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Abstract— We investigate the use of an auxiliary network of
sensors to assist radio resource management in a cellular system.
Specifically, we discuss the number and placement of sensors in
a given cell for estimating its signal coverage. Here, an “outage”
is said to occur at a location if the mobile receiver there has
inadequate signal-to-noise ratio (SNR-based outage) or, using
another criterion, inadequate signal-to-interference ratio (SIR-
based outage); and the “outage probability” is the fraction of the
cell area over which outage occurs. A design goal is to confine the
number of sensors per cell to an acceptable level while accurately
estimating the outage probability.

The investigation uses a generic path loss model incorporating
distance effects and spatially correlated shadow fading. Our
emphasis is the performance prediction accuracy of the sensor
network, rather than cellular system analysis per se. Through
analysis and simulation, we assess several approaches to estimat-
ing the outage probability. Applying the principle of importance
sampling to the sensor placement, we show that a cell outage
probability of ∼ Po can be accurately estimated using∼ 10/Po

power-measuring sensors distributed in a random uniform way
over base-mobile distances from50% to 100% of the cell radius.
This result applies to both SNR-based andSIR-based cases, in
both indoor and outdoor environments.

I. I NTRODUCTION

We investigate an auxiliary network of sensors which as-
sist radio resource management to improve the capacity and
quality of service in cellular systems. Our focus is on new or
envisioned cellular system designs in which antenna beams,
power per beam and channel sets can be assigned adaptively to
accommodate slowly changing conditions of the propagation
and user population. The data collected by the sensor network
can reduce the measurement demands on the active mobiles;
or, it can be augmented by such measurements, to permit more
dynamic adapting as individual mobiles change locations, start
and end service, and so on.

We envision a network fabric ofN sensors per cell(N ∼
100) which communicate with each other and, through some
sensors, with the cellular system, Fig. 1. Each sensor has
an identifying code and a fixed and known location, and it
measures received power from pilots sent by its closest base
and several bases nearby. As we will show, the collection
of data from all the sensors can be used to estimate the
percentages of each cell having adequate signal-to-noise ratio
(SNR) and adequate signal-to-interference ratio (SIR).

The key benefit of the sensor network is that it provides
round-the-clock measurements from many low-cost sensors

This work is supported in part by a grant from Nortel.

BS 2


BS 0


BS 6


BS 4


BS 1


BS 5


BS 3


Sensor


MS


o


x


y


R


Fig. 1. A 7-cell cluster, with many sensors in each cell. We evaluate “outage”
conditions in the center cell, bothactual and as estimated using the sensors.

per cell, at known locations. The data so obtained can be used
not only for medium-term radio resource management, but
also for longer-term engineering, e.g., identifying the need for
new cell sites. Comparisons with more traditional approaches
are presented in Section II. Our calculations are based on a
path loss model that incorporates distance effects and spatially
correlated shadow fading, as described in Section III.

We will examine downlink outage probabilities based on
SNR(Section IV) and onSIR (Section V) and discuss exten-
sions to the uplink (Section VI). We will show, for different
N , how accurately sensors can predict outage probability;
how variable the predictions are with the specific sensor
placements; and how much is gained when the sensors are
confined to the region most likely to experience outage (e.g.,
the outer half of the cell).

A final commentary is in order regarding our study ap-
proach. Because predicted outage probability is a variable
dependent on the specific realizations of the shadow fading and
sensor placement, we will make extensive use of Monte Carlo



simulations to get useful results. Also, a number of simplifying
assumptions will be made to permit easy estimates of both the
actual outage probabilities and those predicted by the sensor
network. We emphasize that our goal isnot cellular system
analysisper sebut, rather, an assessment of the performance
prediction accuracy of a network of power-measuring sensors.

II. COMPARISON WITH TRADITIONAL APPROACHES

RF planning for wireless systems utilizes both proactive
measurements (e.g., path loss) and reactive measurements
(e.g., call drops, handovers). For proactive measurements, in
most cases, currently used RF planning tools gather propaga-
tion information based on the use of a database in a given
region, augmented by drive tests conducted during off-peak
times. Such static snapshots of RF planning information are
suitable for current systems with fixed antenna patterns and
limited use of adaptive algorithms. Data collected by mobiles
and relayed to base stations may deliver additional time-
of-day-specific RF planning information. However, relying
on mobiles alone to provide signal and interference power
measurements has limited benefit and adds demands to scarce
mobile battery resources. Furthermore, a given mobile can
measure downlink conditions only, may not be equipped
with GPS receivers to help associate its measurements with
location, and reports at uncontrolled times and locations.

