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Abstract—We investigate the use of an auxiliary network of
sensors to assist radio resource management in a cellular system.
Specifically, we discuss the number and placement of sensors in
a given cell for estimating its signal coverage. Here, an “outage”
is said to occur at a location if the mobile receiver there has
inadequate signal-to-noise ratio $NR-based outage) or, using
another criterion, inadequate signal-to-interference ratio SIR-
based outage); and the “outage probability” is the fraction of the
cell area over which outage occurs. A design goal is to confine the
number of sensors per cell to an acceptable level while accurately
estimating the outage probability.

The investigation uses a generic path loss model incorporating

emphasis is the performance prediction accuracy of the sensor
network, rather than cellular system analysis per se Through
analysis and simulation, we assess several approaches to estimat-
ing the outage probability. Applying the principle of importance
sampling to the sensor placement, we show that a cell outage
probability of ~ P, can be accurately estimated using- 10/ P,
power-measuring sensors distributed in a random uniform way
over base-mobile distances fron50% to 100% of the cell radius.
This result applies to both SNR-based andSIR-based cases, in
both indoor and outdoor environments.

I. INTRODUCTION

We inveStigate an aUXi”ary network of sensors which a%Tg. 1. A 7-cell cluster, with many sensors in each cell. We evaluate “outage”
sist radio resource management to improve the capacity aWdditions in the center cell, botictual and as estimated using the sensors.
guality of service in cellular systems. Our focus is on new or
envisioned cellular system designs in which antenna beams,
power per beam and channel sets can be assigned adaptive(lgy to

accommodate slowly changing conditions of the propagatin rc;enl:, ?otn;ggitorﬁité?rms.rlgi% drae?oz?czbﬁgf; Z?:e?]f ubsjtd
and user population. The data collected by the sensor netwo y . . X manag '
o for longer-term engineering, e.g., identifying the need for

. S
can reduce the measurement demands on the active mobl"il S;

or, it can be augmented by such measurements, to permit migew cell sites. Comparisons with more traditional approaches

dynamic adapting as individual mobiles change locations, st&If presented in Segnon Il Our cglculauons are based on a
and end service. and so on path loss model that incorporates distance effects and spatially

We envision a network fabric o sensors per cellN ~ correlated shadow fading, as described in Section llI.
100) which communicate with each other and, through some W& Will examine downlink outage probabilities based on
sensors, with the cellular system, Fig. 1. Each sensor %@R(Sectlon IV,) and orSIR(Sectlon V? and dlscuss'exten-
an identifying code and a fixed and known location, and §ions to the uplink (Section VI). We will show, for different

measures received power from pilots sent by its closest bﬁ)e how accurately sensors can predict outage probability;

and several bases nearby. As we will show, the collecti w variable the predictions are with the specific sensor
mgcements; and how much is gained when the sensors are

of data from all the sensors can be used to estimate tned h . likel .
percentages of each cell having adequate signal-to-noise r fgined to the region most likely to experience outage (eg.

(SNR and adequate signal-to-interference ratoRj. the ogter half of the cel!). . .
The key benefit of the sensor network is that it provides A final commentary is in order regarding our study ap-

round-the-clock measurements from many low-cost sens§f@ach. Because predicted outage probability is a variable
dependent on the specific realizations of the shadow fading and

This work is supported in part by a grant from Nortel. sensor placement, we will make extensive use of Monte Carlo



simulations to get useful results. Also, a number of simplifying [1l. PATH LOSSMODEL

assumptions will be made to permit easy estimates of both theAssuming the model of [1], the path losBL() from a base

actual outage probabilities and those predicted by the sensgfion (BS) to a locatioy in the environment is [1]
network. We emphasize that our goalrist cellular system

analysisper sebut, rather, an assessment of the performance  PL(§)[dB] = A+ 10vlog(d/do) + s(§);d > doy (1)

rediction accuracy of a network of power-measuring sensors. . . .
P y P 9 wshere d is the distance from the BS tg and d, is a

