Cutting the Cord: Designing a High-quality Untethered VR
System with Low Latency Remote Rendering

Luyang Liu', Ruiguang Zhong®, Wuyang Zhang", Yunxin Liu*,

Jiansong Zhang?, Lintao Zhang*, Marco Gruteser’

TWINLAB, Rutgers University
{luyang, wuyang, gruteser}@winlab.rutgers.edu
*Microsoft Research
{yunxin.liu, lintaoz}@microsoft.com

ABSTRACT

This paper introduces an end-to-end untethered VR system design
and open platform that can meet virtual reality latency and quality
requirements at 4K resolution over a wireless link. High-quality
VR systems generate graphics data at a data rate much higher than
those supported by existing wireless-communication products such
as Wi-Fi and 60GHz wireless communication. The necessary image
encoding, makes it challenging to maintain the stringent VR latency
requirements. To achieve the required latency, our system employs a
Parallel Rendering and Streaming mechanism to reduce the add-on
streaming latency, by pipelining the rendering, encoding, transmis-
sion and decoding procedures. Furthermore, we introduce a Remote
VSync Driven Rendering technique to minimize display latency. To
evaluate the system, we implement an end-to-end remote rendering
platform on commodity hardware over a 60Ghz wireless network.
Results show that the system can support current 2160x1200 VR
resolution at 90Hz with less than 16ms end-to-end latency, and
4K resolution with 20ms latency, while keeping a visually lossless
image quality to the user.

CCS CONCEPTS

+ Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; - Computer systems organization
— Real-time system architecture;

KEYWORDS
Virtual Reality, Low latency, Untethered, High-quality, 60GHz

ACM Reference Format:

Luyang Liu®, Ruiguang Zhong®, Wuyang Zhang’, Yunxin Liu*, Jiansong
Zhang”, Lintao Zhang*, Marco Gruteser. 2018. Cutting the Cord: Designing
a High-quality Untethered VR System with Low Latency Remote Rendering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiSys’18, June 10-15, 2018, Munich, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5720-3...$15.00

https://doi.org/10.1145/3210240.3210313

$Beijing University of Posts and Telecommunications

bu@bupt.edu.cn
Alibaba Group
muduan.zjs@alibaba-inc.com

In Proceedings of MobiSys’18. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3210240.3210313

1 INTRODUCTION

Virtual reality systems have provided unprecedented immersive
experiences in the fields of video gaming, education, and healthcare.
Reports forecast that 99 million Virtual Reality (VR) and Augmented
Reality (AR) devices will be shipped in 2021 [1], and that the market
will reach 108 billion dollars [2] by then. Virtual and augmented
reality is also a key application driver for edge-computing and
high-bandwidth wireless networking research.

Existing VR systems can be divided into two categories: High-
quality VR and standalone VR systems. Due to the requirements of
high quality and low latency, most high-quality VR systems, such
as HTC Vive [3] and Oculus Rift [4], leverage a powerful desktop
PC to render rich graphics contents at high frame rates and visual
quality. However, most of these solutions are tethered: they must
be connected to a PC via a USB cable for sending sensor data from
the Head Mounted Display (HMD) to the PC and an HDMI cable
for sending graphics contents from the PC back to the HMD. These
cables not only limit the user’s mobility but also impose hazards
such as a user tripping or wrapping the cable around the neck.
Standalone, portable VR systems such as Samsung Gear VR [5] and
Google Daydream [6] run VR apps and render graphics contents
locally on the headset (or a smartphone slide in the headset). Those
VR systems allow untethered use but the rendering quality is limited
by the capability of the headset or smartphone. There has been
extensive demand for such untethered high-quality VR systems.

Untethered high-quality VR is highly desirable but extremely
challenging. Ideally, the cables between the VR HMD and PC should
be replaced by a wireless link. However, even existing high-quality
VR systems operate at 2160x1200 resolution and 90Hz, which gen-
erates a data rate much higher than those supported by existing
wireless-communication products such as Wi-Fi and 60GHz wire-
less communication. The necessary image encoding, makes it dif-
ficult to maintain the stringent VR motion-to-photon latency re-
quirements, which are necessary to reduce motion sickness.

VR applications have motivated much wireless research to real-
ize robust, high-capacity connectivity, for example in the 60 GHz
range. Most existing research has independently focused on opti-
mizing the wireless link [7-10] or the VR graphics pipeline [11, 12].

https://doi.org/10.1145/3210240.3210313
https://doi.org/10.1145/3210240.3210313
https://doi.org/10.1145/3210240.3210313

MobiSys’18, June 10-15, 2018, Munich, Germany

To enable high-quality VR on smartphones, Furion [11] separates
the rendering pipeline into tasks to render the image foreground
and tasks to render the image background, so that the background
rendering tasks can be offloaded over commodity Wi-Fi. Other
emerging systems such as TPCAST [13] and DisplayLink [14] re-
place the HDMI cable with a wireless link to enable untethered VR
experience with remote rendering and streaming. However, none
of them studied systems issues and optimization opportunities that
arise when combining rendering, streaming, and display. Further-
more, it is still challenging to enable untethered VR for future 4K
or 8K systems with framerates larger than 90Hz. Additionally, we
discover that displaying remote-rendered frames on an HMD may
also introduce extra latency due to the VSync driven rendering and
display policy.

To overcome these challenges and facilitate such research, we
propose an open remote rendering platform that can enable high-
quality untethered VR with low latency on general purpose PC
hardware. It reduces the streaming latency caused by frame render-
ing, encoding, transmitting, decoding and display through a Parallel
Rendering and Streaming Pipeline (PRS) and Remote VSync Driven
Frame Rendering (RVDR). PRS pipelines the rendering, encoding,
transmission, and decoding process. It also parallelizes the frame
encoding process on GPU hardware encoders. The RVDR technique
carefully schedules the start time of sensor acquisition and render-
ing new frames on the server side so that the result arrives at the
display just before the VSync screen update signal, thus reducing
latency caused by the display update.

To evaluate the system, we implemented the end-to-end remote
rendering platform on commodity hardware over a 60GHz wireless
network. The result shows that the system supports existing high-
quality VR graphics with a latency of less than 16ms. We further
show promise to support future VR systems with 4K resolutions
with a latency up to 20ms. To facilitate widespread use of this
platform, it is currently designed as a software system using only
general-purpose GPU and network hardware. Performance could
also be further improved through hardware implementations of
key components.

The contributions of this work are:

e Quantifying component latency in an end-to-end wireless
VR system and identifying the impact of the screen refresh
(VSync). §2

o Designing a pipeline of Parallel Rendering and Streaming to
reduce the streaming latency caused by encoding, transmit-
ting and decoding the frames. §4

e Developing a method of Remote VSync Driven Rendering to
adjust the timing of sensor data acquisition and rendering
of a new frame based on the screen refresh timing (VSync
signal) on the client side. §5

e Implementing and evaluating an open end-to-end remote
rendering and streaming platform based on the system on
commodity hardware over a 60GHz wireless network. §6

o Showing that the platform can support the current 2160x1200
VR resolution and the 4K resolution at 90Hz within 20ms
latency over a stable 60GHz link even without complex mod-
ifications of the rendering process. §7

Luyang Liu et al.

2 CHALLENGES AND LATENCY ANALYSIS

Designing a high-quality untethered VR system is extremely chal-
lenging due to the stringent requirements on data throughput and
end-to-end latency. Assuming we use three bytes to encode the
RGB data of each pixel, for HTC Vive and Oculus Rift with a frame
rate of 90Hz and a resolution of 2160x1200, the raw data rate is
5.6Gbps, much higher than the data rate (e.g., less than 2Gbps)
supported by existing wireless-communication products such as
Wi-Fi and 60GHz wireless communication. For future VR targeting
at a resolution of 4K UHD or even 8K UHD, the required data rate
would be as high as 17.9Gbps and 71.7Gbps, respectively.

To address the challenge of high data throughput, data com-
pression is necessary. However, high-quality VR also requires a
very tight total end-to-end (i.e., motion-to-photon) latency of 20-
25ms [12] to reduce motion sickness. That is, once the HMD moves,
the system must be able to display a new frame generated from the
new pose of the HMD within 20-25ms. As compressing and decom-
pressing frames introduce extra latency, it is even more challenging
to meet the end-to-end latency requirement.

Latency analysis. We use the following equations to model the
end-to-end latency of our proposed untethered VR system with
remote rendering:

Teze = Tsense + Trender + Tstream + Tdisplay (1)

Tstream = Tencode + Ttrans + Tdecode (2)
FrameSize

T = 3

trans Throughput)

Te2e is the total end-to-end latency in generating and displaying
a new frame. It consists of four parts: the time for the rendering
server to retrieve sensor data from the HMD (Tsepse); the time
for the rendering server to generate a new frame (Ty¢pq4¢,); the
time to send the new frame from the rendering server to the HMD
(Tstream); and the time for the HMD to display the new frame
(Ta ispl ay)~

Tstream is the extra latency introduced by cutting the cord of
a tethered VR system. It has three parts: the time to compress a
frame on the rendering server (T,,¢ode); the time to transmit the
compressed frame from the rendering server to the HMD over
a wireless connection (T;rgns); and the time to decompress the
received frame on the HMD (Ty.code)- Ttrans is decided by the
compressed frame size and the data throughput of the wireless
connection.