Sensor-based measurements can react to gradual changes
in propagation (e.g., new structures (especially in cities)) or
interference (e.g., due to adaptive beamforming). They are not
labor-intensive and are available at all times, to accommodate
slow adaptive changes in radio resources. The sensors can be
more numerous and measurements may be gathered more-
or-less uniformly from known locations, facilitating reliable
outage evaluations. In fact, the potential exists to accurately
pinpoint chronically poor service areas that arise after initial
planning, and to identify the need for new or reengineered
sites. Additionally, the sensor network could be extended to
support multiple air interfaces within overlapping coverage
regions (e.g., wireless LAN, DVB-H deployments).

These arguments notwithstanding, a given operator may
want to consider a wide range of approaches, including: (1)
The traditional combining of site data with drive testing; (2)
deploying a dedicated network of sensors; (3) renting service
from an existing multipurpose sensor network; (4) using a
set of subscriber mobiles, equipped with GPS, to periodically
measure and report power measurements; and so on. For those
approaches based on sensor or mobile measurements, the rate
of measurement-and-report (e.g., hourly, daily, etc) can be tai-
lored to maintain acceptable levels of battery drain. Choosing
among candidate approaches would require a cost/performance
tradeoff analysis that is beyond the scope of this study; our
purpose here is to assess the attainable performance of outage
estimation based on distributed power measurements and to
minimize the number of such measurements required. It should
be kept in mind that the analytical methods and numerical
results reported here apply to any distributed-measurement
approach, not just dedicated sensor networks.

III. PATH LOSSMODEL

Assuming the model of [1], the path loss (PL) from a base
station (BS) to a locationξ in the environment is [1]

PL(ξ)[dB] = A + 10γ log(d/d0) + s(ξ); d > d0 (1)

where d is the distance from the BS toξ and do is a
reference distance (typically, 1 m indoors and 100 m outdoors).
The interceptA is given by20 log(4πdo/λ), whereλ is the
wavelength. The path loss exponentγ can range from 3 to 6,
depending on the environment; the dB shadow fading,s(ξ), is
a Gaussian process over space with zero mean and standard
deviationσ; andσ can range from 4 dB to 12 dB. We assume
that the autocorrelation of the spatial processs(ξ) depends
only on the separation distance, i.e.,

E[sasb] = σ2e−dab/Xc (2)

wheredab is the distance froma to b; and Xc, the shadow
fading correlation distance, can range from several to many
tens of meters [2]. We will assume a frequency of 2 GHz and
γ = 3.8 in all our computations; and will consider different
combinations ofσ, Xc, do and cell radius for different cellular
environments.

IV. OUTAGE PROBABILITY BASED ON SNR

A. Major Assumptions

We assume each ofN sensors in a given cell measures the
received power of a downlink pilot signal and compares that
power,PR, to a threshold value. That threshold is the value
at which a mobile receiver near the sensor would have just
enough signal-to-noise ratio for good reception. The fraction
of sensors measuring power below the threshold is the sensor
network’s estimate of the cell’s downlink (SNR-based) outage
probability. We also assume that the pilot power measurement
is over a bandwidth sufficiently wide (5 MHz or more) that
multipath fading is averaged out. Thus, the measurement of
PR, combined with knowledge of the downlink transmit power
per user and the antenna gains, permits the network to estimate
the downlink path loss,PL. We note that, due to the averaging
over multipath fading, this estimate applies to the uplink path
loss as well.

For our purposes, it is safe to assume the antenna gains
are independent of sensor position, so that the variation of
PR over the sensors precisely tracks the variation ofPL, i.e.,
PR = C − PL, where C is the same for all sensors. We
can thus use the statistical path loss model of Section III to
simulate the cell-wide variation of received signal power.

B. The Statistics of Outage Probability

The true outage probability in Cellj, denoted bypo(j),
is the fractional area for which a mobile’s received power
would fall below some thresholdPRo (equivalently, path loss
would be above a thresholdPLo = C − PRo). Although
the shadow fading spatial distribution,s(ξ), is governed by
the same model in every cell, (2), the actualrealization of
s(ξ) will vary, resulting in a cell-to-cell variation inpo(j) for



a given PLo. Across a large number of cells, then,po can
be characterized by astatistical distribution, with an average
Po and a standard deviationσo. The latter represents the
natural inter-cell variability of outage probability caused by
the randomness of shadow fading.