II. COMPARISON WITH TRADITIONAL APPROACHES reference distance (typically, 1 m indoors and 100 m outdoors).
V‘Ehe interceptd is given by20log(4nd,/A), where\ is the

RF planning for wireless systems utilizes both proacti elength. The path loss exponentan range from 3 to 6,

measurements (e.g., path loss) and reactive measurem . . } , .
(e.g., call drops, handovers). For proactive measurements, ﬁ‘«ge”d"?g on the environment; the.dB shadow faditg), is
most cases, currently used RF planning tools gather propaga- _au_33|a.n process over space with zero mean and standard
tion information based on the use of a database in a giveR".auoN7; ande can range from 4 dB to 12 dB. We assume
region, augmented by drive tests conducted during off-pe t the autocorrelqmon .Of the spatlal procegs) depends
times. Such static snapshots of RF planning information aggly on the separation distance, i.e.,
suitable for current systems with fixed antenna patterns and Elsass] = o2edav/Xe 2)
limited use of adaptive algorithms. Data collected by mobiles
and relayed to base stations may deliver additional timghered,, is the distance fromu to b; and X., the shadow
of-day-specific RF planning information. However, reMnéading correlation distance, can range from several to many
on mobiles alone to provide signal and interference powt@ns of meters [2]. We will assume a frequency of 2 GHz and
measurements has limited benefit and adds demands to scarce 3-8 in all our computations; and will consider different
mobile battery resources. Furthermore, a given mobile c&Ambinations ob, X., d, and cell radius for different cellular
measure downlink conditions only, may not be equippevironments.
with GPS receivers to help associate its measurements with
location, and reports at uncontrolled times and locations. ) i
Sensor-based measurements can react to gradual chafigelajor Assumptions
in propagation (e.g., new structures (especially in cities)) or We assume each df sensors in a given cell measures the
interference (e.g., due to adaptive beamforming). They are meteived power of a downlink pilot signal and compares that
labor-intensive and are available at all times, to accommodaiewer, Pr, to a threshold value. That threshold is the value
slow adaptive changes in radio resources. The sensors caratbehich a mobile receiver near the sensor would have just
more numerous and measurements may be gathered meresugh signal-to-noise ratio for good reception. The fraction
or-less uniformly from known locations, facilitating reliableof sensors measuring power below the threshold is the sensor
outage evaluations. In fact, the potential exists to accuratelgtwork’s estimate of the cell’s downlinlSNRbased) outage
pinpoint chronically poor service areas that arise after initigkobability. We also assume that the pilot power measurement
planning, and to identify the need for new or reengineerdsl over a bandwidth sufficiently wide (5 MHz or more) that
sites. Additionally, the sensor network could be extended taultipath fading is averaged out. Thus, the measurement of
support multiple air interfaces within overlapping coverag®y, combined with knowledge of the downlink transmit power
regions (e.g., wireless LAN, DVB-H deployments). per user and the antenna gains, permits the network to estimate
These arguments notwithstanding, a given operator mte downlink path lossPL. We note that, due to the averaging
want to consider a wide range of approaches, including: (&yer multipath fading, this estimate applies to the uplink path
The traditional combining of site data with drive testing; (2)oss as well.
deploying a dedicated network of sensors; (3) renting serviceFor our purposes, it is safe to assume the antenna gains
from an existing multipurpose sensor network; (4) using a&e independent of sensor position, so that the variation of
set of subscriber mobiles, equipped with GPS, to periodicallyr over the sensors precisely tracks the variatiofPbf i.e.,
measure and report power measurements; and so on. For thBgse= C — PL, where C is the same for all sensors. We
approaches based on sensor or mobile measurements, thedatethus use the statistical path loss model of Section Ill to
of measurement-and-report (e.g., hourly, daily, etc) can be tgimulate the cell-wide variation of received signal power.
lored to maintain acceptable levels of battery drain. Choosing o N
among candidate approaches would require a cost/performaRcel he Statistics of Outage Probability
tradeoff analysis that is beyond the scope of this study; ourThe true outage probability in Cellj, denoted byp,(j),
purpose here is to assess the attainable performance of ouiagihe fractional area for which a mobile’s received power
estimation based on distributed power measurements andvtmuld fall below some threshol®r, (equivalently, path loss
minimize the number of such measurements required. It showduld be above a threshol®®L, = C — Pg,). Although
be kept in mind that the analytical methods and numericdle shadow fading spatial distribution(¢), is governed by
results reported here apply to any distributed-measuremém same model in every cell, (2), the actuadlization of
approach, not just dedicated sensor networks. s(&) will vary, resulting in a cell-to-cell variation ip,(j) for

