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ABSTRACT
Driver assistance and vehicular automation would greatly bene-
fit from uninterrupted lane-level vehicle positioning, especially in
challenging environments like metropolitan cities. In this paper, we
explore whether the WiFi Fine Time Measurement (FTM) protocol,
with its robust, accurate ranging capability, can complement cur-
rent GPS and odometry systems to achieve lane-level positioning in
urban canyons. We introduce Wi-Go, a system that simultaneously
tracks vehicles and maps WiFi access point positions by coherently
fusingWiFi FTMs, GPS, and vehicle odometry information together.
Wi-Go also adaptively controls the FTMmessaging rate from clients
to prevent high bandwidth usage and congestion, while maximiz-
ing the tracking accuracy. Wi-Go achieves lane-level vehicle posi-
tioning (1.3 m median and 2.9 m 90-percentile error), an order of
magnitude improvement over vehicle built-in GPS, through vehicle
experiments in the urban canyons of Manhattan, New York City,
as well as in suburban areas (0.8 m median and 3.2 m 90-percentile
error).

CCS CONCEPTS
• Networks→ Location based services.
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1 INTRODUCTION
The rapid evolution of advanced driver assistance and vehicle au-
tomation systems, along with their growing market [1, 2], have
led to increased demand for lane-level vehicle positioning that is
accurate even in urban canyon environments. Example applications
for such solutions include lane-level navigation and vehicle safety
communications.

Today’s vehicles primarily use the Global Positioning System
(GPS), often in conjunction with vehicle odometry for correcting
short termGPS biases. However, inmany challenging environments,
such as urban canyons, bridges and tunnels, multi-path fading or
shadowing considerably degrades satellite positioning accuracy.
While research has shown how position accuracy can be further
improved to a fewmeters withmotion sensors andmapmatching [9,
17, 20, 34] in some urban environments, these still face challenges
in more extreme urban canyons. To achieve lane-level positioning,
highly instrumented automated vehicle prototypes use cameras or
LiDAR sensors to reference their measurements against available
detailed models and imagery of the roadway. Creating, maintaining,
and making available such detailed image models for all roadways
is laborious and resource demanding, since it can undergo frequent
changes due to reasons such as snow or falling leaves.

To reduce reliance on such resource intensive image registration,
we investigate whether WiFi time-of-flight ranging as specified in
the WiFi Fine Time Measurements (FTM) standard [8] are suffi-
ciently uncorrelated with GPS measurements to achieve lane-level
positioning in urban canyons. While WiFi [19, 58] positioning or is
frequently used in smartphones, these have been based on received
signal strength (RSS) positioning which is limited to an accuracy
of tens of meters in urban canyons. In contrast, FTM ranging can
achieve meter-level accuracy in open-space environments [3] [31].
Given this promise of improved accuracy and its wide availability,
our study focuses onWiFi FTM and explores its utility in a vehicular
context.

To address the lane-level urban canyon positioning challenge,
this paper introduces Wi-Go1, a scalable and accurate vehicle track-
ing technology that complements GPS and odometry with time-
of-flight measurements and multilateration to surrounding access

1Wi-Go stands for WiFi, GPS and odometry based tracking
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points through the recently standardized WiFi Fine Time Measure-
ment (FTMs) protocol. It can opportunistically use WiFi access
points deployed in buildings or in cars parked along the roadway.
Since the access point location is usually not known a priori, we
design FTMSLAM, a collaborative simultaneous localization and
mapping approach to simultaneously track landmark (APs and
parked vehicles) positions as well as moving vehicle positions. Re-
alizing this requires addressing several key issues.

First, moving from a passive-client approach as in conventional
RSSI-based WiFi positioning, to the actively-signaling-client ap-
proach used in Time-of-Flight based tracking, can introduce con-
tention and channel congestion, particularly in densely populated
areas such as urban canyons. This creates challenges when scaling
to larger numbers of vehicles and access points. Consider a scenario
in which hundreds of nearby vehicles send periodic FTM requests
on the same WiFi channels. Since every FTM request triggers a
sequence of packet transmissions specific to one client, this can
easily exhaust the available channel capacity, introduce latency and
therefore degrade the positioning accuracy for these clients. Note
that this was not a concern for RSSI-based positioning since many
clients can passively overhear the same access point message but
due to the lack of synchronized clocks FTM requires round trip
packet exchanges. To tackle this issue, Wi-Go mitigates channel
congestion by optimizing the FTMmessage rates to each AP to max-
imize the tracking accuracy, while remaining below a cumulative
allowed message rate in a given region.

Second, the FTM ranging process involving a series of packet
exchanges introduces time offsets between the range measurements
to individual access points, while standard multilateration method
in wireless localization assume quasi-simultaneous ranging to mul-
tiple landmarks. This is particularly important in the vehicular
context where a fast moving vehicle can travel a significant dis-
tance between individual measurements. To address this challenge,
we propose Mobile Multilateration, a novel tracking algorithm, to
track a moving vehicle with individual ranges obtained at different
positions, while still leveraging odometery information to relate
each position of the vehicle to its previous position.

Third, to minimize receiver complexity, it requires simultaneous
localization and mapping (SLAM) techniques that only use range
information while existing SLAM work heavily relies on bearing
measurements as well (e.g.,[30, 51]). Wi-Go presents a range-only
SLAM framework suitable for multilateration with Fine Time Mea-
surements; it explicitly represents the uncertainty of both the posi-
tion estimates via particle filters, and can use FTM measurements
from a second antenna to resolve AP position ambiguity on linear
roadways.

Fourth, in environments such as urban canyons, WiFi communi-
cation can also be heavily affected by multipath fading and shad-
owing. Simply using WiFi measurements that are potentially low
quality will not yield the desired accuracy improvements over GPS.
Therefore we design an uncertainty weighted multilateration tech-
nique that estimates and explicitly considers the quality of the
current GPS and FTM measurements when updating the vehicle
and access point location.

We prototyped Wi-Go with Intel 8260 wireless cards on a small
form factor PC installed with roof-mounted antennas in a vehi-
cle and implemented backend algorithms in a cloud server. We

(a) WiFi Vs GPS (b) Vehicle linear movement

Figure 1: (a) WiFi edge over GPS. (b) Effect of linear move-
ment of a vehicle on AP localization error.

evaluated Wi-Go in two deep urban canyon environments of up-
per Manhattan as well as in a suburban residential setting. Wi-Go
achieves 1.3 m median error for vehicle tracking, with relatively
low AP density (4 APs), in our urban canyon dataset in which a
baseline of a built-in GPS only achieves 9.04 m median localization
error. Meanwhile, Wi-Go’s adaptive algorithm can efficiently adapt
the FTM message rate while still showing 41.7% improvement in
terms of vehicle localization error.

