 can be much more complicated.

Quiz 8.4 Solution

To solve this problem, we need to find the expected values E[Xi] and E[XiXj]
for each I and j. To do this, we need the marginal PDFs fXi(xi) and
fXi,Xj(xi, xj). First we note that each marginal PDF is nonzero only if any
subset of the xi obeys the ordering contraints 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. Within
these constraints, we have

fX1,X2(x1, x2) =

∫ ∞
−∞

fX(x) dx3 =

∫ 1

x2

6 dx3 = 6(1− x2), (1)

and

fX2,X3(x2, x3) =

∫ ∞
−∞

fX(x) dx1 =

∫ x2

0

6 dx1 = 6x2, (2)

and

fX1,X3(x1, x3) =

∫ ∞
−∞

fX(x) dx2 =

∫ x3

x1

6 dx2 = 6(x3 − x1). (3)

In particular, we must keep in mind that fX1,X2(x1, x2) = 0 unless 0 ≤ x1 ≤
x2 ≤ 1, fX2,X3(x2, x3) = 0 unless 0 ≤ x2 ≤ x3 ≤ 1, and that fX1,X3(x1, x3) = 0
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unless 0 ≤ x1 ≤ x3 ≤ 1. The complete expressions are

fX1,X2(x1, x2) =

{
6(1− x2) 0 ≤ x1 ≤ x2 ≤ 1,

0 otherwise,
(4)

fX2,X3(x2, x3) =

{
6x2 0 ≤ x2 ≤ x3 ≤ 1,

0 otherwise,
(5)

and

fX1,X3(x1, x3) =

{
6(x3 − x1) 0 ≤ x1 ≤ x3 ≤ 1,

0 otherwise.
(6)

Now we can find the marginal PDFs. When 0 ≤ xi ≤ 1 for each xi,

fX1(x1) =

∫ ∞
−∞

fX1,X2(x1, x2) dx2

=

∫ 1

x1

6(1− x2) dx2 = 3(1− x1)2. (7)

fX2(x2) =

∫ ∞
−∞

fX2,X3(x2, x3) dx3

=

∫ 1

x2

6x2 dx3 = 6x2(1− x2). (8)

fX3(x3) =

∫ ∞
−∞

fX2,X3(x2, x3) dx2

=

∫ x3

0

6x2 dx2 = 3x23. (9)

The complete expressions are

fX1(x1) =

{
3(1− x1)2 0 ≤ x1 ≤ 1,

0 otherwise.
(10)
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fX2(x2) =

{
6x2(1− x2) 0 ≤ x2 ≤ 1,

0 otherwise.
(11)

fX3(x3) =

{
3x23 0 ≤ x3 ≤ 1,

0 otherwise.
(12)

Now we can find the components E[Xi] =
∫∞
−∞ xfXi(x) dx of µX .

E [X1] =

∫ 1

0

3x(1− x)2 dx = 1/4, (13)

E [X2] =

∫ 1

0

6x2(1− x) dx = 1/2, (14)

E [X3] =

∫ 1

0

3x3 dx = 3/4. (15)

To find the correlation matrix RX , we need to find E[XiXj] for all i and j.
We start with the second moments:

E
[
X2

1

]
=

∫ 1

0

3x2(1− x)2 dx =
1

10
. (16)

E
[
X2

2

]
=

∫ 1

0

6x3(1− x) dx =
3

10
. (17)

E
[
X2

3

]
=

∫ 1

0

3x4 dx =
3

5
. (18)

Using marginal PDFs, the cross terms are

E [X1X2] =

∫∫
x1x2fX1,X2(x1, x2) , dx1 dx2

=

∫ 1

0

(∫ 1

x1

6x1x2(1− x2) dx2
)
dx1

=

∫ 1

0

[x1 − 3x31 + 2x41] dx1 =
3

20
. (19)
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E [X2X3] =

∫ 1

0

∫ 1

x2

6x22x3 dx3 dx2

=

∫ 1

0

[3x22 − 3x42] dx2 =
2

5
.

E [X1X3] =

∫ 1

0

∫ 1

x1

6x1x3(x3 − x1) dx3 dx1

=

∫ 1

0

(
(2x1x

3
3 − 3x21x

2
3)
∣∣x3=1

x3=x1

)
dx1

=

∫ 1

0

[2x1 − 3x21 + x41] dx1 = 1/5. (20)

Summarizing the results, X has correlation matrix

RX =

1/10 3/20 1/5
3/20 3/10 2/5
1/5 2/5 3/5

 . (21)

Vector X has covariance matrix

CX = RX − E [X] E [X]′

=


1
10

3
20

1
5

3
20

3
10

2
5

1
5

2
5

3
5

−


1
4

1
2

3
4

[14 1
2

3
4

]
=

1

80

3 2 1
2 4 2
1 2 3

 . (22)

This problem shows that even for fairly simple joint PDFs, computing the
covariance matrix can be time consuming.

Quiz 8.5 Solution

We observe that X = AZ + b where

A =

[
2 1
1 −1

]
, b =

[
2
0

]
. (1)
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It follows from Theorem 8.13 that µX = b and that

CX = AA′ =

[
2 1
1 −1

] [
2 1
1 −1

]
=

[
5 1
1 2

]
.

Quiz 8.6 Solution

First, we observe that Y = AT where A =
[
1/31 1/31 · · · 1/31

]′
. Since T

is a Gaussian random vector, Theorem 8.11 tells us that Y is a 1 dimensional
Gaussian vector, i.e., just a Gaussian random variable. The expected value
of Y is µY = µT = 80. The covariance matrix of Y is 1× 1 and is just equal
to Var[Y ]. Thus, by Theorem 8.11, Var[Y ] = ACTA

′.

In julytemps.m shown below, the first two lines generate the 31 × 31 co-
variance matrix CT, or CT . Next we calculate Var[Y ]. The final step is to use
the Φ(·) function to calculate P[Y < T ].

function p=julytemps(T);

[D1 D2]=ndgrid((1:31),(1:31));

CT=36./(1+abs(D1-D2));

A=ones(31,1)/31.0;

CY=(A’)*CT*A;

p=phi((T-80)/sqrt(CY));

Here is the output of julytemps.m:

>> julytemps([70 75 80 85 90])

ans =

0.0000 0.0221 0.5000 0.9779 1.0000

Note that P[T ≤ 70] is not actually zero and that P[T ≤ 90] is not actually
1.0000. Its just that the Matlab’s short format output, invoked with the
command format short, rounds off those probabilities. The long format
output resembles:
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>> format long

>> julytemps([70 75])

ans =

0.000028442631 0.022073830676

>> julytemps([85 90])

ans =

0.977926169323 0.999971557368

The ndgrid function is a useful to way calculate many covariance matrices.
However, in this problem, CX has a special structure; the i, jth element is

CT(i, j) = c|i−j| =
36

1 + |i− j|
. (1)

If we write out the elements of the covariance matrix, we see that

CT =


c0 c1 · · · c30

c1 c0
. . .

