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Abstract—Context-aware applications have been gaining huge
interest in the last few years. With cell phones becoming ubiq-
uitous computing devices, cell phone localization has become
an important research problem. In this paper, we present
CellSense, which is a probabilistic received signal strength indi-
cator (RSSI)-based fingerprinting location determination system
for Global System for Mobile Communications (GSM) phones. We
discuss the challenges of implementing a probabilistic fingerprint-
ing localization technique in GSM networks and present the de-
tails of the CellSense system and how it addresses these challenges.
We then extend the proposed system using a hybrid technique that
combines probabilistic and deterministic estimations to achieve
both high accuracy and low computational overhead. Moreover,
the accuracy of the hybrid technique is robust to changes in its pa-
rameter values. To evaluate our proposed system, we implemented
CellSense on Android-based phones. Results from two different
testbeds, representing urban and rural environments, for three
different cellular providers show that CellSense provides at least
108.57% enhancement in accuracy in rural areas and at least
89.03% in urban areas compared with current state-of-the-art
RSSI-based GSM localization systems. In additional, the proposed
hybrid technique provides more than 6 and 5.4 times reduction
in computational requirements compared with state-of-the-art
RSSI-based GSM localization systems for rural and urban test-
beds, respectively. We also evaluate the effect of changing the
different system parameters on the accuracy–complexity tradeoff
and how the cell tower and fingerprint densities affect system
performance.

Index Terms—GSM Localization, location fingerprinting, wire-
less networks.

I. INTRODUCTION

A S CELL PHONES become more ubiquitous in our daily
lives, the need for context-aware applications increases.

One of the main context information is location, which enables
a wide set of cell phone applications including navigation,
location-aware social networking, and security. Although the
Global Positioning System (GPS) [2] is considered to be the
most well-known localization technique, it is not available in
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many cell phones, requires direct line of sight to the satel-
lites, and consumes a lot of energy. Therefore, research for
other techniques for obtaining cell phone location has gained
momentum fueled by both the users’ need for location-aware
applications and government requirements, e.g., Federal Com-
munications Commission [3]. City-wide WiFi-based localiza-
tion for cellular phones has been investigated in [4] and [5], and
commercial products are currently available [6]. However, WiFi
chips, similar to GPS, are not available in many cell phones,
and not all cities in the world contain sufficient WiFi coverage
to obtain ubiquitous localization. Similarly, using augmented
sensors in cell phones, e.g., accelerometers and compasses,
for localization has been proposed in [7]–[9]. However, these
sensors are still not widely used in many phones. On the other
hand, Global System for Mobile Communications (GSM)-
based localization, by definition, is available on all GSM-based
cell phones, which is present in 80–85% of today’s cell phones
[10], works all over the world, and consumes minimal energy
in addition to the standard cell phone operation. Many research
works have addressed the problem of GSM localization [3],
[5], [11], [12], including time-based systems, angle-of-arrival
(AOA)-based systems, and received signal strength indicator
(RSSI)-based systems. Only recently, with the advances in
cell phones, GSM-based localization systems have been im-
plemented [5], [11], [12]. These systems are mainly RSSI
based as RSSI information is easily available to the user’s
applications. Since RSSI is a complex function of distance,
due to the noisy wireless channel, RSSI-based systems usually
require building an RF fingerprint of the area of interest [5],
[11], [12]. A fingerprint stores information about the RSSI
received from different base stations at different locations in the
area of interest. This is usually constructed once in an offline
phase. During the tracking phase, the received RSSI at an
unknown location is compared with the RSSI signatures in the
fingerprint, and the closest location in the fingerprint is returned
as the estimated location. Constructing the fingerprint is a time
consuming process. However, this is typically done in a process
called war driving, where cars scan the streets of a city to
map it. Current commercial systems, such as Skyhook, Google
MyLocation, and StreeView services, already perform scanning
for other purposes. Therefore, constructing the fingerprint for
GSM localization can be piggybacked on these systems without
extra overhead.

