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Lecture 25 
Resource Allocation Algorithm 
To assign for each mobile 

a) An access port from set B 
b) A channel pair from set C 
c) A transmitter power for RAP & MS such that all assigned links meet their 

minimum SIR requirement 
 
Link gain matrix G=(Gij) 
 
What is optimum? 
 
Define Y = # of mobiles from M total mobiles that have an adequate link. 
 
Optimum -> maximize Y for a given G 
 
To handle the stochastic nature of a system 
 
M -> random variable 
Y -> random variable 
 
Let Z = M – Y 
 
Define “assignment failure rate” as 
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Measure of average portion of mobiles allocated a link of adequate quality. 
 
Usually model mobiles that are active as a 2-D Poisson point process with arrival 
rate w (unit of mobiles/unit area) 
 
If A is the service area, then E[M]=wA 
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For large w, ν is also a good approximation of the probability that a randomly 
chosen active mobile at some given instant is not provided with a channel. 
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Define:  Instantaneous capacity of a wireless system  
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i.e. max allowed traffic load in order to keep assignment failure rate below some 
threshold νo 
 
Satisfying above criteria is not practical.  Try different ideas & see how it 
compares to above. 
 
Channel assignment in literature based on simple heuristic ideas/design rules 
 
Fixed Channel Allocation (FCA) 
Fixed reuse and assignment sectorization & directional antennas. 
 
Assume available channels in cellular system are grouped into channel groups 
numbered 1,2,3,…,k & let D be the minimum reuse distance. 
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For hexagonal geometry and fully symmetric cell plans 
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Each cell has six nearest neighbors all at same (min) reuse distance D. 
 
In this case, the following relationship holds 
 

K
R
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It can be shown that there exists fully symmetric cell plans for all integers k that 
can be written in the following form 
 

ijjik −+= 2)(  for i,j=0,1,2,3… 
 

possible values of k={1,3,4,7,9,12,13…} (see Don C. Cox “Co-channel 
interference considerations in frequency reuse small coverage radio systems” 
IEEE Transactions on Communications volume 30 number 1, 1982) 
 
Dynamic Channel Allocation (DCA) 
(1) Traffic adaptive DCA – adapt allocation of spectral resources among cells 

according to current # of active mobiles in each cell. 
 
Using a worst-case design, propagation conditions in your cellular system may 
be very “roughly” described using the “cell compatibility” concept.  For any pair of 
cells, the worst case design ensures either interference free operation or not. 
 
Define compatibility matrix I with elements 
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Two cells i & j are not compatible if i,j=1.  Cell i & cell j may not use a common 
channel. 
 
Optimum traffic after channel allocation scheme is one that minimized 
assignment failure rate Z -> maximum packing (MP) schemes 
 
Policy:  A new call will be blocked only if there’s no possible channel allocation to 
calls that would result in room for the new call -> strategy to find the minimum # 
of channels to carry instantaneous existing calls. 
 
Use graph theory. 
 
Define a “node” as a cell (RAP) and an edge as a compatibility constraint.  A 
cellular network can be represented by a graph. 
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If 2 cells i & j are not compatible, then there is an edge connecting the nodes.  
For multiple users/cell, duplicate node as many times as # of users in that cell 
and connect the edges. 
 
Graphical -> MP (graph coloring problem color = channels, any 2 nodes cannot 
have same color) interpreted as minimizing # of colors that fill every node in a 
way that 2 adjacent connected nodes cannot be colored in the same color.   
 
“graph coloring problem” -> NP complete (no algorithm to finish in polynomial 
time), in practice -> MP provides performance bound. 
 
Reality -> use heuristic schemes -> use different allocations of channels/cell 
according to traffic patterns & historical data. 
 
(2) Reuse Partitioning DCA 
Use overlaid cell plans (reuse distances) with different reuse distances (idea 
based on MS close to RAP can tolerate lower reuse than MS @ edge of cell) 
 
(3) Interference based DCA Schemes 
Includes strategies for channel searching & prediction of interference levels. 
 
