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Abstract—Given the increasing popularity of mobile and wear-
able devices, this paper explores the potential use of inertial
sensors that are widely available on mobile and wearable devices
for vehicle and driver tracking. Such a capability would enable
novel classes of mobile safety and assisted driving applications
without relying on information or sensors in the vehicle. Although
inertial sensors have been widely used in motion tracking,
existing approaches cannot distinguish the motion of the vehicle
and the device’s motion in the vehicle. Additionally, the noise
exerted from the electronic components in the vehicle and the
ferromagnetic frame of the vehicle distorts the inertial sensor
readings. This paper introduces a method to separately estimate
the orientation of both the vehicle and the sensor by tracking the
earth’s magnetic field and the electromagnetic distortion from
the vehicle, as measured by a magnetometer in addition to a
gyroscope and an accelerometer. Specifically, the vehicle noise is
used to estimate the orientation of the sensor within the vehicle
while the earth’s magnetic field combined with vehicle noise is
used to estimate the vehicle’s heading. Our on-road experiments
show that the technique is able to estimate the sensor orientation
with a mean error of 5.61o for the yaw angle and 3.73o for the
pitch angle, as well as able to estimate the vehicle heading with
a mean error of 4.12o.

Index Terms—Orientation Estimation, Driver Activity Track-
ing, Wearable computing, IMU Sensors, Smartphone-based sens-
ing, Driver Safety

I. INTRODUCTION

Inertial sensors on wearable and mobile devices have led to
a great number of applications in activity tracking and have
created new forms of human-computer interaction. Their use
in driving applications can enable new unobtrusive advanced
assisted driving systems and safety applications without rely-
ing on sensors installed in the vehicle. Providing such services
from a single device allows quicker dissemination of new
safety services into legacy vehicles and eliminate the problems
related to multiple sensors. The sensor placed on the driver’s
arm as a smartwatch or a fitness tracker could detect driver’s
arm movements and could be used to estimate steering wheel
movements [13], [16] which then could be utilized for many
driving safety and assisted driving applications. Additionally,
inertial sensors in head-mounted devices such as Google Glass
could be used for tracking the driver’s head movements as
in Fig. 1. Such movements could give accurate information
about the driver’s focus of attention or lack thereof. Head
tracking could be used to enable assisted driving applications
by providing contextual information or warnings to drivers
based on where the driver turns his head. Such services require

Fig. 1. An example inertial sensor placement on the head mounted device
such as Google Glass

accurate tracking of vehicle motion and the mobile’s sensor
orientation in the vehicle.

Existing solutions. Nowadays, many vehicles come with
seat occupancy sensors. Some newer models of vehicles come
with driver tracking technologies based on a driver’s steering
wheel movements [3], [4] or eye tracking [6]. However,
these approaches require manufacturers to place sensors in
the vehicle and most of these sensors are only available in
newer and pricier car models. In order to make this feature
more available in other vehicles, researchers have used mobile
phones to track driver head movements by using smartphone
cameras [24], [1]. Although this approach removes the burden
of sensor placement, the driver activity tracking provided by
these models are very limited and susceptible to visual oc-
clusions. Additionally, these methods utilize computationally
expensive machine vision methods. Only recently have there
been studies investigating the use of wearable devices to track
driver behaviors [13], [27]. Although these methods estimate
both the vehicle’s and the user’s movements, they require
an additional reference sensor to be placed in the vehicle to
separate the mobile device’s movements from those of the
vehicle reference frame.

We propose a single-sensor motion and orientation tracking
method that does not require an additional reference sensor to
track the vehicle’s motion. The method is able to separate the
vehicle’s motion from the sensor’s motion in a moving vehicle
even when the motions occur simultaneously. The method
estimates the vehicle’s magnetic field which occurs naturally
due to ferromagnetic materials used in the vehicle and uti-
lizes this magnetic noise as a reference to vehicle’s heading
direction. The method then uses the relative angles between



Fig. 2. System overview

vehicle’s magnetic noise and earth’s magnetic field to estimate
the vehicle’s heading angle as well as sensor’s yaw and pitch
angles. We studied how the measured magnetic field changes
as the vehicle and the sensor rotate and developed models
to estimate the vehicle’s heading angle from magnetometer
measurements.

The contributions of our work are summarized as follows:
• Analyzing the magnetic noise in the vehicle and modeling

how magnetic field measurements change during vehicle
and sensor turns.

• Providing a mechanism that can estimate the character-
istics of the vehicle’s magnetic noise in the vehicle for
orientation estimation.

• Proposing an approach that eliminates the reliance on
multiple sensors, which previous studies had utilized, and
evaluating the method with field experiments.

