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ABSTRACT
This paper introduces techniques to automatically detect driving
corner cases from dashcam video and inertial sensors. Develop-
ing robust driver assistance and automated driving technologies
requires an understanding of not just common highway and city
traffic situations but also a plethora of corner cases that may be
encountered in billions of miles of driving. Current approaches
seek to collect such a catalog of corner cases by driving millions
of miles with self-driving prototypes. In contrast, this paper intro-
duces a low-cost yet scalable solution to collect such events from
any dashcam-equipped vehicle to take advantage of the billions of
miles that humans already drive. It detects unusual events through
inertial sensing of sudden human driver reactions and rare visual
events through a trained autoencoder deep neural network. We
evaluate the system based on more than 120 hours real road driv-
ing data. It shows 82% accuracy improvement versus strawman
solutions for sudden reaction detection and above 71% accuracy
for rare visual views identification. The detection results proved
useful for re-training and improving a self-steering algorithm on
more complex situations. In terms of computational efficiency, the
Android prototype achieves 17Hz frame rate (Nexus 5X).

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Scene anomaly detection; • General and reference→ Design;

KEYWORDS
Self-Driving, Unusual Driving Identification, Autoencoder, Inertial
sensing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5952-8/18/11. . . $15.00
https://doi.org/10.1145/3274783.3274838

ACM Reference Format:
Hongyu Li, Hairong Wang, Luyang Liu, and Marco Gruteser. 2018. Auto-
matic Unusual Driving Event Identification for Dependable Self-Driving.
In The 16th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’18), November 4–7, 2018, Shenzhen, China. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3274783.3274838

1 INTRODUCTION
While automated driving technology has made great strides, en-
suring dependability over a broad set of unusual traffic situations
and corner cases remains a key challenge [1–3]. Current automated
driving products largely require human supervision (NHTSA level
2) [4], with only few systems that allow taking eyes off the road
under very limited conditions (level 3) [5]. Self-driving without su-
pervision in select geographic areas environments (level 4) appears
to be emerging but it is still under active development and testing
(e.g., [6]).

Validating such technology requires understanding the unusual
events and corner cases (e.g., objects on the roadway, pedestrian
crossing highway, deer standing next to the road, etc.) that one
could encounter in billions of miles of driving. Such a large number
of miles is needed since the goal is to achieve safety levels far
above average human drivers and human drivers in the United
States achieve almost 100 million vehicle miles traveled in between
fatalities [7]. This motivates collecting a catalog of unusual driving
events that represent challenging situations expected in billions
miles of driving to accelerate the development of truly dependable
level 4 and level 5 systems.

Most existing efforts collect driving data with a small fleet of tens
to hundreds of highly instrumented vehicles that are continuously
operated with test drivers, but it is challenging to cover billions of
miles with such a small fleet. Road testing is therefore augmented
with stress testing with corner cases on proving grounds and in
simulation. This helps, but it remains uncertain whether a compre-
hensive set of corner cases was tested. Such a comprehensive set
of unusual events and corner cases can be more easily obtained by
scaling data collection to large numbers of minimally instrumented
(camera-equipped) human driven vehicles, as previously advocated
by BigRoad [8]. This, however, would still require identifying the
unusual events in such a vast dataset to create test cases for proving
grounds or simulators.

https://doi.org/10.1145/3274783.3274838
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Manual inspection of collected data to flag unusual driving events
is one possible solution, but will require plenty of extra effort,
amplify privacy concerns, and increase storage and networking
overhead for collecting all data.When vehicles are primarily human-
driven, we cannot simply watch for human interventions as in
current self-driving prototypes to identify corner cases that the
system cannot handle well. Due to the many degrees of freedom in
navigating a road simply detecting discrepancies between human
drivers steering and speed input and self-driving system’s choice is
not reliable. Although there exists a large body of work on abnormal
driving event detection [9–22], this work focus on detecting specific,
known situations but cannot detect previously unknown unusual
road events that are missing in the current set of test cases for
automated vehicles. Therefore, automatically identifying unusual
driving events remains a challenge.

To address this challenge, we propose an automatic unusual
driving events identification system, which can detect unusual
situations through in-vehicle algorithms and can easily be scaled
for wide deployment. It identifies unusual situations through a two-
pronged approach involving inertial monitoring of driver reactions
and an autoencoder-based technique for detecting unusual video
scenes. It detects sudden driver reactions (e.g.hard braking and
swerving), since situations that challenge human drivers are also
likely to be interesting test cases for automated vehicles. Since
sudden driver reactions usually involve accelerations and angular
speed, a three stage inertial sensing approach is proposed to detect
unusual braking and swerving events. The rationale for the second
video-based detection algorithm is that not all corner cases which
may confuse self driving system will elicit a response from a human
driver. Since previously unseen corner cases are more likely to
differ from the training samples, we propose autoencoder-based
approaches to identify these unfamiliar views, including a detector
that can run on the vehicle side on low cost devices with 71.43%
accuracy and a detector partially running in the cloud with 80.3%
accuracy. The performance is evaluated based on 120 hours road
driving data collected by about 10 drivers. To further illustrate
the efficiency of our proposed system, the vehicle end unfamiliar
view detector is implemented on an android phone and can process
video frames at 17Hz, which is sufficient for flagging unusual scenes.
Moreover, the unusual driving events detected by our approaches
have been useful for re-training and improving the performance
of the self driving model. This performance improvement on more
complex road situations demonstrates the potential to accelerate
the development of robust self driving systems with this unusual
event detection framework. The contributions of this work can be
summarized as follows:

• Introducing, to our knowledge, the first scalable unusual
events identification and collection approach for self driving
research and development, which employs human driven
vehicles, instead of highly-instrumented vehicles.

• Developing an unusual events identification system to detect
a variety of corner cases including both challenging situa-
tions for human drivers and unusual video for self driving
models.

• Designing efficient unusual imagery detectors for low cost
in-vehicle devices to limit the necessary video uploads, to
conserve bandwidth and reduce privacy concerns.

• Analyzing more than 120 hours of driving data to evaluate
the accuracy of unusual events identification and demon-
strate the potential of these detected events to improve the
performance of self-driving algorithms.