Summary of Contributions. Wi-Go and its FTMSLAM algo-
rithm make the following contributions compared to earlier posi-
tioning and SLAM algorithms:

• Designing a novel FTM-SLAM algorithm to intelligently
complement GPS and odomentry with range-only WiFi FTM
data, while addressing the resulting latency and multi-path
challenges.

• Mitigating channel congestion due to active time-of-flight
ranging messages, by intelligently distributing the cumula-
tive allowed message rate over the nearby APs.

• Introducing the opportunistic use of parked vehicles for
positioning by incorporating pairwise-distance estimates
between APs in parked vehicles.

• Demonstrating and validating that theWi-Go systemwith its
use of WiFi FTMs meets lane-level positioning requirements
through extensive experiments in two challenging urban
canyon environments and a suburban setting, with a small
fleet of 5 research vehicles.

2 BACKGROUND
In this section, we will review the WiFi Fine Timing Measurement,
SLAM, and vehicle sensing concepts that this work builds on. WiFi
positioning has evolved from initial fingerprinting [10] approaches
to using Angle-of-Arrival [59], dead reckoning [57] and Time-of-
Flight (ToF) [25]. The ToF-based WiFi distance measurements have
recently been incorporated in WiFi standards, and promise wide-
spread AP deployment support.

WiFi Fine Timing Measurement (FTM). IEEE 802.11-2016
Standards [8] has included the Fine Timing Measurement protocol,
802.11REVmc, to perform wireless ranging by measuring the round
trip time (RTT) between an AP and a WiFi station (STA). The pro-
tocol subtracts processing times from the round trip time, converts
it into a one-way time-of-flight estimate, and uses this to estimate
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range using typical propagation speed. As an interactive protocol, it
conducts multiple message exchanges to achieve a higher ranging
accuracy. Recent research [31] has confirmed that the FTM protocol
can achieve meter-level accuracy in open space environments but
the accuracy degrades in high multipath environments.

Android [4] and major vendors of WiFi chipsets have started to
support the FTM protocol. However, their accessibility to PHY layer
information like Channel State Information is quite limited [28]
since the station has to associate with the AP, which takes several
seconds [46]. This is not suitable for fast moving vehicles.

SLAM. Classic SLAM frameworks like FastSLAM [43, 51, 53]
require ranging technology (e.g. LiDAR, or stereo cameras) that
estimates the distance and bearing to a landmark. Range-only SLAM
with RF or sonar beacons[21, 22, 27, 44, 45], approximates the vector
connecting current pose with current location estimate of landmark,
requiring the initial landmark location estimate to be accurate.
Previous range-only SLAM frameworks used in robotics [16, 22,
45] has initialized landmarks through taking majority votes over
multiple solutions. Each of the solutions either fits a pair of ranges
(assuming the robot does not move in a straight line) or draws
probabilistic samples from a circle around the robot location with
radius equal to the range. These two initialization approaches may
converge to the actual location and achieve high accuracy if the
robot is not moving in a straight line, which is not the case in our
application (as shown in Fig. 1(b)).

On the other hand, current WiFi SLAM [15, 23, 24, 30] either
treats RSSI fingerprints as landmarks and tracks them simulta-
neously with user’s location, or augments WiFi with cameras to
estimate bearing to the RSSI-based fingerprints. None of these prior
works have estimated the APs’ locations simultaneously while
tracking a user, because current propagation models that map RSSI
to distance are not accurate enough and cannot generalize to differ-
ent environments. WiGo introduces a new SLAM approach called
FTMSLAM, to track APs and vehicles with range-only FTM range
measurements. FTMSLAM uses novel opportunistic sensing algo-
rithms including vehicle to AP bearing estimation, adaptive FTM
range calibration learning, and vehicle location correction through
APs street maps.

On-board vehicle sensors.Modern vehicles are equipped with
sensors to measure vehicle speed, steering wheel angle, heading,
yaw rate, etc. While this information is usually communicated on
the CAN bus (and often readable from the On-Board Diagnostics
(OBD-II) port), its encoding is specific to certain vehicles and pro-
prietary [33]. In this paper, we leverage available on-board sensors
to feed our FTMSLAM framework with precise odometry. More-
over, we leverage this odometry information as an independent,
orthogonal source for correcting FTMs in over- and under-estimate
cases.

3 CANWIFI AUGMENT GPS?
Our Wi-Go system design is motivated by the observations that
urban canyons, a key environment with degraded GPS, usually
enjoy a dense deployment of WiFi Access Points (APs) (as shown in
Fig. 1(a)). Current WiFi outdoor localization[32, 36] mainly counts
on RSSI fingerprinting, which is shown to be less accurate due to
several innate limitations, like multipath effects [10], variation of
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Figure 2: WiFi FTM ranging accuracy.

Approach Vehicle GPS GPS Android Loc.
Error (m) 9.04 18.2 19.6

Table 1: Median tracking error of related technologies in
Manhattan, NY.

performance between different devices of the same vendor [40],
and low granularity [29].The recently available WiFi Fine Time
Measurements, instead, promise a more robust, accurate, and fine-
grained ranging measurement to enable mobile multilateration
techniques, suggesting a possibility that WiFi FTM ranging could
further complement GPS.

To examine our hypothesis, we conduct a preliminary experi-
ment in an urban canyon environment (Manhattan, NYC). In this
experiment, we place 4 access points on top of 4 parked vehicles as
‘virtual’ WiFi APs, and evaluate the ranging and location error, in
the rest of the paper, using the following four different technology
options:

(1)WiFi FTM baseline. Our WiFi AP is equipped with an Intel
Dual Band Wireless-AC 8260 chipset that supports FTM capability;
(2) Standalone GPS. Our vehicle is equipped with an after-market
U-blox EVK-7P GPS receiver (< 1m precision in an open sky setup);
(3) Vehicle GPS. Meanwhile, our vehicle retrieves vehicle GPS
readings from OBD-II port. This built-in GPS has been internally
corrected using the vehicle IMU and odometry sensors; (4)Android
Fusion Location API. Finally, we collect location measurements
through Android Fused Location Provider API from a Google Pixel
3a smartphone that is placed on the vehicle’s dashboard. The An-
droid Fused Location Provider API fuses multiple sensors including
GPS, WiFi RSSI, and cell tower positioning together to provide
localization information. These technologies summarize the state-
of-the-art outdoor localization approaches which are either GPS,
motion sensors dead-reckoning, or based on WiFi RSSI, Cellular
RSSI, or a fusion of some of them.

In order to acquire ground truth locations of the vehicle, two
Intel RealSense Depth Cameras are mounted on both sides of the
vehicle’s roof that log depth information of both sides of the road.
We examine the recorded frames looking for landmarks such as
light poles and trees and use these landmarks’ positions to infer the
vehicle’s position. Specifically, when the landmark appears in the
middle of the field of view, we use the landmark’s location along
with its depth to compute the current vehicle location.
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Figure 3: Wi-Go System Architecture Overview.