In this paper, we propose CellSense, which is a probabilistic
fingerprinting-based technique for GSM localization. Unlike
current fingerprinting techniques for GSM phones that use a de-
terministic approach for estimating the location of cell phones
[11], [12], the CellSense probabilistic technique provides more
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accurate localization. However, constructing a probabilistic fin-
gerprint is challenging as we need to stand at each fingerprint
location for a certain amount of time to construct the signal
strength histogram. This adds significantly to the overhead
of the fingerprint construction process. CellSense addresses
this challenge by using gridding, where the area of interest
is divided into a grid, and the histogram is constructed for
each grid cell. This not only removes the extra overhead of
standing at each location for a certain time but also helps in
increasing the scalability of the technique as the fingerprint size
can be reduced arbitrarily by increasing the grid cell length.
To further reduce the computational overhead of CellSense,
we propose a hybrid technique, i.e., CellSense-Hybrid, that
combines a probabilistic estimation phase with a deterministic
refinement phase. The CellSense-Hybrid technique also has the
added advantage of its accuracy being robust to changes in its
parameter values.

To evaluate CellSense, we implement it on Android-enabled
cell phones and compare its performance to other deterministic
fingerprinting techniques, model-based techniques, and Google
MyLocation service under two different testbeds represent-
ing rural and urban environments for three different cellular
providers. We also study the effect of different parameters on
the performance of CellSense. Our results show that CellSense
outperforms other systems, with at least 108.57% and 89.03%
enhancement in accuracy for urban and rural testbeds, respec-
tively. In addition, it has significant savings in terms of energy
consumption with five to six times saving in running time.
Moreover, the CellSense-Hybrid technique accuracy is robust
to changes in parameter values.

To summarize, the contribution of this paper is threefold:
1) We introduce the CellSense probabilistic GSM localiza-

tion system. CellSense provides high localization accu-
racy and depends on a novel gridding technique to reduce
the fingerprint construction overhead.

2) We further extend CellSense through a hybrid technique
that adds a deterministic refinement phase to the basic
CellSense technique. The accuracy of the CellSense-
Hybrid technique is robust to changes in its parame-
ters values. Therefore, the CellSense-Hybrid technique
parameters can be selected to achieve a low computa-
tional overhead while maintaining the same accuracy.

3) We thoroughly evaluate the performance of CellSense
and CellSense-Hybrid techniques both through analysis
and under two different testbeds and show their signifi-
cant advantage compared with other state-of-the-art GSM
localization systems.

The rest of this paper is organized as follows. In Section II,
we discuss relevant related work. In Section III, we present
our CellSense system. Section IV presents the performance
evaluation of our system. Finally, Section V concludes this
paper and gives directions for future work.

II. RELATED WORK

In this section, we discuss the different techniques for cell
phone localization and how they differ from the proposed work.
We categorize these techniques as time based, AOA based, cell

id based, city-wide WiFi localization, augmented sensor based,
and signal strength based.

A. Time-of-Arrival (ToA)-Based Localization

In ToA-based systems, the cell phone estimates its distance to
a reference point based on the time a signal takes to travel from
the reference point to it. Similarly, time-difference-of-arrival-
based systems use the principle that the emitter location can
be estimated by the intersection of the hyperbolae of constant
differential ToA of the signal at two or more pairs of base
stations [3].

The most well-known localization technique, i.e., the GPS
[2], can be categorized as a ToA-based system. Time-based
systems require special hardware and therefore are usually de-
ployed on high-end phones. In addition, GPS suffers from two
other main problems: 1) availability and 2) power consumption.
It requires line of sight to the satellites; therefore, it does not
work indoors, and it consumes a lot of power of the energy-
limited cell phones.

B. AOA-Based Systems

AOA-based systems use triangulation based on the estimated
AOA of a signal at two or more base stations to estimate
the location of the desired transmitter [3], [13]–[16]. Antenna
arrays are usually used to estimate the AOA. Similar to TOA-
based systems, AOA-based systems require specialized hard-
ware, which makes them less attractive for a large deployment
on cell phones.

C. Cell-ID-Based Techniques

Cell-ID-based techniques, e.g., Google MyLocation [17],
do not explicitly use RSSI but rather estimate the cell phone
location as the location of the cell tower the phone is currently
associated with. This is usually the cell tower with the strongest
RSSI. Such techniques require a database of cell tower loca-
tions and provide an efficient, although coarse-grained, local-
ization method.

D. City-Wide WiFi-Based Localization

City-wide WiFi-based localization has been proposed in [4]
and [5], and commercial products are currently available, e.g.,
[6]. However, WiFi chips, similar to GPS, are not available in
the majority of cell phones, and not all cities in the world con-
tain sufficient WiFi coverage to obtain ubiquitous localization.