...
...

. . . . . . c1
c30 · · · c1 c0

 . (2)

This covariance matrix is known as a symmetric Toeplitz matrix. Because
Toeplitz covariance matrices are quite common, Matlab has a toeplitz

function for generating them. The function julytemps2 use the toeplitz to
generate the correlation matrix CT.

function p=julytemps2(T);

c=36./(1+abs(0:30));

CT=toeplitz(c);

A=ones(31,1)/31.0;

CY=(A’)*CT*A;

p=phi((T-80)/sqrt(CY));
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Quiz 9.1 Solution

Let K1, . . . , Kn denote a sequence of iid random variables each with PMF

PK (k) =

{
1/4 k = 1, . . . , 4,

0 otherwise.
(1)

We can write Wn = K1 + · · ·+Kn. First, we note that the first two moments
of Ki are

E [Ki] =
1 + 2 + 3 + 4

4
= 2.5, (2)

E
[
K2
i

]
=

12 + 22 + 32 + 42

4
= 7.5. (3)

Thus the variance of Ki is

Var[Ki] = E
[
K2
i

]
− (E [Ki])

2

= 7.5− (2.5)2 = 1.25. (4)

Since E[Ki] = 2.5, the expected value of Wn is

E [Wn] = E [K1] + · · ·+ E [Kn] = 2.5n. (5)

Since the rolls are independent, the random variables K1, . . . , Kn are inde-
pendent. Hence, by Theorem 9.3, the variance of the sum equals the sum of
the variances. That is,

Var[Wn] = Var[K1] + · · ·+ Var[Kn] = 1.25n. (6)

Quiz 9.2 Solution

The MGF of K is

φK(s) = E
[
esK
]

=
4∑

k=0

1

5
esk =

1 + es + e2s + e3s + e4s

5
. (1)
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We find the moments by taking derivatives. The first derivative of φK(s) is

dφK(s)

ds
=
es + 2e2s + 3e3s + 4e4s

5
. (2)

Evaluating the derivative at s = 0 yields

E [K] =
dφK(s)

ds

∣∣∣∣
s=0

=
1 + 2 + 3 + 4

5
= 2. (3)

To find higher-order moments, we continue to take derivatives:

E
[
K2
]

=
d2φK(s)

ds2

∣∣∣∣
s=0

=
es + 4e2s + 9e3s + 16e4s

5

∣∣∣∣
s=0

= 6. (4)

E
[
K3
]

=
d3φK(s)

ds3

∣∣∣∣
s=0

=
es + 8e2s + 27e3s + 64e4s)

5

∣∣∣∣
s=0

= 20. (5)

E
[
K4
]

=
d4φK(s)

ds4

∣∣∣∣
s=0

=
es + 16e2s + 81e3s + 256e4s

5

∣∣∣∣
s=0

= 70.8. (6)

Quiz 9.3(A) Solution
Each Ki has MGF

φK(s) = E
[
esKi

]
=
es + e2s + · · ·+ ens

n
=
es(1− ens

n(1− es)
. (1)

Since the sequence of Ki is independent, Theorem 9.6 says the MGF of J is

φJ(s) = (φK(s))m =
ems(1− ens)m

nm(1− es)m
. (2)
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Quiz 9.3(B) Solution
Since the set of αjXj are independent Gaussian random variables, Theo-
rem 9.8 says that W is a Gaussian random variable. Thus to find the PDF of
W , we need only find the expected value and variance. Since the expectation
of the sum equals the sum of the expectations:

E [W ] = αE [X1] + α2 E [X2] + · · ·+ αn E [Xn] = 0. (1)

Since the αjXj are independent, the variance of the sum equals the sum of
the variances:

Var[W ] = α2 Var[X1] + α4 Var[X2] + · · ·+ α2n Var[Xn]

= α2 + 2(α2)2 + · · ·+ n(α2)n. (2)

Defining q = α2, we can use Math Fact B.6 to write

Var[W ] =
α2 − α2n+2[1 + n(1− α2)]

(1− α2)2
. (3)

With E[W ] = 0 and σ2
W = Var[W ], we can write the PDF of W as

fW (w) =
1√

2πσ2
W

e−w
2/2σ2

W . (4)

Quiz 9.4 Solution

(a) From Table 9.1, each Xi has MGF φX(s) = 1/(1 − s) and random
variable N has MGF

φN(s) =
1
5
es

1− 4
5
es
. (1)

From Theorem 9.10, R has MGF

φR(s) = φN(lnφX(s)) =
1
5
φX(s)

1− 4
5
φX(s)

. (2)
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Substituting the expression for φX(s) yields

φR(s) =
1/5

1/5− s
. (3)

(b) From Table 9.1, we see that R has the MGF of an exponential (1/5)
random variable. The corresponding PDF is

fR(r) =

{
(1/5)e−r/5 r ≥ 0,

0 otherwise.
(4)

This quiz is an example of the general result that a geometric sum of
exponential random variables is an exponential random variable.

Quiz 9.5 Solution

(a) The expected access time is

E [X] =

∫ ∞
−∞

xfX (x) dx =

∫ 12

0

x

12
dx = 6 ms. (1)

(b) The second moment of the access time is

E
[
X2
]

=

∫ ∞
−∞

x2fX (x) dx =

∫ 12

0

x2

12
dx = 48. (2)

The variance of the access time is Var[X] = E[X2]− (E[X])2 = 12.

(c) Using Xi to denote the access time of block i, we can write

A = X1 +X2 + · · ·+X12 (3)

Since the expectation of the sum equals the sum of the expectations,

E [A] = E [X1] + · · ·+ E [X12] = 12 E [X] = 72 ms. (4)
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(d) Since the Xi are independent,

Var[A] = Var[X1] + · · ·+ Var[X12] = 12 Var[X] = 144. (5)

Thus A has standard deviation σA = 12.

(e) To use the central limit theorem, we use Table 4.2 to evaluate

P [A ≤ 75] = P

[
A− E [A]

σA
≤ 75− E [A]

σA

]
≈ Φ

(
75− 72

12

)
= 0.5987. (6)

Then P[A > 75] = 1− P[A ≤ 75] = 0.4013.