2 UNUSUAL EVENTS AND DESIGN
OBJECTIVES

This paper focuses on unusual events and corner cases that can
confound automated driving systems. For example, these include
traffic scenarios that blind sensors, scenarios where key traffic
participants are occluded or obscured by other objects, emerging
objects that are difficult to identify, and unexpected movements
by traffic participants. The ultimate goal is to understand the long
tail of such traffic scenarios, meaning those that one would expect
to encounter only after millions of miles of driving but that still
need to be handled by the system to achieve a level of robustness
that far exceeds human drivers. Specifically, this parper targets a
subcategory of unusual events which can be inferred from sudden
human driver reactions and unfamiliar views and are likely to affect
the performance of self driving systems.

2.1 Current Approaches
Current approaches to collect data and test self driving systems on
unusual events can be categorized as follows. Public road testing
has been conducted by multiple companies through a small fleet
of highly instrumented vehicles across different areas. Waymo has
tested their vehicle on roads for 5 million miles[23] and Uber for 2
million miles[24]. Closed course testing is able to stage challeng-
ing driving cases (such as people jumping out of canvas bags or
porta potties on the side of the road, skateboarders lying on their
boards, thrown stacks of paper in front of sensors, etc.[23]) at the
test facilities, like the Castle of Waymo and the Mcity of Univer-
sity of Michigan. Such testing allows recreate difficult situations
more frequently than they occur during public road driving and
can capture data with the sensor suite of an autonomous vehicle.
Simulation testing allows simulated testing of corner cases, and
further extended testing on the variations of such corner cases
by tuning many different moving angles and different speeds of
vehicles for example.

The robustness challenge: The accumulated public road miles
still fall far short of the number of miles needed to demonstrate
a lower fatality rate than above-average human drivers. Besides,
the recent fatal accident during public road testing illustrates the
challenge with correctly handling a broad set of road situations[25].
Current testing regimes seek to amplify this testing of ’known’
corner cases through a combination of proving ground testing and
simulations. While certainly useful, it remains unclear whether
this extrapolation from known corner cases can lead to the desired
level of robustness or whether new categories of unknown corner
cases exist that will still need to be discovered in the next billions
of miles of driving. The approach that this paper proposes is meant
to complement these current techniques and addresses precisely
this question.
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2.2 Scaling Data Collection with BigRoad
As previously argued [8], current testing efforts could be acceler-
ated through large-scale road-data collection involving hundreds
of thousands of minimally instrumented, human-driven vehicles.
While such vehicles may not generate sensor data that is directly
usable in automated vehicles, it allows identification of new cor-
ner cases that can then be recreated on proving grounds and in
simulation, as outlined above. Although [8] accurately records in-
ternal driver inputs (i.e., steering wheel angles, driving speed and
acceleration) and external perceptions of road environments (i.e.,
road conditions and front-view video), it remains challenging to
upload and store rich video data from such a large number of videos.
In addition, drivers may have privacy concerns when video data
is collected on their complete trips. This raises the question of
whether it is possible to identify the small fraction of useful data
that represents corner cases and challenging situations through
preprocessing of the data inside the vehicle, which would allow
uploading only these critical events.

2.3 Design Goals
Based on the drawback of current approaches and the scaling re-
quirement discussion above, we identify the following key design
goals for a scalable automated unusual driving event collection
system.

• Sense fromhuman driven vehicles. Rapid scaling to hun-
dreds of thousands of vehicles requires making use of human-
driven vehicles to cover a wider range of driving areas and
cumulatively gather the rare happen unusual situations. The
driving event identification system can therefore not rely
on a full self-driving sensor suite but should expect minimal
infrastructure and data source such as dashcams.

• Minimize data uploads. As the scale of data collection
increases to hundreds of thousands of vehicles, tremendous
wireless bandwidth usagewould be required for uploading all
video data into the cloud. Full uploads also increase privacy
concerns. Thus, the system should be able to identify relevant
events while most of the rich video data remains in the
vehicle.

• Build on off-the-shelf devices and stay within their
computational limits. Large scale data collection based
on human driven vehicles will benefit from affordable off-
the-shelf devices, which provide limited the computational
power. Therefore, both time and space efficiency of the sys-
tem should be optimized to guarantee a real time processing
or near real-time computation with limited resources.

The design of our system will try to benefit automated driving
systems as follows. For automatic driving components that only
take front view videos and inertial readings as input, our system
may be able to provide data that can be directly used as training or
testing inputs. For systems which require other sensor inputs, such
as radar or lidar, this data may not be available from human-driven
vehicles but the detected unusual events can still help uncover
traffic situations of interest and previously unknown corner cases.
This information can then be used to define test cases and stage
them on testing sites to collect the necessary data for other sensors
to fully test the system. Besides, since our goal is to enable unusual

driving events collection at very large scale, it is likely to help
identify unusual driving events and develop test scenarios that will
lead to more reliable automated driving systems.

3 SYSTEM OVERVIEW
The system enables scalability through aggressive in-vehicle filter-
ing of sensor data, which reduces the volume of data that needs to
be transferred over a network, ameliorates potential privacy con-
cerns, and saves backend (human) analysis resources. The filtering
removes all data that are not classified as unusual road situations. It
detects unusual events using a two-pronged strategy that monitors
(i) how a human driver, if present, reacts in terms of steering and
braking and (ii) how different the camera inputs are from previously
observed inputs.

In vehicles, the system assumes an on-board device with the
sensing and computational capabilities of a high-end smartphone.
Specifically, it requires a camera, accelerometer and gyroscope
sensors, and processing capabilities to execute neural networks,
and network connectivity to allow collection of data about unusual
events and corner cases. Collected data can be stored and further
analyzed in the backend infrastructure, as shown in figure 1.

The rationale for the first filtering approach, Sudden Reaction
Detection, is that situations that surprise a human driver are more
likely to also challenge an automated driving system than more
standard driving situations. Since deployment on conventional
human-driven vehicles would allow reaching the necessary scale
much more quickly, the system can make use of detailed measure-
ments of the human driver’s sudden steering and braking reactions
to road events.

However, one can also expect situation that does not elicit a
reaction from an attentive human driver, but could confuse au-
tomated driving algorithms. This motivates the two-pronged ap-
proach where the system automatically seeks to identify unusual
road imagery. This could be achieved through a set of classifiers
that watch out for specific situations of interest such as a deer cross-
ing or a stroller on the roadway. This would necessarily require
an enumeration of expected unusual situations and not necessarily
identify the unknown unusual road situations that are the motiva-
tion for this work. For this reason, the second filter, Unfamiliar
View Detection, evaluates how different the image appears from
previously observed road video. In order to efficiently compute
this on an in-vehicle unit, the system employs an autoencoder for
similarity detection. If computation is also available on cloud end,
a fined-grained detection could be performed.

