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Abstract—Cognitive radio networks (CRNs) provide a solution
to increase the utilization of the scarce radio frequency spectrum.
Building testbeds for CRNs is one of the main challenges that can
affect the wide deployability of such networks. In this paper, we
present the design, implementation, and evaluation of CogFrame:
a framework that facilitates the development of cost-efficient
large-scale CRNs routing protocols testbeds. The framework
allows the designers to focus on the CRNs routing protocols
by abstracting the PHY and MAC layers while providing the
necessary cross layer functionalities. CogFrame works with stan-
dard computers and WiFi cards to reduce the cost while allowing
integration with other special hardware for more flexibility. In
addition, CogFrame provides different modules for implementing
and emulating complex scenarios such as regulatory authority
policies, mobility management, and topology management.
We benchmark the performance of CogFrame and compare it

to standard ns-2 simulations and USRP2 implementations. In
addition, we case study a location-aided routing protocol for
CRNs using both CogFrame and ns-2 simulations. Our results
highlight the ease of implementation, low-cost, and realistic
replication of the CRN environment, showing the promise of
CogFrame as a testbed for future CRNs implementations.

I. INTRODUCTION

The exponential demand for portable and mobile devices

increased the demand for high bandwidth wireless communi-

cations. Given that the spectrum is a limited natural resource,

traditional static spectrum allocation mechanisms lead to the

waste of this valuable resource. Cognitive radios emerged

as a solution for enhancing spectrum utilization by allowing

unlicensed users to opportunistically utilize unused portions

of the spectrum. Despite the vast progress made in advancing

the different research directions in cognitive radio networks

(CRNs), (e.g. spectrum sensing, spectrum management, and

routing [1], [2]), most of the evaluations made for that work

are either through simulation or on small-scale testbeds in

controlled environments [3], [4]. Simulations provide a tool

for testing large-scale CRNs. However, it is usually difficult

for them to capture realistic environment conditions, especially

given the dynamic nature of CRNs [5], [6]. This observation is

even more important in the case of CRNs, where convincing

the licensed spectrum holders to share it with the secondary

users (SUs) requires real-life demonstrations, rather than sim-

ulations.
On the other hand, real testbeds [4] have focused on the

flexibility of designing and evaluating new PHY and MAC

protocols/solutions for which a small testbed requiring special

hardware, such as USRP and WARP boards, is sufficient.

Examples of large-scale open access testbeds [7]–[9] offer

both PHY and MAC layers prototyping by using GNU Radio

over USRPs connected to general purpose hosts. The authors

in [10] proposed using WARPs connected to cloud services.

This was demonstrated by connecting the WARPs to powerful

PCs using MATLAB to easily configure the WARPs. Another

approach is the development of emulation testbeds [11]; The

BEE2 FPGA is used as an emulation board to connect RF-

frontends representing primary users and secondary users.

The FPGA helps emulate the different possible scenarios

for communication. Similarly, the SORA architecture [12]

presents a new software and hardware stack that addresses

increasing the processing power dedicated to PHY and MAC

operations. Although hardware-based approaches have advan-

tages for prototyping PHY and MAC layer protocols, they

share a number of drawbacks: (1) the prohibitive monetary

cost of a large-scale testbed, (2) shared testbeds do not scale to

a large number of users and do not allow private deployment,

and (3) there is a lot of complexity added to the development

and deployment of routing protocols due to the requirement

of implementing the whole protocol stack and handling PHY

and MAC issues.

From a different perspective, software architectures have been

proposed to ease the development of MAC and PHY protocols

for CRNs. Hydra [13] is a flexible wireless network testbed

that eases the development of MAC and PHY protocols based

on combining the flexibility of Click Router for MAC and

GNU Radio for PHY using USRPs as RF-frontend. Iris [14]

main goal is runtime reconfiguration, enabling seamlessly

changing of protocol modules based on observations in the

traffic. Other work provides a library of reusable code and

an easy way to write customized code aiming at easing rapid

development of a CRN stack [15]. While these approaches

provide good frameworks for developing a CRN stack, they

still require building the whole stack and configuring it. In

addition, all of them require special RF-frontends to support

software defined radio libraries.