Figure 4: Illustration of our Mo-
bile Multilateration. A vehicle
moves from point a, to b, then
from b to c.

Fig. 2(b) shows the ranging error of only WiFi FTM as other
competing technology options do not report range measurements.
The ranging error of WiFi FTM is 0.95 m median error (and 2.9 m at
90-percentile CDF curve). On the other hand, we also analyzed the
localization errors of vehicle GPS, Android Fused Location, and stan-
dalone GPS as shown in Table 1. This preliminary result indicates
that WiFi FTM seems to hold great promises of complementing and
augmenting existing outdoor localization techniques.

In the next sections, we describe in detail the design of Wi-Go,
which achieves this promise of lane-level positioning.

4 THEWi-Go SYSTEM
The objective of Wi-Go is to provide a practical positioning system
that scales in real world scenarios where tens of APs and hundreds
of vehicles compete in the shared WiFi channels through active
WiFi FTM ranging. Besides scalability, we aim for uninterrupted
meter-level positioning by augmenting WiFi FTMs with GPS and
odometry readings.

4.1 System Overview
Incorporating WiFi FTMs for outdoor positioning is challenging
due to the following reasons: First, with extended FTM ranging
latency, a fast vehicle could register multiple locations at different
nearby APs, imposing a vehicle tracking challenge; second, FTMs
are affected by multipath and are a range-only measurement that
does not offer bearing information, which makes jointly locating
APs and vehicles challenging; third, the injection of FTM packets
from many vehicles onto the same WiFi channels causes network
congestion;

To address the above challenges, we design Wi-Go as shown
in Fig. 3. In each participating vehicle, Wi-Go collects WiFi FTMs
from the surrounding APs, along with the timestamp, GPS read-
ing, and the vehicle’s speed and heading through on-board sensors.
We assume that vehicles will at least occasionally enter open-sky
GPS conditions, and that this could be used to establish position
in the world coordinate frame. The Wi-Go system then tracks a
vehicle by starting with an initial location estimate, gradually re-
fining based on successive GPS readings, vehicle odometry, and
WiFi FTM range measurements to access points positions. It uses

simultaneous localization and mapping techniques to jointly es-
timate vehicle position and access point positions. As in current
WiFi positioning systems, access point position estimates can be
shared across vehicles through a server.

WiGo addresses the fast moving vehicle challenge through
mobile multilateration, compensates for multipath through
uncertainty-aware fusion, and controls FTM request through a
congestion-aware optimization. We describe these techniques in
the following subsections.

4.2 Mobile Multilateration
Tracking a rapid-moving vehicle is not an easy task, since it requires
quick ranging due to vehicle speed. If a vehicle moves at 20 m/s and
the standard FTM latency is 0.2 s, then the next ranging measure-
ment will be at least 4 meters away. A new form of multilateration
is thus needed for a moving vehicle to collect sequential ranging
measurements at different precise locations from multiple nearby
APs.

Fig. 4 illustrates this issue: A vehicle starts ranging at location
A and obtains a ranging measurement r1 from AP1, then it gets r2
fromAP2 at location B, and finally it collects r3 fromAP3 at location
C. Our goal is to find the current location of the vehicle v, given APs
locations [x1, x2, ..., xn ] and corresponding ranges [r1, r2, ...,rn ]. To
tackle this issue and relate the measurements of location A and B
to location C, we leverage vehicle odometry readings to estimate
displacement and heading between these different locations. For-
mally, we formulate this problem of Mobile Multilateration as a
non-linear least squares formulation:

argmin
vn

n∑
i
(| |xi − vi | | − ri )

2

subject to vi = reckon(vi−1,di−1, θi−1 + 180),
(where i = 1, ...,n)

(1)

Through this formulation, we could identify the current location
of the vehicle by minimizing the least square error while back-
wardly holding the constraint functions. For instance, with the last
displacement and heading, we can derive the current location vn
from the preceding location vn−1.



Wi-Go: Accurate and Scalable Vehicle Positioning using WiFi Fine Timing Measurement MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Figure 5: FTM Weighting. (a) Triangular inequality. (b) As-
signing measurement confidence based on a time window.

4.3 Uncertainty Weighting
During the collection of measurements, weights are assigned to
FTMs and GPS readings, representing the confidence of these read-
ings, which will be used later in the fusion as described in Section
6.

FTM Weighting. We use vehicle wheel encoders and inertial
sensors to assign weights to FTM measurements. In this step, we
do not correct collected range measurements; instead, we simply
assign weights to these measurements and feed them along with
their weights to the FTMSLAM algorithm (Section 6). Triangle in-
equalities are used to evaluate measurement confidence: in Fig. 5(a),
let d be the estimated displacement distance reported by the inertial
sensors between two FTM measurement locations. Also, let r1 and
r2 be the measured FTM ranges at these two locations. Then the fol-
lowing triangular inequality must be satisfied: |r1−r2 | ≤ d ≤ r1+r2.
For each FTMmeasurement r(t), we evaluate the triangle inequality
of r(t) with another FTM measurement within a small time window
(Fig. 5(b)). The weight wFTM (t) for measurement r (t) is thus the
ratio of measurement pairs that satisfy the triangle inequality over
the total number of pairs.

GPS Weighting. GPS NMEA (National Marine Electronics As-
sociation) sentences are used to obtain data which is leveraged
to assign a weight for the GPS location. For a given time t , this
data includes: signal-to-noise ratios SNR(t) for each observed satel-
lite, number of observed satellites n(t), GPS quality qGPS (t), and
horizontal dilution of precision HDoP(t). GPS quality indicates
3 different states: no fix (qGPS (t) = 0), GPS fix (qGPS (t) = 1),
or differential GPS fix (qGPS (t) = 2). HDoP measures the geo-
metric quality of GPS satellites configuration in the sky [37]. The
smaller the HDoP number, the better the geometry in terms of
being spread in the sky, which has been reflected into the GPS
location precision. The GPS weight for the system is calculated as
wGPS (t) =

qGPS (t )∗n(t )∗mean(SNR(t ))
HDoP (t ) .

4.4 Congestion-Aware Adaptation of FTM
Request Transmission

When many vehicles try estimating their positions using requests
and responses from multiple APs nearby, WiFi channel congestion
may occur. Since FTM is an active measurement, it is initiated from
the STA and consumes bandwidth for every burst it sends out. With
hundreds of vehicles and tens of APs sharing limited WiFi channels,
it is critical to limit how many FTM requests a vehicle can send out
under fixed bandwidth restriction. This challenge is addressed in
this section by adapting the samples per burst parameter (spb).