II. BACKGROUND

There have been active research efforts in reinforcing driv-
ing safety by tracking driver’s behaviors leveraging mobile
sensing technologies on the smartphone (including using cam-
eras, embedded sensors, and other auxiliary devices such as
OBD-II in mobile devices or vehicles). In particular, several
previous studies use cameras placed on the vehicle to track
driver attention and predict driver maneuvers. Oliver et al. [19]
use manually annotated driver’s gaze from cameras placed in
the vehicle to predict driver maneuvers such as lane change
and turning. However, this approach needs information about
where the driver’s visual attention is focused, which is not
readily available on current HMD and mobile devices. Several
other studies [14], [9] gathered head or eye poses with com-
puter vision techniques and used machine learning algorithms
to predict the maneuvers. These studies reveal the correlation
between driver’s head movements and vehicle’s maneuvers.
Doshi et al. [9] also state that head pose tracking systems
are more robust than gaze tracking and for the lane change
detection systems head pose is a better cue than eye gaze.

In contrast, other works rely less on specific phone place-
ment and more on motion sensing through phone’s embedded
inertial sensors. Chen et al. [8] develop a vehicle steering
detection middle-ware to detect various vehicle maneuvers,
including lane changes, turns, and driving on curvy roads.

Liu et al. [17] design a simple setup to collect useful driving
data for self-driving with a smartphone. Castignani et.al. [7]
propose SenseFleet, a driver profile platform that is able
to detect risky driving events independently on a mobile
device. Wang et al. [27], [28] utilize embedded sensors in a
smartphone and a reference point (e.g., an OBD device) in the
vehicle to determine whether the phone is on the left or right
side of the vehicle. However, most of these approaches can
only infer the vehicle’s motion based on the inertial sensing
measurements from the smartphone, which can hardly track
driver behavior inside the car.

The emerging market of wearable devices provides the
opportunity to track the motion of human body components.
For example, wrist-worn smartwatches or fitness bands can
be used to track human’s hand and arm [23], [26], [21],
[25], while smartglasses and other head-mounted displays
(VR, AR) can be used to track head positions and orienta-
tions [15], [11], [32], [10]. However, tracking human body
inside the vehicle is challenges. As the vehicle is a non-inertial
system, the motion of the vehicle generates large noise to
the inertial sensor measurements, which significantly reduce
the tracking accuracy of those previous algorithms. Previous
works [13], [17], [12] use the inertial sensor measurements
from both the smartphone and smartwatch to estimate the
human motion. The basic idea is to use the smartphone to
track vehicle motion, and derive the human motion inside the
car by eliminating the vehicle motion from the smartwatch.
However, this approach requires both the smartphone and
smartwatch to work jointly. In our work, we can track both the
vehicle and human motion with only one single inertial sensor,
leveraging the in-vehicle magnetic noises. The idea of using
the magnetic noise from surroundings for sensing purposes
has been adopted in several previous works, including parking
space sensing [2], human walking direction sensing [22], and
near-field communication [20]. Our work turns the vehicle’s
magnetic noise from foe to friend, and use it to differentiate
the in-vehicle human motion with the vehicle motion.

Applications. Estimating the sensor’s and the vehicle’s
movement from a single-sensor could enable many useful
applications and eliminate the problems related to multiple
sensors in prior models mentioned above. The sensor placed
on the driver’s arm as a smartwatch or a fitness tracker could



Fig. 3. Magnetic field measurements 1) Outside of the vehicle 2) On Vehicle floor, Engine off 3) On floor, Engine on 4)On seat, engine off 5) On seat,
engine on 6) On seat, Vehicle Moves. The small peaks occurs when sensor rotates along its x-axes

detect proper steering such as whether the driver turned the
steering wheel properly when making a turn or is able to
keep the vehicle in the lane. This model can detect any
inconsistency between the steering wheel and the vehicle
movements. In turn, this data can be used to detect external
factors, such as sliding vehicles due to road conditions. Then,
such information can be crowd-sourced to warn other drivers.
Drowsy driving can be also detected by comparing inconsis-
tencies in the driver’s steering through wearable sensor’s such
as smartwatches. Similarly, arm tracking models could also
enable gesture-based interactions with infotainment systems.
For example, the driver may be able to turn the volume up
or down with arm movements over the steering wheel without
actually turning the steering wheel, creating a safer driving
experience with fewer distractions.