In this paper, we present CogFrame, a framework that enables

low-cost large-scale testing of cognitive radio routing proto-

cols. CogFrame is designed to work on standard computers



with off-the-shelf WiFi cards. It builds on the Click modular

router [16] and extends it to provide an abstraction layer that

supports the development of new routing protocol for CRNs,

including cross-layer functionalities such as spectrum sensing

and spectrum management. CogFrame can also interface with

special hardware (such as USRP boards), in a transparent way

to the developer, if needed (e.g. to integrate with other PHY

and MAC protocols). Moreover, CogFrame provides emulation

modules for modeling complex scenarios such as primary user

(PU) behaviors, PU and SU mobility patterns, and topology

management. In addition, an integral part of CogFrame is a

Policy Manager module that allows capturing different radio

policies enforced by regulatory authorities or restricting the

operation channels. The rest of this paper is organized as

follows: we present our design goals and the details of the

CogFrame framework in Section II. Section III benchmarks

CogFrame and compares it to USRPs and ns-2 simulations.

We present a case study of using CogFrame to implement a

recent location-aided routing protocol for CRNs (LAUNCH

[17]) in Section IV. Finally, Section V concludes the paper

and gives directions for future work.

II. THE COGFRAME ROUTING FRAMEWORK

In this section, we introduce the design and implementation

of CogFrame. We start with our design goals followed by the

architecture description.

A. CogFrame Design Goals

CogFrame is designed with the following goals in mind:

1) Flexible Cross-Layer Interactions: A CR node needs

to be able to sense and acquire information on the state

of the spectrum. Also, it needs to be able to specify its

transmission parameters based on this sensed state. While not

all transmission parameters need to be handled by the routing

protocol, some of these parameters (e.g. channel used and

transmission power) might need to be controlled. This requires

cross-layer interactions. However, it should not require the

development and maintenance of the whole CR stack by

the routing protocol designer. The testbed architecture should

support this interaction putting a minimal burden on the

routing protocol designer in terms of PHY and MAC layer

handling.

2) Complex Scenario Implementation and Emulation: Test-

ing a routing protocol within a realistic environment with

factors including realistic channel conditions, topology, mo-

bility of both PUS and SUs, and complex PU behavior is one

of the main goals of developing a testbed for CRNs. These

conditions are hard to achieve on conventional hardware-based

testbeds (e.g. USRPs). Methods that facilitate implementing,

synthesizing, and emulating these conditions are necessary to

provide realistic results for the developed testbed.

3) Low Code Development Overhead: Another cost that

should be taken into consideration is that of code development

for building the testbed. A modular testbed with reusable

reconfigurable components that could be ported, easily-tested,
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Fig. 1. CogFrame Architecture.

and reconfigured would reduce the cost of the testbed devel-

opment and enrich the framework’s community by providing

module libraries. The developer of the routing protocol should

not be involved in coding the MAC and PHY layer.

4) Low Cost Large Realistic Experiments: The final chal-

lenge is providing a low monetary cost testbed. Conventional

testbeds rely on using special purpose custom-developed hard-

ware. The cost of building a large scale testbed with this

special purpose hardware could be prohibitive. Although there

are available open access large scale testbeds (e.g. ORBIT [8],

Emulab [9] and VT-CORNET [7]), the problem remains with

the complexity of deployment and control of these testbeds,

scaling to a large number of users, privacy, and the large cost

of replicating the same experiment locally.

B. CogFrame Architecture

To support the above goals, we design CogFrame to work

over cheap commodity hardware, leveraging PHY and MAC

protocols of conventional WiFi cards. CogFrame builds on

top of the Click modular router, inheriting its modularity, and

provides APIs and libraries for common CRNs functionalities

such as channel switching and spectrum sensing as well as

complex scenario implementation and emulation. In addition,

it provides a flexible modular structure that allows the inte-

gration of special purpose hardware (e.g. USRP and WARP

boards) to improve the flexibility of the PHY and MAC layers

if needed.

Figure 1 shows CogFrame architecture. It is composed of

three main components: 1) Routing modules, 2) External

modules and 3) RF-frontend abstraction modules. We now

provide the details of each of the components

1) Routing Modules: CogFrame routing modules are built on

top of the Click modular router [16]. Click provides simple

modules with limited functionalities called elements. Elements

are connected together to form a directed graph configuration

that represents the path of the packet through the router. The

Click architecture is extensible, enabling protocol designers



to build their own elements and configure graphs representing

the different functionalities of a routing protocol.

Routing protocol designers using CogFrame will still write

Click elements for their protocol. However, instead of dealing

with the details of MAC and PHY layers, CogFrame provides

the following Click elements that abstract the interaction

between the routing protocol and these layers and abstracts

an easy-to-use cross-layer APIs:

• Spectrum Manager: this element expects a packet annotated

by the channel it is supposed to be sent on and the transmit

power, then configures the Wi-Fi interface to work on the

specified channel and the specified power. This is done by

interacting with the RF-frontend Abstraction module (Sec-

tion II-B3).