Problem Formulation. Thanks to pioneering studies on con-
gestion control in vehicular networks [12–14], we assume that the
vehicle estimates the maximum message rate limit that it is allowed

to send without causing congestion. In this paper, the main task
is thus to distribute and provide message rates for each vehicle to
different APs nearby, while still honoring the cumulative message
rate limit and minimizing the vehicle location error. Note that the
messaging between vehicles and APs consumes channel bandwidth
and that potentially affects APs as well. To address this, specific
channels or partial bandwidth could be reserved for FTMmessaging
or a bandwidth limit can be set for such messaging. This will in
turn determine the maximum message rate per vehicle.

To achieve this goal, as shown in the objective function (Eq. 3),
we aim to minimize the key factors that contribute to vehicle local-
ization error collectively: the geometry of the chosen subset of APs
(1 − δ (spb)), error model in AP location (eAP ), and FTM ranging
error er (reflected in the error covariance matrix C∆r ).

Approach. A naive solution would be to distribute rate limit
equally over surrounding APs; however, not all APs in range can
precisely estimate a vehicle’s location. Therefore, it is important
to determine the subset of nearby APs the FTM requests should
be sent to. Collinearly distributed APs, for instance, fail to provide
an accurate position estimation; similarly, APs that are in distant
locations provide range measurements with larger errors.

Motivated by the above observations, we instead use a weighted
round robin schedule for ranging to each nearby AP; in particular,
we intentionally adapt the samples per burst parameter for each AP
on one hand, while maximizing the vehicle localization accuracy
on the other hand. For an AP, the spb can be set to zero if this AP
is unlikely to be useful, and the sample rate adapts based on the
location of a vehicle and its AP counterpart, respectively.

Given that x is the AP’s location estimates, v(t − 1) is the
last location estimate for the vehicle, and r(t) is the vector of
range measurements to these APs, the ranging model would be
r(t) = distance(x, v(t)) + e. e represents the total error originated
from FTM ranging errors er plus errors in AP’s locations (eAP ).
As distance is not a linear function of locations of APs and a ve-
hicle, we can linearize these equations using initial estimates of
x and v(t). Through this linearization, we can determine correc-
tions to the estimates and obtain current location of the vehicle:
∆r = A∆v + e, where A is an nx3 matrix of the partial derivatives
(Jacobian) of the distance function with respect to the unknown
vehicle locations. Through a standard least squares solution (∆v),
the covariance matrix of the solution is:

C∆v = (ATC−1
∆rA)

−1 (2)

whereC∆r represents the error contributed by eachAP. As this error
is dependant on the location of AP (e.g., some APs could be more
affected by multipath than others), these errors cannot be assumed
to be the same across different APs. We therefore only assume the
errors of APs are independent, and the standard deviation of the
total error for each AP can be calculated as σ =

√
σ 2
eAP + σ

2
er .

To optimize the vehicle localization error, we derive our objective
function from the covariance matrix of the least squares solution
(Eq. 2) as follows:

argmin
spb

((1 − δ (spb))ATC−1
∆rA)

−1

subject to
∑

spbi = ratel imit

spbi ≥ 0, 1 ≤ i ≤ |APs |

(3)
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where δ (spb) has the same form as the Delta function and eAP, er
represents the error of APs’ location estimations and range mea-
surements respectively. In this model, prior AP location estimates
are assumed to exist already and each estimate has its error derived
from the covariance of that estimate; at the same time, newly ob-
served APs are be ranged occasionally through a separate process
in order to establish an initial position estimate.

The error model used for FTM range estimates can be estimated
empirically by fitting the linear regression function (eri = a ×

disti + b) using some real world data [31]. The ranging error is
approximated using the Central Limit Theorem when spb samples
are taken and averaged. For large spb, the variance of that error can

be approximated as σ 2

spbi
: σer =

√
(a×distance(x,v(t−1))+b)2+σ 2

emp
spbi

.
So the ranging error to a certain AP is estimated based on its last
estimated distance and the empirically obtained standard deviation
σemp of these measurements.

5 THE FTMSLAM ALGORITHM
All of these ideas are put together in the FTMSLAM algorithmic
framework, the cornerstone of theWi-Go system. In FTMSLAM, the
vehicle and the surrounding WiFi APs are localized and tracked, by
incorporatingWiFi FTMs, GPS, and on-board sensor measurements.

Novelty. FTMSLAM utilizes range-only measurements (FTM),
in direct contrast to conventional SLAM approaches which require
both range and bearing measurements. To conquer this challenge,
we intentionally take advantage of a suite of novel methods, ve-
hicular opportunistic sensing, to update and correct the locations
of vehicle and APs respectively. The opportunistic sensing meth-
ods include (1) vehicle to AP bearing estimation (Section 6.2), (2)
resampling particles from FTM multilateration to refine estimated
location (Section 6.3), and (3) adaptive FTM range correction (Sec-
tion 6.3).

5.1 Location Modeling and Initialization
Location Modeling. Inspired by classic FastSLAM [53], we model
the vehicle location using particle filters, which provides a non-
parametric probabilistic position representation. Through this
model, we update a vehicle’s particles through dead reckoning,
and then further correct the distribution of particles using the fused
location estimate of GPS andWiFi FTMmeasurements. At the same
time, we model the AP location as a Gaussian distribution. In our
study, it is found that the lack of angular information in FTM mea-
surements introduces several new challenges: the requirement for
accurate initialization, the need for fusing GPS and FTM measure-
ments for the correction step, and the demand to estimate a range
calibration factor for different APs. These issues are addressed in
Sec 6.2.

APLocation Initialization. This is done through pre-collected,
crowd-sourced GPS traces along with FTMs. We estimate the lo-
cations of APs using uncertainty-weighted mobile multilateration
(Section 4). To be specific, the optimization problem is formulated
as follows: given the location vi (t) of vehicle i at timestamp t , the
collected FTM range ri j (t), and their weightswFTM

ij (t), the goal is
to identify the location of unknown AP x j . To derive the accurate
location information, we compensate the length of wired cables

(a) (b)

Figure 6: Angle estimation illustration.

used to extend WiFi antennas by subtracting c from all the FTM
ranges ri j (t). We thus solve this mobile multilateration problem
through the following weighted non-linear least squares formula:

argmin
x j

Nv∑
i

T∑
t
wFTM
ij (t)(| |xj − v(t)| | − (ri j (t) − c))2 (4)

5.2 Opportunistic Bearing Estimation
Using dual antennas connected to a WiFi transceiver placed on
the vehicle, the bearing is estimated from the vehicle to an AP. As
illustrated in Fig. 6, two antennas are fixed on the right and left edges
of a vehicle to obtain differential measurements across the direction
perpendicular to the vehicle bearing. In practice, nonetheless, the
noise in FTM readings could exceed the actual difference between
two measurements (left antenna and right antenna), which is highly
depending on the width of the vehicle. Even worse, FTM protocols
currently implemented on commercial WiFi transceivers do not
grant access to any PHY-layer information that could help estimate
the angle of arrival (e.g. signal phase).