Taisplay also introduces significant latency. In modern graphics
systems, frame displaying is driven by VSync signals that are peri-
odically generated based on the screen refreshing rate. If a frame
misses the current VSync signal after it is received and decoded on
an HMD, it must wait in the frame buffer for the next VSync signal
before it can actually be displayed on the screen (see more details
in §5). For a frame rate of 90Hz, the average waiting time is 5.5ms.
Such an extra latency may significantly impact the performance of
a high-quality untethered VR system, and thus must be carefully
mitigated as much as possible.

For the total 20-25ms budget of Te2¢, Tsense is small (less than
400us in our system with a WiGig network). Ty, 4o may be 5-11ms

Cutting the Cord: Designing a High-quality Untethered VR System

Client

Parallel Rendering and Streaming

|

|

! | |
| | { Rendering |::> Rendering : |
: I Left Eye Right Eye 1
| I !
[e 2 I
b= = = I

I[(— Parallel Streaming N !

Decoder 1 | | i |
e 1| pr—
ncode

Decoder 2 Fralme | : ‘ Virtual Encoder 1.2 [: |

|

Decoder 3 : |: ‘ Virtual Encoder 2.1) ::I

| I Virtual Encoder 2.2 !

Decoder 4 | = _)J |
1

Figure 1: System architecture.

depending on the rendering load. With a Ty;p;4y of 5.5ms, we have
less than 10ms left for Tgtreqm, including encoding, transmitting
and decoding a frame, which makes it a very challenging task to
meet the latency requirement of high-quality VR.

In this paper, we focus on minimizing Ts;reqm to reduce the
end-to-end latency T,ge. This is mainly done through parallelizing
frame rendering and frame encoding by leveraging the hardware
capability. We cannot change Tsense and Tyepger- However, by
carefully arranging the timing of rendering new frames with the
latest pose of the HMD, we are able to reduce the frame waiting
time for VSync signals, and thus reduce Ty;spqy-

Next, we describe our system design and the key techniques on
how to address the challenges.

3 SYSTEM OVERVIEW

Figure 1 shows the system architecture of our proposed untethered
VR system with remote rendering. At a high level, it has two parts
connected through a wireless link: an HMD as the client and a PC as
the rendering server. The HMD client tracks the pose of the player
and the timing of its VSync signals and sends the recorded data to
the rendering server. If the player uses extra controllers to play the
game, the client also sends the controller data to the server. Using
the data received from the client, the server renders new frames,
compresses and transmits them to the client. Upon receiving a new
frame, the client decompresses and displays it on the HMD. The
wireless link can be WiFi or 60GHz wireless communication such
as WiGig. In our implementation, we use WiGig for its high data
throughput and low latency.

To reduce the latency of streaming frames from the rendering
server to the HMD client, we develop two key techniques. The
first technique is Parallel Rendering and Streaming (PRS). PRS takes
advantage of the two-eye image rendering nature in VR. Once the
left eye image is rendered, PRS immediately sends it to the hardware
encoder for compression. At the same time, PRS continues to render

MobiSys’18, June 10-15, 2018, Munich, Germany

the right eye image, enabling simultaneous rendering and encoding.
PRS further divides the image of each eye into two slides for parallel
four-way encoding to fully utilize the hardware encoding capability.
After a frame slide is encoded, it is immediately sent to the wireless
link for transmission, without waiting for the whole frame to be
compressed. Similarly, once the HMD receives a frame slide, it also
immediately starts to decompress it, without waiting for the other
frame slides. Consequently, we achieve parallel frame rendering,
encoding, transmission, and decoding, and thus significantly reduce
the latency.

The second technique is Remote VSync Driven Rendering (RVDR).
The key idea of RVDR is to reduce display latency by deciding when
to acquire head tracking sensor data and render a new frame based
on the timing of the VSync signals of the HMD client. To do so,
the client keeps tracking the time of its last VSync signal and the
display delay of the last frame. Based on these timing information,
the rendering server decides whether to start earlier to render the
next frame so that the next frame can meet the next VSync signal
on the client, or to slightly postpone the sensor acquisition and
rendering of the next frame so that it arrives closer to the VSync
signal and display latency is reduced. This is effective because the
frame can be rendered with the latest possible pose of the HMD and
thereby reduce motion-to-photon latency. As a result, we further
reduce the display latency and minimize the rate of missing frames
to maximize the user experience.

In our design, the HMD client uses dedicated hardware video
codecs (e.g., H.264) to decode the frames rendered on the rendering
server. We choose this design because hardware video codecs have
a small size and consume a low power. Prior studies [11, 15] have
shown that it is not practically feasible to decode frames using CPU
or GPU on an HMD, due to the high decoding latency and high
power consumption. Hardware video codecs are mature and cost-
effective techniques, widely used in smartphones, tablets, laptops
and many other devices. Thus, integrating hardware video codecs
into HMDs is a practical solution to enable high-quality untethered
VR systems.

4 PARALLEL RENDERING AND STREAMING
PIPELINE

In this section, we introduce how we use the Parallel Rendering
and Streaming (PRS) mechanism to minimize the streaming latency
(Tstream) on commercial VR platforms. PRS consists of two parts:
simultaneous rendering and encoding, and parallel streaming. To-
gether, they build a parallel frame rendering and streaming pipeline
to reduce the streaming latency.

4.1 Simultaneous Rendering and Encoding

Rendering a frame with rich graphics contents may take a long
time (e.g., longer than 5ms) even on a powerful VR-ready GPU
(e.g., Nvidia Titan X). As we cannot simply reduce frame quality to
save frame-rendering time, we must find other ways to mitigate the
impact of the long frame-rendering time on the end-to-end latency.
To this end, we propose the approach of simultaneous rendering
and encoding, to allow starting to encode a frame while it is still
being rendered.

MobiSys’18, June 10-15, 2018, Munich, Germany

l" “Parallel 7|
Left Eye Image | Encodmg

Display

|_Stream 1

| Stream 2

Decoder 1

Decoder 2

Right Eye Image

Decoder 3

Decoder 4

r‘_—_—____—
[i,

0

=3

[}

o

3

@

Figure 2: Simultaneous rendering and encoding with 4-way
parallel streaming,.

Simultaneous rendering and encoding is feasible due to two rea-
sons. First, we observe that rendering a VR frame is typically done
in three sequential steps: (1) render the left eye image, (2) render the
right eye image, and (3) apply lens distortion on the whole frame
so that the frame can be correctly displayed on a VR headset. This
sequential rendering of the two-eye images provides an opportu-
nity for us to start to encode the left eye image before the right
eye image is fully rendered. Second, modern GPUs have dedicated
hardware encoders and decoders that are separate from the GPU
cores used for rendering VR frames (e.g., CUDA cores in Nvidia
GPUs). Therefore, we may leverage the dedicated hardware en-
coders to compress a frame without impacting the performance of
VR rendering.

Specifically, in simultaneous rendering and encoding, we re-
design the VR rendering procedure to the following 6 steps: (1)
render the left eye image, (2) apply lens distortion on the left eye
image, (3) pass the distorted left eye image to the encoding pipeline
in a separate thread, and at the same time (4) render the right eye
image, (5) apply lens distortion on the right eye image, (6) pass
the distorted right eye image to the encoding pipeline in another
separate thread. Note that only steps (1), (2), (4), and (5) execute on
the main rendering thread, while steps (3) and (6) execute on two
separate encoding threads using hardware-based encoders. These
encoding operations mainly consume the hardware-based encoder
resources with light CPU usage, and thus do not block or slow
down the frame-rendering pipeline inside the GPU.

Traditional video streaming approaches usually also use hardware-
based encoders to accelerate the video-encoding procedure. How-
ever, they keep waiting for a frame being fully rendered before
passing the entire frame to a hardware encoder. Such a design
largely increases the end-to-end latency, which is fine to video
streaming with a low frame rate (e.g., 30 fps) and without user
interactions, but it is not acceptable in high-quality interactive VR
systems.

4.2 Parallel Streaming

To further reduce the streaming latency, we propose to use a multi-
threaded streaming technique to encode the image of each eye in

multiple encoding threads. This is because almost all high-performance

GPUs support more than one video encoding session [16] and each
encoding session generates its own encoding stream independently.

Luyang Liu et al.

Streaming
Latency

Baseline R N E N I D

Simultaneous
RIENENTEN D

Rendering and R ‘ T D
Encoding H

Streaming
Latency

ImREN Rendering

BNENN Encoding
WD | Transrpission

i Streaming__} D Decoding

° Latency

With 4-way 'E. mD

Parallel Streaming

Figure 3: Illustration of parallel rendering and streaming
(PRS) pipeline.