Not conservative or pessimistic.  A simple distributed dynamic channel algorithm 
based on estimated SIR.  Initially a terminal is using channel ‘j’   
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Performance depends on chose of γc & γc

’ 

 

Typically select γc to be higher than γ0 (actual requirement) 
 
γc

’ -> using high value of this reduces the risk of avalanche of channel changes. 
 
Lecture 26 
Transmitter power control 
Let us consider a channelized system.  Let mobile ‘i’ communicate with RAP ’i’ 
on some channel. 
 
The SIR of MS i at RAP i 
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Normalized link gain 
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Define matrix Z=(Zij) 
 
We require ii ∀≥ 0γγ , not possible to satisfy this all the time 
 
Define: The SIR γo is “achievable” if exists a non-negative P such that ii ∀≥ 0γγ  

 

In matrix form '
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Each component of LHS >= each component of RHS 
 
If the system of linear inequalities has some solution with P >= 0, then the SIR γ0 
achievable. 
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Where λ* is the dominant (maximum) Eigenvalue (Peron-Frobenius theorem) of 
the matrix Z. 
 
The power vector satisfying the expression with equality & thus achieving the 
largest SIR is P*, the eigenvector corresponding to Eigenvalue λ*. 
 
P* achieves γ* at all links -> SIR balanced system corollary (noise included).  The 

inequality '
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Distributed Power Control (based on SIR balancing) 
Powers of users according to  
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Convergence: Algorithm converges as long as the set of powers all remain 
feasible (i,e. SIR γ0 is achievable) 
 
Synchronous -> Foschini & Miljanic 1993 
Asynchronous -> Mitra 1993 
 
The above results on distributed power control assume (implicitly) a fixed base 
station assignment 
 
Minimum Power Assignment (Can be thought of as generalization of soft hand-
offs) At each step of the iterative procedure, a user is assigned to the base 
station at which its SIR is maximized.  (The objective here is to minimize sum of 
total transmit powers in the system). 
 
Convergence:  For continuous adjustments Yates & Huang 1995, Hanly 1995 
For discrete adjustments Stolyar & Fleming, Song & Mandayam 2000 
 
Macro Diversity – Combining of received signals of a user at all base stations 
(at least more than one) (Hanly, 1993) 
 
Therefore SIR is the sum of SIRs at different base stations (reminiscent of MRC) 
 
Multiple Connection Reception: User required to maintain acceptable SIR at 
more than one base station. 
 
Unified Framework for Uplink Power Control 
Yates (1995) formulated unified framework for power control for distributed uplink 
power control & its convergence.  All the above classes of power control 
algorithms can be viewed to be of the form 
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Ij(P)=effective interference of other users that user j must overcome. 
 
In other words, if Pj>Ij (γ) then user j has an acceptable connection 
 
All iterative power control algorithms are of the form 
 

P(t+1)=I(P(t)), where t is the iteration index 
 

Any algorithm of the above form will converge as long as I(P) is a “standard 
interference function” 
 
i.e. it satisfies the following properties 

 



• Positivity I(P)>=0. 
• Monotocity if P>P’, then I(P)> I(P’) 
• Scaleabitliy for all α>1, αI(P)> I(αP) 

 
The result assumes that the system is feasible.  Easy to show that fixed 
assignment is minimum power assignment.  Macro diversity & multiple 
connections are all standard.  i.e. the respective interference function are all 
standard. 
 
Power Control in Practice 
In practice power updates occur in discrete steps.  In IS-95 “inner loop” power 
control adjusts power 800x/sec in steps of ±∆dB, where ∆=0.5 or 1.  “Outer loop” 
controls SIR target whenever the system encounters infeasibility.  3G (WCDMA) 
“inner loop” updates are 1600x/sec. 
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“Outer loop” operates on a slower timescale where Γtarget is adjusted.  Song-
Mandayam-Gajic IEEE JSAC Feb. 2001. 
 
Analysis via “statistical linearization” study stability & convergence. 
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