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Abstract—We propose a primary user-aware k-hop routing
scheme that can be plugged into any cognitive radio network
routing protocol to adapt, in real time, to the environmental
changes. The main use of this scheme is to make the compromise
required between the route overhead and its optimality based on
a user-defined utility function. We analytically derive the optimal
discovery radius (k) that achieves this target. Evaluations on NS2
show that our scheme can enhance the current routing protocols
in terms of throughput with minimal overhead.

I. INTRODUCTION

Cognitive Radio Networks (CRNs) present a promising
solution for spectrum scarcity in wireless networks to cope
with the ever-increasing demand for mobile communications.
In CRNs, unlicensed secondary users (SUs) opportunistically
utilize vacant portions of the spectrum without interfering with
licensed primary users (PUs). This promises a large set of
potential applications, given the scarcity of the unlicensed
wireless spectrum, including high-demand and highly crowded
distributed mobile applications such as the Internet of things,
high-quality mobile video, and disaster or emergency response
settings. Despite this promise, one of the main problems
that impacts the performance of multi-hop CRNs is routing.
Compared to traditional ad hoc networks, routing in CRNs
has to deal with unique challenges such as dynamic spectrum
availability due to the stochastic behavior of primary and
secondary users, resource heterogeneity resulting from the
availability of different channels and radios on the same node,
and synchronization between nodes on different channels.

To tackle these routing challenges in CRNs, routing proto-
cols for CRNs have attracted attention from a large number of
researchers [1]. These protocols can be categorized into two
main classes: global and local routing protocols. Topology-
based (global) routing protocols, e.g. [2]–[4], discover all
possible routes to the destination by flooding the network with
control packets and selecting the optimal route based on a
defined routing metric. Despite this optimality, these protocols
do not scale or adapt to support topological changes as a
result of high mobility or variations in network size. On the
other hand, geographic (local) routing protocols, e.g. [5]–[8],
make localized greedy decisions at each hop by selecting the
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Fig. 1: The tradeoff between local and global routing

best one-hop neighbor from those geographically closer to the
destination. Such greedy approaches take local optimal deci-
sions to rapidly adapt to network dynamics without flooding
the network with control packets. However, they suffer from
the overhead of dealing with local voids. Consequently, an
inevitable tradeoff exists between the optimality of a chosen
route and the routing overhead as shown in Figure 1 which
shows the spectrum of different routing protocols in CRNs.

We therefore propose PAK: a Primary User Aware k-
hop route discovery scheme that can explore this spectrum
of protocols between geographic and topology-based routing.
PAK is not designed to act as yet another routing protocol.
Instead, it can be plugged into any routing protocol with
minimal changes. Based on a user-defined utility function that
balances overhead and route optimality, it can dynamically find
the best discovery radius, k, in real time for each node in the
network.

We derive, mathematically, a utility function that quantifies
the tradeoff discussed. We then evaluate PAK by integrating
it with a sample routing protocol for CRNs [2] (with minor
modification that will be discussed later) using NS2 [9]. Our



results demonstrate that in typical CRN operation scenarios,
performance is significantly enhanced, in terms of throughput
with minimal incurred overhead, when gradually increasing the
discovery radius.

Overall, our contributions in this paper are threefold:

1) We propose a Primary User Aware k-hop route dis-
covery scheme to be plugged to any routing protocol
in cognitive radio networks.

2) We present a mathematical analysis of the optimal
discovery radius, in terms of the most optimal route
with least overhead, based on a user-defined utility
function.

3) We integrate PAK with a traditional routing protocol
for CRNs and evaluate its performance.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III presents our
system model, assumptions and the discovery scheme used by
PAK. We then provide a mathematical analysis of the optimum
k in Section IV. We evaluate the proposed system in Section V.
Finally, Section VI concludes the paper and provides directions
for future work.