IV. OUTAGE PROBABILITY BASED ONSNR



a given PL,. Across a large number of cells, them, can In all cases, we assumed a randomly uniform placement
be characterized by statistical distribution with an average of the sensors. However, we also considered confining sensor
P, and a standard deviation,. The latter represents thelocations to the regions most likely to experience outage.
natural inter-cell variability of outage probability caused byn this way, we reasoned, the estimates fra¥n sensors
the randomness of shadow fading. would be less sensitive to the precise placement, i.e., the
The estimatedoutage probabilityp! (j) in Cell j contains “sharpness” of the estimates would be lower. Since outage
another form of variability, this one beinigtra-cell. It arises is more likely at distances farther away from the base station,
from the fact that one placement &f sensors within a cell we considered placements confined to distances o, to
will produce a different estimate than another placement. OvBr with candidate values oR,,;, being 0,0.5R and 0.7R.
a great many placements, the estimaig§j) in Cell j will In doing this, the estimate of outage probability (fraction of
thus have a distribution of values, with a meayitj) (unbiased sensors withPL > PL,) must be weighted by the ratio of
estimate) and a standard deviation We can expect that; areas, i.e., that of the annular region to that of the entire cell.
will diminish towards zero a¥V increases towards infinity. A This approach is the essenceimportance samplingn which
reasonable design goal is to choaSesufficiently large that measurements are focused on the regions where the events of
0j/Po(j) < 0.25 for the p,-value of interest. We will find a interest are most likely to occur [4]. As an example of the
simple relationship betweeV and p, from our simulations possibilities, Fig. 2 shows a circular cell with = 4000

that meets this goal. sensors and®°L, = 120 dB. The dark spots are the sensor
. ) locations wherePL > 120 dB, and they are seen to be
C. Simulation Approach concentrated in the outer regions of the cell. Placing sensors

To do a simulation, we first specify a cell radids and close to the center, therefore, can amount to wasting limited
the values of the propagation parameters in (1) and (2). Wesources on predictable “non-events”.
can then generate a 2-dimensional variation of shadow fading,

s(§), for Cell 1 that follows the model, using the method 10 FZTIALE.
described in [3]. The next step is to choose a value Xqr o L
a placement for théV sensors within the cell, and a path loss 8 % b ey % 7
threshold,PL,. Finally, the path loss at each of the sensors is 3 ﬁ‘f ot
determined, angy, (1) is computed as the fraction of sensors  ®[ *
for which PL > PL,. h **%e
With s(¢) fixed, the sensor placement is choskhtimes, I : : *;; |
and with M sufficiently high, the mean and standard deviation, l o F Tt |
po(1) and oy, can be estimated. (As noted; is a measure ¢ * S %ﬁ
of the variability of the estimate with sensor placement] . ’; % i *%“ . it
This procedure is repeated for a total 8f,;, generations S * ﬁ* i : ﬁ% *’%%
of the shadow fading variation;(£), corresponding to Cells ™y} i %’*
1,2, ..., j,...Ngs. The mean ofp,(j) over j is the network’s ¥ i,
estimate of the average outage probabili, the standard -40f %,; @*f o M
deviation ofp,(j) overj is the network’s estimate of the inter- i e
cell standard deviations,; and the mean of; over j, denoted -60r #dd i 3 % ty 1
by o, is the average intra-cell standard deviation related to i b o
sensor placement. We call the rauvgP, the “sharpness” of -8y ke ﬁ;»*ﬂ ;&;%* il
the estimate, and seek to make it smaller than 0.25. ‘ ‘ ‘ W AL ‘ ‘
The baseline values @, ando,, i.e., those we assume tobe B w0 - 0 =2 o 20 0 o & 10
the true ones, are obtained by first assigning an extremely large x location ()