Another body of applications could be enabled by inertial
sensors in head-mounted devices such as Google Glass. Head-
mounted devices could be used for tracking the driver’s head
movements. Such movements could give accurate informa-
tion about the driver’s focus of attention or lack thereof.
Headtracking systems could detect the driver’s errors such
as not checking the mirrors before changing lanes or not
checking the sides for oncoming traffic before making a
turn at an intersection. Head tracking data could be used to
enable assisted driving applications by providing contextual
information or warnings to drivers based on where the driver
turns his head. Just like inertial sensors on smart-watches,
head-mounted devices can be also used for simple interactions
with the infotainment system. A nodding gesture could be
detected by the sensor to select or affirm the option on the
current infotainment system. All of such applications will
create a safer driving experience for the driver and eliminate
distractions which may otherwise be caused by such wearable
devices.

Compared to previous work, our approach does not rely
on the sensors that may not be found in every vehicle.
Additionally, the method does not require computationally
intensive computer vision algorithms and does not suffer from
visual occlusions. The primary advantage of the method is that
it only requires single device with inertial sensors that can be
found in most of the mobile and wearable devices.

Fig. 4. Magnetometer readings inside and outside of the vehicle when earth’s
magnetic field rotate

III. SYSTEM DESIGN

Figure 2 illustrates the system overview of the proposed
single-sensor tracking approach. Our method first profiles the
characteristics of the vehicle’s magnetic field from magne-
tometer readings. The parameters calculated in the profiling
stage can then be used to correct vehicle noise from the
inertial sensor readings to estimate the vehicle’s heading
direction. Finally, sensor’s rotation with respect to the vehicle
is estimated from vehicle’s heading, profile parameters, and
sensor readings. Furthermore, Sensor’s orientation with respect
to the earth can be calculated from the vehicle’s and sensor’s
orientation.

A. Challenges

The main challenges lie in separating the vehicle’s motion
from the sensor’s motion in the vehicle by using a single
sensor. The inertial sensor readings are affected by both the
vehicle’s movements and the sensor’s movements. As an ex-
ample, the accelerometer readings taken from a head mounted
device will be affected by the linear acceleration of the head,
centripetal force due to the head turn, linear acceleration of the
vehicle, the centripetal force due to vehicle turn and gravity. In
addition to this ambiguity in the source of the movement, there
are many sources of noise that exist in the vehicles such as
vibrations and magnetic noise due to the vehicle’s ferromag-
netic structure. Although the vibrations could be eliminated by
using low-pass filters, the magnetic noise constitutes a greater
problem that requires further attention. Inertial sensors utilize
magnetometers as a 3D compass to track the magnetic north



(a) Sensor Turn (b) Vehicle Turn

Fig. 5. Vehicle’s magnetic noise (Hv), Earth’s magnetic field (He) and Sensor measurement (Ht) during a) sensor turn b) vehicle turn

pole of the earth. This, combined with the gravity measured
by the accelerometer, is used to estimate the orientation of
the sensor in the North-East-Down (NED) coordinate frame.
However, the magnetometer readings exhibit a shift due to the
magnetic noise in the vehicle. Furthermore, the magnetic noise
depends on the metallic structure of the vehicle as well as the
sensor’s proximity to the metallic surfaces. Therefore, there
is a greater challenge in eliminating the effect of magnetic
noise on the sensor’s movements and hence, the data collected.
Moreover, one could expect that the magnetic noise in the
vehicle can also be affected by the means of the changes
in the electrical signals in the vehicle. In our experiments,
however, we have not observed such a change around the
driver/passenger seat area where the users usually use their
wearable devices.

B. Approach

The unique insight is to exploit the vehicle’s magnetic noise,
which is normally considered a problem, as a beacon for
vehicle’s orientation. By keeping track of vehicle’s magnetic
noise and the earth’s magnetic field, we estimate the vehicle’s
heading and the sensor’s orientation in the vehicle. During
vehicle or sensor turns, the magnitude of earth’s magnetic field
and the vehicle’s magnetic noise remain constant. However,
the direction of these magnetic fields might change during
vehicle and sensor turns. Therefore, the angle (α) between
these magnetic vectors and the total magnetic field measure-
ment will change accordingly. Our approach first estimates
the angle between these vectors based on the magnetic field
measurement. Then, based on the angle, we calculate the
vehicle’s heading. Finally, we estimate the sensor’s orientation
in the vehicle.

We will introduce the characteristics of the vehicle’s mag-
netic field in the next subsection. Then we will define how
the magnitude of the magnetic field measurement changes
during vehicle and the sensor turns. Finally, algorithms will
be introduced in detail.