(f) Once again, we use the central limit theorem and Table 4.2 to estimate

P [A < 48] = P

[
A− E [A]

σA
<

48− E [A]

σA

]
≈ Φ

(
48− 72

12

)
= 0.0227. (7)

Quiz 9.6 Solution

One solution to this problem is to follow the approach of Example 9.17:

%unifbinom100.m

sx=0:100;sy=0:100;

px=binomialpmf(100,0.5,sx);

py=duniformpmf(0,100,sy);

[SX,SY]=ndgrid(sx,sy);

[PX,PY]=ndgrid(px,py);

SW=SX+SY; PW=PX.*PY;

sw=unique(SW);

pw=finitepmf(SW,PW,sw);

pmfplot(sw,pw);
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Here is a graph of the PMF PW(w):

0 50 100 150 200
0

0.005

0.01

With some thought, it should be apparent that the finitepmf function is
implementing the convolution of the two PMFs.
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Quiz 10.1 Solution
An exponential random variable with expected value 1 also has variance 1.
By Theorem 10.1, Mn(X) has variance Var[Mn(X)] = 1/n. Hence, we need
n = 100 samples.

Quiz 10.2 Solution
The train interarrival times X1, X2, X3 are iid exponential (λ) random vari-
ables. The arrival time of the third train is

W = X1 +X2 +X3. (1)

In Theorem 9.9, we found that the sum of three iid exponential (λ) random
variables is an Erlang (n = 3, λ) random variable. From Appendix A, we find
that W has expected value and variance

E [W ] = 3/λ = 6, (2)

Var[W ] = 3/λ2 = 12. (3)

(a) By the Central Limit Theorem,

P [W > 20] = P

[
W − 6√

12
>

20− 6√
12

]
≈ Q

(
7√
3

)
= 2.66× 10−5.

(b) From the Markov inequality, we know that

P [W > 20] ≤ E [W ]

20
=

6

20
= 0.3. (4)

(c) To use the Chebyshev inequality, we observe that E[W ] = 6 and W
nonnegative imply

P [|W − E [W ]| ≥ 14] = P [W − 6 ≥ 14] + P [W − 6 ≤ −14]︸ ︷︷ ︸
=0

= P [W ≥ 20] . (5)
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Thus

P [W ≥ 20] = P [|W − E [W ]| ≥ 14] (6)

≤ Var[W ]

142
=

3

49
= 0.061. (7)

(d) For the Chernoff bound, we note that the MGF of W is

φW (s) =

(
λ

λ− s

)3

=
1

(1− 2s)3
. (8)

The Chernoff bound states that

P [W > 20] ≤ min
s≥0

e−20sφX(s) = min
s≥0

e−20s

(1− 2s)3
. (9)

To minimize h(s) = e−20s/(1 − 2s)3, we set the derivative of h(s) to
zero:

dh(s)

ds
=
e−20s(40s− 14)

(1− 2s)4
= 0. (10)

This implies s = 7/20. Applying s = 7/20 into the Chernoff bound
yields

P [W > 20] ≤ e−20s

(1− 2s)3

∣∣∣∣
s= 7

20

= 0.0338.

(e) Theorem 4.11 says that for any w > 0, the CDF of the Erlang (3, λ)
random variable W satisfies

FW (w) = 1−
2∑

k=0

(λw)ke−λw

k!
(11)
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Equivalently, for λ = 1/2 and w = 20,

P [W > 20] = 1− FW (20)

= e−10
(

1 +
10

1!
+

102

2!

)
= 61e−10 = 0.0028. (12)

Although the Chernoff bound is weak in that it overestimates the prob-
ability by a factor of 12, it is a valid bound. By contrast, the Central
Limit Theorem approximation grossly underestimates the true proba-
bility.

Quiz 10.3 Solution

(a) Since X is a Bernoulli random variable with parameter p = 0.8, we can
look up in Appendix A to find that E[X] = p = 0.8 and variance

Var[X] = p(1− p) = (0.8)(0.2) = 0.16. (1)

(b) By Theorem 10.1,

Var[M100(X)] =
Var[X]

100
= 0.0016. (2)

(c) Theorem 10.5 uses the Chebyshev inequality to show that the sample
mean satisfies

P [|Mn(X)− E [X]| ≥ c] ≤ Var[X]

nc2
. (3)

Note that E[X] = PX(1) = p. To meet the specified requirement, we
choose c = 0.05 and n = 100. Since Var[X] = 0.16, we must have

0.16

100(0.05)2
= α (4)

This reduces to α = 16/25 = 0.64.
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(d) Again we use Equation (3). To meet the specified requirement, we
choose c = 0.1. Since Var[X] = 0.16, we must have

0.16

n(0.1)2
≤ 0.05 (5)

The smallest value that meets the requirement is n = 320.

Quiz 10.4 Solution

Define the random variable W = (X − µX)2. Observe that V100(X) =
M100(W ). By Theorem 10.10, the mean square error is

E
[
(M100(W )− µW )2

]
=

Var[W ]

100
. (1)

Observe that µX = 0 so that W = X2. Thus,

µW = E
[
X2
]

=

∫ 1

−1
x2fX (x) dx = 1/3, (2)

E
[
W 2
]

= E
[
X4
]

=

∫ 1

−1
x4fX (x) dx = 1/5. (3)

Therefore Var[W ] = E[W 2]−µ2
W = 1/5− (1/3)2 = 4/45 and the mean square

error is 4/4500 = 0.0009.

Quiz 10.5 Solution

Assuming the number n of samples is large, we can use a Gaussian approxi-
mation for Mn(X). Since E[X] = p and Var[X] = p(1 − p), we apply Theo-
rem 10.14 which says that the interval estimate

Mn(X)− c ≤ p ≤Mn(X) + c (1)

has confidence coefficient 1− α where

α = 2− 2Φ

(
c
√
n

p(1− p)

)
. (2)
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We must ensure for every value of p that 1−α ≥ 0.9 or α ≤ 0.1. Equivalently,
we must have

Φ

(
c
√
n

p(1− p)

)
≥ 0.95 (3)

for every value of p. Since Φ(x) is an increasing function of x, we must satisfy
c
√
n ≥ 1.65p(1− p). Since p(1− p) ≤ 1/4 for all p, we require that

c ≥ 1.65

4
√
n

=
0.41√
n
. (4)

The 0.9 confidence interval estimate of p is

Mn(X)− 0.41√
n
≤ p ≤Mn(X) +

0.41√
n
.