• Controller: this element uses the element handlers feature

of the Click router to enable other programs interface with

the router to either query its state or modify its parameters.

The Controller provides handlers to allow other modules

(Section II-B2) that are responsible for spectrum sensing,

mobility tracking, policy change detection, etc to communi-

cate with the router; separating these functionalities from the

routing implementation. The information obtained through the

handlers is then transferred to the routing elements to make

routing and other channel selection decisions.

• Statistics Collector: this element is used by the protocol

designer to collect information on spectrum utilization and

traffic patterns. This module helps provide insight on the

performance of the implemented protocol in terms of total

throughput and spectrum utilization.

2) External Modules: These modules are not part of the

Click router but are responsible for providing functionalities

that are required by a CRN testbed. These include spectrum

sensing (including PU detection), mobility management, pol-

icy management, and topology management. This information

can either be obtained from the physical hardware on the

device (such as GPS or WiFi cards) or emulated to support

complex scenarios. The modules are:

• Spectrum Sensor: provides information about the state of

the spectrum sensed by the Wi-Fi card including available

channels, channel quality, etc. This can be performed by active

or passive scanning [18]. In addition, this module can also

provide different PU emulation scenarios.

• Mobility Manager: which is responsible for informing the

router about the current node position. This is useful in sce-

narios like location-aided routing protocols as well as helping

other modules, such as the topology and policy managers.

• Policy Manager: provides the router with the operation

constraints to ensure compliance to the regularity rules. These

constraints include, e.g., the TV white space available channels

in a certain location obtained by contacting the geo-location

database [19]. In addition, it can be used to limit the available

channels to avoid interference with nearby APs.

• Topology Manager: is responsible for enforcing certain

network topologies on the participating nodes by emulating

different channel qualities on individual links to neighboring

nodes. This is particularly useful for emulating topologies that
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span large geographic areas and/or poor channel conditions.

3) RF-frontend Abstraction Modules: This module is respon-

sible for abstracting the functionality of the PHY and MAC

layers by providing an API to handle the spectrum manage-

ment and spectrum sensing functionalities that the routing

protocol requires while hiding the exact implementation of

these functions for a certain RF-frontend. CogFrame natively

supports WiFi cards by using ioctl commands to control

the WiFi card. It also supports power control and scanning

operations to sense the presence of other SUs or PUs. This

module also allows a modular extension to CogFrame to

support other hardware, such as USRP and WARP boards.

4) Other Modules: CogFrame comes with a GUI that eases

the configuration of different external components as well as

monitoring the status of the framework. The CogFrame API

connector allows the external modules to communicate with

the router through a control socket using the telnet protocol,

as specified by the Click router. This separates the design and

the implementation of the router from the sensory modules.

III. COGFRAME BENCHMARK

In this section, we benchmark the performance of packet

transmission on CogFrame, in terms of channel switching

time and throughput, while using conventional Wi-Fi cards

as an RF-frontend, and compare it to both USRPs and ns-2

simulations. We study the performance of a typical protocol

in the next section.

To obtain these results, we send packets using CogFrame
implemented on two Lenovo G570 laptops with Atheros

AR9285 802.11abgn wireless LAN cards configured to work

with 802.11g1. Similar performance was observed for other

bands (i.e. 802.11abn). This experiment was conducted in the

university dorms.

1This leads to only three non-overlapping channels: 1, 6, and 11.



Framework Max. Throughput (Mbps) Switch. Time (ms) Cost ($) Development overhead
USRP N200 [20] 56 5 Machines cost + 1500 per node High
ns-2 [21] User Defined User Defined One machine Low
CogFrame 56 52.9 Machines cost Low

TABLE I
COMPARISON BETWEEN CogFrame, USRP2 AND NS-2 SIMULATIONS ON WI-FI.

A. Switching Time

For switching time measurement, the benchmark makes the

two nodes agree on channel 11 then switch to either channel 6

or channel 1. Figure 2 shows the CDF of CogFrame switching

time. The figure shows that the median switching time is

52.9ms which conforms to typical WiFi channel switching

times. This can be further enhanced to around 5ms if needed

by engineering the switching process as in [22].