value for N. We have found, by a combination of analysis

and simulation (not shown here) thaf = 4000 would Fig- 2. An “outage” map for a single cell with 4000 uniformly located
' sensors. In this example, the cell radius is 100om; 8 dB, X. = 8 m, and

yield precise estimates in each cell, with negligible variatiogiage” corresponds to the conditidhl, > PL, — 120 dB. The dark dots
from one placement of sensors to another. Accordingly, virglicate outages, which occur for 1%8of all sensors, primarily in sensors

computedp,, for each ofN,;, cells and each of several valuedocated towards the cell boundary.

of PL,, by postulating 4000 uniformly located measurements

per cell. In this way, we obtained “true” values &f, and

o, Vs. PL, and identified thePL, values producing averageD- Results

outage probabilities of 0.05 and 0.10. Then we applied theFirst, we investigate an outdoor cell, conveniently assumed
procedure of the preceding paragraph for these values, usiagbe circular, with radius? = 1000 m. The shadow fading
practical values ofV (32, 100 and 200). For these values, wparametergo, X.) are (8 dB, 50 m). We sePL,, at values

did M = 100 placements of theV sensors, andV,, = 10 that yield “true” average outage probabilities,, of 0.05
realizations of the shadow fading distribution. and 0.10. For each of these two cases, we computed the



network-estimated values oP, and o, and the intra-cell The above steps are straightforward for full sensor placement
variation parametep. The results are summarized in TabléR,,.;, = 0). However, we also considered partial placement,
| for N = 32,100 and 200 and, for eaclv, for full-cell specifically, R,,;, = 0.5R. In this case, theN sensors are
placements of sensor®f,:, = 0) and two candidate partial- uniformly distributed oveB/4 of the cell area, but no sensors
cell placementsR,,,;, = 0.5R and0.7R). are in the inner regiond( < 0.5R,.;,), Where, on average,

The tabulated results show thilt= 32 sensors are too few 1/4 of the X' mobiles would be located. To address this,
for accurate estimation of outage probabilitie$@f and10%, the network can estimate outage probability as follows: (1)
if only because the sharpnesgsg,P,, is too large. We also seecompute an upper bound by assumaif of the X' mobiles
that, for N = 100 and 200, full-cell placement of sensors leadare in the outer region; (2) compute a lower bound by
to good estimates aoP,, but that partial-cell placements leadassuming3/4 of the mobiles are in the outer region and
to better sharpness. The caBg,;, = 0.7R, however, tends none are in the inner region; and (3) estimate the outage
to underestimateP, because it misses (undercounts) outageobability as the mean of the two bounds.
events. The best compromise between accurate estimation dResults are given in Table Il for different combinations of
P, and low sharpness occurs consistently ®y,;, = 0.5R. N, K and R,,,;,/R. The increase inP, with K, due to the
Finally, we see that fo?, = 0.05(0.10), the value ofN that dividing of transmit power among more mobiles, is evident.
yields both accurat®, and low sharpness at thi3,,;,, is 200 We also see, as before, that partial placement \&ith, =
(100). We infer from this that a good rule for the number di.5R and N ~ 10/ P, yields good accuracgnd sharpness.
sensors per cell iV ~ 10/P,. This result is consistent with
binomial statistics.