E. Augmented Sensor-Based Localization

Using augmented sensors in cell phones, e.g., accelerometers
and compasses, for localization has been proposed in [7]–[9]
and [18]. For example, in [18], the accelerometer and compass
are used as an energy-efficient way for estimating the phone
displacement and direction. Due to the accumulation of error,
they synchronize with the GPS as needed.
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The main issue with augmented sensor-based localization
systems is that these sensors are still not widely used in cell
phones.

F. RSSI-Based Systems

Recently, RSSI-based systems have been introduced and im-
plemented for cell phone localization. Since RSSI information
is readily available to the user’s applications on almost all
GSM phones, such systems have the potential of localizing
80–85% of today’s cell phones [10], work all over the world,
and consume minimal energy, in addition to standard cell phone
operation.

However, since RSSI is a complex function of distance [19],
RSSI-based systems usually require building an RF fingerprint
of the area of interest [5], [11], [12], [20]. A fingerprint stores
information about the RSSI received from different base sta-
tions at different locations in the area of interest. This is usually
constructed once in an offline phase. During the tracking phase,
the received RSSI at an unknown location is compared with the
RSSI signatures in the fingerprint, and the closest location in the
fingerprint is returned as the estimated location. Constructing
the fingerprint is a time consuming process. However, this is
typically done in a process called war driving, where cars drive
the area of interest continuously scanning for cell towers and
recording the cell tower ID, RSSI, and GPS location. Current
commercial systems, such as Skyhook, Google MyLocation,
and StreeView services, already perform scanning for other
purposes. Therefore, constructing the fingerprint for GSM lo-
calization can be piggybacked on these systems without extra
overhead.

In the rest of this section, we summarize the current work in
fingerprint-based RSSI localization systems for GSM phones,
which is the closest to the proposed work.

1) Deterministic Fingerprinting Techniques: Current fin-
gerprinting techniques for GSM localization use only determin-
istic techniques [11], [12]. For example, each location in the
fingerprint of [11] stores a vector representing the RSSI value
from each cell tower heard at this location. During the tracking
phase, the K-nearest neighbor (KNN) classification algorithm
is used, where the RSSI vector at an unknown location is
compared with the vectors stored in the fingerprint, and the
K-closest fingerprint locations, in terms of Euclidian distance in
the RSSI space, to the unknown vector are averaged as the esti-
mated location. Deterministic fingerprinting techniques require
searching a larger database than cell-ID-based techniques but
provide higher accuracy. Note that the overhead of constructing
the fingerprint is the same as constructing the cell-ID database
as both require war driving.

2) Modeling-Based Techniques: Modeling-based tech-
niques try to capture the relation between signal strength and
distance using a model. For example, the work in [11] uses a
Gaussian process (GP) to capture this relation assuming that
the received signal strength yi at location xi is yi = f(xi) + εi,
where εi is zero-mean additive Gaussian noise with known
variance σ2

n.
A GP estimates posterior distributions over functions f

from a training data D (fingerprint). These distributions are

represented nonparametrically in terms of training points. A
key idea underlying GPs is the requirement that the function
values at different points are correlated, where the covariance
between two function values f(xp) and f(xq) depends on the
input locations xp and xq. This dependency can be specified
via an arbitrary covariance function or kernel k(xp, xq). The
most widely used kernel function is the squared exponential
or Gaussian kernel: k(xp, xq) = σ2

fexp((−1/2l2)|xp − xq|2),
where l is a length scale that determines how strongly the
correlation between points drops off.

Building a GP estimator still requires constructing a finger-
print, although a less sparse one. This fingerprint is used to
estimate the model parameters (l, σ2

n, and σ2
f ) and to compute

f(x∗) for any location x∗.
This reduces the size of the fingerprint and provides a way

for extending a sparse fingerprint to a more dense one as it
gives the fingerprint values at any arbitrary location based on
the assumed model. However, this comes at the cost of sub-
stantial increase in computational requirements, as we quantify
in Section IV, and there is no actual saving of fingerprinting
overhead as war driving has to be done to collect the training
samples D anyway. Moreover, the assumed model may not fit
the real environment, thus reducing the accuracy of the returned
location.

G. Summary

Compared with TOA, AOA, city-wide WiFi, and augmented
sensor-based systems, our proposed system CellSense requires
no specialized hardware and is more ubiquitous in terms of the
number of cell phones it runs on and the coverage area.