To overcome this practical challenge, we consider the fact that we
can estimate which side the APs are placed as well as the minimum
range rmin to that AP over the first round of FTM measurements.
Later, when we have another estimated minimum range through
a new visit to this AP, we take the weighted average between the
new estimate and the historical estimates to improve estimation
accuracy. In the subsequent rounds, we can estimate the bearing
information to that AP, whenever we reach the nearest point to
the AP (at this point, the bearing should be either 90 deg or 270 deg
from the vehicle’s heading). As the vehicle moves forward, we
can estimate the distance d from the nearest point to the AP by
integrating the current vehicle’s speed. With rmin and d , we can
estimate θ as illustrated in Fig. 6(a): θi = tan−1 rmin

di
. This equation

can be generalized for any road shape as illustrated in Fig. 6(b).
Given rmin , d , and ϕ, we can estimate θ : θi = tan−1 x+rmin

y − ϕ,
x = sin(ϕ) ∗ d , y = cos(ϕ) ∗ d .

In this algorithm, we heavily rely on the minimum range to the
AP, which is attributed to the fact that FTMs are more accurate
over short distances. As a result, the estimated bearing through
the algorithm is relatively accurate; however, the accuracy could
decrease as d increases, since the accumulation of speed sensor
error negatively affects the estimated d . To estimate the distance
from the vehicle to the AP more accurately, we combine the two
FTM measurements from the right and left antennas respectively
through a weighted average using the FTM weights.
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5.3 FTMSLAM Tracking Framework
FTMSLAM Initialization Step. FTMSLAM requires initializing
both the vehicle’s location estimate and the APs’ location estimates
first. To do so, we use a GPS measurement with a sufficiently large
GPS weight, or alternatively, through WiFi FTM multilateration
with sufficiently accurate estimated locations of surrounding APs.

Update/Prediction Step. In this step, we update the locations
of the vehicle and the currently discovered APs. To update a ve-
hicle’s location, we estimate its displacement from its previous
location, together with the vehicle’s heading using its in-vehicle
sensors (these sensors provide vehicle kinematic information such
as speed, steering wheel angle, heading, and yaw rate). Here, the dis-
placement can be estimated as follows: d = 1

2 (st −st−1)∆t . Through
estimating both displacement and azimuth, which is the heading
with respect to the north, we can update the vehicle’s location us-
ing Vincenty’s formula[55] which takes the Earth curvature into
account.

In the meantime we also update the locations of surrounding
APs, through Extended Kalman Filter (EKF) [53]. Given that the
bearing to APs is not always available, we follow a range-only
SLAM approach for opportunistically updating APs if the bearing
estimation becomes unavailable. Here the location of the AP is
updated, by using the vector linking the current estimate of ve-
hicle’s location with previous estimate of this AP location. Since
this vector depends on the AP location initialization, an accurate
initialization is crucial for such a range-only approach. To further
improve the accuracy, the bearing estimate is improved when the
bearing estimation algorithm is invoked.

Correction Step. In this step, we update the weight of each
particle. By correcting the particle’s distribution of the vehicle
using both GPS and FTMs, we update the location of the vehicle
and avoid the accumulation of motion sensors error. There are a
variety of different places: in rural or suburban areas where the
GPS is accurate but WiFi is not available, and the reverse could
be true in urban canyons where GPS reception is poor, but dense
APs have already been deployed. It is likely that we can correct the
distribution of particles based on fused correction weight between
GPS and FTM estimate.

With dense deployment of APs, we can estimate the current
vehicle’s location using weighted multilateration by using FTMs,
their weights (wFTM

j (t)) and current location estimates of these
APs. Based on the distance between each particle and the current
FTM estimate for the vehicle’s location, the FTM weight of that
particle is updated,wFTM

par ti (t). However, this dense enough deploy-
ment of APs is not always available. In this case, the weight of the
particle is updated based on the average of the error between range
measurements and estimated range, which is the distance between
the particle and the current location estimate of each AP. Similarly,
the GPS weight of that particlewGPS

par ti (t) is updated based on the
distance between current GPS estimate and the particle.

To fuse these two weights, we take the weighted average of these
two particle weights:wpar ti (t) = w

FTM (t) ∗wFTM
par ti (t)+w

GPS (t) ∗

wGPS
par ti (t). As the FTM weight of that particle is estimated by lever-

aging FTM measurements to multiple APs, we estimate this as the
average of these FTM weights, so wFTM (t) =

∑N
j wFTM

j (t)/N ,
where N is the number of currently seen APs.

FTM Resampling. In urban canyons, a vehicle exhibits de-
graded GPS readings, leading to the particles being tens of meters
away from its actual location. This requires an aggressive and fast
way of re-weighting the particles when the vehicle starts to ob-
serve a sufficient number of APs for multilateration. In such cases,
when the current estimated vehicle location through FTM is far
away from the last estimated location, all particles will end up with
zero weights. To resolve this particle deprivation problem, we re-
sample a small portion of the particles from the FTMmultilateration
location.

Adaptive FTMRange Correction. FTMweighting cannot mit-
igate multipath effects by itself, as multipath error in certain areas
can be consistent and ubiquitous. An adaptive mechanism for cor-
recting FTM range is thus needed to mitigate multipath effects.

In each update step, FTMSLAM uses the error between the es-
timated range (FTM) and the corresponding distance between an
AP and a vehicle to update AP location. After multiple iterations,
the accuracy of AP location estimate is seen to improve, leading
to a better estimation of vehicle location. Inspired by this observa-
tion, we could calculate a range calibration factor to compensate
multipath error, since the distance error to an AP would eventually
converge to its actual range error. In practice, a 2D spatial map
of the range calibration factor for each AP is built by clustering
locations with similar patterns of multipath effects. Hence similar
correction values and estimated calibration factors could be used
to compensate similar multipath effects.

6 PARKED VEHICLES AS PSEUDO APS
In addition to opportunistically using stationary WiFi access points
in buildings or roadside infrastructure that support the WiFi FTM
standard, Wi-Go can be extended to also take advantage of WiFi
devices in parked vehicles as Pseudo WiFi APs. As a vehicle parks,
it can switch from WiFi station (STA) mode to AP mode through
relatively straightforwardWiFi firmware changes, if vehicle battery
management system permits. Using parked vehicles as pseudo APs
could effectively increase the density of WiFi APs, and also add
high-quality pseudo APs since parked vehicles at the street curb are
likely to have a line-of-sight propagation to moving vehicles. This
innovative idea, nonetheless, will change several design choices we
outlined in Section 4-6. In this section, we intend to briefly discuss
these issues and also shed light on their high-level solutions.