Note that these ideas could also extend to a more complete set
of self-driving sensor inputs that include radar or lidar but that
this design deliberately omits them to illustrate how such a system
could be deployed on large numbers of vehicles without significant
instrumentation cost.

4 SUDDEN REACTION DETECTION
Human drivers’ reactions like hard braking or high speed swerving
usually involve large accelerations and angular speed. Such features
can be captured by the accelerometer and gyroscope of an Inertial
Measurement Unit (IMU) available in many phones, cameras, and
cars. The detector is triggered when the feature score exceeds a
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Figure 1: System overview of unusual events identification.

(a) Braking Event (b) Swerving Event

Figure 2: The accelerometer and gyroscope reading on sam-
ple braking and swerving event.

threshold, which can be chosen as a percentile of the feature value.
Therefore, to identify such sudden reaction events, we propose
a three-stage inertial sensing detection technique leveraging the
IMU potentially available within vehicles. The three-stage detection
mechanism includes Candidate Period Detection, Feature Extraction
and Feature Fusion.

4.1 Candidate Period Detection
When unusual situations happen, human drivers may react with
hard braking or swerving to avoid accidents. This motivates the
first stage of our detection mechanism to identify candidate periods
in terms of braking and swerving events, which show relatively
high amplitudes on the accelerometer and the gyroscope.

Since the pose of the IMU within the vehicle is usually unknown,
the system uses coordinate alignment algorithms to project the
IMU’s reading from its own coordinates system to the vehicle’s
coordinates system. As the vehicle will only sense gravity while
stationary and will have a dominating acceleration component in
the driving direction when accelerating, the vehicle’s coordinate
system can be determined from measurements during these situa-
tions [26]. Besides, we utilize a low pass filter to remove the noise
from the raw IMU’s reading caused by vehicle vibrations and bad
road conditions.

Braking Event Detection. Generally speaking, when a driver
brakes, a large acceleration can be observed in the opposite direction
of the driving direction. Figure 2(a) shows the acceleration trace
of a braking event, in which a negative spike can be observed due
to braking. In order to more accurately capture the bumps that
are actually caused by braking events, a peak detection method
is applied first to find all the negative peaks of the accelerometer
readings on the driving direction, whose value is defined as δp to
quantify the amplitude of braking event as shown in figure 2(a). A
threshold is used to remove noisy peaks such as the ones caused
by road bump vibrations. Then the system searches forward and
backward to find the starting point ts and ending point te of this
bump.

Swerving Events Detection. During swerving events, a driver
usually first turns the steering wheel to one direction quickly and
then turns back to the other direction. This action will result in two
consecutive bumps in opposite directions of the gyroscope readings,
as shown in Figure 2(b). Therefore, we capture such characteristics
by thresholding peaks on gyroscope reading for peak detection, and
then identifying swerving based on a short time interval between
peaks in opposite directions. Similar to the brake detection, δp , ts ,
te is defined as the amplitude of the higher peak, starting point,
and ending point of a swerving event, respectively.

4.2 Feature Extraction
To identify the patterns of interest out of the candidate period
set, we carefully select three feature extraction methods based
on preliminary experiments and analysis. Based on the detected
candidate periods, we first describe a Strawman solution using
the amplitude of sensor readings as a feature to detect unusual
events:

Amplitudes. Due to the large accelerations or gyroscope read-
ings during unusual situations, using amplitudes of such reading as
features seems to be an intuitive solution. Specifically, the sudden
braking events and swerving events could be detected based on a
threshold δp value.

However, this solution does not work well in practice because
the majority of braking events with large acceleration and swerving
events with large angular velocity are normal events like braking
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when facing red traffic lights and swerving-like readings when
changing lanes.

We therefore seek to emphasize more sudden events and propose
Derivative-based as well as Duration-based features to further
characterize detected events.

Derivatives. Since unusual events do not always come with
high-amplitude readings, estimating the urgency or suddeness of
a braking or swerving event is also helpful to determine unusual
events. To this end, we calculate the derivative of acceleration to
represent the urgency of a braking event. Similarly, calculating the
derivatives of gyroscope reading during swerving events is used to
identify urgent swerving events.

Duration. As a sudden braking or swerving event often hap-
pens in a short moment, we can also use the event duration to
detect the urgency of unusual events. As shown in Figure 2, the
duration of braking or swerving events are represented byTb orTs
correspondingly, which is equal to the interval between ts and te .

4.3 Feature Fusion
To effectively take advantage of all three features, we propose a
feature fusion mechanism to combine the three extracted features
(amplitude-based, duration-based and derivative-based) in order to
increase the accuracy of identifying unusual events. This is moti-
vated by preliminary results that showed that there is little overlap
among the detected unusual events with any one of these features.
We design an accuracy driven weight assignment method to assign
weights to different features based on their detection accuracy. The
principle underlying this method is illustrated in Equation 1.

ff usion =
∑
i
wi fi wi =

nfi∑
i nfi

(1)

The fused feature value (ff usion ) of a candidate period is equal
to the sum of each feature value (fi ) multiplied by its weight (wi ).
The value of each feature is normalized to adjust values measured
on different scales to a notionally common scale. Specifically, We
calculate the mean value and standard deviation of each feature,
and use them to shift and scale each feature value. The weight
of each feature (wi ) is calculated based on the detection accuracy.
Specifically, for each feature, we extract the top 5% potential unusual
events and calculate the detected unusual events for each feature
(nfi ). We divide nfi by the sum of detected unusual events for all
features to calculate the corresponding weight (wi ). To design a
general method that works for most real world scenarios, our fusion
weights are generated from a large dataset which contains different
scenarios including highways, local roads, night view roads, etc.
With this method, the system assigns a higher weight for features
with better detection accuracy, while assigning a lower weight to
the one with worse detection accuracy.

