
Elf: Accelerate High-resolution Mobile Deep Vision with
Content-aware Parallel Offloading

Wuyang Zhang
wuyang@winlab.rutgers.edu

Rutgers University
Piscataway, NJ, USA

Zhezhi He
zhezhi.he@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Luyang Liu
luyangliu@google.com

Google Research
Mountain View, CA, USA

Zhenhua Jia
zjia@nvidia.com

NVIDIA Corporation
Holmdel, NJ, USA

Yunxin Liu
yunxin.liu@microsoft.com

Microsoft Research
Beijing, China

Marco Gruteser
gruteser@google.com

Google Research
Mountain View, CA, USA

Dipankar Raychaudhuri
ray@winlab.rutgers.edu

Rutgers University
Piscataway, NJ, USA

Yanyong Zhang
yanyongz@ustc.edu.cn

Corresponding author, University of
Science and Technology of China

Hefei, China

ABSTRACT

As mobile devices continuously generate streams of images and
videos, a new class of mobile deep vision applications are rapidly
emerging, which usually involve running deep neural networks on
these multimedia data in real-time. To support such applications,
having mobile devices offload the computation, especially the neu-
ral network inference, to edge clouds has proved effective. Existing
solutions often assume there exists a dedicated and powerful server,
to which the entire inference can be offloaded. In reality, however,
we may not be able to find such a server but need to make do with
less powerful ones. To address these more practical situations, we
propose to partition the video frame and offload the partial infer-
ence tasks to multiple servers for parallel processing. This paper
presents the design of Elf, a framework to accelerate the mobile
deep vision applications with any server provisioning through the
parallel offloading. Elf employs a recurrent region proposal predic-
tion algorithm, a region proposal centric frame partitioning, and a
resource-aware multi-offloading scheme. We implement and evalu-
ate Elf upon Linux and Android platforms using four commercial
mobile devices and three deep vision applications with ten state-of-
the-art models. The comprehensive experiments show that Elf can
speed up the applications by 4.85× with saving bandwidth usage
by 52.6%, while with <1% application accuracy sacrifice.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8342-4/21/10. . . $15.00
https://doi.org/10.1145/3447993.3448628

CCS CONCEPTS

•Computer systems organization→Real-time system archi-

tecture; Distributed architectures.
ACM Reference Format:

Wuyang Zhang, Zhezhi He, Luyang Liu, Zhenhua Jia, Yunxin Liu, Marco
Gruteser, Dipankar Raychaudhuri, and Yanyong Zhang. 2021. Elf: Acceler-
ate High-resolution Mobile Deep Vision with Content-aware Parallel Of-
floading. In The 27th Annual International Conference on Mobile Computing
and Networking (ACM MobiCom ’21), October 25–29, 2021, New Orleans, LA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3447993.
3448628

1 INTRODUCTION

In the past few years, we have witnessed the rapid development of
Deep Neural Networks (DNNs), due to the fast-growing computa-
tion power and data availability [1]. Thanks to these advancements,
mobile applications, particularly mobile vision applications, enjoy
a performance boost in various vision-related tasks such as photo
beautification, object detection and recognition, and reality aug-
mentation [2]. However, to achieve state-of-the-art performance,
DNN models (e.g., [3, 4]) usually have complicated structures with
numerous parameters, hence a high demand in computation and
storage. As a result, it is challenging to run full-size DNN mod-
els on mobile devices, even running into heat dissipation issues.
Meanwhile, mobile deep vision applications are often interactive
and require fast or even real-time 1 responses. Examples include
adversarial point cloud generation [5] that reconstructs 3D scenes
for intuitive surrounding interpretation and video object semantic
segmentation [6] that facilitates personal activity recognition. In
these cases, it is hard, if not impossible, to satisfy the applications’
latency requirements due to the limited processing capacity on
mobile devices.

To this end, researchers have spent a great deal of effort to
improve the performance of mobile deep vision applications. On

1Frame rate required for real-time processing is application dependent.

https://doi.org/10.1145/3447993.3448628
https://doi.org/10.1145/3447993.3448628
https://doi.org/10.1145/3447993.3448628

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

the one hand, various techniques have been developed to make
DNN models smaller to reduce the computation load, e.g., weight
and branch pruning and sharing [7, 8], tensor quantization [9, 10],
knowledge distillation [11], and network architecture search [12].
However, these techniques often lead to compromised model ac-
curacy due to the fundamental trade-off between model size and
model accuracy [13]. On the other hand, people have proposed to
increase the computing resources by using massive accelerators,
such as GPU, FPGA [14] and ASIC [15]. Nevertheless, due to the
fundamental limits of size and power, mobile devices still fall short
to meet the requirements of target applications.

To solve these challenges, several offloading approaches have
been proposed [16–22]. By offloading the intensive model inference
to a powerful edge server, for example, AWS Wavelength [23], the
inference latency can be significantly reduced. With the high band-
width and low latency provided by the emerging 5G networks [24],
offloading is promising to provide a good user experience for mo-
bile deep vision applications. However, existing offloading methods
are insufficient in two aspects. Firstly, most existing solutions use
low-resolution images through the entire pipeline, which makes
the inference task lightweight, but lose the opportunity to leverage
the rich content of high resolution (e.g., 2K or 4K) images/frames.
Taking advantage of such rich information is important for applica-
tions such as video surveillance for crowded scenes [25], real-time
Autopilot system [26], and online high-resolution image segmenta-
tion [27]. Secondly, most existing methods only consider offloading
tasks between a single pair of server and client, assuming that
no competing clients or extra edge resources available. In prac-
tice, a single edge server is equipped with costly hardware, for
example, Intel Xeon Scalable Processors with Intel Deep Learning
Boost [28] or NVIDIA EGX A100 [29], which are typically shared
by multiple clients (i.e., multi-tenant environment). Moreover, the
heterogeneous resource demands of applications running on edge
servers [30] and highly dynamic workloads by mobile users [31]
lead to resource fragmentation. If the fragmentation cannot be effi-
ciently utilized, it may produce significant resource waste across
edge servers.

To this point, in order to meet the latency requirements of deep
mobile vision applications with heterogeneous edge computing
resources, it is advantageous to offload smaller inference tasks in
parallel to multiple edge servers. This mechanism can benefit many
real-world deep vision tasks, including multi-people keypoint detec-
tion for AR applications and multi-object tracking for autonomous
driving tasks [32], where objects can be distributed to different
servers for parallel task processing. Meanwhile, offloading to mul-
tiple servers imposes several challenges. Firstly, it requires the
client to effectively partition the inference job into multiple pieces
while maintaining the inference accuracy. In the case of keypoint
detection or instance segmentation, simply partitioning a frame
into several slices may split a single instance into multiple slices,
therefore, dramatically decreasing the model accuracy. Secondly,
the system needs to be aware of available computation resources
on each server and dynamically develops the frame partitioning
solution, so that it can ensure no server in the parallel offloading
procedure to become the bottleneck. Finally, such a system should
have a general framework design that is independent of its host
deep vision applications.

To address the aforementioned challenges, we propose and de-
sign Elf

2, a framework to accelerate high-resolution mobile deep
vision offloading in heterogeneous client and edge server environ-
ment, by distributing the computation to available edge servers
adaptively. Elf adopts three novel techniques to enable both low
latency and high quality of service. To eliminate the accuracy degra-
dation caused by the frame partitioning, we first propose a content-
aware frame partitioning method. It is promoted by a fast recurrent
region proposal prediction algorithmwith an attention-based LSTM
network that predicts the content distribution of a video frame. Ad-
ditionally, we design a region proposal indexing algorithm to keep
track of the motion across frames and a low resolution compensa-
tion solution to handle new objects when first appear. Both work
jointly to help understand frame contents more accurately. Finally,
Elf adopts lightweight approaches to estimate the resource capac-
ity of each server and dynamically creates frame partitions based
on the resource demands to achieve load balance. Overall, Elf is
designed as a plug-and-play extension to the existing deep vision
networks and requires minimal modifications at the application
level.We have implemented Elf on commercial off-the-shelf servers
and four mobile platforms in Linux and Android OS, supporting
Python, C++, and Java deep vision applications. We make our code
open source and available in https://github.com/wuyangzhang/elf .