Consequently, by dividing an image into multiple slides and encod-
ing each slide using different encoding sessions in parallel, we can
reduce the total encoding time. In our system, we cut the image
of each eye into two slides and compress each slide in a separate
video stream. In total, we have four slides of the two eyes for 4-way
parallel streaming. On the client side, multiple decoding sessions
are used to decode each image slide in parallel as well.

This parallel streaming mechanism can be combined with si-
multaneous rendering and encoding. Figure 2 shows the process of
simultaneous rendering and encoding together with 4-way parallel
streaming. The image of each eye is divided into two slides: the
upper one and the bottom one. The total four image slides are en-
coded into four video streams using four encoders. Accordingly, the
HMD client uses four decoders to decode the four video streams,
composites the four image slides into a full frame, and displays the
frame on the HMD.

Figure 3 illustrates how the PRS mechanism can reduce the
streaming latency through simultaneous rendering and encoding
and 4-way parallel streaming, in comparison to a baseline approach.
Four main tasks (rendering, encoding, transmission, and decoding)
are represented with rectangles in different colors. The length of
each rectangle is the rough execution time of the corresponding
task. Note that here we analyze only the streaming latency rather
the total end-to-end latency. Thus, we do not show the time of
fetching the sensor data before rendering a frame and the time that
the frame waits in the frame buffer after it is decoded but before
it is displayed. In the baseline approach, the four tasks execute
sequentially. The streaming latency, as shown in Figure 3, is the
total execution time of encoding, transmitting and decoding the
whole frame.

With simultaneous rendering and encoding (middle in Figure 3),
the encoding of the left eye image starts immediately after the left
eye image was rendering and in parallel with the rendering of the
right eye image. As a result, this two-way parallel approach reduces
the user-perceivable add-on streaming latency, i.e., the extra stream-
ing latency after the whole frame is rendered, by 1/2. By combining
the simultaneous rendering and encoding with 4-way parallel stream-
ing together (bottom in Figure 3), we use two encoders to compress
the image of one eye in parallel. The add-on streaming latency
further reduces to around 1/4 of the one in baseline approach.

The parallel streaming technique may be further extended to
8-way or even 16-way for more parallelisms. However, we do not
recommend doing so because 1) it requires more simultaneous

Cutting the Cord: Designing a High-quality Untethered VR System

Encoder 1 Decoder 1
s EERLN NN NN
"Encoder2 T Decoder2

AT AARTRN Y

(a) Encode two streams with two encoding sessions.

Decoder 1
Encoder

e L NI L
T L LY R

(b) Encode two streams with only one encoding session.

Figure 4: Encoder multiplexing,.

encoding sessions that may not be possible on many GPUs as we
will show later, 2) it reduces the performance of motion estimation
in H.264 and thus leads to a lower compression rate, and 3) it makes
the implementation more complex.

4.2.1 Encoder Multiplexing. 1deally, the 4-way parallel stream-
ing approach requires four encoding sessions. However, in practice,
many GPUs including some popular commercial VR-ready GPUs
may not support four simultaneous encoding sessions. For example,
the Nvidia’s GeForce 9 and 10 series and TITAN X GPUs [17] can
support maximum two encoding sessions running simultaneously
on a single GPU !. Consequently, the 4-way parallel streaming
approach cannot directly work on those GPUs.

From Figure 3, we observe that even though the 4-way parallel
streaming approach uses four encoding streams, there are only up
to two streams overlapped at any time. This is because the rendering
of the left eye image and the rendering of the right eye image are
sequential. As rendering an image usually takes a longer time than
compressing the image, encoding the half image of the left eye is
expected to be much faster than rendering the image of the right
eye. Therefore, only the encoding of the upper and bottom slides
of the same eye image overlap. That is, only two encoding sessions
are actually needed at the same time.

However, we still cannot directly encode four streams using only
two encoding sessions due to the inter-frame compression in video
encoding (e.g., H.264 and H.265). Compared to image compression
that compresses independent images (e.g., JPEG), video compres-
sion encodes a set of images into a video stream containing 3 types
of frames: I-frames, P-frames, and B-frames. An I-frame is encoded
from a single image and can be decoded independently from other
frames. However, a P-frame contains references from the previ-
ously encoded frame for a higher compression ratio, and therefore
cannot be decoded by itself. A B-frame further uses bi-directional
prediction that requires both its prior frame and its latter frame
I This limitation may be just due to cost or marketing strategy considerations, as

consumer devices are mostly designed for decoding existing video streams rather than
encoding new streams.

MobiSys’18, June 10-15, 2018, Munich, Germany

as its references, introducing more inter-frame dependencies in its
encoding and decoding 2. These inter-frame dependencies make it
hard to encode two video sources using one single encoder.

To solve the problem, we propose encoder multiplexing 3 to tem-
porally allow two video streams to share the same encoding session,
as shown in Figure 4. Figure 4(a) shows the standard usage of a
single encoding session for a single video stream. The two video
streams are encoded in two different encoding sessions separately.
Each encoder compresses its raw input frames rendered from the
rendering server into an encoded H.264 stream, and sends the en-
coded stream through the network link to the client. Each P-frame
references to its previous frame in the same stream and thus can
be correctly decoded by the corresponding decoder.

As shown in Figure 4, with encoder multiplexing, we encode the
two video streams in the same encoding session. To encode each
P-frame correctly, we set the previous frame in the same video
stream as the long-term reference frame (LRF) of the P-frame. As
a result, each P-frame references to the previous frame in its own
video stream rather than the previous frame that is encoded in the
encoding session (which is from the other stream). The outputs
of the encoder will be divided into two streams that are sent to
two different decoders on the client. Even though each decoder
only receives half of the encoded outputs of the encoder, it has
the reference frame needed to decode received P-frames. What we
need to do is only changing the list of decoded picture buffer (DPB)
before passing each stream to the decoder, to let it ignore those
missed frames (i.e., the frames of the other steam).

Specifically, we use one encoding session to encode the upper
half images of two eyes and another encoding session to encode
the bottom half images of two eyes, respectively. As a result, we
enable four virtual encoders for the 4-way parallel streaming using
only two encoding sessions and make our approach work on most
GPUs.

5 REMOTE VSYNC DRIVEN RENDERING

Modern computer systems use VSync (Vertical Synchronization)
signals to synchronize the rate of rendering frames (i.e., frame rate)
and the refresh rate of a display. To ensure a smooth user experience
(e.g., avoid screen tearing), the double buffering technique is usually
used with two frame buffers: a front frame buffer containing the
frame that is being displayed on the screen, and a back frame
buffer containing the frame that is being rendered. Upon receiving
a VSync signal, the system swaps the two buffers to display the
newly rendered frame and continues to render the next frame in
the new back frame buffer. If the system renders a frame very fast,
the frame must wait for the next VSync signal in the back frame
buffer, before it is sent to the display. If rendering a frame takes
too long and misses the next VSync signal, it must wait for the
following VSync signal to be displayed.

Problems. The above VSync-driven rendering and displaying mech-
anism works well on a local system. However, in remote rendering,

2 As a result, B-frames can only be encoded and decoded when the next frame is
available. Waiting for the next frame significantly increases the streaming latency
and makes it infeasible to use B-frames for low latency VR systems. We do not use
B-frames in our system.

3Most devices including smartphones are able to decode four or even more (e.g., eight)
video streams simultaneously [11]. Thus, we do not need decoder multiplexing.

MobiSys’18, June 10-15, 2018, Munich, Germany

Luyang Liu et al.

n—1 n n+1 n-1 n n+1 n—1 n n+1
T,, ync 1 TV ync 1 Tvsync Tv ync 1 Tv ync 1 s Tv ync Tv ync 1 Tv ync 1 s Tv ync
90 90 90 90 90 90
Frame n Frame n Frame n
n n n
Treaa Treazly readl/
n Tn n
render Frame n+1 render Frame n+1 rendgr Frame n+1
T T T T
n+1 n+1 n+1 n+1 n+1 n+1
Trender Tready Trender Tready Trender Tready

(a) Ideal case

(b) Long waiting time

(c) Missing a frame

Figure 5: Displaying two consecutive frames that are remotely rendered. (a) The ideal case where the frames are displayed
immediately after they are ready. (b) The frames failed to meet their VSync signal and must wait for a long time before
actually being displayed. (c) The frames become ready in the same VSync interval and thus frame n is dropped.

the frame displaying is driven by VSync signals of the HMD client

but the frame rendering is driven by VSync signals of the rendering - 4
server. Due to the asynchronized frame rendering and displaying
and the extra streaming latency, it may cause problems. 8
To illustrate the problems, we show the processing procedure of)
two consecutive frames n and n+1 in Figure 5. The rendering server g 6
starts to render frame nat time T" . The frame is then encoded I
and transmitted to the client. The client decodes the frame and S 4
presents it to the frame buffer swap chain at time Tr”ea dy’ We define
the time interval between T" and T" Jie,TH —-T" R 2 Missing|
render ready ready “render frames
as the generating time of frame n. Ideally, the frame is ready just il
. . n . : 0 ‘ o
before VSync signal n at time Tvsync, so that it can be displayed 0 50 100 150 200 250
immediately. This ideal case is shown in Figure 5(a). However, if Samples

n
dy > Tvsync

for VSync signal n + 1 and thus the end-to-end latency is increased

by Tg;;nc -1, dy’ Such a long waiting time case is shown in

frame n missed VSync signal n (i.e., Tr”ea), it must wait

Figure 5(b) *. Furthermore, if frame n missed the VSync signal n,
and at the same time frame n + 1 becomes ready before time Tz'};ryln ¢
(ie. Tr"etll dy < T{};;n ¢), frame n will become useless and thus will be
dropped. Instead, frame n + 1 will be displayed upon VSync signal
n + 1. This case is called frame missing as shown in Figure 5(c) >. In
this case, the time and resources used to render, encode, transmit
and decode frame n are wasted.