The estimatedoutage probabilityp′o(j) in Cell j contains
another form of variability, this one beingintra-cell. It arises
from the fact that one placement ofN sensors within a cell
will produce a different estimate than another placement. Over
a great many placements, the estimatesp′o(j) in Cell j will
thus have a distribution of values, with a meanpo(j) (unbiased
estimate) and a standard deviationσj . We can expect thatσj

will diminish towards zero asN increases towards infinity. A
reasonable design goal is to chooseN sufficiently large that
σj/po(j) < 0.25 for the po-value of interest. We will find a
simple relationship betweenN and po from our simulations
that meets this goal.

C. Simulation Approach

To do a simulation, we first specify a cell radiusR and
the values of the propagation parameters in (1) and (2). We
can then generate a 2-dimensional variation of shadow fading,
s(ξ), for Cell 1 that follows the model, using the method
described in [3]. The next step is to choose a value forN ,
a placement for theN sensors within the cell, and a path loss
threshold,PLo. Finally, the path loss at each of the sensors is
determined, andp′o(1) is computed as the fraction of sensors
for which PL > PLo.

With s(ξ) fixed, the sensor placement is chosenM times,
and withM sufficiently high, the mean and standard deviation,
po(1) and σ1, can be estimated. (As noted,σ1 is a measure
of the variability of the estimate with sensor placement.)
This procedure is repeated for a total ofNsh generations
of the shadow fading variation,s(ξ), corresponding to Cells
1, 2, ..., j, ...Nsh. The mean ofpo(j) over j is the network’s
estimate of the average outage probability,Po; the standard
deviation ofpo(j) overj is the network’s estimate of the inter-
cell standard deviation,σo; and the mean ofσj overj, denoted
by %, is the average intra-cell standard deviation related to
sensor placement. We call the ratio%/Po the “sharpness” of
the estimate, and seek to make it smaller than 0.25.

The baseline values ofPo andσo, i.e., those we assume to be
the true ones, are obtained by first assigning an extremely large
value for N . We have found, by a combination of analysis
and simulation (not shown here), thatN = 4000 would
yield precise estimates in each cell, with negligible variation
from one placement of sensors to another. Accordingly, we
computedpo, for each ofNsh cells and each of several values
of PLo, by postulating 4000 uniformly located measurements
per cell. In this way, we obtained “true” values ofPo and
σo vs. PLo and identified thePLo values producing average
outage probabilities of 0.05 and 0.10. Then we applied the
procedure of the preceding paragraph for these values, using
practical values ofN (32, 100 and 200). For these values, we
did M = 100 placements of theN sensors, andNsh = 10
realizations of the shadow fading distribution.

In all cases, we assumed a randomly uniform placement
of the sensors. However, we also considered confining sensor
locations to the regions most likely to experience outage.
In this way, we reasoned, the estimates fromN sensors
would be less sensitive to the precise placement, i.e., the
“sharpness” of the estimates would be lower. Since outage
is more likely at distances farther away from the base station,
we considered placements confined to distances fromRmin to
R, with candidate values ofRmin being 0,0.5R and 0.7R.
In doing this, the estimate of outage probability (fraction of
sensors withPL > PLo) must be weighted by the ratio of
areas, i.e., that of the annular region to that of the entire cell.
This approach is the essence ofimportance sampling, in which
measurements are focused on the regions where the events of
interest are most likely to occur [4]. As an example of the
possibilities, Fig. 2 shows a circular cell withN = 4000
sensors andPLo = 120 dB. The dark spots are the sensor
locations wherePL > 120 dB, and they are seen to be
concentrated in the outer regions of the cell. Placing sensors
close to the center, therefore, can amount to wasting limited
resources on predictable “non-events”.
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Fig. 2. An “outage” map for a single cell with 4000 uniformly located
sensors. In this example, the cell radius is 100 m,σ = 8 dB, Xc = 8 m, and
“outage” corresponds to the conditionPL > PLo = 120 dB. The dark dots
indicate outages, which occur for 11.8% of all sensors, primarily in sensors
located towards the cell boundary.

D. Results

First, we investigate an outdoor cell, conveniently assumed
to be circular, with radiusR = 1000 m. The shadow fading
parameters(σ,Xc) are (8 dB, 50 m). We setPLo at values
that yield “true” average outage probabilities,Po, of 0.05
and 0.10. For each of these two cases, we computed the



network-estimated values ofPo and σo and the intra-cell
variation parameter%. The results are summarized in Table
I for N = 32, 100 and 200 and, for eachN , for full-cell
placements of sensors (Rmin = 0) and two candidate partial-
cell placements (Rmin = 0.5R and0.7R).