5 UNFAMILIAR VIEW DETECTION
Although sudden reaction detection is able to identify events that
surprise human drivers, one can still expect situations that do not
elicit an attentive driver’s reaction but confuse automated driving
algorithms. This motivates identifying unusual road imagery by
evaluating how different the image appears from previously ob-
served self driving training images. Very different, distinct views

may not have been sufficiently represented in training or test cases
and lead to an increased risk of erroneous self-driving decisions.
This can be intuitively implemented by calculating the Euclidean
distances between new image samples and all samples used to
train the automated driving system, but would require tremendous
computational resources. To enable system scalability with limited
in-vehicle computation, we propose two autoencoder-based unfa-
miliar view detectors, (i) a lightweight in-vehicle detector based
on autoencoder’s reconstruction error, and (ii) a joint in-vehicle
and cloud detector based on the autoencoder’s embedded vec-
tors. Although autoencoders were applied to anomaly detection
before [27, 28], to our knowledge, we propose the first design for
driving video data with a novel architecture and loss function of
the auto-encoder. This design of the autoencoder shows better
performance than a naive auto-encoder application.

We develop this technique in the context of automated steering,
since this is a key function of automated driving that usually heav-
ily relies on camera data—data which can also be easily recorded
from human driven vehicles [8]. Our unfamiliar view detectors will
specifically identify corner cases for an end-to-end self steering
systems. We expect though that the design of the detectors can also
be extended to other self driving components that use camera data
as input or where a comparable sensor readings can be collected
from human-driven vehicles.

5.1 Autoencoder and Self-steering Background
Since our proposed unfamiliar view detectors are designed based on
autoencoder for end to end steering systems, we will briefly introduce
background on these two systems.

5.1.1 Autoencoder. An autoencoder is a neural network that is
trained to encode the input in a set of low dimensional represen-
tations, which can be used to reconstruct an output that is nearly
identical to its input. The groundtruth or labels of an autoencoder
are just the input features themselves, therefore an autoencoder is
also considered an unsupervised deep neural network. Internally, it
has a hidden layerh that has a lower number of dimensions than the
number of input dimensions, so that this hidden layer can be trained
to describe an embedded vector used to represent the input. The
network usually consists of two main parts, an encoder function
h = ϕ(x) and a decoder that produce a reconstruction r = ψ (h). An
autoencoder is designed to simply learn the set ψ (ϕ(x)) = x , but
normally will not copy perfectly because the model size is usually
restricted to allow them to copy only approximately, and to copy
only input that resembles the training data. Because the model
prioritizes the aspects of the input which should be copied, it often
learns useful properties of the data.

L(x ,x ′) = ∥x − x ′∥2 = ∥x −ψ (ϕ(x))∥2 (2)
Autoencoders are usually trained to minimize reconstruction

errors, the loss (L(x ,x ′)), which is defined in equation 2. The re-
construction error is a metric to quantify the distance between the
input and reconstructed input, and therefore can be considered as a
difference indicator between the test samples and the training sam-
ples. Since autoencoders are trained to minimize the reconstruction
errors when reconstructing training samples, a test sample which
is similar to training set tends to have lower reconstruction error,
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Figure 3: System overview of autoencoder based unusual event detection.

while a sample which is different from training samples will have
higher reconstruction error.

5.1.2 End to end self steering system. An end to end self steering
system maps raw pixels from a single front-facing camera directly
to steering commands using a convolutional neural network. It is
firstly proved to be powerful by Nvidia’s demo [29] in lane keeping
self driving tasks. Its neural network architecture [30] consists of 9
layers, including a normalization layer, 5 convolutional layers and
3 fully connected layers. The first layer of the network performs
image normalization and the normalizer is hard-coded which is
not adjusted in the learning process. Such normalization in the
network will allow the normalization scheme to be altered with the
network architecture and to be accelerated via GPU processing. The
convolutional layerswere designed based on different size of kernels
and strides. Following five convolutional layers with three fully
connected layers will lead to an output control value, which is the
inverse turning radius. Based on this network architecture, a variety
of end to end steering architectures are proposed. [31][32][33]
utilize similar architecture with different layers and kernels to fit
different input image dimensions. Other [34][35] bring in recurrent
neural networks (RNN), and try to improve the performance by
considering the sequential information from continuous frames.
However, the majority of architectures share the common feature
that starting with some convolutional layers as a feature extractor,
and then use fully connected layers or RNNs to infer steering angles.

5.2 Design
To compare input images with previously observed training views,
we propose a deep neural network architecture, which consists of a
convolutional feature extractor to filter steering sensitive properties

and a familiar view autoencoder to further learn the representa-
tion of well-trained samples in lower dimensionality. As shown in
figure 3, both vehicle end and vehicle-cloud end unfamiliar view
detectors are built based on this network architecture, but utilize
different layer’s output to achieve desired balance between accuracy
and efficiency. In-vehicle detector leverages the outputs from the
decoder of familiar view autoencoder to estimate the distance be-
tween an input sample and the whole training set by evaluating the
reconstruction error. Since reconstruction error is calculated based
on the learned distribution of the whole training set, in-vehicle
detector will have relatively lower accuracy but much less com-
putation cost as it only need perform one time pass of the neural
network. While joint in-vehicle and cloud detector takes the
outputs from the encoder of familiar view autoencoder to check the
distance between the input sample and its nearest neighbours by
encoding training samples into the same space. Such nearest neigh-
bours comparison requires iterating pairwise distance evaluations
on all the known samples, thus takes much more time especially
with large amount training samples but can produce relatively
higher accuracy.

As convolutional feature extractor and familiar view autoencoder
are common modules of both detectors, we will introduce them in
the first two subsections, and then discuss vehicle end and vehicle-
cloud end unfamiliar view detectors’ workflow respectively.

5.2.1 Convolutional Feature Extractor. Since front facing views in-
clude redundancy information that ends to end self steering system
may not concern, we propose to apply a convolutional feature ex-
tractor to filter steering sensitive properties of the inputs before
feeding inputs to the autoencoder. As the convolutional layers in
deep neural networks usually serve as the feature extractor, we
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implement an end to end driving network firstly and then utilize
the convolutional layers as our convolutional feature extractor. As
shown in figure 3, to obtain the convolutional feature extractor, we
implement an end to end self steering deep neural network includ-
ing 5 convolutional layers and 3 fully connected layers. Among the
five convolutional layers, shallow layers which are close to input
layers tend to keep more visual features, while depth layers will
retain more abstract features for steering prediction. To further
reduce the dimensionality and obtain abstract properties that may
affect the final prediction, we choose to use all of the five convolu-
tional layers as feature extractor. The end to end neural network is
similar to Nvidia’s architecture [30], whose strided convolutions are
used in the first three convolutional layers with a 2×2 stride and a
5×5 kernel, and a non-strided convolution is performed with a 3×3
kernel size in the last two convolutional layers. But to get better
performance on our dataset, we tuned our network to use inputs
are from RGB space, take training labels with the steering angle in
terms of radian, and trained only based on the center camera images.
Based on our implementation, the input images will be cropped and
resized to 66×200×3, and the output from convolutional feature
extractor will be 64×18.