To confirm that the two problems are real, we conduct an exper-
iment. In this experiment, we cap the frame rate on the rendering
server to 90 Hz. On the client, for each frame n, we record the time
interval AT" between the frame-ready time Tr”ea dy and the next
dy’ We define such a time interval AT"
as the waiting time of frame n. Figure 6 plots the waiting time of
more than 200 consecutive frames. It shows that the frame waiting
time keeps drifting from 0 ms to 11.1 ms periodically. This is be-
cause that the rendering server is unaware of the VSync signals of
the client and thus cannot synchronize its rendering with the frame

displaying on the client. This phenomenon not only introduces

VSync signal time after 7"
rea

4This case may also happen in local systems without remote rendering. However, the
extra streaming latency in remote rendering makes this case happen more frequently.
5This case is caused by remote rendering and will not happen in a local system unless
VSync is disabled.

Figure 6: Time till next VSync signal.

additional latency as shown in Figure 5(b), but also causes frame
missing when AT" jumps in consecutive frames, which is shown
in the red dotted circle in Figure 6. In the red dotted circle, for a
frame n with a very large AT" close to 11 ms, the AT™*! of the
next frame n + 1 may immediately become very small close to 0 ms.
In this case, the two frames n and n + 1 are ready to display within
the same VSync interval and thus frame n will not be displayed,
which is the frame-missing case in Figure 5(c).

Solution. To solve the problems, we propose to drive the frame
rendering of the server using the VSync signals of the client. The key
idea is adjusting the timing of rendering the next frame according
to the feedback from the client on how the previous frame was
displayed, how long its waiting time was, and how fast the HMD
moved. Specifically, we use the following equations to decide when
to start to render a new frame n + 1:

Tn+1 n

1
render — Trender + %S + TShift ()

Tshift = (Tgsync - T;leady - Tconf - Tmotion) %Y (5)

Cutting the Cord: Designing a High-quality Untethered VR System

Tmotion = k * A" (6)

In Equation 4, besides using a constant time interval of 1/90
seconds to maintain the frame rate of 90 Hz, we further introduce a

time shift Tp;f, that dynamically modifies the start time of render-

Tn+1

ing frame n + 1 (i.e.,)- Tsnif: is decided by several factors.

The first factor is ther\i;ziiiirng time of frame n, T n. — T)", | dy'
We intend to postpone Tr”;: ey for time interval Tl . = T dy'
Assume frames n and n + 1 have the same generating time, i.e.,
Tr";;lldy - r"etllder = r”eady =T, . 4e, the time of placing frame
n+1 to the swap frame buffer chain Tr”etzl dy exactly equals to Tg;;nc.

This way, the waiting time of frame n + 1 is minimized. However,
if it takes a slightly longer time period to generate frame n + 1,
frame n + 1 may miss its VSync signal n + 1, resulting in a very
long waiting time or even missing frame n + 1. To mitigate this

issue, we introduce ;o to shift Tr"etll dy back a lit bit to tolerate

the variance in generating frames.

We take a data-driven approach to decide a proper value for
Teons- Initially, we set T, to zero. We track the frame-generating
time of the last 1,000 frames. We calculate the value that covers
the variances of the frame-generating time of the last 1,000 frames
with a confidence of 99% (a.k.a 99% confidential interval). We set
the value of Tg.o,¢ to the half of the 99% confidential interval. Over
time, T, acts as an adaptive safeguard to handle the variance in
generating consecutive frames.

Another factor we consider in Tgp;5, is how fast the HMD moves.
The intuition behind this consideration is as follows: when the HMD
moves fast, the view of the VR game may change fast. As a result,
the content of the next frame may have significant changes and
thus its rendering time might be longer than that of its previous
frame. To accommodate the large rendering cost of the next frame,
we need to start to render it early to avoid missing VSync. We use
Tmotion for this purpose in Equation 5. However, as the frame rate
is as high as 90 Hz, the absolute distance that the player may move
along a direction in a frame time (i.e., 1/90 seconds) is pretty small
and thus has limited impact on the content changes of the next
frame in practice. But, the rotation of the HMD may significantly
affect the content of the next frame due to the change of the viewing
angle. Therefore, we only consider the viewing angle changes in
our design. As shown in Equation 6, Tinotion is determined by
the change of viewing angle A8" together with a constant scaling
parameter k. We empirically set the value of k to 100.

Finally, we use a scaling parameter cc as a low-pass filter in
calculating the value Tp; r;, as shown in Equation 4. We empirically
set its value to 0.1.

With this remote VSync driven rendering approach, we try to
ensure that the system can stay in the ideal case shown in Figure 5(a).
We expect that most frames become ready to display just before
the next VSync signal and thus have a very short waiting latency,
and that very few frames are dropped. Furthermore, even we may
postpone the rendering of a frame, we always use the latest possible
pose of the HMD to render the frame. This is achievable because
the sampling rate of HMD pose is as high as 1,000 Hz, one order of
magnitude higher than the frame rate. As we display the postponed

MobiSys’18, June 10-15, 2018, Munich, Germany

Rendering Server 10GbE
w/ Nvidia Titan X Netgear WiGig AP
GPU v
ﬁ"\g
e

xo HTC VIVE HMD
=@
Laptop w/ Intel CPU & | HDMI
integrated GPU/decoder, < UsB

and Qualcomm WiGig
Figure 7: Hardware setup.

frame with the best possible VSync signal, we minimize the user-
perceived latency and thus provide the best user experience. Indeed,
we may even be able to do better than the tethered system. As we
will show in Section 7, if the rendering time of a frame is very
short, we may delay its rendering to reduce its waiting time. As we
render it with a fresher HMD pose, doing so not only achieves a
lower end-to-end latency, but also provide a better user experience,
compared to the tethered system.

6 IMPLEMENTATION

We implement our system on Windows for its rich supports on VR.
We use Qualcomm WiGig solution to achieve 2.1 Gbps wireless
transmission throughput. Our implementation is entirely based on
commodity hardware and consists of around 7,000 lines of code.

6.1 Hardware Setup

As shown in Figure 7, the rendering server is an Intel Core i7 based
PC with a Nvidia TITAN X GPU. It has a Mellanox 10Gbps network
interface card to connect to a Netgear Nighthawk X10 WiGig AP
using a 10Gbps Ethernet cable. We use a ThinkPad X1 Yoga laptop to
act as the client that connects to the Wigig AP through a Qualcomm
QCA6320/QCA6310 WiGig module. The laptop equips an Intel i7-
7600U CPU and an HD 620 Integrated GPU with H.264 hardware
decoder ASIC included. The laptop connects to an HTC Vive HMD
using HDMI and USB.

6.2 Software Implementation

We implement our proposed techniques based on the OpenVR
SDK [18], the Unity game engine [19], and the Google VR SDK for
Unity [20].

Remote Rendering VR Camera. The core of the server-side im-
plementation is a VR camera that leverages Unity’s rendering solu-
tion and Nvidia’s Video Codec for low-latency remote rendering.
This VR camera is modified based on the solution from the Google
VR SDK [20]. Figure 8 shows the life cycle comparison between
the normal VR camera used in the Google VR and our VR camera.
The normal VR camera starts rendering each frame from a fixed
update callback function, driven by the periodic VSync signals of
the system. Then, the camera updates user’s pose and rotates itself
towards the correct direction in the 3D scene. After that, the camera
renders the left eye image and the right eye image sequentially,
then applies lens distortion on the whole frame. On the right side

MobiSys’18, June 10-15, 2018, Munich, Germany

F————

Fixed Update RenderTexture

Remote
Update Pose

i_[Render Left

Render Left Eye Image

Eye Image

Single Eye
Lens Distortion

Single Eye

Distortion Lens Distortion

Display

Display

(a) Normal VR Camera. (b) Our VR Camera.

Figure 8: Life cycle comparison between our VR camera and
normal VR camera.

of Figure 8(a), we show the changes of the RenderTexture in each
step. A RenderTexture is a texture that can be rendered to by D3D
or OpenGL. In the normal VR camera case, a screen-size Render-
Texture is allocated when the VR camera is created. The camera
renders left eye image and right eye image to each side of the render
texture sequentially. Then, a dedicated vertex shader is applied to
the whole texture to do the VR lens distortion °.