The tabulated results show thatN = 32 sensors are too few
for accurate estimation of outage probabilities of5% and10%,
if only because the sharpness,%/Po, is too large. We also see
that, forN = 100 and 200, full-cell placement of sensors leads
to good estimates ofPo, but that partial-cell placements lead
to better sharpness. The caseRmin = 0.7R, however, tends
to underestimatePo because it misses (undercounts) outage
events. The best compromise between accurate estimation of
Po and low sharpness occurs consistently forRmin = 0.5R.
Finally, we see that forPo = 0.05(0.10), the value ofN that
yields both accuratePo and low sharpness at thisRmin is 200
(100). We infer from this that a good rule for the number of
sensors per cell isN ∼ 10/Po. This result is consistent with
binomial statistics.

Next, we examine an indoor environment, whereR = 100
m, and we consider three different sets of shadow fading
parameters(σ,Xc): (8 dB, 8 m), (8 dB, 50 m) and (10 dB,
50 m). Results are given in Table II forPo = 0.05. These
results, and those forPo = 0.1 as well (not shown), reinforce
the findings from the previous example. Moreover, they show
that the shadow fading parameters influenceσo but not the
general rules forRmin/R andN .

V. OUTAGE PROBABILITY BASED ON SIR

While the above study of outage probability based onSNR
was generic, the study ofSIR-based outage probability requires
specificity about the radio interface. For this purpose, we
assume a CDMA system with a spreading factor of 128 and
a required receiver outputSIR of 5 dB. For simplicity, we
assume that the downlink co-channel interference from the
six surrounding cells is dominant. Also, we assume that each
sensor is able to identify, from downlink pilots, the power from
each base (its own plus the six nearest interfering bases) [5];
that each base is transmitting its full rated power; and that an
“outage” occurs for a mobile if its serving base runs out of
power before it is able to meet that mobile’sSIRrequirement.
These assumptions, combined with the above path loss model,
enable us to compute outage probability for a given number,
K, of active mobiles per cell (or sector).

We note that forK > 1, there is one more layer of
randomness, besides those for the shadow fading distribution
and the sensor placement, namely, the placement of theK
mobiles. Thus, for every combination ofs(ξ)-realization
and N -sensor placement, the network computes an outage
probability for each ofMmt random placements ofK mobiles
over the cell, then averages theMmt values. In our study, we
usedMmt = 500.

The above steps are straightforward for full sensor placement
(Rmin = 0). However, we also considered partial placement,
specifically,Rmin = 0.5R. In this case, theN sensors are
uniformly distributed over3/4 of the cell area, but no sensors
are in the inner region (d < 0.5Rmin), where, on average,
1/4 of the K mobiles would be located. To address this,
the network can estimate outage probability as follows: (1)
compute an upper bound by assumingall of the K mobiles
are in the outer region; (2) compute a lower bound by
assuming3/4 of the mobiles are in the outer region and
none are in the inner region; and (3) estimate the outage
probability as the mean of the two bounds.

Results are given in Table III for different combinations of
N , K and Rmin/R. The increase inPo with K, due to the
dividing of transmit power among more mobiles, is evident.
We also see, as before, that partial placement withRmin =
0.5R andN ∼ 10/Po yields good accuracyand sharpness.

VI. CONCLUSION

We have postulated a sensor network approach to estimating
downlink outage probabilities in a cellular system. Using
stochastic simulation, we investigated ways to minimize the
number (N ) of sensors needed, including the principle of
importance sampling. MinimizingN can have a substantial
payoff, in terms of both the drain on sensor batteries and the
information bandwidth needed by the sensor network.

Extensions of this study might take into account issues
such as base station selection (e.g.,SIR-based as opposed to
distance-based, as considered here), other kinds of interference
(outer rings, intra-cell, etc), location information and uplink
performance. Regarding the latter, we note that each sensor
is assumed to be able to estimate its path loss (which is
essentially the same in both directions) to the seven nearest
bases. This information, plus some additional computing,
would allow the sensor network to estimateuplink outage
probabilities, as well. The availability of location information
can be used to map the variations in outage regions with adap-
tive algorithms to assist in the calibration of these algorithms
to provide ubiquitous coverage. In addition to outage, data rate
coverage regions can also be identified.
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TABLE I

SIMULATION RESULTS FORPo = 5% AND 10%, R = 1000 m, AND (Xc, σ) = (50 m, 8 dB).