Pseudo AP Location Initialization. The last estimated loca-
tion of a parked vehicle (just before the ignition switches off) could
serve as an initial location for that pseudo AP. More importantly,
these parked APs can estimate distance to surrounding APs, before
switching to a AP mode. This method can effectively estimate the
pairwise distances between a subset of APs, which helps jointly
initializing APs locations. We designed a different optimization
method for parked, stationary vehicles because parked vehicles can
obtain pair-wise rang measurements between them. Specifically,
we can solve the multilateration problem jointly for all NAP APs,
instead of solving the problem independently for each AP:

argmin
x

NAP∑
j

Nv∑
i

T∑
t
w FTM
i j (t )( | |xj − v(t ) | | − (ri j (t ) − c))2

subject to | |xj − xk | | = r jk , k = 1, 2, ..., NAP

(5)
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Figure 7: Vehicle tracking error of Wi-Go Vs current local-
ization systems in Manhattan experiments.

Approach Parked Cars Indoor APs
Wi-Go 1.9 m 3.6 m
GPS+Odometry 14.3 m 16.4 m
GPS 18.9 m 27.4 m
Smartphone Fused Loc. 17.8 m 16 m

Table 2: AP localization mean error in Manhattan experi-
ments.

Pseudo AP LocationModeling. Parked vehicles bring another
challenge regarding modeling of pseudo AP location: Regular APs
inside of buildings rarely change locations (maybe once a year);
now, with these parked vehicles, pseudo APs could move more
frequently (multiple times per day). To tackle it, we model pseudo
AP location probabilistically using a particle filter approach that
takes vehicle mobility into account.

Vehicle Battery Duty Cycle. Powering an AP while a vehicle
is parked, may raise a battery issue if the pseudo APs are kept
on for a long duration. To tackle that, we could either develop an
intelligent power management algorithm that relies on Bluetooth
Low Energy to wake up WiFi AP unit, or adopt a simple solution
to stop vehicles from switching to Pseudo APs if its battery is less
than a pre-set threshold (e.g. 80%).

The design and implementation of this idea merit an independent
study, and we leave it for future work.

7 EVALUATION
7.1 Experimental Setup
WiFi FTMs. We setup our vehicle with a small form factor com-
puter that contains two Intel Dual Band Wireless-AC 8260. Each
WiFi transceiver connects to two WiFi external antennas: 6dBi RP-
SMA Dual Band 2.4GHz 5GHz with 1.637 m cable to attach the
antennas on the roof (we subtract that length, c from FTM ranges).
We leverage an open Linux FTM tool [31] to initiate and extract
FTMs from theseWiFi cards. On the AP side, we use ASUSWireless-
AC1300 RT-ACRH13 APs which are configured to respond to FTM
requests as a built-in capability.

Vehicle Odometry. We connect OBDLink MX to the vehicle
OBD-II interface, and retrieve odometry readings to the small
form factor computer through Bluetooth interface (Plugable USB
adapter).

7.2 Urban Canyon Evaluation
In this section, we evaluate Wi-Go in terms of localization error
through an urban canyon experiment in which GPS is significantly

Source Single FTM Processing
Median Latency (ms) 20 2.2

Table 3: Wi-Go Latency.

degraded. Moreover, we show how Wi-Go will react in terms of
latency, as many APs and vehicles are actively contending over
WiFi channels through WiFi FTM packets and usual WiFi data
traffic in urban canyon.

Experiment Summary. Fig.2(a) illustrates one of our experi-
ments in upper Manhattan, New York City. We park four vehicles in
a single street (182.6m long) as shown in the figure as red stars, and
we place an AP on each vehicle. In the fifth vehicle, we use our form
factor PC configured as a WiFi station (STA), which continuously
ranges surrounding APs.We also collect odometry, vehicle GPS, and
standalone GPS readings from this vehicle. The fifth vehicle drives
down the street multiple times to gain statistically meaningful re-
sults. We repeated the same experiment in Midtown Manhattan,
where we placed six APs inside local shops.

Ground Truth. In obstructed environments like urban canyons,
even high precision GPS will experience large errors. It is also
infeasible to manually measure a vehicle’s location while driving.
Due to these reasons, getting accurate ground truth to compare our
results to was challenging. We obtain ground truth by leveraging
depth cameras as mentioned earlier in Sec. 3. To validate our ground
truth methodology, we compare depth readings of a light pole from
depth camera and laser range finder (or measuring tape) over a
range of 3 to 12 m in a parking lot environment. The resulting error
is within 0.73 m. To obtain the ground truth location of the APs,
we take pictures of the APs’ surrounding environments (buildings
and other landmarks), cross reference with Google Street View, and
drop pins accordingly on Google Maps to obtain the coordinates of
the APs. Prior studies show that Google Earth has an accuracy close
to 1 m in metropolitan cities like Montreal [26] and Rome [47].

For these experiments, we compare the performance of Wi-Go
to other technologies mentioned earlier. In Fig. 7(a), we show the
cumulative distribution function (CDF) of the localization error of
the vehicle using Wi-Go. Our Wi-Go achieves 1.3 m median error,
and 2.8 m 90-percentile. In contrast, vehicle GPS (GPS+Odometry)
achieves 9.04 m median error, and 13.5 m 90-percentile, compared
to standalone GPS achieving 19.6 m median error, and 42.1 m 90-
percentile. Finally, Android Fused Location Provider API achieves
18.2 m median error, and 58.09 m 90-percentile. In another experi-
ment (Fig. 7(b)), where APs were inside of local shops, the median
tracking error of Wi-Go is 2.1m, while 90-percentile error increases
to 6.5 m due to extra signal degradation caused by concrete walls
of these shops.

Table 2 shows the AP localization error of Wi-Go system when
compared to baseline technology options. As the vehicle moves
across the street with more rounds of driving, Wi-Go improves the
AP localization accuracy, reaching 1.9 m mean localization error
across all the APs. This result demonstrates a significant perfor-
mance improvement of Wi-Go system over baseline solution. For
the baseline achieving 14.3 m mean error, we utilize the traces via
vehicle GPS to estimate the locations of APs using multilateration
and FTM ranges.
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Median latency is reported in Table 3. The median latency to
acquire a single FTM reading, i.e. the time difference between the
moment that we make a system call to initiate FTM process to the
moment that call returns with range measurements from a single
AP. We measure this median latency, in our current setup, to be 20
ms. On the other hand, the median processing latency of FTMSLAM
is 2.2 ms. The total latency of Wi-Go system is controlled by the
latency of extracting the sensing information such asWiFi FTM and
OBD readings. With a normal vehicle speed, this measured latency
may lead to error of a few meters. We believe that this latency
could be improved in the actual production system by optimizing
the FTM extraction tool.