Our VR camera works as shown in Figure 8(b). The fixed update
function is changed to a remote VSync driven update function to
optimize the rendering time based on the VSync signals on the HMD
client. VSync time can be retrieved from the client side by calling
the GetTimeSinceLastVsync() in the OpenVR API [18]. Similarly,
the pose update function is changed to the remote pose update
to get the pose information from the client. In this function, the
server sends a request packet to the client through the wireless
network. The client calls the GetDeviceToAbsoluteTrackingPose()
function in the OpenVR API to get the current pose of both the
HMD and controllers, and send them back to the server. Instead
of using a single RenderTexture as the render target, we create
two RenderTextures of half screen size for the image of each eye
separately. We modify the distortion shader to work for only single
eye image, and apply it on the RenderTexture immediately after
rendering the image of one eye.

Parallel Encoding. Our parallel encoding module is developed as
a Unity native plugin attached to the remote rendering VR camera.
This module uses zero-copy between rendering and encoding in the
GPU. We register the RenderTexture of each eye using the CUDA
function cudaGraphicsD3D11RegisterResource() so that it can be
accessed from CUDA. We directly pass the registered memory ad-
dress to Nvidia’s hardware video codec for encoding, and thus do
not need any memory copy. As mentioned in Section 4, the system
passes each RenderTexture to two separate encoders for parallel

SFor illustration purpose, we set the original RenderTexture in Figure 8 as a black
frame. In real systems, it should be the last frame when starting rendering the current
frame.

Luyang Liu et al.

Mobile Latency | Frame Rate | Visual Quality | Resolution
VR (ms) (Hz) (SSIM) (pixels)
Flashback [12] 25 60 0.932 1920x1080
Furion [11] 25 60 0.935 2560x1440
Ours 20 90 0.987 3840x2160

Table 1: Comparison between different mobile VR systems.

encoding, and creates total 4 encoding streams. The encoding oper-
ation is executed asynchronously without blocking the rendering
of frames. To maintain a high image quality with low latency, we
use the Two-Pass Rate Control setting with 400KB maximum frame
size to encode each frame. With this setting, the encoded frame size
is capped to 400KB.

Parallel Decoding. We implement the parallel decoding module
on the commercial Intel-based low power video codec, using the
Intel Media SDK [21] that can be run on any 3rd generation (or
newer) Intel Core processors. In this module, four decoding sessions
are created to decode four encoded streams in parallel. A separate
display thread is developed to keep querying the decoded frame
blocks from the decoder sessions and display them on the corre-
sponding positions on the HMD screen. This module also calls the
OpenVR API to retrieve the pose and VSync data for sending to the
rendering server.

7 EVALUATION

We evaluate the performance of our system in terms of end-to-end
latency, the trade-off between visual quality and add-on streaming
latency, frame missing rate, and resource usage on the client. We
demonstrate that our system is able to achieve both low-latency
and high-quality requirements of both the tethered HTC Vive VR
and future VR at 4K resolution at 90Hz over a stable 60GHz wireless
link. The result shows the system can support current 2160x1200
VR resolution with 16ms end-to-end latency and 4K resolution with
20ms latency. Furthermore, we show that our system misses very
few frames in different VR scenes and uses only a small portion of
CPU and GPU resources on the client.

As shown in Table 1, our system outperforms previous unteth-
ered VR system [11, 12] in all four aspects: end-to-end latency, frame
rate, visual quality, and resolutions. However, as we mentioned,
we target to optimize the system issues arise when combining the
whole rendering and streaming pipeline, thus is complementary to
previous work. Performance may further improve when combining
different approaches.

7.1 Experiment Setup

We use the hardware setup described in Section 6 to conduct experi-
ments. Since our objective is not to improve 60GHz communication
but provide an open platform to do so, we keep the wireless link
stationary all the time 7. We compare our system with the teth-
ered HTC Vive VR system and a baseline untethered solution. As
described in Section 4, the baseline solution is the typical video

"Mobility is an issue in existing 60GHz wireless products and there is active on-going
research on addressing that issue [7, 8, 10].

Cutting the Cord: Designing a High-quality Untethered VR System

1 1 T
i .
L] Ve
0.8 0.8] /
[
L 06 L 06 FR
a a L
o o LI
0.4 0.4 i)
——Tethered VR N ——Tethered VR
0.2 —e—Baseline 0.2 o —e—Baseline
- - PRS only 3 - = PRS only
0 --0--PRS and RVDR oL --8--PRS and RVDR
10 20 30 40 10 20 30 40
Latency (ms) Latency (ms)
(a) Viking Village (b) Corridor
1 7 G 1
8
0.8] 5 0.8
[
L 06 F L 0.6
=) I)
© e/ ©
0.4 Y 0.4
] —— Tethered VR g/ ——Tethered VR
0.2 £/ —e—Baseline 0.2} 8 |——Baseline
e - - PRS only g = = PRS only
0 s ~-8--PRS and RVDR ol --0--PRS and RVDR
10 20 30 40 10 20 30 40
Latency (ms) Latency (ms)
(c) Nature (d) Roller Coaster

Figure 9: CDF of end-to-end latency of 4 different ap-
proaches in 4 VR scenes.

streaming approach that executes the rendering, encoding, trans-
mission, and decoding sequentially, without parallel pipelines. We
use four different VR scenes in our evaluation: Viking Village [22],
Nature [23], Corridor [24], and Roller Coaster [25]. These four scenes
are carefully selected to cover different kinds of VR applications.
Viking Village and Nature are rendering intensive, requiring up
to 11ms to render a frame even on our rendering server. Viking
Village is a relatively static scene, while Nature has more than hun-
dreds of dynamic objects (leaves, grasses, and shadows) that keep
changing all the time. Corridor and Roller Coaster have relatively
light rendering loads. Different from the other three scenes, Roller
Coaster lets a player sit on a cart of a running coaster. Thus, the
player’s view keeps changing even if the player doesn’t move at all.

7.2 End-to-end Latency

We first measure the end-to-end latency (Te2) in four cases: the
tethered HTC Vive VR system (Tethered VR), the baseline unteth-
ered solution (Baseline), our solution with only the PRS technique
(PRS only), and our solution with both PRS and RVDR techniques
(PRS and RVDR). For repeatable experiments, we pre-logged a 1-min
pose trace for each VR scene and replayed it for the experiments of
the same scene in the four cases 2.

Figure 9 shows the CDFs of the measured results. In Tethered
VR, T2, is always 1/90 seconds for the periodic VSync signals at
90Hz. In Baseline, T,z, is very large due to the large extra cost
of the sequential frame rendering, encoding, transmission, and
decoding. The median value of Ty, is more than 26ms and the
maximum value is even larger than 38ms. Due to asynchronized
VSync signals on the client and the server, the variance of T,z is
also very large. With the PRS technique, we reduce Teg, for more

8We replay the logged traces on the client upon the requests from the server. Thus,
the measured end-to-end latency includes the time cost of sensor data acquisition.

MobiSys’18, June 10-15, 2018, Munich, Germany

25 =Tocnse
—Tiense + Trender
20 Tsense + Trender + Tstream
. —Tyense + Trender + Tstream + Tiisplay
(%]
E 15}
B e~ " o ~ ~
s e o
] 10
-
5 M IAARRAN vt Mo
0
0 1000 2000 3000 4000 5000
Frames

(a) Corridor

25 —Tsense
—Tsense + Trender

201 Tsense + Trender + Tstream
- Il | Toense + Tr_endfr”*’ Titream + Taispiay
[R V1PN PV S "
5\ \
g . "
210 P Mk Mgy 4 Y
— | | \r \

50 W v

™ PR ki,

0
0 1000 2000 3000 4000 5000
Frames

(b) Viking Village

Figure 10: Raw latency traces of our system in running Cor-
ridor and Viking Village.

than 10ms, compared to Baseline. Combing the techniques of both
PRS and RVDR, we not only reduce the average Te2e to only 10-
14ms depending on which scene is used, but also largely reduce
the variance of Teze. For the scenes with light rendering loads,
such as Corridor and Roller Coaster, our solution can achieve a
comparable performance to Tethered VR. In Roller Coaster, we may
even achieve a lower end-to-end latency (i.e., < 11ms) for many
frames, because we render them with a fresher pose.

From Figure 9, it shows that T2, varies in different VR scenes.
To figure out the reason, we plot the raw latency traces of two VR
scenes (Corridor and Viking Village) in Figure 10. We breakdown
the total end-to-end latency into four parts/tasks: Tsense, Trenders
Tstream, and Ty;spray- Each curve in Figure 10(a) and Figure 10(b)
shows the total latency after each task is finished. For example,
the curve at the bottom is Tsepnse, and the curve on the top is the
sum of Tsense, Trenders Tstream, and Tyispiay (i, the total end-
to-end latency Te2). Figure 10 shows that the rendering latency
Trender is a critical part that affects the variance of the total end-to-
end latency T,2¢. For Corridor, our system achieves a similar Teg,
compared to Tethered VR, because the rendering time Tyepdering
is small (around 5ms). However, for rendering-intensive Viking
Village, the rendering time Tyendering is large (up to more than
10ms), resulting in a large Tege.-

Furthermore, we observed that Ty, has a small variance in Corri-
dor, but a large one in Viking Village, fluctuating from 11ms to 15ms.
This difference is also caused by rendering time. For illustration, we
show two frames from each game in Figure 10. Each frame points
to its rendering time on the corresponding rendering latency curve.