C. Vehicular Magnetic Noise

Due to ferromagnetic materials used and the electrical cur-
rent running in the electrical system of the vehicle, the vehicle
affects the magnetic field inside the vehicle. Although these
effects might vary from vehicle to vehicle, they can be grouped
into two categories. First, the hard iron distortion which is
produced by materials that exhibit a constant magnetic field
and is added to earth’s magnetic field. In Fig. 3, we have
depicted the magnetometer sensor readings at various positions
by holding the sensor stable for a while and then making two
turns around its x-axis. The turns around x-axes could be seen
as 12 small peaks in the figure. The measurements shown in
the first region of the graph are taken outside of the vehicle in
an open field and therefore, purely depict the earth’s magnetic
field. As the sensor rotates on its x-axes, the reading on the y
and z-axes also vary in a sinusoidal shape. The second region
of the graph shows how the sensor reading changes after the
sensor is placed on the floor of the vehicle when the engine
is not running. As the sensor is placed in the vehicle, the
magnetic field introduced by the vehicle is added to earth’s
magnetic field.

In the third region, the engine starts running. Regions 4-6
are measured while the sensor is placed on the car seat. We
can observe small changes in magnetometer readings around
t=150s which is due to sensor’s positional change from car
floor to the seat. In region 4, the engine is not running. In
region 5 engine starts running and finally in region 6, the
vehicle starts moving. We can observe that the magnetic field
does not change between regions 2-3 and 4-6. Therefore, we
can conclude that the magnetic field measurements are mostly
affected by the sensor’s position in the vehicle and are not
affected by the engine run. We believe the static magnetic
noise sources are more dominant than the dynamic noise
produced by the alternating electrical signals in the vehicle.
We have verified this conclusion with three different vehicles,
namely Hyundai Tucson, Mercedes Benz GLC, and Honda
Civic.

The second body of effects is the soft-iron effect. Soft-
iron affects change the magnitude of the magnetometer mea-



surements. In magnetometer readings, soft-iron effects could
be observed as different amplitudes on different axes as the
sensor rotates in a constant magnetic field such as the earth’s
magnetic field. In Figure 4, we have plotted magnetic field
measurements when the earth’s magnetic field rotates in the
case of the sensor is outside of the vehicle (blue circle) and
inside of the vehicle (red circle). To obtain the data points in
the blue circle, we have simply rotated the sensor outside of the
vehicle and measured the earth’s magnetic field. For the sensor,
this will result in the earth’s magnetic field rotating around
it. However, rotating the sensor does not result in depicting
only the earth’s magnetic field inside of the vehicle since the
vehicle’s magnetic field is also involved in this test. However,
when the vehicle turns, the vehicle’s magnetic field is constant
and only the earth’s magnetic field will be rotating for the
sensor. In our experiments, we have not observed significant
soft-iron effects inside the vehicle. Therefore, vehicle ignited
soft-iron effects has been disregarded for the sake of simplicity.

In addition to hard-iron and soft-iron effects introduced by
the vehicle, the electrical components on the sensor board also
introduce hard-iron and soft-iron effects. Since any magne-
tometer sensor zero flux offset is also independent of sensor
orientation, it simply adds to the sensor board’s hard-iron
component and is calibrated and removed at the same time.
However, both hard-iron and soft-iron effects are not vehicle
specific and require a very standard procedure to calibrate.
Therefore, these calibrations are carried out separately and will
not be discussed in this paper.

D. Magnetic Field During a Turn

For the purpose of clarity, we introduce how the magnetic
field measurements vary as the vehicle or the sensor in
the vehicle rotates. As we have explained in the previous
subsection, we have neglected the soft-iron effects that vehicle
introduces, therefore the vehicle’s magnetic field can be simply
represented as a vector hv(t). Similarly,the earth’s magnetic
field is denoted as he(t) and sensor measurement ht(t) can
be calculated as :

ht(t) = hv(t) + he(t) (1)

Additionally from cosine law in vector addition,

‖ht(t)‖2 = ‖hv(t)‖2+‖he(t)‖2+2∗‖hv(t)‖·‖he(t)‖·cos(α)
(2)

Since, the magnitude of he(t) and hv(t) don’t change
with time, ‖ht(t)‖2 can be used to calculate α. We will now
describe how α changes during sensor and vehicle turn.

Sensor turn in the vehicle. During a sensor turn in the
sensor coordinate frame, both the vehicle’s magnetic field and
earth’s magnetic field will be rotating along the rotation axis.
Therefore, the sensor will be measured ht(t) as a vector
rotating along the rotation axis where an example is illustrated
in Figure 5a. The measurements will lie on the circle at the
base of a cone where the cone’s apex is the origin and the slant
of the cone is the rotation axis. As the sensor turns, hv(t) and
he(t) will be constant with respect to each other and the α

angle between them does not change. Hence, the magnitude
of the ht(t) does not change as well.