The main contributions of this paper are as follows.
• To the best of our knowledge, we are the first to propose a
high-resolution mobile deep vision task acceleration system
that offloads the computation to multiple servers to minimize
the end-to-end latency.
• To perform the computation offloading frommobile to server
while simultaneously considering image content, computa-
tion cost, and server resource availability, we propose a set
of techniques including recurrent region proposal prediction,
and region proposal centric video frame partitioning and
offloading, and region proposal computation cost estimation.
• We have built a prototype system with comprehensive exper-
iments to demonstrate that our Elf system can be integrated
with 10 state-of-the-art deep vision models and speeds up
the applications by parallel offloading, up to 4.85×, with us-
ing 52.6% less bandwidth on 4 edge servers while keeping
the accuracy sacrifice within 1%.
• We have learned valuable lessons of the relations between
inference latency and the model design. Such lessons will
help the vision community to better design models to benefit
more from parallel offloading.

2 MOTIVATION AND CHALLENGES

Target Applications. In this paper, we target those applications
that employ state-of-the-art convolutional neural network (CNN)
models to conduct a variety of challenging computer-vision tasks
from images or videos. Examples include image segmentation,
multi-object classification, multi-person pose estimation, and many
others. In general, those applications take an input image or video
frame which is often of high resolution, e.g., 1920×1080, containing
multiple objects, and perform a two-step processing task. First, they

2Elf is a small creature in stories usually described as smart, agile, and has magic power

https://github.com/wuyangzhang/elf

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

use CNN networks to extract feature maps from the input and gen-
erate region proposals (RPs) for every object. Each RP is a candidate
region where an object of interest – for example, a cat or child –
may appear. Second, they use a CNN network to evaluate each RP
and output the fine-grained result such as the classified object type
or the key body points of a person. These state-of-the-art CNN
models are usually highly computation intensive and run at a low
frame rate, e.g., from 0.5 to 10 frames per second (fps) even on a
high-end GPU (e.g. NVIDIA TITIAN 1080Ti) [3, 33, 34].

Limitations of ExistingTask-OffloadingApproaches.Offload-
ing the inference tasks of CNNs onto an edge server is a promis-
ing approach to realizing the target applications on mobile de-
vices [16, 35]. However, these existing task-offloading approaches
are limited in two critical aspects. First, they only support task
offloading to just one server, assuming that the server has sufficient
resources to finish the offloaded task in time. However, a costly
offloading server, for example, Intel Xeon Scalable Processors with
Intel Deep Learning Boost [28] or NVIDIA EGX A100 [29], is usu-
ally shared by multiple clients and thus may not have sufficient
resources to run a task. To demonstrate it, we profiled the comput-
ing latency of ResNet50 [36]. Each client runs on NVIDIA Jetson
Nano [37] with 802.11.ax and the server runs the model inference
on an NVIDIA TITIAN V GPU. The computing latency goes up in a
linear pattern from 25.9 ms to 162.2 ms when changing the number
of concurrent clients from 1 to 4. To handle the latency burst, Ama-
zon SageMaker [38] adopts Kubeflow Pipelines to orchestrate and
dynamically configure the traffic running on each server. However,
this solution cannot handle resource fragmentation and may waste
the computing cycles.

Another limitation of existing solutions is that they often use
low-resolution (e.g., 384 × 288 [39]) images or videos to make the
inference task lightweight. However, cameras on today’s mobile
devices typically capture with a much higher resolution such as
2K and 4K. Such a big gap causes two problems. On one hand,
those existing low-resolution solutions fail to leverage the rich
information of high-resolution images and videos to enable ad-
vanced applications such as various video analytics, for example,
smart intersection [40]. Existing studies have already shown run-
ning object recognition related tasks on high-resolution images
can largely increase the detection accuracy [41] . On the other
hand, supporting high resolutions requires more computations and
further undermines the assumption that one server can provide
sufficient resources for the entire application. Our measurement
results show that the inference latency of MaskRCNN [33] running
on Jetson TX2 [42] boosts by 25%, 50% and 300% with increasing
the image resolution from 224×224 to 1K, 2K and 4K, respectively,
making the offloading harder.

To address the limitations of the existing work and the high
resource demands of the target applications, in this paper, we design
Elf, a lightweight system to accelerate high-resolution mobile deep
vision applications through parallel task offloading to multiple
servers.

Design Challenges. There are several key challenges in design-
ing the Elf system. The first challenge lies in how to partition the
computation. Broadly speaking, there are two approaches, model-
parallel and data-parallel. Model parallelism, i.e., splitting a large

(a) Equal partitioning (b) Ideal partitioning

Figure 1: Examples of video frame partitioning. The sim-

ple partitioning method in (a) split pixels of the same ob-

ject into multiple parts and yield poor inference results. We

can achieve much better partitioning using Elf, close to the

ideal partitioning shown in (b)

model into multiple subsets of layers and running them on multiple
servers, generates the large intermediate outputs from convolution
layers which would lead to high communication overhead among
servers [43]. For example, cracking open the DNN black-box [18]
demonstrates that ResNet152 [36] produces the outputs with 19-
4500× larger than the compressed input video. In this work, we
explore data-parallelism by partitioning an input frame and offload-
ing each frame partition to a different server. However, as shown
in Figure 1(a), the simple equal partitioning may not work because
1) offloading a partition containing parts of an object may signif-
icantly reduce the model accuracy and 2) offloading a partition
containing no objects may lead to excessive waste. Instead, we need
to develop a smart video frame partitioning scheme to generate the
ideal image partitioning shown in Figure 1(b).

The second challenge is how to distribute the tasks to multiple
servers to minimize the total model inference latency. Ideally, all
the servers should finish their tasks at the same time. However,
that is hard to achieve because multiple dynamic factors must be
considered together: the number of objects in the input images, the
resource demand of processing each object, the number of servers
and their available resources. Furthermore, another challenge in
Elf is to minimize the workload of the resource-limited mobile
device. In particular, the video frame partitioning is the step before
offloading, running on the mobile device, and thus must be efficient
and lightweight.

3 OVERVIEW AND DESIGN GUIDELINES

Elf intends to address the challenges with the steps below:
(1) Recurrent region proposal prediction. On the mobile end,

whenever a new video frame arrives, Elf predicts its region
proposals based on the ones detected in historical frames.
The prediction reports each region proposal’s coordinates.
Here, a region proposal (RP) refers to a group of pixels con-
taining at least one object of interest, e.g., a vehicle.

(2) Frame partitioning and offloading. Given the list of predicted
RPs, Elf partitions the frame into “RP boxes”. All the RP
boxes collectively cover all the RP pixels while discarding
background pixels that are unlikely to contain RPs. Elf then
offloads these partitions to proper edge servers for process-
ing. Both partitioning and offloading consult the partition’s
resource demands and server resource availability.

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

Recurrent RP
prediction

Object meta data

Rendering

Input frame

Final result

Region proposals RP boxes

RP-centric frame
partitioning

Server 1

Partial inference

Server 2

Partial inference

Mobile device

Load-aware
parallel offloading

Partial inference

Server 3

Edge servers

Figure 2: Elf system architecture. We explain the architec-

ture using a multi-person pose estimation example with

three edge servers

(3) Partial inference and result integration. Taking the offloaded
partitions as input, the edge servers run the application-
specific CNN models to yield partial inference results. These
partial results are finally integrated at the mobile side to
render the final result.

The aboveworkflow is illustrated in Figure 2.While the third step
is natural and easy to do, the first two steps call for careful designs
to achieve the goals of Elf. In the rest of this section, we discuss
the design guidelines of these two key components of Elf, focusing
on how they are designed to address the challenge described in
Section 2.