As introduced above, the convolutional feature extractor is ob-
tained from the trained end to end driving neural network on the
training set. Given a front-facing camera image X , it will be firstly
processed by convolutional layers c , and then fed to fully connected
layers f for steering angle prediction. Thus, if θ is the ground truth
steering angle for current frame, the end to end steering prediction
error is defined as equation 3, in which the overall end to end steer-
ing prediction process is f (c(X )) and predicted steering angle is
θ̂ .

θerror = θ − θ̂ = θ − f (c(X )) (3)

5.2.2 Familiar View Autoencoder. Convolutional feature extractor
filters out steering sensitive properties, but the extracted feature
vectors of training samples should not be treated equivalently. It is
because the unusual road views that may lead to erroneous steering
predictions, are usually unseen samples which are quite different
from training samples or seen samples but with relatively large
training error. Thus, if a sample is close to well-trained samples,
which have lower steering prediction error θerror among the train-
ing set, it will more likely to be handled well by the model and
identified as a usual familiar view. Besides, extracted feature vec-
tors are still in the order of thousand dimensions, so that a fewer
dimensions encoding will be helpful for larger scale system employ-
ment and data collection. To address such challenges, we design
and implement a familiar view autoencoder, which learns the rep-
resentation of well-trained samples in lower dimensionality based
on extracted feature vectors.

The familiar view autoencoder is designed to have four fully con-
nected layers as shown in figure 3. The first two layers are trained as
an encoder to map input from 1152 dimensions to 256 dimensions,
while the last two layers are trained as decoder to restore the 1152
dimension vectors based on embedded 256 dimension vectors. Each
fully connected layer includes a ReLU activation function to prevent
overfitting. Note that, the hyperparameters of the autoencoder’s

architecture are set empirically to achieve a better performance on
unusual views detection based on current data set scale.

Sample Weighted Loss Function. To distinguish the training
samples with lower steering prediction errors from the ones with
larger errors, we propose a sample weighted loss function to train
the autoencoder. The sample weighted loss function is designed
to assign more weights on well-trained samples, so that the au-
toencoder will focus more on the representation of such samples
which have lower steering prediction error while learning. This mo-
tivates the encoding process of familiar view autoencoder to take
more properties of well-trained samples into account. Therefore,
we define the weightw for each training sample in equation 4.

w =
1

logscalar1 (∥θerror ∥ ∗ scalar2 + bias)
(4)

The θerror is the steering prediction error as defined in equa-
tion 3. scalar1 and scalar2 are the two scalars used to control the
range and density of weightsw . Both scalar1 and scalar2 are mono-
tonically increasing with weight’s value if other parameters are
fixed. scalar1 which is the base of the loд function, decides the scale
of the difference between small θerror samples and large θerror
samples. The bias is the value we set to keep the value in the valid
domain of loд function, which is usually the same value of scalar1.
Therefore, the domain ofw is (0,1], and the weightw value is mono-
tonically decreasing with θerror to guarantee larger θerror will
have less weight while smaller θerror will have larger weight.

L(x ,x ′) = w ∗ ∥c(x) −ψ (ϕ(c(x)))∥2 + L2 (5)

Based on the weights definition, the loss function of familiar view
autoencoder is defined in equation 5. Compared with traditional
autoencoder loss function as introduced in equation 2, different
weights are applied on different samples according to a sample’s
θerror during end to end steering prediction training. This will
put penalties on the samples, which are not trained well on end to
end driving systems, to make sure familiar view autoencoder’s is
trained learn more characteristics of well-trained samples. Besides,
we also add a L2 regularization term on the loss function, which
is defined as the euclidean norm of all the trainable weights in the
autoencoder. This regularization term will help prevent over fitting
and force the weights to be sparse.

5.2.3 In-vehicle detector. To identify unusual imagery, in-vehicle
detector performs unfamiliar view detection based on the recon-
struction error. As introduced above, reconstruction error is a dif-
ference indicator between an input sample and training samples,
so that unusual cases can be automatically identified by reconstruc-
tion error thresholding. Based on trained convolutional feature
extractor and unfamiliar view autoencoder, reconstruction errors
can be obtained through ∥c(x) − ψ (ϕ(c(x)))∥2 by comparing the
difference between an input sample and its corresponding recon-
structed sample produced by the decoder. Since the calculation of
reconstruction error is just one time pass of the neural network,
in-vehicle detector is computational efficient and able to run on
lost cost embedded devices like smartphones.

5.2.4 Joint in-vehicle and cloud detector. Although the in-vehicle
detector can identify unfamiliar images efficiently, it is challenging
to detect unusual cases which do not actually have similar cases
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included in the training set but still relatively close to the majority
of training samples. Such cases might produce lower reconstruction
error but are hard to be handled by end to end driving systems. This
motivates the joint in-vehicle and cloud detector to perform sample-
wise distance comparison based on nearest neighbours instead of
relying on the whole sample set distance evaluation according to
reconstruction error. To enable the scalability for sample-wise com-
parison, joint in-vehicle and cloud detector takes outputs from the
encoder of familiar view autoencoder in vehicle side and then per-
forms k-nearest neighbours (kNN) checking over the cloud. Such
scheme not only guarantees low computational cost in vehicle by
running through part of the trained neural network, but also re-
quires low network bandwidth since only encoded 256 dimensional
floating vectors need to be transferred over the cloud. Therefore,
to identify unusual imagery, an input image will be processed by
convolutional feature extractor and the encoder of familiar view
autoencoder to generate embedded vectors, then evaluated based
on the mean distance of k nearest neighbors in the embedded space.
The embedded vectors of the training samples will be pre-stored in
the cloud to reduce the computation overhead.

6 EVALUATION
We evaluate our unusual event identification system with respect
to (i) the accuracy of unusual driving event detection, (ii) the ef-
ficiency of the proposed unusual event detection system, and (iii)
the usefulness of extracted unusual events.