MobiSys’18, June 10-15, 2018, Munich, Germany

16| HRendering

14| MEncoding

12| BTransmission
= X —
o \D'ecodlng 2
= | MDisplay <
o g)
5 5
g 5

4

2

0

(a) Corridor (b) Viking Village

Latency (ms)

(d) Roller Coaster

(c) Nature

Figure 11: Average latency (in ms) of each frame-processing
step in the parallel pipeline.

In Corridor, the rendering time of different frames is relatively
constant. In Viking Village, frame #2 (the user looked towards the
water) has much less rendering load than frame #1, when the user
faced the village. When the user moves, the rendering latency keeps
fluctuating, and the total latency changes accordingly. However,
as we apply the constant bitrate control setting in encoding each
frame, the add-on streaming latency Ts;ream stays at a constant
value no matter how the rendering latency changes.

Latency distribution in each step. Figure 11 shows the average
latency of each step in frame rendering, encoding, transmission,
decoding and displaying, and how the steps are overlapped. It shows
that our PRS technique is able to build a very effective parallel
pipeline to reduce the end-to-end latency. The average display
time is only less than 1.7ms, demonstrating the effectiveness of our
RVDR technique in reducing the display latency.

Frame rate. With the low add-on streaming latency in our system,
we can actually enable a frame rate higher than 90Hz. Indeed, our
system is able to achieve 150 frames per second in Corridor, demon-
strating the capability of our system in supporting future VR at a
higher frame rate, e.g., 120Hz.

7.3 Add-on Streaming Latency vs Visual
Quality

The visual quality of encoded frames plays a critical role in pro-
viding a good user experience. Our system not only achieves low-
latency remote rendering, but also keeps a visually lossless (visually
identical) experience to users. It is well known that there’s a trade-
off between the visual quality and the streaming latency. In our
system, visual quality is controlled by the bitrate in the Rate Control

Luyang Liu et al.

Frame Size | Nature \ Corridor \ Viking \ Roller

800KB 0.9914 0.9936 0.9927 | 0.9965
400KB 0.9831 0.9887 0.9865 | 0.9913
200KB 0.9707 0.9780 0.9763 | 0.9838
100KB 0.9560 0.9609 0.9643 | 0.9718
60KB 0.9411 0.9439 0.9478 | 0.9605

Table 2: Encoded frame size and visual quality measurement
(SSIM score).

w
o

I —Baseline
——Our System
[|~ = Visually Lossless Quality

n
(6]

- - n
o (9] o
[o2]
o
Py
(v}

Add-on Streaming Latency (ms)

(&}

60KB
L L L L 1 L y
093 094 095 096 097 098 0.99 1
SSIM Score

Figure 12: Add-on streaming latency vs visual quality for
Corridor.

settings of encoding. To quantify the visual quality of an encoded
frame, we use the widely used Structural Similarity (SSIM) to de-
termine how similar the encoded frame is to the original frame.
Table 2 shows the average SSIM score of the four VR scenes in
different bitrate settings (each results in a different encoded frame
size). From a previous study [26], a visually lossless encoded visual
requires the SSIM score to be larger than 0.98. In Table 2, it shows
that the encoded frame size of 400KB or larger can achieve an SSIM
score of more than 0.98 for all the four VR scenes.

To further build a relationship between add-on streaming latency
and visual quality, we calculate the add-on streaming latency in dif-
ferent encoded frame sizes. Figure 12 shows how Ts¢reqm changes
with the image SSIM score in Corridor, with the comparison of the
Baseline approach and our approach. We also draw the visually
lossless quality cutting curve as a red dash line. It shows the sys-
tem requires an encoded frame size of more than 200KB to achieve
visually lossless quality. The add-on streaming latency requirement
to achieve this quality in our system is only around 4ms which is
much smaller than the one of the Baseline approach.

7.4 Frame Missing Rate

In Figure 10, each pin-shape peak on the top purple curve repre-
sents a missing frame. To quantify the effectiveness of the RVDR
technique in reducing frame missing, we calculate the average
frame-missing rate in the four VR apps with and without RVDR
enabled. Figure 13 shows the results. We can see that RVDR is able
to significantly reduce the frame-missing rate. Without RVDR, the
average frame-missing rate is from 5.3% to 14.3%. With RVDR, it is
reduced to only 0.1% - 0.2%.

Cutting the Cord: Designing a High-quality Untethered VR System

15 T
Il Viking Village
I Nature
[corridor

Il Roller Coaster

101

Miss Vsync Percentage (%)

0.110.15,0.13 0.20
Without RVDR With RVDR
Figure 13: Frame missing rate with and without RVDR in the
4 VR apps.

7.5 Resource Usage on Client

We also measure the resource usage on the client. Without our
system, Windows 10 uses 3% to 5% CPU. With our system playing
a VR game, the CPU usage is around 36% mainly for handling
the network packets. Decoding frames use only 29% of the video-
decoding capability of the GPU (not the whole GPU capability such
as rendering 3D scenes). In building a future untethered HMD using
our techniques, such resource usage may be further significantly
reduced by a more integrated hardware design with embedded
software. We further discuss the power consumption of the system
in Section 9.

7.6 4K Resolution Support

To expand our system towards future VR systems, we further mea-
sure whether our system can deliver 4K resolution (3840x2160)
VR frames with less than 20ms end-to-end latency. To do it, we
conduct experiments on the 4 VR scenes with Vive (2160x1200)
and 4K resolutions. We force the rendering engine to render 4K
frames with the same graphics quality settings as the Vive case.
To achieve visually lossless encoding of 4K, we enlarge the maxi-
mum encoded frame size to 500KB. With the 4K resolution, both
Trender and Tstream are larger than those of Vive resolution in
all four VR scenes. The average Tstreqm to stream a 4K resolu-
tion frame is 8.3ms. The average Tsense and Ty;sprqy are 0.4ms
and 1.7ms, respectively, not affected by the resolution change. For
Corridor and Roller Coaster, our system can still keep the T,2,
within 20ms, but the Tz, of Viking Village and Nature exceed
20ms. Figure 14(a) and 14(b) show the latency breakdown of the
2 scenes. The rendering latency T, 4., is the bottleneck in 4K.
This is because the GPU we used is not 4K VR ready, and thus both
scenes require more than 11ms to render a 4K frame, which cannot
meet the frame rate of 90Hz. While this issue may be solved by
using a 4K VR ready GPU, we want to study whether our system
has the capability to deliver 4K frames with 90Hz if such a GPU
is available. Therefore, we reduce the rendering quality of Viking
Village and Nature to squeeze the rendering latency to less than
11ms. As shown in Figure 14(c) and 14(d), by doing so, our system
is able to meet the requirement of 20ms end-to-end latency. With
average Tsense = 0.4ms, Tdisplay = 1.7ms, and Tstream = 8.3ms,

MobiSys’18, June 10-15, 2018, Munich, Germany

Latency (ms)
Latency (ms)

0
Vive (2160*1200) 4K (3840°2160)

(a) Viking Village (High Quality)

Vive (2160*1200) 4K (3840*2160)

(b) Nature (High Quality)

25

[. [=
BT cnder T cnier
20 EIT"LVL(HH 19-35

7 ispiay

Latency (ms)
Latency (ms)
&

>

Vive (2160°1200) 4K (3840°2160)

(c) Viking Village (Low Quality)

Vive (2160°1200) 4K (3840°2160)

(d) Nature (Low Quality)

Figure 14: Latency breakdown in 4K resolution.

our system is able to support 4K resolution if the rendering time is
within 9.6ms.

8 RELATED WORK

Cutting the Cord. Cutting the cord of high-quality VR systems
has attracted strong interest from both industry and academia. TP-
CAST [13] and Display Link XR [14] provide a wireless adapter for
HTC Vive. They both take a direct “cable-replacement" solution that
compresses the display data, transmits over wireless and decom-
presses on HMD. To our knowledge, they compress whole frames
after the frames are fully rendered, and thus it is hard to explore the
opportunities to pipeline rendering/streaming and fine-tune ren-
dering/VSync timing. Moreover, their solutions are implemented
in ASICs instead of commodity devices. Therefore, they are hardly
used by the research community to explore advanced system op-
timization. Zhong et al. [15] explored how to cut the cord using
commodity devices and measured the performance of different com-
pression solutions on CPUs and GPUs. Their measurement results
provide valuable guidance and are motivating to us.