Vehicle turn. During the vehicle’s turn, the vehicle and
sensor turn simultaneously. Therefore, the sensor measures
hv(t) as a constant. On the other hand, the earth’s magnetic
field will be rotating with respect to the sensor. This will result
in ht a circle. The circle would be formed by static he(t) and
a rotating he(t) added to he(t). This could be visualized as
a cone where the cone’s apex is hv(t) since it is static and
the base circle is formed by rotating he(t) around the apex of
the cone. The slant of the cone is the vehicle’s rotation axes
and γ, vehicle’s heading angle is also illustrated in Figure 5b.
From Eq.2, ||ht(t)|| changes as the vehicle rotates.

E. Initial Vehicle Magnetic Field Profiling

For accurate vehicle heading and sensor orientation estima-
tion, several parameters need to be profiled. The first obvious
parameter is the magnitude of the car’s magnetic field. The
second group of parameters defines how the α angle maps to
the vehicle’s heading angle. For profiling, we use a single 360o

vehicle turn. Although some previous studies [31] require a
vehicle turn to sense vehicle dynamics, our approach requires
this turn only once for profiling and the same profiling can be
used for consecutive trips.

One can assume that hv(t) can be simply estimated by
subtracting he(t) from ht(t). Although ||he(t)|| can be
estimated or retrieved from online magnetic field calculators
for given latitude and longitude, estimating its direction in
the vehicle is not a trivial task. In early stages of our system
design, we have tried the following approach: First, measure
the earth’s magnetic field he(t0) when the sensor is outside
of the vehicle right before the sensor enters the vehicle. Then
use gyroscope based orientation estimation for a short-time
to estimate he(ti). The main reason we relied on gyroscope
based orientation is that the magnetometer-based approaches
do not work when the sensor enters the vehicle due to
vehicle’s magnetic field. We have empirically observed that
this approach suffers from gyroscope drift problems even when
used for a short time period. However, we use hvrough as a
rough estimation to choose one of the two possible candidate
points which we introduce in the next paragraph.

As an alternative, we used the ht(t) measurements during
a 360o vehicle turn. As mentioned in the previous subsection,
during the vehicle’s turn hv(t) should be on the apex of the
cone.Therefore by finding the apex of the cone, we can esti-
mate the hv(t). Additionally, ht(t) measurements lie on the
base circle and are ||he(t)|| away from the apex, hv(t). For
given ht(t) measurements during vehicle turn and ||he(t)||,
two possible cones could be formed. We choose the cone
whose apex is closer to hvrough and use its apex as hv since
the gyroscope based estimation and the magnetometer-based
estimation must be consistent. Here, hv is car’s magnetic
field for the static reference frame defined by the sensor’s
coordinate frame during profiling. We choose this coordinate
frame as vehicle’s coordinate frame and define the heading of
the vehicle with respect to this orientation and denote vectors



Fig. 6. Arduino controlled sensor setup

represented in this coordinate frame with left superscript such
as ∗hv.

In addition to hv, we define hcenter as the center of the
base circle. and two perpendicular vectors e1 and e2 as shown
in Figure 5b. Although the center of the base circle, e1 and
e2 vectors will change with the sensor’s orientation in the
vehicle, their relationship, such as dot product, with hv(t) are
independent of sensor orientation and will not change as the
sensor rotates.

F. Orientation Estimation

Next, we are going to define equations that we use to es-
timate the vehicle’s heading, sensor’s orientation with respect
to the vehicle and earth.

Vehicle heading estimation. In order to estimate sensor’s
orientation, we first need to estimate the vehicle’s heading.
This requires mapping the angle between he and hv, α, that
we obtained from Eq.2 to vehicle’s heading angle γ. First,
from dot product rule :

∗he · ∗hv = ‖he‖‖he‖cos(α) (3)

∗he can be also written,
∗he = ∗ht − ∗hv (4)

Similarly ∗ht can be represented as,
∗ht = ∗hcenter + e1 ∗ cos(γ) + e2 ∗ sin(γ) (5)

where e1 and e2 are defined in profiling stage and illustrated
in Fig.5b. By combining Eq.3 and Eq.5 and carrying out
equations:

γ1,2(t) = ±(asin(
‖hv‖‖he‖cos(α)− (∗hcente · ∗hv) + ‖hv‖2

d

− asin(
e2 · ∗hv

d
))

where d is equal to
√

(e1 · ∗hv)2 + (e2 · ∗hv)2). Since asin
is defined in [0 π], There are two possible γ values. To choose
the correct γ(t) value, we utilize gyroscope measurements.
The algorithm makes an estimate from previous γ(t− 1) and
gyroscope measurement φx(t) :

Fig. 7. Mean Vehicle Heading Estimation Error when vehicle is placed at 90
to 360 degrees with 90 degree increments. Blue bars indicate mean error, red
bars show minimum and maximum error.

