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Frequency Selective Fading Channels 
 
In the last lecture, two terms Average Delay and RMS Delay Spread were defined as 
below 
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If the power density is discrete like Figure 1, the Average Delay and RMS Delay 
Spread for the multipath profile could be written in the following way: 
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Figure1: Discrete multipath profile 
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Coherence Bandwidth ( cB ) 

Coherence bandwidth is a statistical measure of the range of frequencies over which 
the channel can be considered “flat” (e.g. a channel that passes all spectral 
components with approximately equal gain and phase). Equivalently speaking, 
coherence bandwidth is the range of frequencies over which two frequency 
components have a strong potential for amplitude correlation. It is known that the 

coherence bandwidth is inversely proportional to the RMS delay spread: (
τσ

1∝cB ).  

It is important to note that an exact relationship between coherence bandwidth and 
RMS delay spread does not exit. In general, spectral analysis techniques and 
simulation are required to determine the exact impact that time varying multipath has 
on a particular transmitted signal. 
 

Doppler Spread ( dB ), Coherence Time ( cT ) 

RMS delay spread τσ  and coherence bandwidth cB  are parameters which describe 

the time dispersive nature of the channel in a local area and they do not offer any 
information about the time varying nature of the channel due to the relative motion 
between the mobile station and base station. 

Doppler Spread dB  is a measure of the spectral broadening caused by the time rate 

of change of the mobile radio channel and is defined as the range of frequencies over 
which the received Doppler spectrum is essentially non-zero. In other words, if the 

baseband signal bandwidth is much greater than dB , the effects of Doppler spread 

are negligible at the receiver. This is also called slow fading. 

Coherence time cT  is the time domain dual of Doppler spread and is used to 

characterize the time varying nature of the frequency dispersiveness of the channel in 
the time domain. The Doppler spread and coherence time are inversely proportional to 

one another: 
d

c B
T 1≈ . 

Coherence Time cT  is actually a statistical measure of the time duration over which 



the channel impulse response is essentially invariant, and quantifies the similarity of 
the channel response at different times. In other words, coherence time is the time 
duration over which two received signals have a strong potential for amplitude 

correlation. Thus, if the inverse bandwidth of signal is greater than cT  of the channel, 

the channel changes during the transmission of a symbol (or say, baseband message), 
causes distortion at the receiver. If coherence time is defined as the time over which 
the time correlation function is above 0.5, then it is approximately given by: 

216
9

m
c f

T
π

≈                             (6) 

Where, 
λ
vf m = , is the maximum Doppler frequency. This is an empirical equation. 

------------------------------------------------------------------------------------------------------- 
Example 1: A vehicle’s velocity is 60mph and the carrier frequency is 900MHz. 

Solution to Example 1: By using the equation (6), we can get cT =6.77ms and dB =150bps, so if 

the symbol rate in such environment is greater than 150bps, there would be no distortion due to 
motion. 
---------------------------------------------------------------------------------------------------------------------- 
 
Similarly, if defined coherence bandwidth as the bandwidth over which the frequency 
correlation is above 0.5, we have the approximation: 

τσ5
1≈cB                             (7) 

Again, this is an empirical relationship and there is no exactly relationship between 
coherence bandwidth and RMS delay spread. 
 
 
Classification of small-scale fading 
From the discussion above, we know that the type of fading experienced by a signal 
propagating through a mobile radio channel depends on the nature of the transmitted 
signal with respect to the characteristics of the channel. Depending on the relation 
between the signal parameters (such as bandwidth, symbol period, etc) and the 
channel parameter (such as RMS delay spread and Doppler spread), different 
transmitted signals will undergo different types of fading. The time dispersion and 
frequency dispersion mechanisms in a mobile radio channel lead to four possible 
distinct effects, which are manifested depending on the nature of the transmitted 
signal, the channel, and the velocity. We will discuss them one by one below. 
 
1. Flat Fading 
If the mobile radio channel has a constant gain and linear phase response over a 
bandwidth which is greater that the bandwidth of the transmitted signal, which means 



τσ>><< scs TorBB                         (8) 

Then the received signal will undergo flat fading. In flat fading, the multipath 
structure of the channel is such that the spectral characteristics of the transmitted 
signal are preserved at the receiver. However the strength of the received signal 
changes with time, due to fluctuations in the gain of the channel caused by multipath. 
Figure 2 shows the characteristics of a flat fading channel. Flat fading channels are 
also known as amplitude varying channels and are sometimes referred to as 
narrowband channels, since the bandwidth of the applied signal is narrow as 
compared to the channel flat fading bandwidth. Detailed description could be found in 
[1]. 
 