Case N 4000 200 100 32

Rmin(m) 0 0 500 700 0 500 700 0 500 700

1 Po(%) 5 5.07 4.99 4.51 5.02 5.06 4.45 5.1 4.88 4.31

σo(%) 0.92 1 0.97 0.94 1.07 0.96 0.95 1.09 1.07 0.95

%(%) 0 1.53 1.30 1.02 2.21 1.85 1.4 3.93 3.22 2.52

%/Po 0 0.30 0.26 0.23 0.44 0.37 0.31 0.77 0.66 0.58

2 Po(%) 10 10 9.97 8.56 9.99 9.79 8.62 9.95 9.72 8.66

σo(%) 1.68 1.71 1.67 1.59 1.78 1.84 1.74 1.85 1.79 1.82

%(%) 0 2.07 1.81 1.30 3 2.41 1.92 5.25 4.42 3.16

%/Po 0 0.21 0.18 0.15 0.30 0.25 0.22 0.53 0.45 0.36

TABLE II

SIMULATION RESULTS FORPo = 5%, R = 100 m, AND THREE CASES OF(Xc, σ): (8 m, 8 dB), (50m, 8 dB), (50m, 10dB), IN ASCENDING ORDER.

(Xc, σ) N 4000 200 100 32

Rmin(m) 0 0 50 70 0 50 70 0 50 70

(8 m, 8 dB) Po(%) 5.0 4.96 5.02 4.59 5.00 4.96 4.53 4.92 4.91 4.50

σo(%) 1.42 1.57 1.52 1.37 1.56 1.42 1.44 1.32 1.58 1.44

%(%) 0 1.51 1.30 1.03 2.08 1.83 1.47 3.75 3.30 2.53

%/Po 0 0.30 0.26 0.22 0.42 0.37 0.32 0.76 0.67 0.56

(50 m, 8 dB) Po(%) 5.0 5.04 5.05 4.65 4.97 5.07 4.63 4.91 5.15 4.60

σo(%) 4.27 4.86 4.93 4.54 4.80 4.89 4.58 4.57 5.14 4.39

%(%) 0 1.36 1.15 0.90 1.89 1.65 1.28 3.53 2.96 2.24

%/Po 0 0.27 0.23 0.19 0.38 0.33 0.28 0.72 0.57 0.49

(50 m, 10 dB) Po(%) 5.0 5.08 4.99 4.56 5.06 4.98 4.53 5.15 5.11 4.46

σo(%) 5.17 4.90 4.94 4.50 5.03 4.81 4.52 5.09 4.93 4.45

%(%) 0 1.35 1.15 0.91 1.91 1.64 1.24 3.33 2.88 2.27

%/Po 0 0.27 0.23 0.20 0.38 0.33 0.27 0.65 0.56 0.51

TABLE III

SIMULATION RESULTS FORR = 100 m, Xc = 8 m, σ = 8 dB, AND FOUR VALUES OFK : 1, 4, 8, 12.

K N 4000 200 100 32

Rmin(m) 0 0 50 0 50 0 50

1 Po(%) 6.02 6.00 5.98 5.98 5.94 6.09 5.93

σo(%) 1.32 1.34 1.28 1.22 1.32 1.28 1.25

%(%) 0 1.65 1.42 2.34 1.99 4.20 3.59

%/Po 0 0.28 0.24 0.39 0.34 0.69 0.61

4 Po(%) 6.90 7.00 6.96 7.08 6.97 7.11 7.04

σo(%) 1.39 1.44 1.47 1.45 1.42 1.48 1.35

%(%) 0 1.78 1.55 2.47 2.09 4.32 3.66

%/Po 0 0.25 0.22 0.35 0.30 0.61 0.52

8 Po(%) 8.33 8.36 8.46 8.38 8.44 8.67 8.57

σo(%) 1.61 1.60 1.58 1.57 1.56 1.69 1.52

%(%) 0 1.87 1.58 2.55 2.22 4.57 3.82

%/Po 0 0.22 0.19 0.30 0.26 0.53 0.45

12 Po(%) 9.66 9.72 9.89 9.85 9.95 10.01 10.23

σo(%) 1.81 1.78 1.75 1.79 1.76 1.74 1.72

%(%) 0 1.98 1.70 2.83 2.29 4.94 4.22

%/Po 0 0.20 0.17 0.29 0.23 0.49 0.41