For the 0.99 confidence interval, we have α ≤ 0.01, implying

Φ(c
√
n/(p(1− p))) ≥ 0.995. (5)

This implies c
√
n ≥ 2.58p(1 − p). Since p(1 − p) ≤ 1/4 for all p, we require

that c ≥ (0.25)(2.58)/
√
n. In this case, the 0.99 confidence interval estimate

is

Mn(X)− 0.645√
n
≤ p ≤Mn(X) +

0.645√
n
. (6)

Note that if M100(X) = 0.4, then the 0.99 confidence interval estimate is

0.3355 ≤ p ≤ 0.4645. (7)

The interval is wide because the 0.99 confidence is high.

Quiz 10.6 Solution
Following the bernoullitraces.m approach, we generate m = 1000 sam-
ple paths, each sample path having n = 100 Bernoulli traces. at time k,
OK(k) counts the fraction of sample paths that have sample mean within one
standard error of p. The program bernoullisample.m generates graphs the
number of traces within one standard error as a function of the time, i.e. the
number of trials in each trace.
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function OK=bernoullisample(n,m,p);

x=reshape(bernoullirv(p,m*n),n,m);

nn=(1:n)’*ones(1,m);

MN=cumsum(x)./nn;

stderr=sqrt(p*(1-p))./sqrt((1:n)’);

stderrmat=stderr*ones(1,m);

OK=sum(abs(MN-p)<stderrmat,2)/m;

plot(1:n,OK);

The following graph was generated by bernoullisample(50,5000,0.5):

0 10 20 30 40 50
0

0.5

1

As we would expect, as m gets large, the fraction of traces within one standard
error approaches 2Φ(1) − 1 ≈ 0.68. The unusual sawtooth pattern, though
perhaps unexpected, is examined in Problem 10.6.2.
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Quiz 11.1 Solution
From the problem statement, each Xi has CDF

FXi(x) =

{
0 x < 0

1− e−x x ≥ 0
(1)

Hence, the CDF of the maximum of X1, . . . , X15 obeys

FX (x) = P [X ≤ x]

= P [X1 ≤ x, · · · , X15 ≤ x]

= [P [Xi ≤ x]]15 . (2)

This implies that for x ≥ 0,

FX (x) = [FXi(x)]15 =
[
1− e−x

]15
(3)

To design a significance test, we must choose a rejection region for X. A
reasonable choice is to reject the hypothesis if X is too small. That is, let
R = {X ≤ r}. For a significance level of α = 0.01, we obtain

α = P [X ≤ r] = (1− e−r)15

= 0.01. (4)

It is straightforward to show that

r = − ln
[
1− (0.01)1/15

]
= 1.33 (5)

Hence, if we observe X < 1.33, then we reject the hypothesis.

Quiz 11.2 Solution
From the problem statement, the conditional PMFs of K are

PK|H0(k) =

{
104ke−104

k!
k = 0, 1, . . .

0 otherwise
(1)

PK|H1(k) =

{
106ke−106

k!
k = 0, 1, . . .

0 otherwise
(2)
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Since the two hypotheses are equally likely, the MAP and ML tests are the
same. From Theorem 11.6, the ML hypothesis rule is

k ∈ A0 if PK|H0(k) ≥ PK|H1(k) ; k ∈ A1 otherwise. (3)

This rule simplifies to

k ∈ A0 if k ≤ k∗ =
106 − 104

ln 100
= 214, 975.7; k ∈ A1 otherwise. (4)

Thus if we observe at least 214, 976 photons, then we accept hypothesis H1.

Quiz 11.3 Solution
For the QPSK system, a symbol error occurs when si is transmitted but
(X1, X2) ∈ Aj for some j 6= i. For a QPSK system, it is easier to calculate
the probability of a correct decision. Given H0, the conditional probability
of a correct decision is

P [C|H0] = P [X1 > 0, X2 > 0|H0]

= P
[√

E/2 +N1 > 0,
√
E/2 +N2 > 0

]
. (1)

Because of the symmetry of the signals, P[C|H0] = P[C|Hi] for all i. This
implies the probability of a correct decision is P[C] = P[C|H0]. Since N1 and
N2 are iid Gaussian (0, σ) random variables, we have

P [C] = P [C|H0] = P
[√

E/2 +N1 > 0
]

P
[√

E/2 +N2 > 0
]

=
(

P
[
N1 > −

√
E/2

])2
=

[
1− Φ

(
−
√
E/2

σ

)]2
. (2)

Since Φ(−x) = 1 − Φ(x), we have P[C] = Φ2(
√
E/2σ2). Equivalently, the

probability of error is

PERR = 1− P [C] = 1− Φ2

(√
E

2σ2

)
. (3)
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Quiz 11.4 Solution

To generate the ROC, the existing program sqdistor already calculates this
miss probability PMISS = P01 and the false alarm probability PFA = P10.
The modified program, sqdistroc.m is essentially the same as sqdistor

except the output is a matrix FM whose columns are the false alarm and miss
probabilities. Here is the modified code:

function FM=sqdistroc(v,d,m,T)

%square law distortion recvr

%P(error) for m bits tested

%transmit v volts or -v volts,

%add N volts, N is Gauss(0,1)

%add d(v+N)^2 distortion

%receive 1 if x>T, otherwise 0

%FM = [P(FA) P(MISS)]

x=(v+randn(m,1));

[XX,TT]=ndgrid(x,T(:));

P01=sum((XX+d*(XX.^2)< TT),1)/m;

x= -v+randn(m,1);

[XX,TT]=ndgrid(x,T(:));

P10=sum((XX+d*(XX.^2)>TT),1)/m;

FM=[P10(:) P01(:)];

Next, the program sqdistrocplot.m calls sqdistroc three times to generate
a plot that compares the receiver performance for the three requested values
of d.
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function FM=sqdistrocplot(v,m,T);

FM1=sqdistroc(v,0.1,m,T);

FM2=sqdistroc(v,0.2,m,T);

FM5=sqdistroc(v,0.3,m,T);

FM=[FM1 FM2 FM5];

loglog(FM1(:,1),FM1(:,2),’-k’,FM2(:,1),FM2(:,2),’--k’,...