6.1 Dataset Description
We use two different data sets to evaluate the performance of our
unusual events detection system. The sudden reaction detection
is evaluated with a 120-hour dataset collected in Los Angeles, CA.
In this dataset, we use GoPros mounted at the bottom center un-
der the windshield to record the full driver’s front view videos
with 1280×720 resolution at 30 Fps . The 200Hz accelerometer and
400Hz gyroscope readings are also recorded using the embedded
inertial sensors in GoPros. The data collection is finished by ten
different drivers under different road situations, including urban
road, highway roads in both daytime and nighttime.

Since this dataset we collected does not have accurate driver’s
steering angle while driving, we use a dataset from Udacity end-
to-end driving challenge [36] to train and evaluate our unfamiliar
view detection method. Note that the driver’s steering angle is nec-
essary since it will be used twofold during the experiments. Firstly,
it is used to train an end to end driving neural network, part of
which will serve as the feature extractor. Then, it will also be used
to evaluate whether the unusual views we identified will cause
poor steering angle prediction performance in automated driving
systems. The dataset contains 33,808 images with a resolution of
640×480 recorded by the center front facing camera including vari-
ous driving conditions, such as different sunlight conditions, roads
of different lanes, etc. The videos are recorded in 20Fps , and steer-
ing angles are logged in 50Hz and interpolated to be synchronized
with the front view video frames.

6.2 Unusual Event Detection Accuracy
Our system can achieve high unusual event detection accuracy for
both sudden reaction detection and unfamiliar view detection, as
shown in Table 1. Setting 98 percentile of the fused feature value
as the threshold, sudden reaction detection can achieve 53.16% and
63.16% accuracy for unusual braking events and swerving events
respectively. Note that the detection accuracy is low because there
are plenty of general sudden maneuvers performed by drivers, such
as aggressive driving behaviors, sudden braking towards red traffic
lights, etc., which were detected by our method but not labeled as
unusual events in the evaluation. If the 98th percentile is also used
for reconstruction error thresholding in unfamiliar view detection,
the accuracy of in-vehicle detector is 71.43% and vehicle-cloud end
is 80.30% 1. A sample of detected unusual events are shown in
figure 4. Figure 4(a) and 4(b) are detected by the driver’s sudden
reaction based on the IMU data, and figure 4(c) 4(d) 4(e) are captured
by unfamiliar view detector since they are relatively unusual in
the dataset. Detailed evaluation procedures are introduced in the
subsections below.

Methods Proposed Method (%) Baseline (%)

Sudden Reaction Detection
for Braking Events 53.16 29.11

Sudden Reaction Detection
for Swerving Events 63.16 31.58

Vehicle End
Unfamiliar View Detection 71.43 64.53

Vehicle-Cloud End
Unfamiliar View Detection 80.30 64.53

Table 1: Unusual event detection accuracy versus base-
line/strawman solution accuracy for four methods.

6.2.1 Sudden Reaction Detection Evaluation. To demonstrate the
performance of the sudden reaction detection method, we compare
the proposed feature fusion detectionmethodwith the Strawman so-
lution 2 as well as the approaches which filter unusual events based
on the derivative and duration feature individually. Specifically,
detected candidate periods are sorted in terms of the amplitude
of accelerations, derivative of accelerations, duration of braking
events, and the fused value of all the features respectively for brak-
ing event, according to Section 4. Then, unusual braking events are
identified by thresholding the four metrics values to a percentile of
threshold. Same process also applied for swerving detection based
on gyroscope reading.

We find 3987 braking events and 981 swerving events in total
over the 120 hours driving data. Thresholding the 95th percentile of
braking feature values and the 90th percentile of swerving feature

1Unusual view detection will be determined as correct if its corresponding steering
prediction error is larger than the median.
2The Strawman solution is used as baseline technique for comparison.
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(a) Swerving to avoid a tire segment (b) Braking due to a cut-in vehicle (c) Special lightening condition (d) Complex roadside lighten-
ing condition

(e) Unusual traffic and vehicle
pose

Figure 4: Examples of detected unusual events.
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Figure 5: Evaluation Results of Sudden Reaction Detection.

values 3 will filter out 199 braking events and 98 swerving events
respectively, and the number of unusual events among them are
shown in Figure 5(a). The unusual events are manually labeled
in terms of whether the driver was surprised to perform sudden
reactions for the unusual cases, but the usual sudden maneuvers
such as aggressive driving behaviors, sudden braking towards red
trafficlights, etc., are not included. Among 199 detected braking
events, feature fusion approach extracts 71 unusual braking events,
which surpasses the amplitude (36 detected), duration (44 detected)
and derivative (61 detected) based approaches. Similarly, 27 sudden
swerving events are detected out of 98 chosen swerving events with
the feature fusion approach, which is better than other approaches
(13, 24 and 19 sudden swerving events detected correspondingly).
Since the length of unusual events captured by feature fusion is
0.25 hours out of 120 hours driving, our sudden reaction detection
can largely save the bandwidth by only uploading detected unusual
situations.

To further explore the relationship between sudden reaction de-
tection accuracy and percentile of threshold value for each method,
we plot the accuracy for braking events detection in Figure 5(b) and
swerving events detection in Figure 5(c). We can observe that as
the percentile of threshold increasing, the detection accuracy all of
the four methods are getting higher. Among the four approaches,
our proposed fusion method performs better than the other three
methods. Since the dataset is too large to label ground truth for
every event, we do not evaluate the recall of this approach in this
paper.
3We chose 90 percentile as threshold for swerving events because smaller amounts of
swerving events are included in the dataset.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

Amplitude

Duration

Derivative

Fusion

(a) Braking Events ROC Curve

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

Amplitude

Duration

Derivative

Fusion

(b) Swerving Events ROC Curve

Figure 6: Evaluation Results of Sudden Reaction Detection.

Besides the precision improvement, our system also achieves a
high estimated recall compared to the baseline approaches. Due to
the large amount of manual effort needed to label the large video
dataset with ground truth, we limited labeling to 40% of events with
at least one high feature value (a total of 1878 labeled events) and
calculate recall over this dataset as an estimate for overall recall.
Figure 6 shows the ROC curve of our braking events detection and
sudden swerving events detection methods correspondingly. We
can observe that the feature fusion approach achieves the highest
area under the curve (AUC) value, which indicates the performance
improvement compared to baseline approaches.

6.2.2 Unfamiliar View Detection Evaluation. In this section, we
evaluate our unfamiliar view detection method by comparing the
proposed two detectors (in-vehicle detector and joint in-vehicle and
cloud detector) with a baseline approach. In particular, we randomly
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Figure 7: Sample input images and corresponding recon-
structed images of baseline autoencoder.

sampled 80% of video frames from the Udacity dataset [36], and
use them to train all of the three models. The rest of 20% of video
frames are served as test set to evaluate the performance in terms
of detection precision and recall.