Next, we examine an indoor environment, whéte= 100 We have postulated a sensor network approach to estimating
m, and we consider three different sets of shadow fadi§wnlink outage probabilities in a cellular system. Using
parametergo, X.): (8 dB, 8 m), (8 dB, 50 m) and (10 dB, stochastic simulation, we investigated ways to minimize the
50 m). Results are given in Table Il faf, = 0.05. These humber (V) of sensors needed, including the principle of
results, and those faf, = 0.1 as well (not shown), reinforce importance sampling. MinimizingV can have a substantial
the findings from the pre\/ious examp|e_ Moreover, they Shmy()ff, in terms of both the drain on sensor batteries and the
that the shadow fad|ng parameters inﬂuemebut not the information bandwidth needed by the sensor network.

VI. CONCLUSION

general rules folR,,;, /R and N. Extensions of this study might take into account issues
such as base station selection (e3JRbased as opposed to
V. OUTAGE PROBABILITY BASED ONSIR distance-based, as considered here), other kinds of interference

While the above study of outage probability basedSiR (outer rings, intra-cell, etc), location information and uplink
was generic, the study &lRbased outage probability requiregperformance. Regarding the latter, we note that each sensor
specificity about the radio interface. For this purpose, we assumed to be able to estimate its path loss (which is
assume a CDMA system with a spreading factor of 128 aggsentially the same in both directions) to the seven nearest
a required receiver outpuBIR of 5 dB. For simplicity, we bases. This information, plus some additional computing,
assume that the downlink co-channel interference from tM@uld allow the sensor network to estimatplink outage
six surrounding cells is dominant. Also, we assume that eafpbabilities, as well. The availability of location information
sensor is able to identify, from downlink pilots, the power frongan be used to map the variations in outage regions with adap-
each base (its own plus the six nearest interfering bases) [Bje algorithms to assist in the calibration of these algorithms
that each base is transmitting its full rated power; and that Ehprovide ubiquitous coverage. In addition to outage, data rate
“outage” occurs for a mobile if its serving base runs out ¢gfoverage regions can also be identified.
power before it is able to meet that mobil&gRrequirement.
These assumptions, combined with the above path loss model,

"’ ; V. Erceg, et al, “An Empirically Based Path Loss Model for Wireless
enable us to compute outage pmbablllty for a given numb&]’ Channels in Suburban Environment#£EE J. Select. Areas Commun.

K, of active mobiles per cell (or sector). Volume.17, No.7 , July 1999, Pages:1205 - 1211.
We note that forK > 1, there is one more layer of[2] M.Gudmundson, “Correlation Model for Shadow Fading in Mobile Radio

: : s atril it an SYstems” Electron Lttrs, vol.27, pp. 2145-2146, November 1991.
randomness, besides those for the shadow fading d|str|butt%nx_ Zhao, L. Razouniov and L. Greenstein. “Path Loss Estimation Al-

and the sensor placement, namely, the placement ofithe = gorithms and Result for RF Sensor NetworkBfoceedings of IEEE
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TABLE |
SIMULATION RESULTS FOR P, = 5% AND 10%, R = 1000 m, AND (X, o) = (50m, 8 dB).

Case N 4000 200 100 32
Rpin(m) 0 0 500 | 700 0 500 | 700 0 500 | 700
1 Py (%) 5 5.07| 499 | 451 | 502 | 506 | 445 | 51 | 488 | 4.31
00(%) 0.92 1 097 | 094 | 1.07| 0.96 | 0.95 | 1.09 | 1.07 | 0.95
o(%) 0 153|130 102| 221|185 | 1.4 | 393 | 3.22| 252
ol P, 0 0.30| 0.26 | 0.23 | 0.44| 037 | 0.31| 0.77 | 0.66 | 0.58
2 Py (%) 10 10 | 997 | 856 | 999 | 9.79 | 862 | 995 | 9.72 | 8.66
00(%) 168 | 1.71| 167 | 159 | 1.78 | 1.84 | 1.74 | 185 | 1.79 | 1.82
o(%) 0 2.07 | 1.81| 1.30 3 241 | 192 | 525 | 442 | 3.16
ol P, 0 0.21| 0.18 | 0.15| 030 | 0.25| 0.22 | 0.53 | 0.45 | 0.36