FM5(:,1),FM5(:,2),’:k’);

legend(’\it d=0.1’,’\it d=0.2’,’\it d=0.3’,3)

ylabel(’P_{MISS}’);

xlabel(’P_{FA}’);

To see the effect of d, the commands

T=-3:0.1:3; sqdistrocplot(3,100000,T);

generated this receiver operating curve:
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Quiz 12.1 Solution

(a) First, we calculate the marginal PDF for 0 ≤ y ≤ 1:

fY (y) =

∫ y

0

2(y + x) dx = 2xy + x2
∣∣x=y
x=0

= 3y2. (1)

This implies the conditional PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

{
2
3y

+ 2x
3y2

0 ≤ x ≤ y,

0 otherwise.
(2)

(b) The minimum mean square error estimate of X given Y = y is

x̂M(y) = E [X|Y = y] =

∫ y

0

(
2x

3y
+

2x2

3y2

)
dx = 5y/9. (3)

Thus the MMSE estimator of X given Y is X̂M(Y ) = 5Y/9.

(c) To obtain the conditional PDF fY |X(y|x), we need the marginal PDF
fX(x). For 0 ≤ x ≤ 1,

fX (x) =

∫ 1

x

2(y + x) dy = y2 + 2xy
∣∣y=1

y=x
= 1 + 2x− 3x2. (4)

For 0 ≤ x ≤ 1, the conditional PDF of Y given X is

fY |X (y|x) =

{
2(y+x)

1+2x−3x2 x ≤ y ≤ 1,

0 otherwise.
(5)

(d) The MMSE estimate of Y given X = x is

ŷM(x) = E [Y |X = x] =

∫ 1

x

2y2 + 2xy

1 + 2x− 3x2
dy (6)

=
2y3/3 + xy2

1 + 2x− 3x2

∣∣∣∣y=1

y=x

(7)

=
2 + 3x− 5x3

3 + 6x− 9x2
. (8)
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Quiz 12.2 Solution

(a) Since the expectation of the sum equals the sum of the expectations,

E [R] = E [T ] + E [X] = 0. (1)

(b) Since T and X are independent, the variance of the sum R = T +X is

Var[R] = Var[T ] + Var[X] = 9 + 3 = 12. (2)

(c) Since T and R have expected values E[R] = E[T ] = 0,

Cov [T,R] = E [TR] = E [T (T +X)] = E
[
T 2
]

+ E [TX] . (3)

Since T and X are independent and have zero expected value, E[TX] =
E[T ] E[X] = 0 and E[T 2] = Var[T ]. Thus Cov[T,R] = Var[T ] = 9.

(d) From Definition 5.6, the correlation coefficient of T and R is

ρT,R =
Cov [T,R]√
Var[R] Var[T ]

=
σT
σR

=
√

3/2. (4)

(e) From Theorem 12.3, the optimum linear estimate of T given R is

T̂L(R) = ρT,R
σT
σR

(R− E [R]) + E [T ] . (5)

Since E[R] = E[T ] = 0 and ρT,R = σT/σR,

T̂L(R) =
σ2
T

σ2
R

R =
σ2
T

σ2
T + σ2

X

R =
3

4
R. (6)

Hence a∗ = 3/4 and b∗ = 0.

(f) By Theorem 12.3, the mean square error of the linear estimate is

e∗L = Var[T ](1− ρ2T,R) = 9(1− 3/4) = 9/4. (7)
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Quiz 12.3 Solution

When R = r, the conditional PDF of X = Y − 40 − 40 log10 r is Gaussian
with expected value −40 − 40 log10 r and variance 64. The conditional PDF
of X given R is

fX|R(x|r) =
1√

128π
e−(x+40+40 log10 r)

2/128. (1)

From the conditional PDF fX|R(x|r), we can use Definition 12.2 to write the
ML estimate of R given X = x as

r̂ML(x) = arg max
r≥0

fX|R(x|r) . (2)

We observe that fX|R(x|r) is maximized when the exponent (x+40+40 log10 r)
2

is minimized. This minimum occurs when the exponent is zero, yielding

log10 r = −1− x/40 (3)

or

r̂ML(x) = (0.1)10−x/40 m. (4)

If the result doesn’t look correct, note that a typical figure for the signal
strength might be x = −120 dB. This corresponds to a distance estimate of
r̂ML(−120) = 100 m.

For the MAP estimate, we observe that the joint PDF of X and R is

fX,R(x, r) = fX|R(x|r) fR(r) =
1

106
√

32π
re−(x+40+40 log10 r)

2/128. (5)

From Theorem 12.5, the MAP estimate of R given X = x is the value of r
that maximizes fX,R(x, r). That is,

r̂MAP(x) = arg max
0≤r≤1000

fX,R(x, r) . (6)
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Note that we have included the constraint r ≤ 1000 in the maximization to
highlight the fact that under our probability model, R ≤ 1000 m. Setting the
derivative of fX,R(x, r) with respect to r to zero yields

e−(x+40+40 log10 r)
2/128

[
1− 80 log10 e

128
(x+ 40 + 40 log10 r)

]
= 0. (7)

Solving for r yields

r = 10

(
1

25 log10 e
−1

)
10−x/40 = (0.1236)10−x/40. (8)

This is the MAP estimate of R given X = x as long as r ≤ 1000 m. When x ≤
−156.3 dB, the above estimate will exceed 1000 m, which is not possible in
our probability model. Hence, the complete description of the MAP estimate
is

r̂MAP(x) =

{
1000 x < −156.3,

(0.1236)10−x/40 x ≥ −156.3.
(9)

For example, if x = −120dB, then r̂MAP(−120) = 123.6 m. When the mea-
sured signal strength is not too low, the MAP estimate is 23.6% larger than
the ML estimate. This reflects the fact that large values of R are a priori
more probable than small values. However, for very low signal strengths, the
MAP estimate takes into account that the distance can never exceed 1000 m.

Quiz 12.4 Solution

(a) From Theorem 12.3, the LMSE estimate of X2 given Y2 is

X̂2(Y2) = ρX2,Y2

σX2

σY2
(Y2 − µY2) + µX2

= a∗Y2 + b∗, (1)
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where

a∗ = ρX,Y
σX
σY

=
Cov [X2, Y2]

Var[Y2]
, b∗ = µX2 − a∗µY2 . (2)

Because E[X] = E[Y] = 0,

Cov [X2, Y2] = E [X2Y2] = E [X2(X2 +W2)] = E
[
X2

2

]
= 1, (3)

Var[Y2] = Var[X2] + Var[W2] = E
[
X2

2

]
+ E

[
W 2

2

]
= 1.1. (4)

It follows that a∗ = 1/1.1. Because µX2 = µY2 = 0, it follows that
b∗ = 0. Finally, to compute the expected square error, we calculate the
correlation coefficient

ρX2,Y2 =
Cov [X2, Y2]

σX2σY2
=

1√
1.1

. (5)

The expected square error is

e∗L = Var[X2](1− ρ2X2,Y2
) = 1− 1

1.1
=

1

11
= 0.0909. (6)

(b) Here we wish to estimateX2 given the observation vector Y =
[
Y1 Y2

]′
.