3.1 Recurrent Region Proposal Prediction

We adopt the following guidelines to devise the recurrent RP pre-
diction algorithm: 1) the algorithm is lightweight; 2) the algorithm
can effectively learn the motion model of the objects/RPs from
history frames; and 3) the algorithm pays more attention to more
recent frames. Here, a well-designed algorithm can accurately pre-
dict the RP distribution and help minimize the impact of the frame
partitioning upon the deep vision applications’ model accuracy.
Following the guidelines above, we devise an attention-based Long
Short-Term Memory (LSTM) network for recurrent RP prediction.

Note that the main-stream RP prediction/tracking algorithms
require CNNmodels [44] that adds tens of millisecond to the system.
Instead, our approach efficiently utilizes the historical RP inference
results and converts the computing-intensive image regression
problem to a light-weight time series prediction problem.

As part of the prediction algorithm, we also develop an RP index-
ing algorithm that keeps track of the motion across frames. Finally,
we also propose a Low Resolution Compensation scheme to handle
new objects when they first appear.

3.2 RP-Centric Video Frame Partitioning and

Offloading

Partitioning a video frame allows Elf to offload each partition to a
different edge server for parallel processing. Ideally, a well-designed
frame partitioning scheme should show a negligible overhead and
have heterogeneous edge servers to finish parallel inference tasks at

the same time. Keeping these goals in mind, we design an RP-centric
approach with the following guidelines.

Content awareness. The partitioning algorithm should be aware
of the number of and locations of RPs in a frame and be inclusive.
Also, Elf discards background pixels that are unlikely contain any
RPs. Based on the study in AutoFocus [45], the area percentage
of background in the COCO validation set takes up to 57%. Re-
moving them can significantly reduce the computing and network
transmission costs.

Computation cost awareness. Depending upon the objects con-
tained in each partition, partitions have different computation costs.
For example, it usually involves different numbers of pixels and
becomes more challenging to identify multiple overlapping vehicles
with similar colors than identifying a single vehicle with early-exit
CNN models [46]. The algorithm should thus take into considera-
tion this cost heterogeneity to achieve load balancing among the
servers.

Resource awareness. After partitioning, the algorithmnextmatches
these partitions to a set of edge servers. Unlike central clouds, edge
cloud servers exhibit heterogeneous computing/storage/networking
resources due to the distributed nature and high user mobility [17].
This makes the matching problem even more challenging. A poor
match may result in job stragglers that complete much slower than
their peers and thus significantly increases the overall latency.

4 FAST RECURRENT RP PREDICTION

When a new frame arrives, Elf predicts the coordinates of all the
RPs in the frame, based on the RPs in the previous frames. In this
section, we present three components that are key to achieve fast
and effective RP prediction: an attention-based Long Short-Term
Memory (LSTM) prediction network, a region proposal indexing
algorithm, and a low-resolution frame compensation scheme. We
choose to use attention-based LSTM for its powerful capabilities of
learning rich spatial and temporal features from a series of frames.
Also, it incurs a low system overhead of 3-5 ms running on mobile
devices as illustrated in Section 7.5.

4.1 Problem Definition and Objective

As the objective is to train the attention-based LSTM network for
acquiring the RP predictions accurately, the optimization process
could be mathematically expressed as:

min
θ
L(R̂ti ,R

t
i)=min

∑
i
[
(x̂ti, tl − x

t
i, tl)

2 + (ŷti, tl − y
t
i, tl)

2

(x̂ti,br − x
t
i,br)

2 + (ŷti,br − y
t
i,br)

2 + (âti − a
t
i)
2]

s.t. R̂ti =f ({R
t−N
i ,Rt−N+1i , ...,Rt−1i },θ)

(1)

where the vector Rti denotes the i-th ground-truth RP at frame t ,
and R̂ti is the predictive RP counterpart. Both Rti and R̂ti consist
of [xtl,ytl,xbr,ybr,ai] as the x , y coordinates of RP’s top-left and
bottom-right corners, and the area, respectively. θ is the model
parameters of LSTM. Also, ati is the RP’s area calculated based on xtl,
ytl, xbr, and ybr,. Further, N is the number of previous frames used
in the prediction network f (·). Next, we explain our algorithmic
effort in minimizing the prediction error as calculated in Eq. (1).

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Figure 3: Our attention-based LSTM network

4.2 Attention-Based LSTM Network

Below we present the details of our attention-based LSTM RP pre-
diction network.

4.2.1 Network structure. Recently, attention-based RNN mod-
els [47, 48] have shown their effectiveness in predicting time series
data. In this work, we adapt a dual-stage attention-based RNN
model [49], and develop a compact attention-based LSTM network
for RP predictions. Note that adopting an LSTM based model rather
than RNN can help detect periodically repeated patterns appeared
in historical frames. Our model consists of three modules – an
encoder, an attention module, and a decoder, as shown in Figure 3.
Encoder: To predict the i-th RP in the current frame, the encoder
takes the spatial and temporal information (i.e., the RP’s locations
in history frames) of the i-th RP from N past frames Rti ∈R

5×1 as
input, and encodes them into the feature map {Y t

en}, t∈{0, ...,N −1}.
This encoding is conducted by a two-layer LSTM [50], which can
be modeled as:

Y t
en=fen(Y

t−1
en ,R

t), (2)
where fen(·, ·) denotes the LSTM computation.
Attention: Subsequently, we adopt an attention module which is
a fully-connected layer to select the most relevant encoded feature.
The first step is to generate the attention weight β :

lt=W2tanh(W1[Yen; cN−1de ;hN−1de]) (3)

βt=
exp(lti)∑T

j=T−N−1 exp(l
t
j)

(4)

where [Yen; cN−1de ;hN−1de] is a concatenation of the encoder output
Yen, decoder cell state vector cN−1de and decoder hidden state vector
hN−1de .W1 andW2 are the weights to be optimized. The intermediate
attention weight lt is applied with softmax function to obtain the
normalized attention weight β . Thereafter, the context vector can
be computed as:

ct=
N−1∑
j=0

βtjYen (5)

which captures the contributions of encoder outputs.
Decoder:The decodermodule processes the context vector through
a fully connected layer, an LSTM model, and a fully-connected re-
gressor.

Algorithm 1 Region Proposal Indexing

Require: RP Rt−1i =[x
t−1
tl,i ,y

t−1
tl,i ,x

t−1
br,i ,y

t−1
br,i] for object i in frame

t − 1, where i∈[0, 1, ...,mt−1] andmt−1 is number of objects in
frame t − 1. Label set is L.

Ensure: For frame at t , assign an index to each region proposal
Rt .
{Step-1. Initialization:}

1: if t<N then ▷ label with a consistent index
2: Rti [5]←lti , l

t
i ∈L; ∀i∈[0, 1, ...,mt−1]

3: end if

{Step-2. Measure distance and area:}
4: for i := 1 tomt−1

do

5: for k := 1 tomt
do

6: Dx
i,k←|(x

t−1
tl,i + x

t−1
br,i) − (x

t
tl,k + x

t
br,k)|/2 ▷ x-axis.

7: D
y
i,k←|(y

t−1
tl,i + y

t−1
br,i) − (y

t
tl,k + y

t
br,k)|/2 ▷ y-axis.

8: Ai,k←|1 −
(xt−1br,i − x

t−1
tl,i)(y

t−1
br,i − y

t−1
tl,i)

(xtbr,k − x
t
tl,k)(y

t
br,k − y

t
tl,k)
| ▷ Area

9: end for

10: end for

{Step-3. Match and label:}
11: for k := 1 tomt

do

12: î←argmini {Ai,k }m
t−1

i=0 ; s.t.Dx
i,k<0.02,D

y
i,k<0.02,Ai,k<

0.2
13: if î is not None then
14: Rtk [5]=R

t−1
î
[5] ▷ label with matched RP

15: else

16: Rtk [5]=l
t
k , l

t
k∈L ▷ new label for unmatched

17: end if

18: end for

4.3 Region Proposal Indexing

To precisely predict a region proposal, we need to collect histor-
ical data, which provides necessary information such as motion
models and trajectories. However, many vision applications, such
as those discussed in Section 2, commonly output object labels in
random order. Thus, it is hard to match and track region proposals
across frames. For example, let us look at the example illustrated in
Figure 4, where the same RPs in consecutive frames have different
labels.