 
 
 
 

 

 
 
2.  Frequency Selective Fading 
If the channel possesses a constant-gain and linear phase response over a bandwidth 
that is smaller than the bandwidth of transmitted signal, the channel creates frequency 
selective fading on the received signal, which means 
 

τσ<> scs TorBB                          (9) 

Under such conditions the channel impulse response has a multipath delay spread 
which is greater than the reciprocal bandwidth of the transmitted message waveform. 
When it occurs, the received signal includes multiple versions of the transmitted 
waveform that are attenuated and delayed, and hence the received signal is distorted. 
Figure 3 illustrates the characteristics of the frequency selective fading channel. For 
instance, the fading type in GSM system is frequency selective. 
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Figure 3: Frequency Selective fading channel characteristics 
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Figure 2: Flat fading channel characteristics 
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3. Fast Fading 
In a fast fading channel, the channel impulse response changes rapidly within the 
symbol duration. That is, the coherence time of the channel is smaller that the symbol 
period of the transmitted signal. Viewed in the frequency domain, signal distortion 
due to fast fading increases with increasing Doppler spread relative to the bandwidth 
of the transmitted signal. Therefore, a signal undergoes fast fading if 

dscs BBorTT <>                         (10) 

 
4. Slow Fading 
In a slow fading channel, the channel impulse response changes at a rate much slower 
than the transmitted baseband signal S(t). In the frequency domain, this implies that 
the Doppler spread of the channel is much less than the bandwidth of the baseband 
signal. There fore, a signal undergoes slow fading if 

dscs BBorTT >><<                        (11) 

It should be clear that the velocity of the mobile (or velocity of objects in the channel) 
and the baseband signaling determine whether a signal undergoes fast fading or slow 
fading. 
 
 
Summary of small-scale fading 
It should also be clear that when a channel is specified as a fast or slow fading 
channel, it does not specify whether the channel is flat fading or frequency selective 
in nature. Fast and slow fading deal with the relationship between the time rate of 
change in the channel and the transmitted signal, and not with propagation path loss 
models. Shown below, is a matrix illustrating type in both time and frequency 
domains to show the relationships among the four types of fading. Usually, the fast 
and frequency selective fading rarely occur and the fading behavior is the function of 
the transmitted signal. 
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Shadowing 
Recall from small scale fading models, the envelope of the transmitted signal, Z(t) is 
either a Rayleigh or a Ricean faded signal. Let’s define the mean of it as: 

( )[ ]tZEv =Ω                          (12) 

vΩ is the mean envelope level of Z(t) and is also called “local mean” since it 

represents the envelope level averaged over a distance of a few wavelengths. Actually, 

vΩ  itself is a random variable due to shadow variations that caused by large terrain 

features such as buildings, hills etc. between the mobile station and base station. The 

distribution of vΩ is purely based on empirical observations. It is given as 
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From (13) we know that vΩ is a random variable with log normal distribution and 
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Figure 4: Matrix illustration type of fading 



vΩ (dB) is a random variable with Gaussian distribution as shown in (14). Ωσ is 

about 8dB in microcellular application and its range is usually from 5dB to 12dB. The 

path loss is always the mean value of vΩ . Since  vΩ is averaged over a few 

wavelengths, it does not vary over the duration of several bits. The empirical 

evaluation of vΩ is important for power control, handoff in cellular system on the 

base station side. The relationships among the pass loss, shadowing and small-scale 
fading are illustrated in Figure 5.  
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Figure 5: Effects of pass loss, shadowing and small-scale fading on the received signal envelope 
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Composite Shadow-Fading Distribution 
 
It is sometimes desirable to know the composite distribution due to shadowing and 
multipath fading, especially for a slow-moving or stationary MS where the receiver is 
unable to average over the effects of fading and composite distribution is necessary to 
evaluate the link performance. One could express the envelope conditioned on the 
“local mean” Ωv and then integrate the conditional P.D.F of the envelope over the 
density of Ωv. 
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This distribution is called the “Susuki distribution” after the original work of Susuki. 
 