II. RELATED WORK

In traditional wired networks, the tradeoff problem between
global and local routing is discussed extensively. For example,
in the scope of the Internet, the concept of Autonomous
Systems (Intra and Inter AS routing) is used to achieve this
tradeoff. Along the same line, hybrid routing techniques have
been investigated before for large scale networks in the context
of mobile ad hoc networks [10], whose challenges are different
from CRNs. For example, Terminodes [11] proposes two
modes of operation where a greedy geographic approach is
used for long distances and switches to a topological global
mode when it approaches the destination.

Current routing protocols in CRNs, however, are either
static geographic (local) approaches (based on 1 hop informa-
tion [5], [7], [8] or 2 hop information [6]) or static topolog-
ical (global) approaches [3], [4], [12]–[19]. Local geographic
approaches discover one- or two-hop neighbors and pick the
best route according to the used routing metric. These metrics
include location-aided metrics [5], where the nearest neighbor
to the destination will be used as a next hop. Moreover, another
class of local approaches uses PU aware routing metrics where
offline statistics are leveraged to estimate PU behavior [6], [8].
Local approaches suffer from picking local optimal routes and
may be trapped in local voids which can be resolved using
perimeter routing [20]. Global routing approaches, on the other
hand, flood the network with control packets, and hence, pick
the optimal route. However, these routing approaches do not
scale to support large, highly-loaded, and dynamic networks
in which their performance significantly degrades.

Despite this extensive routing research in CRNs, studying
the impact of varying the number of discovered hops (k), as
shown in Figure 1, on routing optimality and its overhead has
not been investigated before in the context of CRNs. Moreover,
current routing protocols in CRNs are static protocols that can-
not adapt with the environment changes, e.g., dynamic changes
in the number of SUs and number of active connections. All
of these are the subject of the proposed scheme.

III. SYSTEM MODEL

In this section, we present our system assumptions and then
provide a brief overview on the proposed discovery scheme.

A. System Assumptions

We consider an ad hoc cognitive radio network. PUs are
located uniformly in the deployment area. PUs’ activities
are modeled as an ON-OFF birth-death process, where the
periods of the ON and OFF periods follow two independent
exponential distributions with birth parameter λ and death
parameter β depending on the traffic of the PUs [21]. All PUs
are homogeneous in terms of their parameters and transmission
ranges. We assume that PUs are stationary. This is common
in many CRN scenarios such as TV white space-based CRNs.
We also do not make any specific assumption on the MAC or
higher layer protocols for the PUs’ system.

We further assume that SUs are located uniformly in the
two dimensional Cartesian space and each SU knows its own
location and the location of its direct neighbors. Assuming
knowing only the location of the destination is a typical and
valid assumption in many applications including military and
sensor networks where reporting nodes know the locations of
the sink nodes. Without loss of generality, exchanging routing
control packets can be done through a Common Control
Channel (CCC). Finally, we assume that our scheme will be
plugged on routing protocol that are already running in the
background [22], [23].

B. Discovery Scheme Overview

Figure 2 shows how PAK operates in a 2-hop neighborhood
discovery scenario, where Node E (Src) tries to reach Node
N (Dst). Node E starts the discovery process by broadcasting
a route request (RREQ) packet for Node N on the CCC
and waits for the replies. As shown, some nodes will not
reply based on their location relative to the source and the
destination. When the source node receives replies, it chooses
one of the k-hop neighbor, i.e. nodes at the k-hop perimeter
(we call it a mega-hop neighbor) according to the returned
routing metric which describes the PUs activity along the route.

IV. ANALYTICAL MODEL

A. Notations

Table I summarizes the notations used in the paper. We
model a CRN as a graph G = (VSUs;VPUs;E), where VSUs

represents the set of SU nodes, VPUs is the set of PU nodes
and E is the set of graph edges.

B. Problem Formulation

We propose a utility function U that describes the relation
between two weighted metrics:

1) Optimality Metric (Opt(k)): This metric quantifies
the advantage of discovering larger k as more infor-
mation about PUs will be gained, leading to better
routes.

2) Overhead Metric (Over(k)): This metric quantifies
the overhead of discovering larger k in terms of
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(a) Src broadcasts RREQ to neighbors.
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(b) All neighbors rebroadcast the RREQ.
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(c) Only the 2-hop neighbors, that are nearer to Dst than Src, reply.
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(d) Src picks the optimal route and forwards the packet to the best
2-hop neighbor.