To address this issue, we devise a light consistent RP indexing
algorithm. Vision-based matching algorithms are not considered
because they introduce significant overheads in hundreds of mil-
liseconds [51]. From the very first video frame, Elf assigns a unique
index to each region proposal. In each upcoming frame, Elfmatches
each RP with the corresponding index assigned earlier. If an RP
includes a new object that was not seen before, a new index will be
automatically assigned.

Here, we match the RPs across frames with a combination of
RP position shift and RP area shift. The RP position shift measures
the change of the center point along the x-/y-axis between the
current frame and the previous frame, as specified by Lines 6 and 7
in Algorithm 1. A larger value indicates a bigger spatial shift and
thus a lower matching probability. The RP area shift measures the
amount of area change between the RPs in two adjacent frames, as

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

Figure 4: An example result for RP indexing

specified by Line 8 in Algorithm 1. A lower value indicates a higher
matching probability. In our work, when the x and y RP position
shift are both under 0.02 and the area shift ratio is under 0.2, we
declare a match. The thresholds have been selected because they
generate the lowest prediction loss in the evaluation. The sum of
the RP position shift and RP area shift will be taken as an additional
metric when there exist multiple RPs simultaneously satisfying the
above threshold requirement.
RP Expansion. Another challenge in RP prediction lies in the
possibility that the predicted RP bounding box may not cover all
the pixels of an object due to motion. For example, as shown in
Figure 5, the predicted bounding box excludes the person’s hands,
which will affect the object detection performed on the edge server.
To address this challenge, we carefully expand the bounding box by
p%. The downside of this scheme is the increased data transmission
and computation. We conduct a trade-off study in Section 7.6. Here,
Elf adopts different strategies to dynamically configure the value
of p for different RPs. In particular, it consults the corresponding RP
position shift and the prediction confidence level as the indicators
to assign different weights on p.

4.4 Handling Objects When First Appear

The above attention LSTM-based prediction can deal with only the
objects that already occurred in the previous frame, but not new
ones never seen before. In this subsection, we discuss how to handle
the new objects when they appear for the first time in a frame.
Low Resolution Compensation (LRC). To handle new objects,
we propose a low resolution compensation (LRC) scheme with a
balanced trade-off between computation overhead and new-object
detection accuracy. Importantly, while inference with the down-
sampled frame cannot produce fine-grained outputs that are re-
quired by the applications, such as object masks or key body points,
we find that inference with down-sampled frames can still detect

the presence of objects. Figure 16 and Figure 17 validate this obser-
vation. To reduce the computation overhead, LRC down-samples
a high-resolution video frame by a max-pooling operation. Then
Elf offloads the resized video frame, along with the partitions from
regular sized partitions, to edge servers to run application-specific
models, which usually consist of an object detection component.
Based on the inference results, Elf can roughly locate the new
objects in the frame.

Please note that here we use the same application-specified deep
learning neural networks in the LRC module even though it may
lead to a higher computation overhead than some lightweight net-
works. In this way, we do not compromise the new object detection
accuracy. Meanwhile, Elf runs LRC once per n frames to reduce
such an overhead. n is a hyperparameter, indicating the trade-off
between computation cost and at most n-frame delay to realize new
objects.

5 RP-CENTRIC VIDEO FRAME

PARTITIONING AND OFFLOADING

Based on the RP predictions, Elf partitions a frame into multiple
pieces, focusing on regions of interest while removing unneces-
sary dummy background pixels. Video frame partitioning plays a
dominant role in minimizing the offloading traffic and balancing
workloads across edge servers.

5.1 Problem Statement

Elf takes the following items as input: (i) video frame Ft at time
t , (ii) the list of RP predictions in which Rti denotes the i-th RP in
frame Ft , with i∈[1, ...,M] andM as the total number of RPs, and
(iii) the available resource capacity, with ptj denoting the available
resource capacity of the j-th server (j∈[1, ...,N]) at time t . Based
on the input, Elf packs the M RP processing tasks and one LRC
task into N ′ offloading tasks (N ′≤N), and offloads each task onto
an edge server.

The overall objective of the partitioning and the offloading pro-
cess is to minimize the completion time of the offloading tasks that
are distributed across N ′ edge servers. In other words, minimizing
the completion time of the task which has the longest execution
time among all the tasks. We assume that the mobile device only
has access to a limited number of servers and that we try to make
full use of these servers to minimize the application’s completion
time.

Accordingly, the optimization objective can be written as:

min max({T tk }) k∈[1, ...,N ′],

s .t . T tk=T
t
rps,k +T

t
lrc,k · 1(t mod n=0) · 1(argmax{pt }=k),

T trps,k≈
Ct
rps,k

ptk
, T tlrc,k≈

Ct
lrc,k
ptk

(6)

whereT tk denotes the completion time on the k-th server3 at time-t .
T tk consists of two completion-time terms, T trps,k and T trps,k , for
RPs and LRC respectively. 1condition returns 1 if and only if the
condition meets, otherwise returns 0. Further, Ct

rps,k and Ct
lrc,k are

3We re-index the server with k ∈[1, ..., N ′] instead of j ∈[1, ..., N], owing to the
aforementioned task packing.

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Figure 5: An example prediction error. Part of the objects are

outside of the predicted RP bounding box

the computing cost of RP box and LRC offloading to server k , which
will be described in Eq. (8).

5.2 Why Not Directly Schedule Each Individual

RP Task?

After predicting the list of RPs, a straightforward scheduling ap-
proach is to cut out all the RPs and individually schedule each RP
processing task onto edge servers based on the resource availability
in a greedy fashion. While this sounds intuitive in many domains,
it may not work the best for deep vision tasks due to the potential
fragmentation problem.

First, the execution time of r (r is a small number such as 2 and
3) small RP (e.g., <5% size of the original image) tasks is not much
less than r times of the execution time of running a single r -fold
RP task. For example, Figure 9 shows that a frame with resizing
into 1%, 4%, 9% takes 35.19ms, 37.9ms, and 44.24ms, respectively, to
run the MaskRCNN inference. This is because in most deep vision
models, except for the part extracting feature maps, the rest of the
network is usually the same regardless of the size of the input.

Second, it is hard to determine a good cropping strategy. On one
hand, the precise cut-out individual RPs will lead to poor detection
inference accuracy due to the lack of necessary background pixels;
on the other hand, if we leave large padding around the RPs, then
the total offloaded data will be too large to be efficient. Third, too
many cropping operations generate high memory copy overheads
which may likely become problematic on mobile devices.

5.3 Partitioning & Offloading of RP-Box

RP Box Initialization. Given the above observations, Elf pro-
poses an RP scheduling method that is more content- and resource-
aware than the above naive counterpart. The key data structure
here is what we call RP boxes. Compared to a single RP, an RP-box
is larger and consists of one or more nearby RPs, as illustrated in
Figure 6 (f) with 4 RPs and 3 RP boxes. The number of offloading
tasks is determined by the number of available edge servers. Each
offloading task consists of either an LRC task, or an RP-box pro-
cessing task, or both. By scheduling an RP box instead of individual
RPs, we can avoid the fragmentation problems mentioned above.