B. Throughput

For maximum throughput, the benchmark router sends pack-

ets with the MTU with a rate of 56Mbps. Figure 3(a) shows

the maximum achievable throughput on each channel. The loss

in data rate can be due to the collision with existing APs on

the same channels. Figure 3(b) shows the number of APs seen

on each channel. The figures show that there is a correlation

between the throughput on each channel and the number of

access points. There are exception though, e.g. Channel 1, as

the APs working on this channel are far away from the testbed

and hence have a lower effect on throughput. This is compared

to Channel 6, which had the strongest AP. This correlation

has been confirmed by studying the traffic distribution of each

AP. Note also that, due to the overlapping between different

channels in WiFi, APs on certain channels affect the traffic on

nearby channels, as in the case of Channel 6.

C. Comparison with Other Evaluation Methods

Table I compares the different operational parameters of

CogFrame, USRP N200 [20], and ns-2 simulations [21].

Although USRP N200 supports large bandwidth and high

transmission power, this requires the development of special

MAC and PHY layers, which is prohibitive for a routing

protocol designer. Therefore, we believe that using the avail-

able 802.11 building blocks for USRP will usually be the

easier choice, making the available bit rate for Wi-Fi RF-

frontends and the USRPs similar. Still, in the USRP case, the

routing protocol designer will have to incur the disadvantages

of USRPs cost, development, and deployment overheads. As

for ns-2 simulations, although a high bit rate is supported, the

bit-level simulation nature of ns-2 makes this computationally

prohibitive. Therefore, users usually use ns-2 with low data

rates of 2 Mbps. In addition, parameters used in the simula-

tions are usually user defined and a lot of relaxing assumptions

regarding transmission parameters and node processing capa-

bilities are made making the results deviate from reality [5],

[6].

IV. CASE STUDY

In this section, we compare the performance of a recently

proposed location-aided routing protocol (LAUNCH [17]) for
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CRNs using both ns-2 simulations and CogFrame. Our goal

is to highlight the differences between the two evaluation

methods and argue for the practicality of CogFrame.

A. LAUNCH in CogFrame

We choose LAUNCH as it requires three RF-frontends

demonstrating CogFrame’s cost efficiency and scalability. In

addition, it uses a number of CogFrame components, e.g.

the mobility manger (for location information) and spectrum

manager (for PU emulation). We implemented LAUNCH’s

architecture over CogFrame, on a testbed of five Lenovo G570

laptops equipped with built-in Atheros AR9285 802.11abgn

cards for the sending RF-frontend, and TP-Link TL-WN723N

USB Wi-Fi cards as the receiving RF-frontend (implementing

the locking mechanism of LAUNCH), and an ethernet card as

the common control channel interface. Note that the developer

needs only to implement two modules to realize LAUNCH

as all the remaining modules belong to either CogFrame or

Click.

B. Performance Comparison

Figure 5 shows a scenario that we used to test LAUNCH’s

performance in terms of delay and loss ratio using both

ns-2 simulations and the developed CogFrame testbed. The

scenario includes changing behavior of different PUs leading

to changing the channel at time 280s and the entire path at time
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420s. Both experiments were made using the same parameters

using 802.11g as the MAC layer and 300 Kbps as the data

rate (to match [17] simulation parameters). Figures 4(a) and

4(b) show the results. The figure shows that the simulations

have almost no loss ratio and minimal delay. On the other

hand, CogFrame presents a more realistic outcome, where

real channel conditions and dynamics lead to frequent delays

and losses. Also, the effect of channel switching and path

switching (due to PU activity) is evident on both loss ratio

and delay. These results highlight that simulation can be far

from reality and that CogFrame can be used to efficiency and

quickly implement CRNs routing protocols.

V. CONCLUSION

We presented CogFrame as a new configurable, cost efficient,

flexible framework for the rapid development of CRNs routing

protocols. The framework allows the protocol designer to focus

on the design issues for the routing protocol by abstracting

the MAC and PHY layers. It leverages the functionalities

of standard computers and Wi-Fi cards, saving the cost of

special purpose RF-frontends while giving the flexibility for

supporting other RF-frontends. In addition, it provides novel

functionalities for supporting CRNs such as regulatory policy

management, PU emulation, as well as traditional wireless

network features such as mobility and topology management.

We benchmarked the performance of CogFrame and showed

it advantages over traditional ns-2 simulations and USRP2

boards. We also showed a case study of the ease of imple-

menting a recent location-aided routing protocol on CogFrame
and how simulations cannot capture the real-life problems.

Our future plans for CogFrame include enhancing the GUI to

provide easier tools for developing the protocol with a drag-

and-drop user interface, providing an interface to allow the

interaction between ns-2 simulations and CogFrame testbeds

for more realistic simulations, and extending the framework

to support transport layer protocols for CRNs.
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