Fig. 2: A 2-hop neighborhood scenario. Note that all communications occur on the CCC, which is independent of the PU activity.
All nodes inform the source about the PU activity near them. The source node selects the optimal route based on a user-defined
utility function.

TABLE I: Mathematical Notations

Symbol Description

k Discovery Radius

Tr SUs’ transmission range

Trpu PUs’ transmission range

l The side length of the square deployment area

n The number of SUs

npu The number of PUs

npuk
The number of PUs within k-hops

d The average node degree

µ SUs’ density

α The weight of optimality metric in the utility
function. This is user-defined

τ The period within which PU activity is ob-
served

λ Activity rate of each PU

ppu The probability to get affected by any given
PU

pnot The probability of not being affected by any
PU

control packets that flood the network to discover the
route to the destination.

Different representations can be used for both metrics. For
example, optimality metric may capture loss ratio, end-to-end
delay, among others. In PAK, the optimality metric is designed
to describe the PUs behavior so that the nature of CRNs is
captured1. Based on this, we note that both the optimality
and overhead metrics increase with k. Therefore, we use the
following utility function to combine them:

U(k) = αOpt(k)− (1− α)Over(k) (1)

where α is a parameter that determines the user preference.

Let Src be a source node establishing a connection with
Node Dst. The Src node will discover only k∗ hops, where

1We define the optimality metric mathematically later in this section.

k∗ is the optimal hops in terms of the routing utility function:

k∗ = arg max
k

U(k). (2)

Therefore, our goal now is to develop a mathematical formula
for the two functions: Over(k) and Opt(k), that can be used
to find the optimal k.

C. Control Overhead Analysis

1) Average Number of Neighbors within k-hops: In this
section, we study the relation between k and the routing
overhead, i.e., the total number of control packets to discover
k hops. In order to find this relation, we first need to derive a
formula for the average number of nodes within k hops from
the sender.

Let nk be a discrete random variable representing the
number of nodes within k hops. Then, the average number
of nodes that are within k hops from the sender:

E(nk) = npk,

where pk is the probability for a node to be within k hops
from the sender. Given the assumption of uniform distribution
of SU nodes in the deployment area, pk is given by:

pk =
πr2

l2
=

πk2T 2

r

l2
;

where r = kTr is the radius of the area of the k-hop neighbor-
hood and l2 is the total deployment area. This probability can

further be simplified using the average node degree d =
nπT 2

r

l2

[24]) as

pk =
dk2

n
.

Then, we have
E(nk) = dk2. (3)

2) Overall Control Overhead: The routing overhead in-
cludes the number of times that the route request (RREQ)
packet is rebroadcast and number of route replies (RREP)





For simplicity, we assume that θ follows a uniform dis-
tribution and its values range from 0 to π

2
Therefore, we can

simplify U(k) as:

U(k) =
1
π
2

∫ π
2

0

U(k, θ)dθ

= −αnpuk
log

2
(1−ppu)−(1−α)(1+d(k−1)2+11.29dk(k−1)).

(5)

Therefore, the optimal value of k is:

k∗ =
13.29d(1− α)− α

npu

l2
(πT 2

rpu
− area2) log2(1− ppu)

47.16d(1− α)
.

(6)

V. PERFORMANCE EVALUATION

In this section, we evaluate PAK via NS2 simulations. We
first describe our simulation setup, parameters and metrics
used. Then we present and discuss the simulation results.

A. Simulation Setup

We used a multi-channel version of NS2 [25]. PAK can be
plugged on any routing protocol. However, in our simulations,
we implemented and used a modified version of CAODV [2]
as the underlying routing protocol on which we plug PAK. Our
modified version works similar to the default CAODV but uses
the optimality metric defined in the previous section as its route
selection metric. We use the IEEE 802.11 as the MAC protocol
and a CBR traffic model for the generated packets from the
SUs.

TABLE II: Experiments parameters.