Compared with cell-ID based systems and the current fin-
gerprinting techniques, our technique is probabilistic. Using a
probabilistic approach should enhance the accuracy of local-
ization compared with a deterministic approach. However, it
comes with its own challenges, such as constructing the RSSI
probability distribution with minimal overhead. Our proposed
technique addresses these challenges and provides accuracy
better than all of the current techniques with minimal computa-
tional requirements, as we quantify in Section IV.

III. CELLSENSE SYSTEM

In this section, we describe our CellSense system for GSM
phone localization. We start by an overview of the system fol-
lowed by the details of the offline training and online tracking
phases. Finally, we propose a hybrid approach that combines
the basic CellSense and a deterministic approach to achieve
both accurate localization and low computational overhead.

A. Overview

Fig. 1 shows our CellSense system architecture. CellSense
works in two phases: 1) an offline fingerprint construction
phase and 2) an online tracking phase. During the offline
phase, a probabilistic fingerprint is constructed, where the RSSI
histogram for each cell tower at given locations in the area
of interest is estimated. This is performed in the Radio Map
Builder module.



IBRAHIM AND YOUSSEF: CELLSENSE: AN ACCURATE ENERGY-EFFICIENT GSM POSITIONING SYSTEM 289

Fig. 1. CellSense components. The arrows show information flow in the
system.

During the online tracking phase, the location estimation
module uses the fingerprint to calculate the most probable
fingerprint location at which the user may be standing.

The RSSI samples are collected with the Fingerprint Acqui-
sition API that interacts with the phone GSM modem to obtain
RSSI information from up to seven neighboring cell towers, as
indicated by the GSM standard. Finally, the Location API is
used by the user’s applications to query the current estimated
user’s location.

B. Mathematical Model

Without loss of generality, let L be a 2-D physical space.
Let q represent the total number of cell towers in the system.
We denote the q-dimensional signal strength space as Q. Each
element in this space is a q-dimensional vector whose entries
represent the RSSI readings from a different cell tower. We
refer to this vector as s. We also assume that the samples
from different towers are independent. Therefore, the problem
becomes, given an RSSI vector, s = (s1, . . . , sq), and we want
to find the location l ∈ L that maximizes the probability P (l|s).

C. Offline Phase

The purpose of this phase is to construct the signal strength
histogram for the RSSI received from each cell tower at each
location in the fingerprint. Typically, this requires the user to
stand at each location in the fingerprint for a certain period of
time to collect enough samples to construct the RSSI histogram.
This will increase the fingerprint construction overhead signifi-
cantly as the war-driving car has to stop at each location in the
fingerprint for a certain time.

Fig. 2. CellSense approach for fingerprint construction. The area of interest
is divided into grids, and the histogram is constructed using the fingerprint
locations inside the grid cell. No extra overhead is required for fingerprint
construction. The grid cell length parameter can be used to trade off accuracy
and scalability.

Fig. 3. Example of the histograms from three adjacent cells (grid length =
70 m) from a certain cell tower. The active set update (ASU) is an integer value
returned by the phone API (dBm = 2.ASU − 113).

To avoid this overhead, we use a gridding approach, where
the war-driving process is performed normally, and the area of
interest is divided into cells. The histogram is then constructed
for each cell tower in a given cell using all fingerprint points
inside the cell rather than for each individual fingerprint point
(see Fig. 2). Note that this gridding approach reduces the
resolution of the fingerprint from individual points to cells
with a certain size. The center of mass of all fingerprint points
inside a grid cell is used to represent the cell.1 Fig. 3 shows
the histograms for a certain cell tower in three adjacent cells.
The figure shows that the shape of the histogram changes over

1We use the term “fingerprint point” to refer to an individual point collected
by the wardriving car and use the term “fingerprint cell” to denote the finger-
print collected using all points inside a given cell.
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the different grid cells and, hence, could be used to distinguish
between them.

The gridding approach not only removes the extra overhead
of war driving but increases the scalability of CellSense as well
as the fingerprint size can be arbitrarily reduced by increasing
the cell size. We quantify the effect of the grid cell length
parameter on performance in Section IV.

D. Online Phase

During the online phase, the user is standing at an unknown
location l receiving a signal strength vector s = (s1, . . . , sq)
containing one entry for each cell tower. We want to find
the location in the fingerprint (l ∈ L) that has the maximum
probability given the received signal strength vector s. That is,
we want to find

argmaxl [P (l|s)] . (1)

Using Bayes’ theorem and assuming that all the locations are
equally probable,2 this can be written as

argmaxl [P (l|s)] = argmaxl [P (s|l)] . (2)

P (s|l) can be calculated using the histograms constructed
during the offline phase as

P (s|l) =
q∏

i=1

P (si|l). (3)

The foregoing equation considers only one sample from each
stream for a location estimate. In general, a number of suc-
cessive samples Ns from each stream can be used to improve
performance.