Since Y = X + W and E[X] = E[W] = 0, it follows that E[Y] = 0.
Thus we can apply Theorem 12.6 and write the minimum mean square
error linear estimator as

X̂2(Y) = RX2YR
−1
Y Y. (7)

We need to find RY and RX2Y. Note that X and W have correlation
matrices

RX =

[
1 −0.9
−0.9 1

]
, RW =

[
0.1 0
0 0.1

]
. (8)
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This implies

RY = E [YY′] = E [(X + W)(X′ + W′)]

= E [XX′ + XW′ + WX′ + WW′] . (9)

Because X and W are independent, E[XW′] = E[X] E[W′] = 0. Simi-
larly, E[WX′] = 0. This implies

RY = E [XX′] + E [WW′] = RX + RW =

[
1.1 −0.9
−0.9 1.1

]
. (10)

In addition, we need to find

RX2Y = E [X2Y
′] =

[
E [X2Y1] E [X2Y2]

]
=
[
E [X2(X1 +W1)] E [X2(X2 +W2)]

]
. (11)

Since X and W are independent vectors, E[X2W1] = E[X2] E[W1] = 0
and E[X2W2] = 0. Thus

RX2Y =
[
E[X1X2] E [X2

2 ]
]

=
[
−0.9 1

]
. (12)

It follows that

RX2YR
−1
Y =

[
−0.9 1

] [ 1.1 −0.9
−0.9 1.1

]−1
=
[
−0.9 1

] [2.75 2.25
2.25 2.75

]
=
[
−0.225 0.725

]
. (13)

Therefore, the optimum linear estimator of X2 given Y1 and Y2 is

X̂2(Y) = RX2YR
−1
Y Y = −0.225Y1 + 0.725Y2. (14)

From Theorem 12.6(b), the mean square error is

e∗2 = Var [X2]−RX2YR
−1
Y R′X2Y

= 1−
[
−0.225 0.725

] [−0.9
1

]
= 0.0725. (15)

In part (a), we used only Y2 to estimate X2 and the resulting mean
square error was 0.0909. Here we showed that by using both Y1 and Y2
to estimate X2, we reduced the mean square error to 0.0725, about a
20% reduction.
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Quiz 12.5 Solution

Since X and W have zero expected value, Y also has zero expected value.
Thus, by Theorem 12.6,

X̂L(Y) = RXYR
−1
Y Y (1)

Since X and W are independent, E[WX] = 0 and E[XW′] = 0′. This
implies

RXY = E [XY′] = E [X(1′X + W′)] = 1′ E
[
X2
]

= 1′. (2)

Note that 1′ is the row vector
[
1 1 · · · 1

]
of twenty ones. By the same

reasoning, the correlation matrix of Y is

RY = E [YY′] = E [(1X + W)(1′X + W′)] (3)

= 11′ E
[
X2
]

+ 1E [XW′] + E [WX]1′ + E [WW′] (4)

= 11′ + RW (5)

Note that 11′ is a 20× 20 matrix with every entry equal to 1. Thus,

RXYR
−1
Y = 1′ (11′ + RW )

−1
(6)

and the optimal linear estimator is

X̂L(Y) = 1′ (11′ + RW)
−1

Y. (7)

By Theorem 12.6(b), the mean square error is

e∗L = Var[X]−RXYR
−1
Y RYX = 1− 1′ (11′ + RW)

−1
1. (8)

Now we note that RW has i, jth entry RW(i, j) = c|i−j|−1. The question
we must address is what value c minimizes e∗L. This problem is atypical in
that we do not usually get to choose the correlation structure of the noise.
However, we will see that the answer is somewhat instructive.

We note that the optimal c is not obviously apparent from Equation (8). In
particular, we observe that Var[Wi] = RW(i, i) = 1/c. Thus, when c is small,
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the noises Wi have high variance and we would expect our estimator to be
poor. On the other hand, if c is large then Wi and Wj are highly correlated
and the separate measurements of X are very dependent. This would suggest
that large values of c will also result in poor MSE. If this argument is not
clear, consider the extreme case in which every Wi and Wj have correlation
coefficient ρij = 1. In this case, our 20 measurements will be all the same
and one measurement is as good as 20 measurements.

To find the optimal value of c, we write a Matlab function mquiz9(c) to
calculate the MSE for a given c and second function that finds the MSE for
a range of values of c.

function [mse,af]=mquiz9(c);

v1=ones(20,1);

RW=toeplitz(c.^((0:19)-1));

RY=(v1*(v1’)) +RW;

af=(inv(RY))*v1;

mse=1-((v1’)*af);

function cmin=mquiz9minc(c);

msec=zeros(size(c));

for k=1:length(c),

[msec(k),af]=mquiz9(c(k));

end

plot(c,msec);

xlabel(’c’);ylabel(’e_L^*’);

[msemin,optk]=min(msec);

cmin=c(optk);

Note in mquiz9 that v1 corresponds to the vector 1 of all ones. The following
commands finds the minimum c and also produces the following graph:

>> c=0.01:0.01:0.99;

>> mquiz9minc(c)

ans =

0.4500

0 0.5 1
0.2

0.4

0.6

0.8

1

c

e L*

As we see in the graph, both small values and large values of c result in
large MSE.
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Quiz 13.1 Solution

(a) We obtain a continuous-time, continuous-value process when we record
the temperature as a continuous waveform over time.

(b) If at every moment in time, we round the temperature to the nearest
degree, then we obtain a continuous-time, discrete-value process.

(c) If we sample the process in part (a) every T seconds, then we obtain a
discrete-time, continuous-value process.

(d) Rounding the samples in part (c) to the nearest integer degree yields a
discrete-time, discrete-value process.