TABLE I

SIMULATION RESULTS FOR P, = 5%, R = 100 m, AND THREE CASES OF( X.,0): (8 m, 8dB), (50m, 8dB), (50m, 10dB), IN ASCENDING ORDER

(Xe¢,0) N 4000 200 100 32
Rpin(m) 0 0 50 70 0 50 70 0 50 70
(8 m, 8 dB) P, (%) 50 | 496 | 502 | 459 | 500 | 496 | 453 | 492 | 491 | 450
00(%) 142 | 157 | 1.52 | 1.37 | 156 | 1.42 | 1.44 | 1.32 | 1.58 | 1.44
o(%) 0 151 130| 1.03 | 2.08 | 1.83 | 1.47 | 3.75| 3.30 | 2.53
ol P, 0 0.30 | 0.26 | 0.22 | 0.42 | 0.37 | 0.32 | 0.76 | 0.67 | 0.56

(50 m, 8 dB) Py (%) 50 | 504 | 505 | 465 | 497 | 507 | 463 | 491 | 515 | 4.60
00(%) 427 | 486 | 493 | 454 | 480 | 489 | 458 | 457 | 5.14 | 4.39
o(%) 0 136 | 1.15| 090 | 1.89 | 1.65| 1.28 | 3.53 | 2.96 | 2.24
ol P, 0 0.27 | 0.23 | 0.19 | 0.38 | 0.33 | 0.28 | 0.72 | 0.57 | 0.49
(50 m, 10 dB) Py (%) 50 | 508 | 499 | 456 | 5.06 | 498 | 453 | 5.15 | 5.11 | 4.46
00(%) 517 | 490 | 494 | 450 | 5.03 | 4.81 | 452 | 5.09 | 493 | 4.45

0o(%) 0 135|115| 091 | 191 | 164 | 1.24 | 3.33 | 2.88 | 2.27
ol P, 0 0.27 | 0.23 | 0.20 | 0.38 | 0.33 | 0.27 | 0.65 | 0.56 | 0.51
TABLE Il

SIMULATION RESULTS FORR = 100 m, X, = 8 m, 0 = 8 dB, AND FOUR VALUES OFK: 1, 4, 8, 12.

K N 4000 200 100 32
Rmin(m) | 0 0 50 0 50 0 50
1 P,(%) | 6.02 | 6.00| 598 598 5.94| 6.09 | 5093
0o(%) | 132 | 134 | 128 | 1.22| 132 | 1.28 | 1.25
o(%) 0 | 165 142 234 1.99 | 420 | 3.59
ol P, 0 | 028|024]039]034] 069 | 061
4 P,(%) | 690 | 700 6.96 | 7.08] 6.97 | 7.11 | 7.04
0o(%) | 139 | 1.44 | 147 | 1.45 | 142 | 148 | 1.35
o(%) 0 | 1.78| 1.55]| 247 | 2.09 | 432 | 3.66
ol P, 0 | 025|022]035]030]| 061 | 052
8 P,(%) | 833|836 846 8.38| 8.44| 867 | 857
0o(%) | 1.61 | 1.60 | 1.58 | 1.57 | 1.56 | 1.69 | 1.52
o(%) 0 | 1.87| 158 255 | 222 | 457 | 3.82
ol Py 0 | 022]019] 030] 026 | 053 | 045
12| P.(%) | 966 | 9.72| 9.89 | 9.85 | 9.95 | 10.01 | 10.23
0o(%) | 181 | 178 | 1.75| 1.79 | 1.76 | 1.74 | 1.72
o(%) 0 | 198 1.70 | 2.83 | 229 | 4.94 | 4.22
ol Py 0 | 020]017] 029 023 | 049 | 0.41