γestimate = γ(t− 1) + φx(t) ∗∆t (6)

and assigns the closest γ1,2(t) to γestimate as γ(t). How-
ever, this selection operation might cause fluctuations in
heading estimation. For this reason, we have implemented
a temporal filtering approach which requires at least two
consequent samples to switch from one selection to the other.
This selection process can be improved by better temporal
filtering approaches.

In-vehicle Sensor Orientation Estimation. Sensor orien-
tation estimation is straight forward. From given γ(t), e1, e2
and ∗hcenter, ∗ht(t) can be calculated from Eq.5. Rotation
vector that, Rin(t), transforms ∗ht(t) to sensor’s coordinate
frame representation ht(t) can be calculated in angle-axes
form by using Matlab’s built-in command vrrotvec with ht(t)
and ∗ht(t). Rotation vector than can be converted to rotation
matrix, Rin(t), with vrrotvec2mat or to euler angles with
rotm2eul command.

Universal Sensor Orientation Estimation. Sensor’s orien-
tation with respect to earth can be calculated by :

Re(t) = Rin(t) ∗

1 0 0
0 cos(γ(t)) −sin(γ(t))
0 sin(γ(t)) cos(γ(t))


IV. PERFORMANCE EVALUATION

During our study, we have conducted two sets of experi-
ments. The objective in the first set of experiments was to
estimate the vehicle’s heading angle. The second part of the
evaluation aims to find the sensor’s orientation, namely yaw
and pitch angles, by eliminating vehicle’s motion from sensor
motion. Finally, we compare these results with computer
vision based methods and [13] which requires two sensors
to estimate the sensor’s roll angle.

A. Experiment Setup

We have developed an Arduino controlled setup to simulate
sensor movements in the vehicle. The Arduino controller is
used to send commands to step motors to turn the sensor to



(a) Sensor Yaw Error (b) Sensor Pitch Error

Fig. 8. Mean sensor orientation estimation error when sensor is placed at 30 to 360 degrees with 30 degree increments. Estimation Error for a)Sensor Yaw
Angle b) Sensor Pitch Angle. Blue bars indicate mean error, red bars show minimum and maximum error

specific angles. We have placed the sensor on a 3D-printed
spinning wheel with one degree of freedom, i.e yaw. Both
spinning wheel and Arduino controller are placed on a wooden
plank so as to prevent introducing further magnetic noise.
The sensor setup is placed in the passenger seat around the
headrest position. However, as the sensor rotates, it is possible
for the 3D printed wheel to get very close to the headrest,
which might have ferromagnetic materials inside. When the
sensor approaches any ferromagnetic materials, the magnetic
field might vary as the sensor rotates. Therefore, we have
empirically chosen a placement point where the sensor is not
affected by the ferromagnetic properties of the headrest as
it rotates. The sensor placement in the vehicle is shown in
Figure 6.

In a standard data collection session, we begin with rotating
the sensor 360o placed outside of the vehicle in an open
field. We use this data for standard magnetometer calibration.
Next, we take the sensor into the vehicle and place it in
the aforementioned position. Then we make a 360o vehicle
turn while the sensor is fixed for the profiling. The rest of
the experiment involves evaluating vehicle heading estimation
and sensor orientation estimation with respect to the vehicle.
For the vehicle heading estimation stage, we have placed the
vehicle at heading angles between 0o to 360o with 90o incre-
ments. The heading angles for the ground truth are determined
by aligning vehicle with lines at the parking lot which are
perpendicular to each other. For sensor orientation estimation,
the sensor makes 30o turns between 0o to 360o angles while
the vehicle is driven freely without any restrictions such as
route, speed, or direction. We placed the step motor vertically
and horizontally for yaw and pitch estimation, respectively.
We took the input of the step motor as ground truth for sensor
orientation estimation. The step motor can be rotated with
2.81o increments. The experiments are performed by three
different drivers and two different cars, a Hyundai Tucson and
a Mercedes Benz GLC.