Before partitioning a frame, Elf first crops the area with all the
RPs and horizontally partitions it into N segments (N is #available
servers), where each segment corresponds to an initial RP box. The
size of each RP box is initialized to be proportional to the available
resource of the corresponding server, as depicted in Figure 6 (b),
which is the first effort to achieve load balancing. Here, we explain
how the LRC task scheduling interferes with the RP box scheduling.
Note that, the LRC task is only available everyn frames (1(t mod n=0)
in Eq. (6)). At the LRC round, we partition the cropped image into
(N −1) segments and have (N −1) RP boxes accordingly. We reserve
one server for the LRC task4. Regardless of the number of RP boxes,
the scheduling algorithm works the same – during the LRC round,
we treat the LRC task the same as another RP box processing task.
Below, without the loss of generality, we assume there are N RP
boxes.
RP Association. Thereafter, we associate each RP with an RP box.
For each RP, Elf evaluates its spatial relationship with all the RP
boxes. Given a pair of RP r and box b, their spatial relationship falls
into one of the three cases:
• Inclusion. In this case, r is completely included in b and we
conveniently associate them.
• No-overlap. In this case, r is not associated with b.
• Partial-overlap. In this case, r intersects with b. Meanwhile,
it partially overlaps with at least one other box as well. Here,
we choose to associate with the RP box that has the most
overlap with the RP. If there is a tie, we choose the RP box
with a larger gap between the server resource capacity and
the computation costs of the RPs that are already associated.
This association solution is the second effort to achieve load
balancing.

Elf applies the association steps to all the RPs as shown in Figures 6
(c) and (d).
RP Box Adjustment. After all the RPs have got associated with a
box, Elf resizes each RP box such that it can fully cover all the RPs
that are associated with it. Please see Figures 6 (e) and (f). After this
adjustment, the computation cost of some RP boxes may drastically
increase compared to the initialization stage and thus break the
intended load balancing.

To avoid this, we examine those RP boxes whose cost increase
exceeds a pre-defined threshold (we discuss how to estimate an
RP box’s computation cost in Section 5.4). For these boxes, the
associated RPs are sorted ascendingly w.r.t the computation cost.
We try to re-associate the first RP on the list (the one with the
lowest cost) to the neighboring box who has enough computation
capacity to hold this RP.

After each re-association, the two boxes need to adjust their sizes
accordingly and estimate the new computation cost. We repeat this
re-association process as far as the load distribution is becoming
more even. We stop this process if the re-association results in
an even higher load imbalance. Here, we formally evaluate the
load-balanced situation by:

Θ=Var({T tk }) (7)

4Special care needs to be taken with the configuration of a total of 1 or 2 edge servers,
and we discuss how we handle these two special cases in Section 7.2

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

(a) Predicted RPs (b) RP Box Initialization (c) Associate partial
overlapped RP

(f) RP Box Post-scaling

Re
gi

on
 P

ro
po

sa
l’s

Co

m
pu

tin
g

Co
st

RP
 B

ox
’s

Co
m

pu
tin

g
Co

st

Partial Overlap

Which RP Box?Box 1

Box 2

Box 3

(d) Extend box boundary

Associate RP 4 with Box 3

Extend box boundary

RP 4

(e) Fully cover all RPs

Fullly cover RPs Resize RP Boxes

Init based on resource

Figure 6: RP-centric frame partitioning pipeline

where Θ denotes the variance of the estimated execution time of
all the tasks. A smaller Θ denotes a more balanced partitioning
and offloading. We can calculate T tk by the following Eq. (6) where
Ct
rps,k and Ct

lrc can be found as:

Ct
rps,k=

∑
v
{Ct

rp,v }, C
t
lrc=α · (

M∑
k=1

Ct
rps,k) (8)

where α is the LRC down-sample ratio.
Multi-offloading. Finally, Elf simultaneously offloads each RP
box and the LRC task (if available in that round) to the correspond-
ing edge server and executes the application-specific models in a
data-parallelism fashion.

5.4 Estimating Server Capacity and RP

Computation Cost

We now describe how Elf estimates the server resource capacity
including both computational power and dynamic network condi-
tions as well as each RP’s computation cost.

Elf considers twoways of estimating a server’s resource capacity.
The first approach is through passive profiling. It calculates server
m’s average end-to-end latencyTm over the lastn (default value of 7)
offloading requests that are served bym. Then the resource capacity
is defined as 1/Tm . This passive profiling can help evaluate the
trade-off between computing and network resources. The second
approach is through proactive profiling: Elf periodically queries
the server for its GPU utilization.

Elf also considers two ways of estimating an RP’s computation
cost. The first approach is based on the RP’s area, assuming the
cost is linearly proportional to the RP area. The second approach is
through Spatially Adaptive Computation Time (SACT) [46]. Here,
we briefly explain how to borrow its concept to estimate the com-
puting cost of RPs. SACT is an optimization that early stops partial
convolutional operations by evaluating the confidence upon the
outputs of intermediate layers. Overall, SACT indicates how much
computation has been applied with each pixel of a raw frame input.
Elf can accordingly estimate the cost of an RP at the pixel level.
To adopt this approach, we need to slightly modify the backbone
network as instructed in [46].

We adopt the passive resource profiling and RP area-based esti-
mation in the implementation as they are more friendly to Elf’s
users and require less system maintenance efforts. We will deliver
other options in future work.

6 SYSTEM IMPLEMENTATION

We implement a prototype of Elf in both C++ and Python for
easy integration with deep learning applications. Also, we wrap
the C++ library with Java Native Interface (JNI) to support An-
droid applications. In total, our implementation consists of 4,710
lines of codes. Our implementation is developed on Ubuntu16.04
and Android10. We integrate ZeroMQ4.3.2 [52], an asynchronous
messaging library that is widely adopted in distributed and concur-
rent systems, for high-performance multi-server offloading. We use
NVIDIA docker [53] to run offloading tasks on edge servers. We
also wrap nvJPEG [54] with Pybind11 for efficient hardware-based
image/video encoding on mobile devices.

Elf is designed and implemented as a general acceleration frame-
work for diverse mobile deep vision applications. We aim to support
existing applications with minimal modifications of applications.
The required modifications only focus on the DNN inference func-
tions. Here, we assume that an application can separate the DNN
inference from the rest of it. Thus, the other parts and the internal
logic of applications remain the same. Specifically, the host deep
learning models need to implement two abstract functions:

1. def cat(inst_list: List[Instance]) -> Instance,
2. def extract(instance : Instance) -> List[RP].

Elf employs the first API to aggregate the partial inference results,
and the second API to extract RPs from the data structure of partial
inference results to be used in the RP prediction. With these two
APIs, Elf can hide its internal details and provides a high-level API
for applications:

3. def run(img: numpy.array) -> Instance,
This API can make the inference function as same as the one run-

ning locally, while Elf can run multi-way offloading and feed the
merged results to applications. By following the above approach, we
successfully integrate Elf with ten state-of-the-art deep learning
models reported in Section 7.2. We believe that Elf requires a rea-
sonably small effort from developers for the benefit of significantly
reduced latency.

Furthermore, we discuss the placement of Elf functions. We
argue that the functions should run on mobile devices but not edge
servers for two reasons: 1) running the functions locally, especially
frame partitioning, enables to offload less than 50% data as redun-
dant background pixels will be cut off; 2) running all the functions
only take 5-7ms on mobile devices", and thus the offloading benefit
will be trivial considering half data to ship.

7 PERFORMANCE EVALUATION

We successfully integrate Elf with ten state-of-the-art deep learn-
ing networks and thoroughly evaluate Elf in the following three
typical applications: instance segmentation, multi-object classifica-
tion and multi-person pose estimation. Our results show that Elf
can accelerate the inference up to 4.85× and 3.80× on average with
using 52.6% less bandwidth on 4 edge servers while keeping the
inference accuracy sacrifice within 1%.