Parameter Value range Nominal
Value

Number of SUs (n) 100 100
Number of PUs (npu) 2-10 2
Number of active connections 10 10
SU transmission range Tr (m) 125 125
PU transmission range Trpu (m) 140 140

Number of channels 2 2
Packet size (Byte) 512 512
Data Rate per source (Kpbs) 16 16
Network Capacity (Mbps) 1.5 1.5
Square Deployment area side length (m) 1000 1000
User Utility Parameter (α) 0.1-0.9 0.5
Activity period τ (sec.) 1 1
PUs Activity Parameter (λ) 0.5 0.5

B. Experimental Parameters

Table II summarizes the experimental parameters. PUs are
uniformly located over the available channels in the area of
interest.

C. Metrics

We evaluate PAK using these metrics:

1) Throughput: number of bits transmitted correctly
from source to destination per second.

2) Routing overhead ratio: ratio of number of transmit-
ted control packets to total number of transmitted data
packets.

We limit our results to these two metrics only due to size limits.
We choose the achieved throughput to quantify the optimality
of the route and the overhead ratio to trace its overhead.

D. Experimental Results

We first validate our analytical results and study the effect
of the user utility parameter (α) on performance. Finally, we
show the effect of mismatching k on performance. However,
some experimental results are omitted due to size constraints.

1) Validating Analytical Expressions: Figure 5 studies
the gap between local and global routing based on
the user defined utility weight (α). The figure shows
that, for different user goals in terms of routing op-
timality and overhead, the proposed scheme enables
the required compromise. We can also see that the
simulation results match the analytical results in the
general behaviour. The difference between simulation
and analytical results could be due to the uniform
angle distribution assumption.
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Fig. 5: Effect of changing k on the utility function at different
values of α obtained through both analysis and simulations.
For both subfigures, the goal is to obtain the best utility value.
This is different based on k. Traditional algorithms that have
a fixed k cannot adapt to dynamic network conditions or user
desires. As shown, optimal value of k depends on the user-
defined weight α
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Fig. 6: Effect of changing α on k in different cases of network
topology (different ratios of n to npu). Increasing α leads to
getting larger discovery radius (k) returning more optimal route
with higher overhead.

2) The Effect of User Utility Parameter α: Figure 6
shows the effect of α on k. Setting α to low value
favors the traditional local routing, and hence optimal
value for k will be smaller. However, one can choose



high value for α (and hence high value for k) in case
of preferring the global routing approach. So, user
can achieve the desired behavior by setting α to an
appropriate value.
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Fig. 7: Effect of changing Number of PUs with time on
throughput and routing overhead ratio. We can see that PAK
adapts well with the topological change to give better perfor-
mance than the routing protocol that uses fixed value for k.

3) Effect of Changes in Network Dynamics: In Fig-
ure 7 we see how PAK adapts to the change of the
number of PUs along the time. It is clear that PAK
sets an appropriate value for k as network topology
changes whereas fixing k to a certain value (as in
global or local approach) gives bad performance.
Figure 7a shows that local approach performance de-
grades significantly while increasing number of PUs.
However, setting α to 0.5 allows PAK to choose an
appropriate value for k to keep the good performance.
The same applies for Figure 7b where overhead
increases a lot when number of PUs increases with
time in the case of global routing (fixing k to ∞).
But, PAK performance remains acceptable with this
change.

VI. CONCLUSION AND FUTURE WORK

We proposed a new scheme for adaptive routing discovery
in CRNs where the number of hops to be discovered can be
set to adapt with the network topology. We studied the tradeoff
between the routing optimality and overhead as a function of
the number of discovered hops both analytically and through
simulations. The results showed the advantages of the proposed
scheme and how it can be applied on top of any routing
protocol. We are currently extending our work by applying our
discovery scheme over different classes of routing protocols
in CRNs as well as experimenting with other distributions for
network nodes. Furthermore, we are implementing our scheme
over Cognitive routing protocols on some of the emerging
testbeds like CogFrame [26] and CRESCENT [27] to see the
performance on real scenarios.
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