Quiz 13.2 Solution

(a) Each resistor has resistance R in ohms with uniform PDF

fR(r) =

{
0.01 950 ≤ r ≤ 1050

0 otherwise
(1)

The probability that a test produces a 1% resistor is

p = P [990 ≤ R ≤ 1010] =

∫ 1010

990

(0.01) dr = 0.2. (2)

(b) In t seconds, exactly t resistors are tested. Each resistor is a 1% resis-
tor with probability p = 0.2, independent of any other resistor. Con-
sequently, the number of 1% resistors found has the binomial (t, 0.2)
PMF

PN(t)(n) =

(
t

n

)
(0.2)n(0.8)t−n. (3)
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(c) First we will find the PMF of T1. This problem is easy if we view each
resistor test as an independent trial. A success occurs on a trial with
probability p = 0.2 if we find a 1% resistor. The first 1% resistor is found
at time T1 = t if we observe failures on trials 1, . . . , t− 1 followed by a
success on trial t. Hence, just as in Example 3.9, T1 has the geometric
(0.2) PMF

PT1(t) =

{
(0.8)t−1(0.2) t = 1, 2, . . .

0 otherwise.
(4)

From Theorem 3.5, a geometric random variable with success probabil-
ity p has expected value 1/p. In this problem, E[T1] = 1/p = 5.

(d) Since p = 0.2, the probability the first 1% resistor is found in exactly
five seconds is PT1(5) = (0.8)4(0.2) = 0.08192.

(e) Note that once we find the first 1% resistor, the number of additional
trials needed to find the second 1% resistor once again has a geometric
PMF with expected value 1/p since each independent trial is a success
with probability p. That is, T2 = T1 + T ′ where T ′ is independent and
identically distributed to T1. Thus

E [T2|T1 = 10] = E [T1|T1 = 10] + E [T ′|T1 = 10]

= 10 + E [T ′] = 10 + 5 = 15. (5)

Quiz 13.3 Solution
Since each Xi is a N(0, 1) random variable, each Xi has PDF

fXi)(x) =
1√
2π
e−x

2/2. (1)

By Theorem 13.1, the joint PDF of X =
[
X1 · · ·Xn

]′
is

fX(x) = fX(1),...,X(n)(x1, . . . , xn) =
k∏
i=1

fX (xi) =
1

(2π)n/2
e−(x

2
1+···+x2n)/2. (2)
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Quiz 13.4 Solution

The first and second hours are nonoverlapping intervals. Since one hour equals
3600 sec and the Poisson process has a rate of 10 packets/sec, the expected
number of packets in each hour is E[Mi] = α = 36, 000. This implies M1 and
M2 are independent Poisson random variables each with PMF

PMi
(m) =

{
αme−α

m!
m = 0, 1, 2, . . .

0 otherwise
(1)

Since M1 and M2 are independent, the joint PMF of M1 and M2 is

PM1,M2(m1,m2) = PM1(m1)PM2(m2) =


αm1+m2e−2α

m1!m2!
m1 = 0, 1, . . . ;

m2 = 0, 1, . . . ,

0 otherwise.

(2)

Quiz 13.5 Solution

To answer whether N ′(t) is a Poisson process, we look at the interarrival
times. Let X1, X2, . . . denote the interarrival times of the N(t) process. Since
we count only even-numbered arrival for N ′(t), the time until the first arrival
of the N ′(t) is Y1 = X1 +X2. Since X1 and X2 are independent exponential
(λ) random variables, Y1 is an Erlang (n = 2, λ) random variable; see The-
orem 9.9. Since Yi(t), the ith interarrival time of the N ′(t) process, has the
same PDF as Y1(t), we can conclude that the interarrival times of N ′(t) are
not exponential random variables. Thus N ′(t) is not a Poisson process.

Quiz 13.6 Solution

First, we note that for t > s,

X(t)−X(s) =
W (t)−W (s)√

α
. (1)
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Since W (t)−W (s) is a Gaussian random variable, Theorem 4.13 states that
W (t)−W (s) is Gaussian with expected value

E [X(t)−X(s)] =
E [W (t)−W (s)]√

α
= 0 (2)

and variance

E
[
(W (t)−W (s))2

]
=

E [(W (t)−W (s))2]

α
=
α(t− s)

α
. (3)

Consider s′ ≤ s < t. Since s ≥ s′, W (t) −W (s) is independent of W (s′).
This implies [W (t) −W (s)]/

√
α is independent of W (s′)/

√
α for all s ≥ s′.

That is, X(t) − X(s) is independent of X(s′) for all s ≥ s′. Thus X(t) is a
Brownian motion process with variance Var[X(t)] = t.

Quiz 13.7 Solution

First we find the expected value

µY (t) = µX(t) + µN(t) = µX(t). (1)

To find the autocorrelation, we observe that since X(t) and N(t) are indepen-
dent and sinceN(t) has zero expected value, E[X(t)N(t′)] = E[X(t)] E[N(t′)] =
0. Since RY (t, τ) = E[Y (t)Y (t+ τ)], we have

RY (t, τ) = E [(X(t) +N(t)) (X(t+ τ) +N(t+ τ))]

= E [X(t)X(t+ τ)] + E [X(t)N(t+ τ)]

+ E [X(t+ τ)N(t)] + E [N(t)N(t+ τ)]

= RX(t, τ) +RN(t, τ). (2)

Quiz 13.8 Solution

From Definition 13.14, X1, X2, . . . is a stationary random sequence if for all
sets of time instants n1, . . . , nm and time offset k,

fXn1 ,...,Xnm (x1, . . . , xm) = fXn1+k,...,Xnm+k
(x1, . . . , xm) . (1)
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Since the random sequence is iid,

fXn1 ,...,Xnm (x1, . . . , xm) = fX (x1) fX (x2) · · · fX (xm) . (2)

Similarly, for time instants n1 + k, . . . , nm + k,

fXn1+k,...,Xnm+k
(x1, . . . , xm) = fX (x1) fX (x2) · · · fX (xm) . (3)

We can conclude that the iid random sequence is stationary.

Quiz 13.9 Solution
We must check whether each function R(τ) meets the conditions of Theo-
rem 13.12:

R(τ) ≥ 0, R(τ) = R(−τ), |R(τ)| ≤ R(0). (1)

(a) R1(τ) = e−|τ | meets all three conditions and thus is valid.

(b) R2(τ) = e−τ
2

also is valid.