Simulating Dense Environment.We use ns-3.30.1 to simulate
a scenario of dense environment including 900 vehicles and 200
APs. The mobility trace is generated using SUMO mobility simu-
lator [5] for an approximately 500 m radius around Times Square,
NYC, imported from OpenStreetMap [6]. We imported a map of the
selected neighborhood in Manhattan to create both the mobility
traces of the vehicles and determine the location of buildings to
increase simulation realism.

In this simulation, we implemented the WiFi FTM protocol fol-
lowing the technical specification of IEEE 802.11 standard [8] (e.g.,
packet format and packets size). For system parameters that are not
directly regulated in the standard (e.g., expiration timers and other
supporting parameters), we directly infer them from our empirical
experiments. We log the latency for getting a single FTM ranging
in our simulation.

Simulation Parameter Value
Simulation time 30 sec
Transmission power 16.5 dBm
Channel bandwidth 80 MHz
Channel number 155
Line-of-sight reference pathloss 21.87 dB
Line-of-sight pathloss exponent 3.39

Table 4: Simulation configuration.

Table 4 shows the configuration used for the simulation. To better
capture the impact of the multipath effects in an urban environment,
the simulator distinguishes obstructed, none-line-of-sight (NLOS)
communications from line-of-sight (LOS) communication as fol-
lows: when there is a packet transmission, the simulator identifies
the communication category and then chooses an appropriate prop-
agation model to calculate the received signal at the receiver. The
obstructed building signal propagation model is an implementation
of Mangel et al. [41]. For the line-of-sight model we used pathloss
components from a recent industry consortium (CAMP) [7] empir-
ical measurement study, which considers the impact of vehicular
traffic condition on the pathloss.

Fig. 8(a) illustrates the median latency of different approaches,
grouped together for specific vehicle densities. The error bars indi-
cate 25th% and 75th% of the latency for each bars. Vehicle density is
captured by the percentage of cars equipped with Wi-Fi, which we
call vehicle penetration ratio, and simulation results are presented
for four penetration ratios. It is clearly shown that Wi-Go, labeled
as Adaptive spb, significantly outperforms the other competing
approaches.

(a) (b)

Figure 8: (a) 25th%, median, and 75th% latency for Wi-Go
(adaptive spb) compared to baselines using ns-3 simulations,
and (b) mean and standard deviation of the latency versus
number of completed AP rangings in one AP list scan for
75% penetration ratio.
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Figure 9: Evaluating vehicle tracking accuracy in the resi-
dential apartment complex experiment.

Approach Mean Min Max
Wi-Go 2.6 m 1.3 m 4 m
GPS+Odometry 3.6 m 2.9 m 4.3 m

Table 5: AP localization error in the residential apartment
complex experiment.

Fig. 8(b) illustrates the end-to-end latency from the moment that
a vehicle starts with a list of APs until it successfully finishes its en-
tire FTM session with the nth AP, averaged across entire simulation.
Note that the vehicle starts over with a fresh list of scanned APs
either after finishing the current list of APs or after 2.5 s, whichever
comes first. The shaded area around each curve shows the standard
deviation. It is shown that on average the vehicle can start triangu-
lation by having the third FTM session completed after 500 msec
with our proposed adaptive spb approach; in contrast, using 10spb
and 20spb approaches, the vehicle has to wait approximately 1500
msec and cannot complete ranging with more than seven APs.

7.3 Residential Apartments Evaluation
Summary. In our second experiment, we evaluate Wi-Go in a
residential apartment complex area. We place three APs inside
student apartments, in the location where residents usually keep
their access point, as shown in Fig. 9(a). The choice of apartment
units was limited to a set of volunteers who provided access to their
units. Our data collection has been scheduled over a week with two
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trips each day (morning and afternoon). One ‘trip’ refers to each
marked colored path in Fig. 9(a) (e.g. blue path is one trip).

Ground truth. Ground truth locations of APs are estimated by
finding the latitude and longitude of the nearest window on Google
Maps and correcting with manually measured AP distance to the
window. Regarding vehicle localization error, we use high precision
GPS as ground truth to evaluate vehicle localization error.

Fig. 9(b) shows the CDF of the vehicle localization error for this
residential area. Wi-Go, with vehicle initialization through accurate
GPS measurement, achieves 0.8 m median localization error, and
3.2 m 90-percentile. Table 5 summarizes the AP localization error
for Wi-Go compared to the baseline solution (GPS corrected with
odometry readings). Our Wi-Go can determine the locations of the
APs with 2.6 m mean error over all APs compared to 3.6 m mean
error for the baseline. For this baseline result, we filtered noisy GPS
readings using our uncertainty weights for GPS, and then used FTM
measurements and multilateration to determine the AP’s position.

7.4 Micro Benchmarks
Effect of varying number of APs. The density of APs is an im-
portant factor affecting vehicle localization error. In Fig. 10, we
study this effect in the Manhattan experiment, in which WiFi FTM
dominantly affect localization error compared to suburban areas.
This figure shows that, as expected, the median of vehicle localiza-
tion error decreases with increasing number of APs, as we increase
more reference points.

Effect of different FTMSLAM algorithms.We compare here
the impact of our proposed algorithms over standard multilater-
ation on AP localization error. Fig. 11 shows that our algorithms
can gradually improve the average localization error of APs. In
our urban canyon dataset with low-quality GPS measurements,
adding our GPS and FTM weights to the standard multilateration
does not improve the accuracy significantly. In contrast, as we ap-
ply FTMSLAM, our tracking framework with our crafted weights,
the average localization error drops to 5.8m. When we apply our
complete FTMSLAM, by correcting vehicle’s particles with FTM
multilateration estimate and bearing estimation, the AP localiza-
tion error is further reduced to 1.9 m. In the residential experiment,
Fig. 11 shows that our GPS and FTM weights could significantly
improve the average localization error of APs, since a number of
outliers exist in these measurements. After we apply complete
FTMSLAM, the AP localization error decreases from 4.2 m to 2.6
m.

Effect of varying FTM correction factor. FTM ranging is af-
fected by multipath as shown in previous work [31]. We study how
the correction factor, which we subtract from the FTM ranges, could
affect FTMSLAM in terms of AP localization error. Fig. 12 indicates
that there is an optimization value that minimizes the AP local-
ization error. According to our evaluation, this value is different
between our two datasets; as expected, it is higher in the residential
dataset compared to the urban canyon dataset. This is because, in
the residential scenarios, the APs are placed inside the building
and thus more susceptible to multipath, in direct contrast to urban
scenarios where APs are on the top of the vehicles characterized
with Line-of-Sight signal propagation. Our FTMSLAM derives this

FTM correction factor automatically through our adaptive FTM
range correction algorithm.