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Servers with
NVIDIA P100 GPUs

NVIDIA Jetson
Nanos

ASUS AX3000
WiFi6 Router

Nexus P6

Pixel 4

Figure 7: Our experimental evaluation hardware platform

7.1 Experiment Setup

Mobile Platforms:We use four mobile platforms: Google Pixel4
(Qualcomm Snapdragon 855 chip consisting of eight Kryo 485 cores,
an Adreno 640 GPU and a Hexagon 690 DSP), (2) Nexus 6P (Snap-
dragon 810 chip with four ARM Cortex-A57 cores and four ARM
Cortex-A53 cores, an Adreno 430 GPU), (3) Jetson Nano [37] (Quad-
core ARM Cortex-A57 MPCore CPU, NVIDIA Maxwell GPU with
128 CUDA cores), and (4) Jetson TX2 [42] (Dual-Core NVIDIA Den-
ver 2 64-Bit + Quad-Core ARM Cortex-A57 MPCore CPU, NVIDIA
Pascal GPU with 256 CUDA cores). The evaluation results with
Jetson TX2 have been reported if not explicitly stated otherwise
study the performance difference of mobile devices.
Edge Servers: We use up to 5 edge servers. Each server runs
Ubuntu 16.04 and has one NVIDIA Tesla P100 GPU (3,584 CUDA
Cores), Intel Xeon CPU (E5-2640 v4, 2.40GHz).
Networks:We use WiFi6 (802.11.ax, ASUS-AX3000, 690Mbps) to
connect the mobile platforms and edge servers. Based on the WiFi
network, we also use the Linux traffic shaping to emulate a Ver-
izon LTE (120Mbps) link with using the parameters given by a
recent Verizon network study [55]. Moreover, we randomly set the
available bandwidth of each server in 70% to 100% to introduce
the network heterogeneity. The emulated LTE network has been
used if not explicitly stated otherwise study the network impacts.
Figure 7 shows our experimental platform.
CNNModels and Datasets: We consider ten state-of-the-art mod-
els: CascadeRCNN [56], DynamicRCNN [57], FasterRCNN [3], FCO
S [58], FoveaBox [59], FreeAnchor [60], FSAF [61], MaskRCNN [33],
NasFPN [62], and RetinaNet [63]. Also, we use MOTS dataset [64]
for instance segmentation, KITTI dataset [65] for multi-object clas-
sification, PoseTrack [66] dataset for pose estimation. MaskRCNN
has been adopted if not explicitly stated otherwise study the model
difference.
Comparison with Existing Offloading Work:We adopt Filter-
Forward (FF) [19], a state-of-the-art offloading solution, as a base-
line to compare with Elf. It introduces a group of "microclassifiers"
that filter incoming video frames whether they contain objects of
interest and only forwards the filtered results for the end-to-end
model inference.

SO 1 2 3 4 5
Server number

0

300

600

900

La
te

nc
y

(m
s)

CascadeRcnn
DynamicRcnn
FasterRcnn
FCOS
Foveabox

FreeAnchor
FSAF
MaskRcnn
NasFPN
RetinaNet

Figure 8: End-to-end latency vs server numbers

7.2 Evaluation of RP-Centric Partitioning and

Offloading

Next, we evaluate the frame partitioning and offloading module.
We first describe the end-to-end latency when different numbers of
servers are available for Elf with ten state-of-the-art deep learning
networks. Here, we assume each server has only a single GPU
available for the mobile application. A special case to consider, if
there is only a GPU, Elf will adopt a single RP box that covers all
the RPs but removes the surrounding background pixels and stack
with the LRC task. KITTI dataset has been resized to the resolution
2560×1980 to study the high-resolution scenario in the section.

Figure 8 shows the end-to-end latency with the server number
from 1 to 5 as well as the Single server Offloading (SO). With only
one server available, Elf-1 shows the applications speed up by
1.39× on average, up to 1.50× compared to SO as Elf can efficiently
remove the redundant background pixels. When there are two
servers available, Elf offloads the LRC task and one of the RP boxes
to one server and the other RP box to the second server. Compared
to SO, Elf-2 speeds up the applications by 2.80× on average, up
to 3.63× . When Elf has three or more servers, it uses one server
for LRC, and one RP box each on the other servers. We measure
the speed up by 2.94× on average, up to 3.71× with Elf-3, 3.80× on
average, up to 4.85× with Elf-4, and 4.18× on average, up to 5.43×
with Elf-5 respectively.

Moreover, we profile FilterForward that speeds up the applica-
tions by 1.56× on average compared to SO, but its runtime could
hardly be further minimized with more offloading servers. Over-
all, Elf shows the close speedup compared to FilterForward in
the single server scenario, but delivers much more competitive
performance by adding more servers.
Key Observations: We observe that the latency with different
server numbers highly depends on the size of the RP boxes shipped
to each edge server. With the frame partitioning algorithm, the
maximal size of RP box compared to the raw frame as 51.7%, 23.7%,
23.7%, 15.7%, and 11.6%, the computing bottleneck in that offloading
round, with the server number from 1 to 5, respectively. Please note
that Elf-2 and Elf-3 have the same RP box size because both adopt
2 RP boxes but the later assigns the LRC task on the third server.
Accordingly, Elf reduces bandwidth usage by 48.3%, 52.6%, 52.6%,
52.9%, and 53.6%.

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

1 2 3 4 5 6 7 8 9 10
Down-sample ratio(0.01*x^2)

0

300

600

900

La
te

nc
y

(m
s)

CascadeRCNN
DynamicRCNN
FasterRCNN
FCOS
FoveaBox

FreeAnchor
FSAF
MaskRCNN
NAS-FPN
RetinaNet

Figure 9: Processing latency vs down-sample ratio

Importantly, another observation is that the model inference
time strongly relates to the input size. Figure 9 shows the inference
latency at the server running ten state-of-the-art models with down-
sample ratio 0.01·x2 where x is from 1 to 10. Here, the down-sample
ratios of 49%, 25%, 16%, and 9% share a rough correspondence to
the RP box size with the server numbers of 1, 2 (3), 4, 5. This
observation is the underlying reason why Elf can significantly
reduce the inference latency by having each server inferring part
of the frame.
Lessons Learned:Moreover, we identify the inference time shows
distinct sensitivity among different deep vision models. First, the
models, for example, FCOS [58], with more, even fully, convolu-
tional operations present a stronger correlation between frame
resolution and inference latency. Second, two-stage models, for
example, RCNN series [3, 33, 56, 57], usually generate the same
number of Regions of Interest (ROI) independent of the input reso-
lution and then ship each of them down the pipeline. The second
stage thus costs the same time.

Overall, the lessons we have learned regarding how to design
models to benefit more from parallel offloading are: 1) one-stage
models with more convolutional operations are preferred, 2) two-
stage models can dynamically adjust the number of ROI based
on the frame resolution as a higher resolution input potentially
involves more objects.

Finally, we show the average GPU utilization under different
configurations in Figure 10. In the case of SO, the average GPU
utilization is 37% and the 95th percentile is 82%. In the case of Elf-3,
the average GPU utilization is 21% and the 95th percentile is 31%.
We note that using 3 GPUs in the case of Elf-3 shows lower per
GPU utilization than SO. On average, Elf-3 only consumes 1.7×
GPU utilization in total running with 3 GPUs, than SO to finish a
single request. Moreover, a lower per GPU utilization allows Elf to
have more chance to efficiently utilize those resource fragmentation
and thus improve the total GPU utilization of edge servers.

7.3 Accuracy of Deep Vision Applications

After discussing how Elf can contribute to minimizing the latency
with parallel offloading, it is critical to show that it has limited
impacts upon the accuracy of deep vision applications. Three pop-
ular applications have been evaluated: instance segmentation with

SO 2 3 4
Server number

0
20
40
60
80

100

G
PU

 u
ti

l.(
%

)

Figure 10: Average GPU uti-

lization vs GPU numbers

Elf LTE
Elf WiFi6

S.O. LTE
S.O. WiFi6

0
40
80

120
160
200
240

La
te

nc
y(

m
s)

En/decode
Elf
Server
Network
Sync

Figure 11: End-to-end la-

tency vs network condi-

tions

MaskRCNN [33], object classification with RetinaNet [63], and
multi-person pose estimation with DensePose [67]. We report the
inference accuracy in the following 4 settings: (1) TX2, a baseline
running the application on Jetson TX2, (2) Nano, a baseline running
the application on Jetson Nano, (3) SO, a baseline of existing offload-
ing strategy that offloads the CNN inference to a single edge server,
(4) FilterForward (FF) [19], a state-of-the-art offloading solution,
(5) Elf, our approach of partitioning the frame and offloading the
partial inferences to edge servers (using 3 servers as an example).