(c) R3(τ) = e−τ cos τ is not valid because

R3(−2π) = e2π cos 2π = e2π > 1 = R3(0) (2)

(d) R4(τ) = e−τ
2

sin τ also cannot be an autocorrelation function because

R4(π/2) = e−π/2 sinπ/2 = e−π/2 > 0 = R4(0) (3)

Quiz 13.10 Solution

(a) The autocorrelation of Y (t) is

RY (t, τ) = E [Y (t)Y (t+ τ)]

= E [X(−t)X(−t− τ)]

= RX(−t− (−t− τ)) = RX(τ). (1)

Since E[Y (t)] = E[X(−t)] = µX , we can conclude that Y (t) is a wide
sense stationary process. In fact, we see that by viewing a process
backwards in time, we see the same second order statistics.
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(b) Since X(t) and Y (t) are both wide sense stationary processes, we can
check whether they are jointly wide sense stationary by seeing ifRXY (t, τ)
is just a function of τ . In this case,

RXY (t, τ) = E [X(t)Y (t+ τ)]

= E [X(t)X(−t− τ)]

= RX(t− (−t− τ)) = RX(2t+ τ). (2)

Since RXY (t, τ) depends on both t and τ , we conclude that X(t) and
Y (t) are not jointly wide sense stationary. To see why this is, suppose
RX(τ) = e−|τ | so that samples of X(t) far apart in time have almost
no correlation. In this case, as t gets larger, Y (t) = X(−t) and X(t)
become less correlated.

Quiz 13.11 Solution
From the problem statement,

E [X(t)] = E [X(t+ 1)] = 0, (1)

E [X(t)X(t+ 1)] = 1/2, (2)

Var[X(t)] = Var[X(t+ 1)] = 1. (3)

The Gaussian random vector X =
[
X(t) X(t+ 1)

]′
has covariance matrix

and corresponding inverse

CX =

[
1 1/2

1/2 1

]
, C−1X =

4

3

[
1 −1/2
−1/2 1

]
. (4)

Since

x′C−1X x =
[
x0 x1

]′ 4
3

[
1 −1/2
−1/2 1

] [
x0
x1

]
=

4

3

(
x20 − x0x+x21

)
, (5)

the joint PDF of X(t) and X(t+ 1) is the Gaussian vector PDF

fX(t),X(t+1)(x0, x1) =
1

(2π)n/2[det (CX)]1/2
exp

(
−1

2
x′C−1X x

)
(6)

=
1√
3π2

e−
2
3(x20−x0x1+x21). (7)
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Quiz 13.12 Solution

The simple structure of the switch simulation of Example 13.28 admits a
deceptively simple solution in terms of the vector of arrivals A and the vector
of departures D. With the introduction of call blocking. we cannot generate
these vectors all at once. In particular, when an arrival occurs at time t, we
need to know that M(t), the number of ongoing calls, satisfies M(t) < c =
120. Otherwise, when M(t) = c, we must block the call. Call blocking can
be implemented by setting the service time of the call to zero so that the call
departs as soon as it arrives.

The blocking switch is an example of a discrete event system. The system
evolves via a sequence of discrete events, namely arrivals and departures, at
discrete time instances. A simulation of the system moves from one time
instant to the next by maintaining a chronological schedule of future events
(arrivals and departures) to be executed. The program simply executes the
event at the head of the schedule. The logic of such a simulation is

1. Start at time t = 0 with an empty system. Schedule the first arrival to
occur at S1, an exponential (λ) random variable.

2. Examine the head-of-schedule event.

• When the head-of-schedule event is the kth arrival is at time t,
check the state M(t).

– If M(t) < c, admit the arrival, increase the system state n by
1, and schedule a departure to occur at time t+ Sn, where Sk
is an exponential (λ) random variable.

– If M(t) = c, block the arrival, do not schedule a departure
event.

• If the head of schedule event is a departure, reduce the system
state n by 1.

3. Delete the head-of-schedule event and go to step 2.
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After the head-of-schedule event is completed and any new events (departures
in this system) are scheduled, we know the system state cannot change until
the next scheduled event. Thus we know that M(t) will stay the same until
then. In our simulation, we use the vector t as the set of time instances
at which we inspect the system state. Thus for all times t(i) between the
current head-of-schedule event and the next, we set m(i) to the current switch
state. Here is the complete program:

94



function [M,admits,blocks]=simblockswitch(lam,mu,c,t);

blocks=0; admits=0; %total no. blocks and admits

M=zeros(size(t)); n=0; % no. in system

time=[ exponentialrv(lam,1) ]; timenow=0; tmax=max(t);

event=[ 1 ]; %first event is an arrival

while (timenow<tmax)

M((timenow<=t)&(t<time(1)))=n;

timenow=time(1); eventnow=event(1);

event(1)=[ ]; time(1)= [ ]; % clear current event

if (eventnow==1) % arrival

arrival=timenow+exponentialrv(lam,1); % next arrival

b4arrival=time<arrival;

event=[event(b4arrival) 1 event(~b4arrival)];

time=[time(b4arrival) arrival time(~b4arrival)];

if n<c %call admitted

admits=admits+1; n=n+1;

depart=timenow+exponentialrv(mu,1);

b4depart=time<depart;

event=[event(b4depart) -1 event(~b4depart)];

time=[time(b4depart) depart time(~b4depart)];

else

blocks=blocks+1; % one more block, immed departure

disp(sprintf(’Time %10.3d Admits %10d Blocks %10d’,...

timenow,admits,blocks));

end

elseif (eventnow==-1) %departure

n=n-1;

end

end

In most programming languages, it is common to implement the event
schedule as a linked list where each item in the list has a data structure
indicating an event timestamp and the type of the event. In Matlab, a
simple (but not elegant) way to do this is to have maintain two vectors: time
is a list of timestamps of scheduled events and event is a the list of event
types. In this case, event(i)=1 if the ith scheduled event is an arrival, or
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event(i)=-1 if the ith scheduled event is a departure.

When the program is passed a vector t, the output [m a b] is such that
m(i) is the number of ongoing calls at time t(i) while a and b are the number
of admits and blocks. The following instructions

t=0:0.1:5000;

[m,a,b]=simblockswitch(10,0.1,120,t);

plot(t,m);

generated a simulation lasting 5,000 minutes. Here is a sample path of the
first 100 minutes of that simulation:
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The 5,000 minute full simulation produced a=49658 admitted calls and b=239

blocked calls. We can estimate the probability a call is blocked as

P̂b =
b

a+ b
= 0.0048. (1)

In the Markov Chains Supplement, we will learn that the exact blocking
probability is given by the “Erlang-B formula.” From the Erlang-B formula,
we can calculate that the exact blocking probability is Pb = 0.0057.One reason
our simulation underestimates the blocking probability is that in a 5,000
minute simulation, roughly the first 100 minutes are needed to load up the
switch since the switch is idle when the simulation starts at time t = 0.
However, this says that roughly the first two percent of the simulation time
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was unusual. Thus this would account for only part of the disparity. The rest
of the gap between 0.0048 and 0.0057 is that a simulation that includes only
239 blocks is not all that likely to give a very accurate result for the blocking
probability.
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