AP Location Convergence.Wi-Go improves APs location es-
timations over time. Wi-Go can converge to meter-level accuracy
of an AP location estimation with relatively small number of visits
to this AP. Specifically, Wi-Go can converge in Manhattan to 1.9
m, 3.6 m average AP localization error after 10, 3 visits to parked
cars, indoor APs (114th st., 49th st.) with 488, 3273 average FTM
readings, respectively. The number of readings is a function of the
number of visits and the traffic condition (average vehicle speed).
Our system can also converge to 2.6 m AP localization error after
14 visits to a residential area with 150 average FTM readings. Note
that as more vehicles visit an AP, AP location accuracy improves
and, as a result, vehicle localization accuracy improves.

7.5 Evaluating Adaptive FTM Rate
In this section, we evaluate our solution to adapting the FTM mes-
sage rate to maximize vehicle localization accuracy, while being
constrained to a cumulative message rate.

Experimental Results. We conduct an experiment in a subur-
ban area, in which we place 12 APs (first seven are indoors and the
rest are outdoor) as shown in Fig. 13(a). In this experiment we aim
to show the importance of wisely ranging to a subset of the nearby
APs, as well as to study how this mechanism affects the vehicle
localization accuracy. To do so, 12 APs are deployed in an area of
117m X 36.5m, and we assume that the locations of these APs are
already estimated through previous steps (wardriving multilatera-
tion, or FTMSLAM with minimal sample per burst). To avoid any
complication, we do not use any preprocessing algorithms (e.g.,
FTM uncertainty weighting or FTMSLAM), but we utilize nearby
APs to track the vehicle using standard multilateration and count
only onWiFi FTMs. We use a high precision GPS receiver as ground
truth to calculate the final localization error.

Fig. 13(b) compares our adaptive approach to the default ap-
proach using fixed spb per AP (2 and 10). As expected, the 2spb
approach is susceptible to FTM noise, resulting in a high local-
ization error of 9.2 m median error, and more importantly, 50 m
90-percentile. On the other hand, by increasing the parameter to
10spb, it is expected to improve the location accuracy, as there are
more samples to average out the noise. However, to our surprise,
this higher spb approach generates 11.5mmedian error, and 52.1m
90-percentile. This counter-intuitive observation could be explained
as follows: Though we increased the sampling set for statistical
accuracy, we also significantly increase the opportunity to collect
more inaccurate, noisy data from faraway APs.

Our proposed adaptive approach, instead, takes all these factors
into account. Our adaptive algorithm achieves 6.7 m median error,
and 24.6 m 90-percentile, respectively. These results validate that
our approach improves the localization error, since it intelligently
selects the subset of APs which are nearby, less affected by FTM
noise, and with a lower horizontal dilution of precision.

7.6 Discussion
In this section we discuss the major lessons learnt from our study
and the results obtained from different scenarios are related and
scrutinized.
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Figure 13: Evaluating our adaptive FTM message rate ap-
proach leveraging FTM ranges only.

Vehicle location error vs. AP localization error. As shown
in Fig. 7(a) and Table 2, we notice that the vehicle localization error
is slightly lower than the AP localization error, which is attributed
to two factors: first, the multilateration reference points (i.e., vehicle
trace) used to locate the AP are collinear, while the reference points
used to locate the vehicle (i.e., widely spread AP locations) are
mostly not, leading to lower dilution of multilateration precision.
Second, AP localization is only limited by FTM measurements; the
constraints on vehicle location, on the other hand, come down
to GPS, odometry, and FTM measurements. This results in more
accurate location estimation.

Urban canyon results vs. residential results. The results us-
ing the urban canyon and residential datasets consistently show
that FTMSLAM alleviates both GPS blockage in obstructed envi-
ronments and occasional GPS noise in unobstructed environments.
Interestingly, the average AP localization error is slightly higher in
residential areas, due to signal multipath. We observe that it is im-
perative to initialize our system with sufficiently accurate location
as initial conditions, which is possible using GPS in the residential
area, or using Maps/FTMs in urban canyons. Wi-Go is designed to
filter noisy measurements when it happens, thus only benefiting
from reasonably accurate measurements. As shown in Fig. 11, the
different components of our system have different impacts between
the two datasets.

8 RELATEDWORK
Outdoor Localization. In urban canyons, GPS can achieve on av-
erage 24.3m error [34], which can be reduced by 6-8m as shown
recently [38]. ParkLoc [20] localizes cars with an accuracy of 4.8m
in underground parking garages using inertial sensors in the smart-
phones of the people inside the car, and semi-supervised learning
algorithms. Carloc [34] can track vehicles outdoors (2.7 m mean
error) by matching digital maps and leveraging proprietary vehi-
cle sensors to detect roadway landmarks (e.g. speed bumps, stop

signs). The LTE standard [18] indicates that a localization accuracy
of 20-30m can be achieved with trilateration methods and using
neural networks in tandem allows for a minimum error of 2.3m to
be possible [50].

WiFi Localization. Indoor localization either assumes the
knowledge of APs locations [42, 54] or leverage fingerprinting
techniques [36, 48, 56]. Except for fingerprinting, the position of
the AP is usually assumed to be known. Locating APs while driving
by throughware-driving could lead to up to 32m error [35]. This can
be improved by estimating angle of arrival reaching 10-30m local-
ization error [52]. Fingerprinting strategies, however, involve heavy
overheads, relatively low accuracy compared to ToA methods simi-
lar to GPS. CUPID [49] leverages CSI for indoor tracking, achieving
2.7m median error. WOLoc [58] offers WiFi RSSI-based outdoor
tracking through semi-supervised manifold learning technique.

Scalability. Banin et al. [11] proposes a solution using multi-
ple access points which are custom made for using WiFi FTM and
communicating with each other to form a geosynchronous system,
where the clients track their positions passively, with only the APs
transmitting. Llombart et al. in [39] simulate a technique that can
be used for mobile devices to select three nearby APs for trilater-
ation. The mobile device to be positioned finds three nearby APs,
associates with each of the three APs, calculates the distance and
then dissociates. Dedicated hardware is required for both the AP
and the mobile device in this method.

9 CONCLUSION
This paper introducesWi-Go, a vehicle localization system that uses
WiFi FTM measurements to achieve lane-level accuracy in chal-
lenging urban canyons where GPS accuracy is degraded. It fuses
WiFi FTMs with GPS and odometry in the FTMSLAM framework,
to simultaneously estimate vehicle positions and the positions sur-
rounding WiFi APs. We further design Wi-Go to adapt the rate of
FTM packets in order to mitigate network congestion and latency
arising from WiFi FTM’s active ranging approach, while maximiz-
ing vehicle localization accuracy. We evaluate the system in the
urban canyons of Manhattan as well as suburban residential areas.
Wi-Go achieves 1.3mmedian error in an urban canyon setting with
access points on parked vehicles, 2.1m median error in a crowded
area with access points in buildings, and 0.8 m median localiza-
tion error in a suburban environment with access points inside
apartment buildings. This shows promise for using WiFi FTM mea-
surements for vehicle positioning even in multi-path rich urban
canyons.
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