Table 1 reports the accuracy in all the settings. Compared to
using the entire frame for inference as in SO or running locally on
Jetson Nano or TX2, Elf achieves almost the same accuracy: 0.799
vs 0.803 (0.49%) for instance segmentation, 0.671 vs 0.672 (0.14%) for
object classification and 0.654 vs 0.661 (1.05%) for pose estimation.
FilterForward (FF) shows the accuracy 0.605 for object classification
with introducing "microclassifiers" that cannot well detect small ob-
jects. The minor accuracy drop from Elf is because 1) running LRC
once every 3 frames may miss/delay new or tiny objects, although
it rarely happens, and 2) Elf removes the background pixels not
covered by the RP boxes. However, we believe this small accuracy
drop is acceptable, especially considering the significant latency
reduction.

7.4 Dealing with Dynamic Network Condition

and GPU Utilization

First, we compare Elf-3 and SO with Verizon LTE (120Mbps) and
WiFi6 (690Mbps) networks. Figure 11 shows that when switching
fromWiFi6 to LTE, the network latency of Elf increases from 1.4ms
to 6.5ms and that of SO increases from 10.1ms to 17.1ms. Elf is less
sensitive to the network bandwidth because it offloads much less
data than SO as shown in Figure 15. Next, we increase the GPU
utilization of one server to 70% and compare our resource-aware

Table 1: Comparisons of inference accuracy (AP) in three

deep vision applications: instance segmentation [33], object

classification [63], and pose estimation [67]

Deep Vision
Applications

Accuracy (AP)

TX2 Nano SO FF [19] Elf

Instance Segmentation 0.803 0.803 0.803 / 0.799
Object Classification 0.672 0.672 0.672 0.605 0.671
Pose Estimation 0.661 0.661 0.661 / 0.654

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Equal par.
Pro. par.

0
40
80

120
160
200
240

La
te

nc
y(

m
s)

En/decode
Elf
Server
Network
Sync

Figure 12: latency vs RP box partitioning schemes

RP box allocation method with a resource-agnostic equal RP box
allocation method. Figure 12 shows that our method results in a
latency of 119ms while the other method has a latency of 149ms.

7.5 Elf System Overhead on Mobile Side

Elf incurs a small amount of overhead on the mobile side. Figure 13
shows the latency of five Elf functions. Jetson TX2 and Nano
are evaluated with the Python implementation and take 7ms, and
13.6ms in total. Nexus 6P and Pixel 4 are evaluated with C++ by
Java native interface and cost 7.8ms and 4.8ms in total. The incurred
system overhead is sufficiently low to deliver its parallel offloading
functions for the significant latency reduction.

Moreover, RP prediction costs 70%+ of the total time as the
attention LSTM model is implemented in Python and exported
to C++ with TorchScript. We will rewrite the prediction model
with TensorRT [68], a C++ library that facilitates high-performance
inference, in the future work to minimize the RP prediction latency.

7.6 Evaluation of RP Prediction

Model Training: Two online available video datasets, KITTI [69]
and CityScapes [70] that contain object labels for each frame, were
used in the training. Using 60% of the dataset as training data, we
applied the RP indexing algorithm to maintain a consistent order
of region proposals. Finally, we train the network using Adam
optimizer [71] with a learning rate of 1e-3 to minimize the loss
function in Eq. (1).
The Effectiveness of Attention LSTM: We show the training
loss curve in the first 60 epochs in Figure 18 and the loss on the
test dataset in Figure 19. The trend shows that our attention LSTM
outperforms vanilla LSTM that demonstrates remarkable accuracy
in those prediction work [72, 73], by reducing the loss from 0.51 to
0.25, as it can pay more attention to more recent frames.

Further, we report the impact of different prediction algorithms
on the inference accuracy while keeping other modules the same.
Here, we also consider FastTracker [74], which predicts the current
RPs as the RPs in the previous video frame, but with a scale-up of
200%, as the baseline. Figure 20 and Figure 21 show the inference
accuracy and the offload ratio (defined as the ratio of the total of-
floading traffic, with respect to the offloading traffic in SO). The
vanilla LSTM predictor has the lowest offloading traffic, with an

Tx2 Nano
Nexus 6PPixel 4

0

5

10

15

La
te

nc
y

(m
s)

RP index
RP predict
RP rescale

Frame par.
Merge

Figure 13: System overheads of Elf functions

11% offload ratio, but at a considerable inference accuracy down-
grade compared to our attention LSTM, 0.748 vs. 0.799. Meanwhile,
FastTracker shows a slightly higher inference accuracy compared
to us, 0.802 vs 0.799, but the offloading traffic almost doubles.

All things considered, our attention LSTM could achieve a good
inference accuracy with reasonably low offloading traffic.
The Impact of RP Indexing: Next, we demonstrate the impor-
tance of maintaining a consistent RP index across video frames.
Figure 19 shows the test loss of two prediction algorithms with and
without RP indexing. With RP indexing, vanilla LSTM reduces the
loss from 0.71 to 0.51 and attention LSTM reduces the loss from 0.7
to 0.25.
The Impact of RP ExpansionRatio:Moreover, the RP expansion
ratio trades off the application accuracy with the average offloading
traffic volume, i.e., a larger ratio leads to a higher application ac-
curacy at the cost of more offloading data. Figures 14 and 15 show
the trade-off with different expansion ratios. After increasing the
RP expansion ratio to 4% or higher, the accuracy stays at 0.799, the
highest Elf can achieve.

However, when Elf has the ratio under 4%, we observe an accu-
racy downgrade. For example, the accuracy is 0.70 and 0.75 when
the expansion ratio is 1% and 2%, respectively. Also, we identify the
same pattern with Elf-3 and Elf-4. On the other hand, with an RP
extension ratio of 4%, the offload ratio is 7% for Elf-3 and 13% for
Elf-4.
The Impact of LRC Parameters: We then show LRC can effi-
ciently detect new objects when first appear. Figure 16 presents
the accuracy using the down-sampled frames for inference with a
down-sampling scale x increasing from 1 to 10, with the resulting
frame size from 0.01×x2. At the scale of 8, the accuracy degrades to
0.75, and at the scale of 4, the accuracy goes down to 0.62. The result
indicates that using low-resolution frames alone hurts application
accuracy. Figure 17 reports the inference accuracy by offloading
frame partitions and LRC with different down-sample ratios. When
the LRC ratio has been increased to 16%, the accuracy keeps at 0.799
(the SO solution achieves 0.803).