High-Quality VR on Mobile. Mobile devices are another pop-
ular VR platform. Google Daydream [6], Google Cardboard [27]
and Samsung Gear VR [5] are examples of this type. As we have
discussed, it is very difficult to achieve high-quality VR on mobile
due to its limited computing power. Some research works have
tried to attack this problem. For example, Flashback [12] performs
expensive rendering in advance and caches rendered frames in
mobile devices. Doing so provides high-quality VR experience for
scenarios that can be pre-computed. Furion [11] enables more sce-
narios by offloading costly background rendering to a server and
only performs lightweight foreground rendering on a mobile device.
Such collaborative rendering reduces overall rendering time, which
is complementary to our design and can be incorporated into our

MobiSys’18, June 10-15, 2018, Munich, Germany

system to further reduce the latency. Similarly, mobile offloading
techniques, e.g., [26, 28-32] also could be borrowed.

Wireless Performance. Performance of wireless link is critical
to wireless VR experience. There are a lot of ongoing research
on this issue, especially on mobility and blockage handling for
60GHz/mmWave. For example, MoVR [7] specially designs a mmWave
communication system for wireless VR. Agile-Link [8] provides
fast beam tracking mechanism. MUST [10] redirects to Wi-Fi im-
mediately upon blockage. Pia [9] switches to different access point
proactively. These studies are complementary to our system.

Video Streaming. Our work is also related to video streaming
techniques. Nvidia’s video codec [33] and Intel’s Quick Sync [34]
provide fully hardware-accelerated video decoding/encoding capa-
bility. Most of these techniques enable slice-mode video streaming,
which cuts the whole frame into pieces and streams separately.
We borrow this idea and combine it into the rendering pipeline
to enable parallel rendering and streaming using multiple hard-
ware encoders. 360-degree video streaming [35-40] pre-caches the
panoramic view and allows users to freely control their viewing
direction during video playback. Multi-view video coding [41-44]
enables efficient images encoding from multi-viewpoint using both
the temporal and spatial reference frames. Video streaming is not
extremely latency sensitive as interactive VR unless the streaming
is real-time (broadcasting). We may use some techniques in video
streaming particularly 360-degree streaming to our system.

9 DISCUSSION

In this section, we discuss the following three issues: (1) advantages
and the generality of our system, (2) power consumption, and (3)
link outage limitations that were out of the scope of this project.

Generality. Our system is a software solution that can be ex-
tended to different hardware and operating systems. The server-side
rendering module is developed using Unity, which is known to be
compatible with D3D and OpenGL. The encoding module on the
server side and the decoding module on the client side can be imple-
mented using various hardware codec APIs, such as Nvidia Video
Codec [33], Intel Quick Sync [34], Android MediaCodec [45], etc.
Compared to previous approaches that still require additional ren-
dering operations on the client side [11, 12, 26, 28], our solution
only requires a hardware video codec on the client side, allowing
it to work with very thin clients. Our system optimizations of the
entire VR offloading pipeline can also be combined with previous
techniques (e.g. pre-rendering background scenes [11], robust 60
GHz network [7]) to further improve the performance of the VR
offloading task.

Power Consumption. To truly allow cutting the cord of an
existing high-quality VR system, it is also important to consider the
power consumption on the client side. Since we use the hardware
codec from a laptop in our prototype, it is hard to decouple the
codec power consumption from the overall laptop consumption.
We therefore estimate power consumption based on reported power
consumption data from the three main components (VR headset,
H.264 hardware decoder, and WiGig wireless adapter) in our imple-
mentation by referring to previous measurement results [46—48].
The power consumption of an HTC VIVE when running normally

Luyang Liu et al.

l System component [VR headset [H.264 decoder [WiGig [
| Power (W) \ 5.9 \ 4.8 | 23 |
Table 3: Power consumption of three main components in

the system.

is 5.9W [46], and the 802.11ad’s power consumption is around
2.3W [47]. We also estimate the power draw of the H.264 decoder
in our 4-way parallel decoding scenario based on a prior measure-
ment result of an H.264 video decoder [48]. As shown in Table 3,
the total power consumption estimate for these key components
is 12W, which shows that such a system could be powered from a
smartphone-sized Lithium-ion battery for about 3 hours. Note that
this power consumption is estimated in a conservative way. The
real consumption may be much lower with customized hardware
design.

Limitations. This project has not addressed the link outage
problem of 60GHz networks, which will likely require orthogo-
nal solutions. To effectively evaluate the performance gain of our
solution without the measurements being affected by random move-
ment and link outages, we kept the 60GHz antennas stationary in
our experiment to maintain a stable wireless link between the server
and the client. It is well known that mobility is still an issue in exist-
ing 60GHz wireless products and there is active on-going research
to address this [7, 8, 10]. We expect that this project provides a
platform that enables such research with realistic end-to-end appli-
cations and that ultimately this research will lead to solutions that
can be combined with the techniques presented here. We further
note that our system can also operate over a Wi-Fi network, which
is less susceptible to obstructions, albeit with sacrificing image
resolution.

10 CONCLUSION

In this paper, we design an untethered VR system that is able to
achieve both low-latency and high-quality requirements over a wire-
less link. The system employs a Parallel Rendering and Streaming
mechanism to reduce the add-on streaming latency, by pipelining
the rendering, encoding, transmission and decoding procedures.
We also identify the impact of VSync signals on display latency, and
introduce a Remote VSync Driven Rendering technique to mini-
mize the display latency. Furthermore, we implement an end-to-end
remote rendering platform on commodity hardware over a 60GHz
wireless network. The result shows that the system can support 4K
resolution frames within an end-to-end latency of 20ms. We plan
to release the system as an open platform to facilitate VR research,
such as advanced rendering technologies and fast beam alignment
algorithms for 60Ghz wireless communication.

ACKNOWLEDGEMENTS

We sincerely thank our shepherd Igbal Mohomed and anonymous
reviewers for their valuable comments. Part of this work was done
when Luyang Liu, Ruiguang Zhong, and Jiansong Zhang were
with Microsoft Research. This material is based in part upon work
supported by the National Science Foundation under Grant Nos.
CNS-1329939.

Cutting the Cord: Designing a High-quality Untethered VR System MobiSys’18, June 10-15, 2018, Munich, Germany

REFERENCES

[29] John R Lange, Peter A Dinda, and Samuel Rossoff. Experiences with client-

(1]

Virtual Reality and Augmented Reality Device Sales to Hit 99 Mil-
lion Devices in 2021. http://www.capacitymedia.com/Article/3755961/
VR-and- AR-device-shipments-to-hit-99m-by-2021.

The reality of VR/AR growth. https://techcrunch.com/2017/01/11/
the-reality-of-vrar-growth/.

based speculative remote display. In USENIX Annual Technical Conference, pages
419-432, 2008.

Benjamin Wester, Peter M Chen, and Jason Flinn. Operating system support
for application-specific speculation. In Proceedings of the sixth conference on
Computer systems, pages 229-242. ACM, 2011.