B. Vehicle Heading Estimation Evaluation

In our first experiment, we have tested vehicle heading
estimates of the algorithm by rotating the vehicle in 0o to
360o range with 90o increments. The ground truth angles
are obtained by aligning the vehicle with the perpendicular

lines in the parking lot. Data is collected at each angle 10
times at different random positions. The results are plotted in
Figure 7. The average error is 4.57o with a standard deviation
of 2.97o. We observed minimum errors when the vehicle is
placed at 180o. The error goes as low as 0o degrees for 180o

and 360o while goes as high as 10o when the vehicle is placed
at 90o. We have observed a mean error of 6.86o, 3.9o, 4.61o,
2.92o when the vehicle’s heading angle is 90o, 180o, 270o,
360o, respectively. We believe the deviations in these errors
could be due to vehicle’s imperfect placement each time the
specific angle is tested since a slight shift in the vehicle parking
direction could cause a couple of degrees of error.

The other body of evaluation is conducted when the sensor
turns while the vehicle is fixed. The vehicle heading estimate
of the system was also fixed as expected with only a couple of
exceptions for the data collected sensor orientation estimation.
We believe these exceptions occur due to switches in selection
from γ1,2(t) as mentioned in Section III-F

C. Sensor Orientation Estimation Evaluation

To evaluate the sensor orientation estimation, the sensor
is rotated with 30o counter-clockwise increments while the
drivers were instructed to drive freely. The results from 480
turns are plotted in Figure 8. We have obtained yaw and pitch
angles by placing the Arduino controller setup horizontally
and vertically. The results for yaw angle estimation is plotted
in Fig. 8(a). We have observed a mean error of 5.61o with a
standard deviation of 3.46o. We observed the minimum error
when the sensor is at 180o and the maximum error when
the sensor is at 270o. We also tested the sensor orientation
estimation when the sensor is fixed and the vehicle is making
360o turns and observed 8.89o ripples on average. We believe
this residual effect of vehicle turns might be the main source
of errors in the yaw estimation.

The results for pitch angle estimation is plotted in Fig. 8
(b). We have observed mean error of 3.73o with a standard
deviation of 1.51o. Overall, the error was less than 8o and
was less than the error we encountered for the yaw angle
estimation. This might be due to residual effects of the vehicle
turn might be stronger for the yaw angle since both vehicle
turns and sensor’s yaw rotation are in the same direction. We
believe these results could enable many safety applications.



Mean Absolute Error
Publication Yaw Pitch

Yan[30] 6.72 8.87
Ba[5] 8.8 9.4

Murphy-Chutorian[18] 6.4 5.58
Xiao[29] 3.8 3.2

Single-Sensor 5.61 3.73
TABLE I

THE COMPARISON IN TERMS OF ACCURACY WITH COMPUTER VISION
BASED HEAD POSE ESTIMATION STUDIES.

For example, a wrist-worn-sensor based steering wheel track-
ing system with a standard deviation of 3.90o could detect
vehicle slips greater than 10o with an error rate of 10%. The
details of estimation can be found in our previous paper [13].

A comparison of our results with computer vision based
head pose estimation methods are given in Table IV-C. We
have chosen these studies over many others since they have
achieved best accuracy results for different datasets. Yan and
his colleagues [30] were able to perform 6.72o and 8.87o man
absolute error for yaw and pitch estimation on the CHIL-
CLEAR07 dataset. Ba and Obodbez [5] proposed a method
to estimate head pose with 8.8o and 9.4o yaw and pitch errors
on IDIAP Head Pose dataset. Murphy-chutorian and Trivedi’s
head pose estimation system for driver assistance systems was
able to achieve 6.4o yaw and 5.58o pitch errors on the CVRR-
363 dataset. Our single-sensor orientation estimation system
was able to achieve higher accuracy than these aforementioned
systems without relying on computationally expensive com-
puter vision techniques. On the other hand, Xiao et al [29]
recorded a better performance than our approach with 3.8o and
3.2o yaw and pitch angle errors on BU Face Tracking dataset.
However, this method was only tested for only controlled room
environment and the in-vehicle performance is unknown.

Finally, we compared our single-sensor approach to our
previous two-sensor approach [13]. In this work, we used
the inertial sensors on the mobile phone to track vehicle
movements and sensors on a smartwatch to track driver’s arm
movements. We estimated only arm’s roll angle by using fused
orientation information obtained from Android API and per-
formance of this approach for yaw and pitch error estimation
was not calculated. The comparison is illustrated in Fig. 9.
Since this work only was evaluated for [0o, 30o], (30o, 60o],
(60o, 90o] roll angle intervals, we are able to compare our
system with the results at these angles only. Overall, our
system’s pitch angle estimation is almost as good as the two-
sensor based approach. A 3.4o mean error was obtained in
two-sensor solution while a 3.73o degree error was achieved
in our system. On the other hand, the single-sensor yaw angle
estimation with an overall mean error of 5.61o is less accurate
than two-sensor roll estimation. The yaw angle estimation we
achieved in our study were 4.25o, 4.87o, and 5.07o while
pitch angle estimation accuracy was 3.25o 4o 4.50o and two-
sensor roll angle estimations of 1.7o 2.73o 4.38o mean errors
for sensor angles in [0o, 30o], [30o, 60o], (60o, 90o] ranges
was achieved. Overall, the single-sensor algorithm produces
slightly less accurate results when compared to the two-sensor
studies. These slight differences may be due in part to the