In this case, P (s|l) can then be expressed as follows:

P (s|l) =
q∏

i=1

Ns∏

j=1

P (si,j |l) (4)

where si,j represents the jth sample from the ith stream. Thus,
given the signal strength vector s, the gridding-based estimator
applies (4) to calculate P (s|l) for each location l and returns
the location that has the maximum probability.

Similarly, instead of returning just the most probable loca-
tion, a weighted average of the K most probable fingerprint
cells, weighted by the probability of each location, can be used
to obtain a better estimate of location. We study the effect of the
parameter K on performance in Section IV.

E. CellSense-Hybrid Technique

For the described CellSense technique, the grid cell length
parameter allows us to trade accuracy and computational com-
plexity: Larger cells lead to lower accuracy, but they reduce the
computational complexity due to the reduced number of cells.
The CellSense-Hybrid technique targets maintenance of the

2If the probability of being at each location is known, this can be used in the
equation.

accuracy at lower grid sizes while reducing the computational
requirements. To achieve both accuracy and low complexity,
the CellSense-Hybrid technique runs in two phases: 1) rough
estimation phase and 2) refinement phase.

1) In the first phase (rough estimation phase), it uses the
standard probabilistic fingerprint estimation technique to
obtain the most probable cell in which a user may be
located. However, instead of returning the center of mass
of the fingerprint points inside this cell as the estimated
location as in the standard CellSense, it refines this esti-
mate in the second step.

2) In the second phase (estimation refinement phase), a
KNN approach is used to estimate the closest fingerprint
point, in the signal strength space, to the current user
location inside the cell estimated in phase one. Note that
since the histograms are constructed for an entire cell, we
do not use a probabilistic technique in the second phase.

To achieve a low computational cost at low values of the
grid cell length parameter, the CellSense-Hybrid technique uses
only one sample to estimate the most probable cell rather than
Ns samples in its first phase. The refinement phase allows it
to compensate for the lost accuracy. Note that the CellSense-
Hybrid technique does not have an advantage, in terms of
computational complexity, for higher grid cell lengths as the
number of fingerprint points involved in the second phase will
dominate the computational cost.

In summary, the low computational requirement of the
CellSense-Hybrid technique is achieved by using fewer num-
ber of samples in the estimation process as compared with
CellSense. To compensate for the reduced accuracy, CellSense-
Hybrid uses an estimation refinement phase. This allows
CellSense-Hybrid to achieve both high accuracy and low com-
putational requirements for low values of the grid cell length
parameter. We quantify the performance of the hybrid technique
in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we study the effect of different parameters on
CellSense and compare its performance with other RSSI-based
GSM localization systems in terms of localization accuracy
and running time. For the running time estimation, all the
techniques have been implemented on a Dell Inspiron 6400
with a 1.83-GHz Intel Core 2 processor running Windows XP.

A. Data Collection

We collected data for two different testbeds. The first testbed
covers the Smart Village in Cairo, Egypt, which represents
a typical rural area. The second testbed covers 5.45 km2 in
Alexandria, Egypt, representing a typical urban area. Data were
collected using T-Mobile G1 phones that have a GPS receiver
(used as the ground truth for location) and running the Android
1.6 operating system. The experiment was performed using
three phones, each with a subscriber identity module (SIM) card
for a different cellular provider in Egypt.

We implemented the scanning program using the Android
SDK. The program records the cell ID, signal strength, GPS
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TABLE I
COMPARISON BETWEEN THE TWO TESTBEDS. THE TRAINING SET SIZE REFERS TO THE NUMBER OF SAMPLES COLLECTED BY THE WAR DRIVING

PROCESS. THE AVERAGE FINGERPRINT DENSITY IS THE AVERAGE NUMBER OF FINGERPRINT POINTS INSIDE A CELL FOR GRID CELL LENGTH = 70 m

TABLE II
DEFAULT VALUES FOR THE PARAMETERS. THESE VALUES ACHIEVE THE BEST PERFORMANCE

location, and timestamp for the cell tower to which the mobile
is connected, as well as the other six neighboring cell towers
information as dedicated by the GSM specifications. The scan-
ning rate was set to 1/s. Two independent data sets were
collected for each testbed: one for training and the other for
testing. Table I summarizes the two testbeds.