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David Chu,

[3] HTC Vive VR. https://www.vive.com/. J : . . ’ -
[4] Oculus Rift VR. https://www.oculus.com/. and Hans-Peter Seidel. Proxy-guided image-based rendering for mobile devices.
[5] Samsung Gear VR. http://www.samsung.com/global/galaxy/gear-vr. In Computer Graphics Forum, volume 35, pages 353-362. Wiley Online Library,
[6] Google Daydream. https://vr.google.com/. 2016. . . .
[7] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. Enabling high- Wuyang Zhar'lg, Jiachen Chen, Ya“YO“gl Zhang, fmd Dlpar%kar Raychaudhuri.
quality untethered virtual reality. In NSDI pages 531-544, 2017. Towards efficient edge cloud augmentation for virtual reality mmogs. In Pro-
[8] Omid Abari, Haitham Hassanieh, Michael Rodriguez, and Dina Katabi. Millimeter ;efd;"ﬁ OI]\;the ieci"?q’;cgg fE;) f;’ HZ)COISVilum on Edge Computing, SEC "17, pages
ications: F int-to-oint link i K ions. :1-8:14, New York, NY, , . .
wave communications rom point-to-point linksto agle network connections Nvidia Video Codes. hitps/developer vidia com/mvidia-video-codec-sdk.
[9] Teng Wei and Xinyu Zhang. Pose information assisted 60 ghz networks: Towards Intel' Quick Sync. . http s://va'w.mtel}.com/conte'nt/www/us/en/
seamless coverage and mobility support. In Proceedings of the 23rd Annual ;r;l:lltecture—and—technology/qulck—sync—v1deo/qu1ck—sync-v1deo—general.
. > tml.
I{Zg:igfg;lﬁ:gfifg el\?;(l ggzllgocl‘(;mﬁg;\l/[ng and Networking, MobiCom "17, Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360 video
[10] Sanjib Sur, Io)annis Pefki,anal;is, Xi,nyu Z.hang, e;nd Kyu-Han Kim. Wifi-assisted 60 delivery over cel_lular net\x_zork_s. In Proceedings of the 5th Workshop on All Things
ghz wireless networks. In Proceedings of the 23rd Annual International Conference] gellular: (I)(‘D era;jfns, Ap, %lwg mr% ar;fl Challelr\lIgest,_pages lt_. 6 ACI.\(/;’ 2016. di
on Mobile Computing and Networking, MobiCom ’17, pages 28-41, New York, NY, veeny Huzyakov an avic io. ext-generation video encoding
USA. 2017. ACM. techniques for 360 video and vr.(2016). Online: https://code. facebook.
[1] Zeqi’Lai Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. Furion: Engi- com/posts/1126354007399553/nextgeneration-video-encoding-techniques-for-360-
A S o oY s . . video-and-vr, 2016.
neering high-quality immersive virtual reality on today’s mobile devices. In . - S . . .
Proceedings of the 23rd International Conference on Mobile Computing and Net-] Matth'las Berning, Takuro Yonezawa, Tlu Rledelf Jin Nakazawa, Michael Be{gl,
working (MobiCom’17). ACM, Snowbird, Utah, USA, 2017. and Hlde‘ Tokuda. parnorama: 360 degree interactive video for gugmenteé refillty
[12] Kevin Boos, David Chu, and Eduardo Cuervo. Flashback: Immersive virtual p rototy}‘)mg‘ h,l Proceedlt?gs ?f the 2013 ACM conference on Pervasive and ubiquitous
reality on mobile devices via rendering memoization. In Proceedings of the 14th szﬁl‘i?ng qd]ﬁctt}fuglmgwn, pagtes 1f4717';474‘ A?M’ 2913‘ ith audio redirec-
Annual International Conference on Mobile Systems, Applications, and Services, vlark fressin, etiiod and apparatus for video conlerencing wita audio rediree
pages 291-304. ACM, 2016, tion within a 360 degree view, August 16 2002. US Patent App. 10/2?3,021.
[13] TPCAST Wireless Adapter for VIVE. https://www.tpcastvr.com/product. Amy Pavel,‘ B]mrn Hartmann, andA Maneesh Agrawala. Sh(.)t orientation controls
[14] DisplayLink XR: Wireless VR Connection. http://www.displaylink com/vr. for 1nteract1vg cinematography with 360 video. In Proceedings of the 30th Annual
[15] Ruiguang Zhong, Manni Wang, Zijian Chen, Luyang Liu, Yunxin Liu, Jiansong ACM Symposium on User Interface Software and Technology, pages 289-297. ACM,
Zhang, Lintao Zhang, and Thomas Moscibroda. On building a programmable] é(;q” Ling F Lee. Wen-Chih Lo. Chun-Ying H Kuan-Ta Ch d
wireless high-quality virtual reality system using commodity hardware. In ng mg an,]egn ?E’ en . .l 0, un' ng uang, uan-ta Lhen, an
Proceedings of the 8th Asia-Pacific Workshop on Systems, page 7. ACM, 2017. dC‘herllngsm Hsu. Fixation prediction for 360 video streaming to head-mounted
16] Nvidia Video E D P Matrix. https:/developer.nvidia. isplays. 2017,
[16] Co\ﬁznggnczzfsgéie_eCoucif Iirif‘rpr; I; ?;itx atrix. https://developernvidia] Karsten Miiller, Heiko Schwarz, Detlev Marpe, Christian Bartnik, Sebastian Bosse,
[17] Nvidia’s VR ready GPUs hgtrt) s/ /VI\)/I‘))V wge force'com /hardware/technology/v/ Heribert Brust, Tobias Hinz, Haricharan Lakshman, Philipp Merkle, Franz Hunn
supported-gpus o ’ ’ Y Rhee, et al. 3d high-efficiency video coding for multi-view video and depth data.
[18] OpenVR SDK. https:/github.com/ValveSoftware/openvr. IEEE Transactions on Image Processing, 22(9):3366-3378, 2013.
. . . in| en, Ye-Kui Wang, Kemal Ugur, Miska annuksela, Jani Lainema, an
[19] Unity game engine. https://unity3d.com/ Ying Chen, Ye-Kui Wang, Kemal Ugur, Miska M H ksela, Jani Lai d
[20] Google VR SDK for Unity. https://github.com/googlevr/gvr-unity-sdk. Moncef Ga/l?\bo;{]) dghe erln;rglng mvcz(s)gzngl azr(()iogor 3d video services. EURASIP
[21] Intel Media SDK. https://software.intel.com/en-us/media-sdk.] g(})lyrna gr}[l ppie Mlg:jl(. Izqtce}slstng, Hid : k Ki . ta. Kazuto Kamik d
[22] Viking Village. https://assetstore.unity.com/packages/essentials/ inya SAumizu, Masaxi fitahara, Hiceakl Kimata, Bazulo Bamixura, an
tutorial- projects/viking-village-29140. Y(?shlyukl Yashima. View scal'flble mulFlVle.W video coding using 3-d warping
[23] Nature. hitps://assetstore.unity.com/packages/3d/environments/ with depth map. IEEE Transactions on Circuits and Systems for Video Technology,
nature-starter-kit-2-52977. 17(11):1485-1495, 2007. . . .
.] Anthony Vetro, Thomas Wiegand, and Gary J Sullivan. Overview of the stereo and
[24] Corridor. https://assetstore.unity.com/packages/essentials/tutorial-projects/
corridor-lighting-example-33630. multiview video coding extensions of the h. 264/mpeg-4 avc standard. Proceedings
[25] Roller Coaster. https://assetstore.unity.com/packages/3d/props/exterior/ of the EEE’ 9?(4):6267642’ 2011 . . .
animated-steel-coaster-plus-90147.] And1'r01d MediaCodec. https://developer.android.com/reference/android/media/
[26] Eduardo Cuervo, Alec Wolman, Landon P Cox, Kiron Lebeck, Ali Razeen, Stefan MedlaCodec.html. . . .
Saroiu, and Madanlal Musuvathi. Kahawai: High-quality mobile gaming using] Ylve Power Draw Test Results. https://www.reddit.com/r/Vive/comments/51ir1h/
gpu offload. In Proceedings of the 13th Annual International Conference on Mobile vive_p owerfdrawftestfresplts/'. P, . .
Systems. Applications. and Services, pages 121-135. ACM. 2015] Swetank Kumar Saha, Tariq Siddiqui, Dimitrios Koutsonikolas, Adrian Loch,
[27] GJ:) ogle ’Ca‘f gboar d h)ttps- Ve gooélg C% m/car dboa'r & ’ ’ Joerg Widmer, and Ramalingam Sridhar. A detailed look into power consumption
[28] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev, of commodity 60 ghz devices. In A World of Wireless, Mobile and Multimedia

Sergey Grizan, Alec Wolman, and Jason Flinn. Outatime: Using speculation to
enable low-latency continuous interaction for mobile cloud gaming. In Proceed-
ings of the 13th Annual International Conference on Mobile Systems, Applications,
and Services, pages 151-165. ACM, 2015.

Networks (WoWMoM), 2017 IEEE 18th International Symposium on, pages 1-10.
IEEE, 2017.

H.264 HD Video Decoder Power Consumption. https://www.soctechnologies.
com/ip-cores/ip-core-h264-decoder/.

http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://www.vive.com/
https://www.oculus.com/
http://www.samsung.com/global/galaxy/gear-vr
https://vr.google.com/
https://www.tpcastvr.com/product
http://www.displaylink.com/vr
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://www.geforce.com/hardware/technology/vr/supported-gpus
https://www.geforce.com/hardware/technology/vr/supported-gpus
https://github.com/ValveSoftware/openvr
https://unity3d.com/
https://github.com/googlevr/gvr-unity-sdk
https://software.intel.com/en-us/media-sdk
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/3d/environments/nature-starter-kit-2-52977
https://assetstore.unity.com/packages/3d/environments/nature-starter-kit-2-52977
https://assetstore.unity.com/packages/essentials/tutorial-projects/corridor-lighting-example-33630
https://assetstore.unity.com/packages/essentials/tutorial-projects/corridor-lighting-example-33630
https://assetstore.unity.com/packages/3d/props/exterior/animated-steel-coaster-plus-90147
https://assetstore.unity.com/packages/3d/props/exterior/animated-steel-coaster-plus-90147
https://vr.google.com/cardboard/
https://developer.nvidia.com/nvidia-video-codec-sdk
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://www.reddit.com/r/Vive/comments/51ir1h/vive_power_draw_test_results/
https://www.reddit.com/r/Vive/comments/51ir1h/vive_power_draw_test_results/
https://www.soctechnologies.com/ip-cores/ip-core-h264-decoder/
https://www.soctechnologies.com/ip-cores/ip-core-h264-decoder/

	Abstract
	1 Introduction
	2 Challenges and Latency Analysis
	3 System Overview
	4 Parallel Rendering and Streaming Pipeline
	4.1 Simultaneous Rendering and Encoding
	4.2 Parallel Streaming

	5 Remote VSync Driven Rendering
	6 Implementation
	6.1 Hardware Setup
	6.2 Software Implementation

	7 Evaluation
	7.1 Experiment Setup
	7.2 End-to-end Latency
	7.3 Add-on Streaming Latency vs Visual Quality
	7.4 Frame Missing Rate
	7.5 Resource Usage on Client
	7.6 4K Resolution Support

	8 Related Work
	9 Discussion
	10 Conclusion
	References