The Effect of Co-Channel Interference 
 
In wireless cellular communication the radio link is affected more by co-channel 
interference than by the noise in the media and hence the probability of 
co-channel-interference (CCI) is of primary concern. Also, many system level issues 
such as cell size, reuse distance, handoffs and power control are limited by co-channel 
interference between cells. Calculations of the probability of CCI for signals with 
composite log-normal shadowing and fading show that shadowing has a more 
significant effect on the probability of CCI than small-scale fading. The analysis of 
CCI for the log-normally shadowed signals typical in cellular frequency reuse systems 



requires the probability distribution of the interference power that is accumulated 
from several log-normal signals. Although there is no exact expression for this 
distribution, several approximations have been derived by various authors. 
 
Multiple Log Normal Interferers 
Consider NI interferers each lognormally shadowed. In channelized systems such as 
TDMA and FDMA, the number of interferers (cells using the same frequency 
channels) is limited by their spatial separation; hence NI   is typically not a large 
number. 
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where Lk (k=1,2…NI  ) are lognormal random variables and  Ωk  are Gaussian  

random variables with mean 
KΩµ  and variance 2

K
Ωσ . As NI is not a large number 

we do not employ the central-limit-theorem approximation for the sum but adopt the 
general consensus that the sum of lognormal random variables will be a lognormal 

variable. The accuracy of the approximation varies with NI and the range of Ωσ . There 

are three well-known approaches to determine the mean and variance of Z (dB) i.e. 
2

zz andσµ .  

 
Fenton-Wilkinson Method  

zµ and 2
Z

σ are obtained by matching the first and second moments of the power sum 

L with the first two moments of L~ . Rewriting the earlier equation 
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where 2306.010/10ln ==ξ and k
~Ω is a Gaussian random variable with mean 
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from the moment generating function of  kΩ~ . 
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To find the appropriate moments of the approximation, we equate moments on both 
sides of the equation  
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µµµ respectively and identical variance
2

~Ωσ . Identical variances are 

often assumed because the standard deviation of log-normal shadowing is largely 
independent of the radio path length. 
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Similarly for second moments (or variances) 
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Squaring equation (10) and dividing by (11) yields 
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It has been found that the Fenton-Wilkinson method breaks down for Ωσ  > 4dB 

while the standard-deviation of log-normal shadowing for cellular radio applications 
typically ranges from 5 to 12dB. The approximation does, however, work well for 
evaluating “tail functions” for the fading distributions. 
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Such probabilities are used to determine the outage which will be described in a 
following section. 
 
Schwartz Yeh’s Method  
This method equates the L.H.S and R.H.S of equation (7) above by evaluating the 
exact expression for the first two moments of the sum of two lognormal random 
variables. Then a recursive method is employed for a general NI number of interferers. 
This yields more accurate results than the Fenton-Wilkinson’s method. 



 
Farley’s Method  
This method uses the central limit theorem approximation by assuming that NI is large. 

Under the assumption that the KΩ s are independent and identically distribute the 

approximation yields the following result for the power sum 
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How are the above models of co-channel interference used to evaluate system 
performance? 
For cellular radio systems the transmission quality will be acceptable provided the 

average received carrier-to-interference (SIR) exceeds a receiver threshold thλ  , 

also known as the target SIR We define the probability of outage as 
 

          )]([Pr dBSIRobP thout λ<=                               (16)                          

The designers of cellular systems usually aim at achieving a probability of outage of 
about 1%. 
Let the MS be at a distance do from the base station and distance {dk} (k=1, 2… NI ) 
from the co-channel base stations. 

Let d = {d0, d1… 
INd } be the vector that completely characterizes the system. Let 

))(( ddBλ  be the SIR achieved at the base-station. Then    
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Using log-normal approximation 
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where Ẑµ  and 2
Ẑ

σ are the mean and the variances of the approximation. 
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The probability of outage is then given by 
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A restriction that the probability of outage should be less than, say 0.01, will have a 
direct bearing on the cell-size and reuse-distance of the cellular system. A similar 
analysis on the uplink would yield the restrictions on cell-capacity. 
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