Fig. 9. Comparison of mean error between two-sensor based roll estimation
and single sensor based yaw and pitch estimation.

inefficiency of eliminating vehicle movements. Additionally,
the two-sensor approach utilizes gyroscope, accelerometer and
magnetometer sensors for rotation estimation. In Android API
implementation, the orientation is estimated by integrating
angular velocity measured through gyroscope and corrected
by using magnetometer and accelerometer sensors to eliminate
gyroscope’s drift error. The pitch and roll angle correction
is mostly affected by accelerometer readings since they are
perpendicular to gravity. On the other hand, yaw rotation
axis is parallel to gravity and gravity measurement doesn’t
change with the yaw angle. Therefore magnetometer readings
are mostly used to correct yaw estimation and more affected
by the disturbances and noises in magnetometer data. This
might cause larger errors in yaw angle estimation and very
similar accuracy results on single-sensor based pitch angle
estimation and two-sensor based roll angle estimation. Finally,
the methods introduced in this paper

V. LIMITATIONS AND FUTURE WORK

There are several limitations of this work due to the nature
of the car’s magnetic field. First and most obvious one, similar
to a compass at the north/south poles struggling to show the
compass heading, the algorithm’s accuracy at rotation accuracy
would decrease as the earth’s magnetic field and gravity
vectors have similar directions. In other words, as the earth’s
magnetic field gets closer to gravity, the information it relays
loses its significance. This has another implication for the
magnetometer in the vehicle, as the vehicle’s magnetic field’s
direction gets closer to the gravity’s direction, it becomes
impossible to find the sensor’s orientation with respect to the
vehicle.

One of the important limitations of this work is that the
method assumes the magnitude of vehicle’s magnetic field
doesn’t change. However, the magnetic field might vary as
the sensor approaches ferromagnetic materials in the vehicle.
We believe the approach will perform especially well where
the sensor’s translational motion is limited, e.g. head-mounted
devices. Also, our system does not use noise cancellation
methods such as drift correction. It would be interesting future
work to experiment how the performance would be changed by
incorporating these methods. The system performance could
be improved for changing vehicle magnetic fields in future
work. Additionally, analysis of the vehicle’s magnetic field



for translational movement might lead to interesting research
finding and might be used for sensor positioning.

VI. CONCLUSION

In this paper, we proposed a system that allows monitoring
vehicle and driver motion, namely vehicle’s heading and
sensor’s yaw and pitch angles, using only one tri-axial inertial
sensor, which may be found in various mobile and wearable
devices. It estimates the magnetic noise of the vehicle and its
effect on the data through magnitude-based noise estimation
method. The approach proposed here eliminates the reliance on
multiple sensors, which previous studies had utilized. Reliance
on a single sensor, which is directly placed on the body or
close vicinity of the driver, can estimate sensor orientation
with a mean error of 5.61o for yaw angle and 3.73o for pitch
angle for our limited dataset while the vehicle was driven
freely. We believe this method is especially suitable for head
tracking applications where the sensor’s translational motion
is limited. The data derived from this method can, in turn, be
used to determine unsafe driving and help improve driving.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. CNS-1329939,
and CNS-1409811.

REFERENCES

[1] ionroad. https://ionroad.com/.
[2] Maryam Arab and Tamer Nadeem. Magnopark-locating on-street

parking spaces using magnetometer-based pedestrians’ smartphones. In
Sensing, Communication, and Networking (SECON), 2017 14th Annual
IEEE International Conference on, pages 1–9. IEEE, 2017.

[3] Mercedes-Benz Attention Assist. https://www.mbusa.com/mercedes/
benz/safety#module-3.

[4] Volvo Driver Alert Control. https://www.volvocars.com/us/about/
our-innovations/intellisafe.

[5] S Ba and Jean-Marc Odobez. From camera head pose to 3d global
roomhead pose using multiple camera views. In Proc. Int. Workshop
Classification Events Activities Relationships, 2007.

[6] Cadillac Driver Attention Camera. http://www.cadillac.com/
world-of-cadillac/innovation/super-cruise.html.
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