Baseline Model. In order to show the advantage of our in-
vehicle and joint in-vehicle and cloud detectors, we compare our
system with a baseline model which uses the raw training images
as input for the autoencoder. The baseline model also includes 4 lay-
ers: (i) a convolutional layer taking inputs images with 60×200×3
dimensions and apply a [5, 5] kernel, (ii) a fully connected layer
further encode inputs to 256 dimensions. (iii) a fully connected layer
to decode the inputs from 256 dimensions, and then (iv) a deconvo-
lutional layer to reconstruct input images back to 60×200×3 dimen-
sions also with a [5, 5] kernel. The baseline autoencoder is trained
on the same training set as used for our proposed autoencoder.
Figure 7 shows that the baseline autoencoder is able to reconstruct
the input images to similar lossy images, since the embedded layer
is much smaller than the original input. Thus, the reconstruction er-
ror of baseline autoecnoder can also indicate the distance between
a test sample and the training set.

Precision. To evaluate unfamiliar view detectors, we define p in
equation 6 as the detection accuracy, which represents the precision
for binary classification task. Since unfamiliar view detection aims
to identify the corner cases which are challenging for end to end
self driving system, we determine a correct unusual detection if the
sample’s steering prediction error θerror is larger than a threshold
threθ .

p =
number of detected events whose θerror > threθ

number of detected events
(6)

Figure 8 shows the detection accuracy p with respect to (i) dif-
ferent thresholds value to identify unusual events and (ii) different
threθ to determine correct detections. As illustrated in the legend,
the red, blue and yellow curves in the figure represent the detection
accuracy p of three approaches respectively. x axis is defined as
threshold value to identify unusual events, which is percentile of re-
construction error for baseline detector and in-vehicle detector, and
the percentile of 20 nearest neighbour’s distance for joint in-vehicle
and cloud detector. The threθ is set to 50 percentile, 70 percentile,
90 percentile of the steering prediction error on test set to define
different correct unusual events detections.

We can observe that all the curves have larger p while the thresh-
old value of x axis increases. This verifies our motivation that driv-
ing views which have larger distances with previously observed
views are more likely to get poor steering predictions. When x axis
value is close to 0, the curves start from 0.5, 0.3, 0.1 respectively,

which is basically random guess. However, as the distance threshold
on x axis increasing to a larger value, such as 90 percentile, p boost
to a very high accuracy. This illustrates that the events which have
large distances namely very different from the training samples
are more likely to confuse end to end driving system and get poor
predictions.

For the baseline autoencoder, although it can also quantify the
distances between test samples and training samples, the accuracy
p is not as high as the two other approaches. It is because that the
reconstruction error of baseline autoencoder’s is estimated with-
out discrimination, while our familiar view autoencoder uses the
feature map from the convolutional feature extractor and focuses
on the well-trained samples through weighted loss function. Thus,
our approach drops the redundant information and emphasizes
more on the information end to end driving model cares about.
Besides, the droppings of p at the tails of baseline autoencoders
curves also show that even though some images may visually differ-
ent from training set, they still work for steering prediction model
with similar feature vectors of training samples. For the compar-
ison between in-vehicle detector and joint in-vehicle and cloud
detector, the latter one is usually more accurate, since it performs
fine-grained sample-wise calculation as discussed in section 5.2.
Therefore, the experiments show that our unfamiliar view detectors
can accurately detect unusual events which self driving models fail
to perform good predictions.

Area under the curve. To further explore the performance of
unfamiliar view detectors, we plot the Receiver Operating Charac-
teristic (ROC) curves in figure 9 with 90 percentile steering predic-
tion error to define unusual events. The area under the curve (AUC)
of baseline, in-vehicle, joint in-vehicle and cloud detectors are 0.59,
0.64, 0.75 respectively. Although our proposed detectors work better
than baseline detection, they still do not achieve a high AUC score.
This is because that the trained end to end driving model could
not work well on the views which are similar to previously seen
training samples and causes a lower true positive rate. Therefore, it
is important to consider the balance between a detector’s ability to
capture most of unusual events and the cost of network bandwidth
for data transmission as high recall to extract more unusual events
will bring more false positive detection. Under the context of large
scale employment and data collection, the system will more likely
to focus on extremely unusual cases with minimum bandwidth
which prefers a higher precision.

6.3 Efficiency of Unusual Events Detection
As the unusual events identification system is built towards large
scale employment based on off-the-shelf devices, we further explore
the time and space efficiency of our method. Since sudden driver re-
action detection through inertial data is computational inexpensive
and does not require extra storage to perform the detection, we only
focus on the efficiency evaluation on unfamiliar view detection in
this section.

The space requirement of baseline autoencoder and in-vehicle
detector are evaluated through the size of inference graph in ten-
sorflow. To obtain the inference graph, we run through the freezing
and optimizing scripts of tensorflow to organize the trained model
with only inference required nodes. The size of inference graphs for
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baseline autoencoder and in-vehicle detector are 321MB and 6MB
respectively as shown in figure 10. We also evaluate the baseline au-
toencoder and in-vehicle detector based on the number of floating
points operations (FLOP), which can be used to roughly estimate
the time cost of models. The FLOP of both models are counted by
the benchmark script provided by tensorflow. As shown in the fig-
ure 10, baseline autoencoder model include 211.74 MFLOPs, which
is much higher than online in-vehicle detector’s 56.39 MFLOPs.
In addition, we also run the in-vehicle detector on a Nexus 5X
Android smartphone, and each frame takes around 58ms to pro-
cess, which showing a 17Hz inference capability. Therefore, the
in-vehicle detector has higher efficiency in terms of both time cost
and space requirement, and is applicable for real-time employment
on off-the-shelf smartphones. Regarding joint in-vehicle and cloud
detector, it will be more computational expensive since its complex-
ity is proportional to the number of training samples, and requires
significant space due to the storage of training sample vectors.

6.4 Usefulness of Unusual Events
In this section, we show that the unusual events extracted by our
unfamiliar view detection method can increase the performance of
end to end driving system for more complex situations. Specifically,
we add the detected unfamiliar events into the training set of the
end to end steering system and explore the performance on different
test sets.