The calibration process took on average 22.34 min for the
rural area and 48.48 min for the urban area. The war-driving
process involved visiting each point only once. Our experience
shows that visiting the same point more than one time does not
lead to enhancement in accuracy.

B. Effect of Changing Parameters

In this section, we explore the effect of changing the different
parameters on the performance of CellSense, mainly, grid cell
length, number of samples used in estimation Ns, and number
of most probable locations averaged to obtain the final location
K. We also study the effect of changing the network provider,
cell tower density, and effect of using a sparse radio map.
Table II summarizes the parameters and their default values,
which are the values that achieve the best performance.

1) Effect of Grid Cell Length: Fig. 4 shows the effect of
changing the grid cell length on the median localization error.
Each cell is a square with size as indicated on the x-axis.
The figure shows that as the cell size increases, the accuracy
decreases. This is because as the grid cell length increases,
the points inside a cell become further away from its centroid,
increasing the estimation error.

The figure also shows that a grid cell length of up to
200 m2 gives comparable accuracy to very small cell sizes for
both testbeds. This indicates that CellSense can lead to good
scalability with minimal reduction in accuracy. Moreover, the
figure shows that the accuracy in urban areas is better than the
accuracy in rural areas for grid cell length of up to 450 m due to
the increased cell tower density. Increasing the grid cell length
beyond this value leads to a significant drop in performance
for the urban testbed. We believe that this is due to the fact
that cell towers are configured to have a smaller range in urban

Fig. 4. Effect of changing the grid cell length on CellSense’s median error.

areas. Increasing the cell length size beyond a certain value
makes some cell towers not cover an entire cell, increasing the
ambiguity between cells and reducing accuracy.

2) Effect of the Number of Samples Used Ns: Fig. 5 shows
the effect of changing the number of samples used in estimation
Ns on the median localization error. The figure shows that
as the number of samples used in estimation increases, the
accuracy increases until it reaches an optimal value (Ns = 8
and Ns = 14 for rural and urban testbeds, respectively) and
then decreases. This is due to two opposing factors. 1) As we
increase the number of samples, we have more information
to estimate the user location, and hence, we should get better
accuracy. 2) However, as we increase the number of samples,
the time to collect these samples increases, which leads to
crossing the boundary of one cell when using a large number
of samples. This has a negative effect on accuracy.

The optimal point in rural areas occurs at lower Ns compared
with urban areas due to the fact that the user speed is higher in
rural areas than in urban areas.

3) Effect of the Number of Averaged Fingerprint Locations
K: Fig. 6 shows the effect of changing the number of the most
probable locations averaged K on the median localization error.
The figure shows that, in general, the performance is enhanced
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Fig. 5. Effect of changing the number of samples Ns on CellSense’s median
error.

Fig. 6. Effect of changing the number of most probable locations averaged K
on CellSense’s median error.

Fig. 7. Effect of changing the cell tower density on CellSense’s median error.

as K increases until it saturates. This also highlights that the
most probable location estimate has good accuracy.

4) Effect of Changing the Cell Towers Density: Fig. 7 shows
the effect of changing the cell tower density on the median
localization error. This was achieved by dropping a certain per-
centage of the cell towers, as indicated in the figure. The figure
shows that as the cell tower density increases, the accuracy
increases.

Effect of Decreasing the Radio Map Density: Fig. 8 shows
the effect of decreasing the fingerprint density on the median
localization error. The figure shows that as the percentage of

Fig. 8. Effect of reducing the average number of data point per cell
CellSense’s median error.

Fig. 9. Effect of using different network providers on CellSense’s median
error. (a) Testbed 1 (Rural). (b) Testbed 2 (Urban).

retained samples increases, the accuracy increases. The figure
also shows that collecting only eight points per cell is enough
to obtain good accuracy for both testbeds. In addition, the effect
of reducing the fingerprint density is less than the effect of
reducing the cell tower density.

Effect of Using Different Network Providers: Fig. 9 shows
the effect of using different network providers in rural and
urban areas. The figure shows that the accuracy of the provider
is proportional to its cell tower density, as reported in Table I.
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Fig. 10. Comparison between CellSense-Hybrid and CellSense techniques under the two testbeds. (a) Testbed 1 (rural): median error. (b) Testbed 2 (urban):
median error. (c) Testbed 1 (rural): average running time/location estimation. (d) Testbed 2 (urban): average running time/location estimation.