First, based on the dataset from Udacity as introduced in sec-
tion 6.1, we use 80% of the samples to train an end to end driving
model Modeloriginal and the rest of 20% samples as the test set
Testoriginal. To get new training samples, we use another dataset
also provided by Udacity[37], which is collected with the same
experiment setup, but mostly driving on roads with heavier traffic.
Among this dataset, first 10,000 samples are picked as a sample pool
and the next 1000 samples are used as the new test set Testnew .
The new training sets include original training samples as well as
1000 new samples, which are selected from the sample pool by two
different strategies. One strategy randomly selects new samples
from the sample pool, and the other one utilizes in-vehicle detector
to pick 1000 unfamiliar views. We call the model trained with the
first strategy Modelrandom, and the second model Modelunusual. To

evaluate the overall performance on both datasets, we combine the
samples from Testoriginal and Testnew as Testall.

All of the three different models are evaluated on three differ-
ent test sets in terms of the absolute mean error of steering pre-
diction, and the performance is shown in Figure 11. For the new
test set Testnew, Modeloriginal performs worst since it had never
trained on those roads. Modelrandom shows better performance than
Modeloriginal, since the new training set contains randomly selected
views with the same road condition.Modelunusual further shows
performance gain, which illustrates that the unfamiliar cases iden-
tified by our method is more representative of the new dataset and
improve the model performance on the new route more efficiently.
For the original test set Testoriginal, Modelunusual andModelrandom’s
accuracy are slightly lower thanModeloriginal, since they are trained
to handle more cases, which create a neglectable performance com-
pensation on Testoriginal. From the results based on the overall test
set Testall, Modelunusual still shows the best performance than the
other two, which shows the detected unusual events are able to
increase model’s overall performance and robustness on different
roads and traffic conditions.

7 RELATEDWORK
Detecting unusual events is of great importance to driving assis-
tant system developments, since the analysis of such corner cases
will be helpful to improve current systems [4, 30–35, 38]. There
has been extensive research on vehicle sensing and unusual events
detection based on inertial measurements. [9] utilizes the IMU of
smartphones to detect and differentiate vehicle maneuvers, but only
focusing on steering related maneuvers. [10] also take inertial read-
ing from smartphones, and then perform aggressive driving style
recognition based on dynamic time warping. However, such algo-
rithm could only detect known aggressive driving patterns, while
not diverse human driver reactions which are naturally performed
during emergency periods. [11] is close to our vision that identifies
unusual events based on inertial measurements, but the proposed
solution heavily relies on large number of thresholds which are
defined based on the amplitude of sensor readings. Besides, there
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are some other driving sensing techniques built upon IMU, but to-
wards different goals, such as [39] for drunk detection, [26, 40, 41]
for driver determination, and [42, 43] for driver tracking, etc.

As visual imagery captures vehicle’s surrounding condition and
moving pattern, vision based techniques are also used to detect
unusual driving situations. [12] [13] [14] leverage the spatial and
temporal information from videos to detect high level anomaly
patterns by comparing with previously observed views. While [15]
and [16] specialized on concrete type of road emergency detection
such as a collision based on vehicle tracking. However, these ap-
proaches rely on a fixed point of view, such as video feeding from
surveillance camera, thus are not suitable for on-board imagery
processing. [17] and [18] are able to utilize on-board cameras to
capture unusual cases, but only cover on a subset of challenging
situations such as abnormal pedestrian movements and unclear
drivable roads.

Another body of work focuses on exploring the weakness and
vulnerability of current self driving systems. [19][20][21] could be
used to generate the synthetic cases which systems tend to have
erroneous behaviors, but such situations can not extend the cov-
erage of real unusual cases. [22] explored the robustness of traffic
sign recognition model under physical world attacks. However, a
detection mechanism for such attacks was not covered.

8 DISCUSSION
As more unusual driving events get collected by our proposed
system, the previously obtained training set need to be extended
to cover more diverse cases. This will require the familiar view
autoencoder to be re-trained with more number of observations.
Depending on the order of increased training samples, the familiar
view autoencoder may have to incorporate more neurons and more
layers to achieve equivalent detection performance. Such updates
on the network architecture will increase the computational cost of
the familiar view autoencoder with larger trained network size and
longer processing time. To mitigate the computation requirement
on the vehicle, the decoder and reconstruction error check module
of the detector could be shifted to the cloud. Since the computa-
tional cost of the autoencoder is not proportional to the number of
samples, the shifting is only necessary when the size of the training
set is very large.

The low cost design of our unusual identification approach could
enable large scale data collection potentially through crowd sourc-
ing, but privacy could be a concern. When unusual events are
recorded, drivers’ privacy may be compromised by the imagery
and inertial sensor readings, such as visited location which can
be inferred from the front view camera, and driving decisions for
an emergency event sensed from inertial sensor. Therefore, the
vehicle end software may need additional functionality to buffer
the detected unusual events and only upload the events if the driver
confirms that there is no privacy concern. Besides, as the scale of
crowd sourcing increases, the heterogeneity of mobile devices may
become another challenge. For the inertial based sudden reaction
events, there may be differences in sample frequency and sensi-
tivity but we expect this to cause relatively low accuracy loss. It
would be more challenging for the unfamiliar view detection to run

on heterogeneous cameras with different resolutions and intrinsic
parameters but this can be addressed in future work.

9 CONCLUSION
In this paper, we aim to automatically identify unusual driving
events to allow scaling the collection of driving data and corner
cases to a much larger fleet of human-driven vehicles without re-
quiring upload or human review of all data. The proposed system is
able to capture various unusual circumstances, including hazardous
event like sudden braking and swerving events through a three-
stage process involving inertial sensing and detecting outliers of
current trained self-driving systems based on autoencoder deep
neural network. The evaluation is based on more than 120 hours
of real road driving data and shows that it outperforms baseline
methods on unusual event with 82% accuracy improvement over
baseline on sudden reaction detection and above 71% accuracy on
unfamiliar views identification. The event identification process
requires only inertial measurements and front view driving videos,
allowing collection of data from smartphones or dashcams. The
computational cost is only subject to the complexity of our pre-
trained neural network. Thus, the light-weight design and minimal
infrastructure requirement of this approach will allow large-scale
unusual driving events identification and collection. We hope that
an extensive dataset of driving corner cases collected with this
approach would provide a better understanding of potential limita-
tions of current systems and accelerate the development of robust
automated driving technology.
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