The noticeable difference between Provider 2 and the other two
providers in the rural testbed is due to its significantly lower
cell tower density per location (1.00 as compared with 4.83 and
5.63). In addition, Provider 2’s performance increases with the
increase of the grid cell length until it reaches an optimal point
at 600 m and then decreases again. This is due to two opposing
factors. 1) As the grid cell length increases, we have more
samples to construct the histogram, leading to better histograms
and accuracy. 2) As the grid cell length increases, the fingerprint
density decreases, and accuracy decreases. This behavior is not
noticed with the other providers as they have a higher cell tower
density that makes the second factor the dominating factor.

C. Results for the Hybrid Technique

In this section, we compare the performance of the
CellSense-Hybrid technique described in Section III-E to the
basic CellSense technique. The CellSense-Hybrid technique
mixes both CellSense and a deterministic technique in its two
phases. Fig. 10 shows that the accuracy of CellSense degrades
as the grid cell length increases since the points inside a
cell become further away from its centroid, increasing the
estimation error and reducing accuracy. On the other hand, the
CellSense-Hybrid technique has a robust performance, in terms
of accuracy, for different grid sizes under the two testbeds. This
is due to the estimation refinement phase.

The figure also shows that the running time of the CellSense
technique decreases quadratically with the cell size. On the
other hand, there are two factors affecting the running time
of the CellSense-Hybrid technique. 1) As the grid size in-
creases, the number of cells decreases, and hence, the running
time of the first phase of the algorithm decreases. 2) However,
as the grid size increases, the number of fingerprint points
inside a cell increases and consequently the time for the second
phase of the algorithm. This leads to the minimum point for the
running time at G = 70 in the figure.

D. Comparison With Other Techniques

In this section, we compare the performance of the CellSense
and CellSense-Hybrid techniques in terms of running time,
localization error, and complexity to other RSSI-based GSM
localization techniques described in Section II-F. Table II
summarizes the parameters that achieve the best performance
for all techniques. For the percentage enhancement numbers,
our reference is the technique that achieves the best value.
Therefore, we used CellSense as the reference in accuracy and
CellSense-Hybrid as the reference in running time.

1) Localization Error: Fig. 11 shows the cumulative distri-
bution function (CDF) of distance error for the different algo-
rithms for the two testbeds. Table III summarizes the results.
The table shows that our proposed techniques are better than
any other technique with at least 108.57% in rural areas and
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Fig. 11. CDFs of distance error for different techniques under the two testbeds. The tails of the cdfs are truncated for clarity of presentation. (a) Testbed 1 (rural).
(b) Testbed 2 (urban).

TABLE III
COMPARISON BETWEEN DIFFERENT TECHNIQUES USING THE TWO TESTBEDS. NUMBERS BETWEEN PARENTHESES REPRESENT PERCENTAGE

DEGRADATION COMPARED WITH THE REFERENCE TECHNIQUE (THE BEST TECHNIQUE). q IS THE NUMBER OF CELL TOWERS. Ns IS THE NUMBER OF

SUCCESSIVE SAMPLES USED IN ESTIMATION. Np IS THE NUMBER OF PRECOMPUTED POINTS IN THE GP TECHNIQUE. Nc IS THE

NUMBER OF GRID CELLS. N0 IS THE NUMBER OF SAMPLES IN THE MOST PROBABLE CELL

at least 89.30% in urban areas. All techniques perform better
in urban areas than rural areas due to the higher density of
cell towers and the more differentiation between fingerprint
locations due to the dense urban area structures. This is ex-
cluding the CellSense-Hybrid technique, whose accuracy is
consistent between the two testbeds. The loss of accuracy of
the CellSense-Hybrid technique, as compared with CellSense,
comes at significant gains in running time, as quantified in the
next section.

2) Running Time: Fig. 12 compares all the algorithms in
terms of the average time required for one location estimate.
Table III summarizes the results. The results show that the
proposed techniques significantly outperform the other tech-
niques by at least 506.21% in rural areas and at least 440.9% in
urban areas. All the techniques take more time on average
in the urban testbed than in rural testbed due to the increase
in the number of cell towers. The cell-ID-based technique,
i.e., Google MyLocation, has a consistent running time as it
depends on the associated cell tower ID only. Although its time
involves communicating with Google servers over the network,
the average running time is much less than a typical network
delay. We believe that this is due to the fact that the Location
API on the phone returns a cached location, as long as the
associated cell tower does not change. The GP approach is the

most demanding technique in terms of the running time. The
CellSense-Hybrid technique provides about three to five times
enhancement in running time compared with the CellSense
technique.

3) Complexity Analysis: In this section, we analyze the
algorithmic complexity of all the techniques. Table III summa-
rizes the results.

1) Google MyLocation: Google MyLocation is a cell-ID-
based technique. It has O(1) complexity as it is probably
a hash table lookup for the location of the cell tower the
phone is connected to. However, we have no more details
from Google to confirm our hypothesis.

2) CellSense: To compute the probability of each grid cell,
we need O(qNsNc) operations. Computing the weighted
average of the most probable K locations, using an
order statistics algorithm, requires O(KNc) for small K.
Therefore, we need O((qNs + K)Nc) operations in total
for each location estimate.

3) Deterministic technique: Similar to the CellSense tech-
nique, it requires O((qNs + K)Nc).

4) GPs: To compute the probability of each precomputed
point, we need O(tNp). Computing the weighted av-
erage of all the precomputed locations requires O(Np)
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Fig. 12. Running time for different techniques under the two testbeds
(log scale). (a) Testbed 1 (rural). (b) Testbed 2 (urban).

operations. Therefore, the overall all algorithm requires
O(tNp) per location estimate.

5) CellSense-Hybrid: Calculating the probability of each
grid cell in the first phase takes O(qNc). To apply the
KNN algorithm in the second phase inside the most
probable cell, we need O((q + K)N0). Therefore, we
need O(qNc + (q + K)N0) operations in total for each
location estimate.

Since Np is typically � Nc (see Table II), to achieve rea-
sonable accuracy, the GP approach is very slow compared with
other non-cell-ID-based techniques (see Fig. 12).

Comparing CellSense to CellSense-Hybrid, we note that
for a low grid cell length (the typical operation scenario for
CellSense-Hybrid), Nc (number of grid cells) is � No (number
of samples inside a cell). Therefore, the CellSense-Hybrid
computational overhead is much lower. The opposite is true for
high grid cell sizes.

E. Summary

In this section, we evaluated the performance of the proposed
CellSense and CellSense-Hybrid techniques. Our results show
that the CellSense-Hybrid technique has comparable accuracy
to the CellSense technique with significantly lower computa-
tional complexity compared with other techniques.

For the CellSense technique, as the grid cell size increases,
the performance degrades. Increasing the number of samples
used in the estimation or the number of averaged most probable
locations has a positive effect on accuracy. Increasing the cell
tower density has a more positive effect on accuracy than
increasing the density of the fingerprint. The good news is that,
although we do not have control on the cell tower density,
reducing the fingerprint density by up to 60% still gives good
accuracy.

The performance of the CellSense-Hybrid technique is con-
sistent over different grid sizes and testbeds. This is due to the
estimation refinement phase.

The accuracy of the localization technique under a certain
cellular provider is correlated with the provider cell tower
density.

Typically, there is always a tradeoff between computational
overhead and accuracy. However, the CellSense-Hybrid tech-
nique provides a good balance between both accuracy and
complexity. Its high accuracy comes from its ability of returning
one of the original fingerprint points rather than the center
of mass of all the locations inside the most probable cell. Its
computational advantage at small grid sizes, compared with the
CellSense technique, comes from using only one sample in the
first phase as compared with Ns samples.

V. CONCLUSION

We have proposed CellSense, which is a probabilistic RSSI-
based fingerprinting approach for GSM cell phone localization.
We presented the details of the system and how it constructs
the probabilistic fingerprint without incurring any additional
overhead. We also proposed a hybrid approach that combines
probabilistic and deterministic techniques to achieve both high
accuracy and low computational requirements.

We implemented our system on Android-based phones and
compared it to other GSM-localization systems under two
different testbeds. Our results show that the CellSense-Hybrid
technique accuracy is better than other techniques with at least
108.57% in rural areas and at least 89.03% in urban areas
with more than 5.4 times savings in running time compared
with state-of-the-art RSSI-based GSM localization techniques.
We also studied the effect of different parameters on the per-
formance of the system and how the cell tower density and
fingerprint density affect accuracy.

Currently, we are working on extending our system in
different directions, including using parametric distributions,
clustering of fingerprint locations, experimenting with larger
data sets, comparison with other city-wide commercial systems,
targeting low-end phones [21], among others.
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