8 RELATEDWORK

Video Analytics Optimizations. AWS Wavelength [23] moves
Amazon Web Services to Verizon’s 5G edge computing platforms

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

1 3 5 7 9
RP expansion ratio (%)

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 (
AP

)

Server num.=3
Server num.=4

Figure 14: Inference accuracy

vs RP expansion ratio

1 2 3 4 5 6 7 8 9 10
RP expansion ratio (%)

0

20

40

O
ff

lo
ad

 r
at

io
 (

%
)

Server num.=3
Server num.=4

Figure 15: Offload ratio vsRP

expansion ratio

1 3 5 7 9
Down-sample ratio(0.01*x^2)

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 (
AP

)

Figure 16: Inference accuracy

vs downsample ratio

2 4 6
LRC scale ratio (0.01*x^2)

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 (
AP

)

0.6

0.8

Si
ze

 r
ed

uc
ti

on
 (

%
)

Figure 17: Inference accuracy

vs LRC ratio

0 20 40 60
Training epochs

0.4

0.6

0.8

Tr
ai

ni
ng

 lo
ss Attention LSTM

Vanilla LSTM

Figure 18: Training loss in

the first 60 epochs

0.0

0.5

1.0

1.5

Te
st

 lo
ss

V. W/O
A. W/O

V. W/
A. W/

Figure 19: Test loss w/- and

w/o RP indexing

0.6

0.7

0.8

Ac
cu

ra
cy

 (
AP

) 0.799

0.748

0.802

Attention LSTM
Vanilla LSTM
Fast tracker

Figure 20: Inference accu-

racy

A. LSTM V. LSTM
Fast tracker

0

20

40

O
ff

lo
ad

 r
at

io
 (

%
)

Figure 21: Offload ratios

to deliver low latency video services. Intel and NVIDIA contribute
Intel Xeon Scalable Processors with Intel Deep Learning Boost [28]
and NVIDIA EGX A100 [29] to enable real-time AI processing at
the edge. Pano [75] proposes a quality-adaptation scheme that bal-
ances user-perceived video quality and video encoding efficiency.
Chameleon [76] dynamically selects the best configurations for
existing NN-based video analytics to save computing resources by
up to 10×. VideoStorm [77] and AWStream [78] adapt the configu-
ration to balance accuracy and processing delay.

OffloadingDeepNeuralNetworks. Cracking open theDNN [18],
Neurosurgeon [79], DeepThings [80] partition then distribute the
layers of deep learning networks over edge servers and mobile/IoT
devices (model parallelism) to reduce the inference latency. Filter-
Forward [19], Reducto [20], Glimpse [21] and Vigil [22] perform se-
lective data offloading based on the feature type, filtering threshold,
query accuracy, and video content to minimize the running latency.
EdgeAssisted [16] uses a motion vector based object tracking to
adaptively offload those regions of interests. Frugal Following [81]
dynamically tracks objects and only runs a DNN with significantly
changes. DDS [82] continuously sends a low-quality video stream
to the server that runs the DNN to determine where to re-send with
higher quality to increase the inference accuracy. These works only
support single-server offloading. Instead, Elf is designed to accel-
erate high-resolution vision tasks through distributed offloading of
multiple servers.

Accelerating Model Inferences. Branch pruning and sharing [7,
83–85] remove redundant or less critical parameters [8] to trade-
off the model complexity with inference latency. Tensor quanti-
zation [9] uses fewer bits to represent parameters for model com-
pression. DeepCache [86] caches and reuses the result of convolu-
tional operations to reduce the repeated computation. Simultane-
ously handle tasks with a single model through multi-task learn-
ing [87] for less computation. Furthermore, massive accelerators,

e.g., GPU [37, 42], FPGA [14], and ASIC [15, 88], are designed to
perform model inference in a high-throughput and low-latency
fashion. All these works are complementary to ours.

9 CONCLUSION AND FUTUREWORK

We designed and implemented Elf, an acceleration framework for
mobile deep learning networks. Elf can partition a video frame into
multiple pieces and offload them simultaneously to edge servers
for parallel computing. The main contribution stems from its re-
current region proposal prediction and content-aware video frame
partitioning algorithms. Our study shows that Elf is promising
to minimize the end-to-end latency of emerging mobile deep vi-
sion applications. Moving forward, we will continue to investigate
how to further drive down the latency, e.g., integrating the data-
parallelism approach of Elfwith those model-parallelism solutions.
We will also investigate the impact of access network bandwidth
on Elf task assignment and mapping. Another future work topic
is the efficient model design for deep vision applications to better
benefit from parallel offloading. Finally, we will study how to effi-
ciently orchestrate heterogeneous edge resources to minimize the
AI processing latency.

10 ACKNOWLEDGMENTS

We sincerely thank the reviewers and anonymous shepherd for
their valuable comments that help us improve this work and pre-
pare the camera ready version. We thank Ivan Seskar for his help
to setup the experimental platform. We also thank Sugang Li for
the discussion to brainstorm the initial research idea. This work
is partially supported by the Platforms for Advanced Wireless Re-
search (PAWR) project with the National Science Foundation grant
No.182792, the 2030 National Key AI Program of China 2018AAA
0100500 and Key Research Program of Frontier Sciences, CAS, Grant
No.ZDBS-LY-JSC001.

Elf: Accelerate High-resolution Mobile Deep Vision with Content-aware Parallel Offloading ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[2] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep learning
apps on smartphones,” in The World Wide Web Conference, pp. 2125–2136, 2019.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, pp. 91–99, 2015.

[4] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multinet: Real-
time joint semantic reasoning for autonomous driving,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 1013–1020, IEEE, 2018.

[5] C. Xiang, C. R. Qi, and B. Li, “Generating 3d adversarial point clouds,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9136–9144, 2019.

[6] S. Xu, D. Liu, L. Bao, W. Liu, and P. Zhou, “Mhp-vos: Multiple hypotheses propa-
gation for video object segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 314–323, 2019.

[7] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in Proceedings of the IEEE International Conference on Computer Vision,
pp. 1389–1397, 2017.

[8] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision,” in Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pp. 115–
127, ACM, 2018.

[9] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural
networks for mobile devices,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4820–4828, 2016.

[10] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer of ternary
neural network using truncated gaussian approximation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 11438–11446,
2019.

[11] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4133–4141, 2017.

[12] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8697–8710, 2018.

[13] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, C. Xu, F. Xu, L. Zhang, and J. Song,
“Occlumency: Privacy-preserving remote deep-learning inference using sgx,” in
Proceedings of the 25th Annual International Conference on Mobile Computing and
Networking, MobiCom 2019, October 21-25, 2019, Los Cabos, Mexico, ACM, 2019.

[14] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161–170, ACM, 2015.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pp. 1–12, IEEE, 2017.

[16] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for
mobile augmented reality,” in The 25th Annual International Conference on Mobile
Computing and Networking, pp. 1–16, 2019.

[17] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge clouds,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019.

[18] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman, S. Savarese, and
K. Winstein, “Cracking open the dnn black-box: Video analytics with dnns across
the camera-cloud boundary,” in Proceedings of the 2019 Workshop on Hot Topics in
Video Analytics and Intelligent Edges, pp. 27–32, 2019.

[19] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and
S. R. Dulloor, “Scaling video analytics on constrained edge nodes,” arXiv preprint
arXiv:1905.13536, 2019.

[20] Y. Li, A. Padmanabhan, P. Zhao, Y.Wang, G. H. Xu, and R. Netravali, “Reducto: On-
camera filtering for resource-efficient real-time video analytics,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer
communication, pp. 359–376, 2020.

[21] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and D. Ganesan,
“Glimpse: A programmable early-discard camera architecture for continuous
mobile vision,” in Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services, pp. 292–305, 2017.

[22] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The design and
implementation of a wireless video surveillance system,” MobiCom, ACM, 2015.

[23] “Aws wavelength: Bring aws services to the edge of the verizon 5g network..”
https://enterprise.verizon.com/business/learn/edge-computing/.

[24] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-L. Zhang,
“A first look at commercial 5g performance on smartphones,” in Proceedings of

The Web Conference 2020, pp. 894–905, 2020.
[25] S. Zhou, W. Shen, D. Zeng, M. Fang, Y. Wei, and Z. Zhang, “Spatial–temporal

convolutional neural networks for anomaly detection and localization in crowded
scenes,” Signal Processing: Image Communication, vol. 47, pp. 358–368, 2016.

[26] N. Tijtgat, W. Van Ranst, T. Goedeme, B. Volckaert, and F. De Turck, “Embedded
real-time object detection for a uav warning system,” in The IEEE International
Conference on Computer Vision (ICCV) Workshops, Oct 2017.

[27] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic segmentation
on high-resolution images,” in Proceedings of the European Conference on Computer
Vision (ECCV), pp. 405–420, 2018.

[28] “Intel xeon scalable processors.” https://www.intel.com/content/www/us/en/
products/processors/xeon/scalable.html.

[29] “Nvidia egx a100: delivering real-time ai processing and enhanced security at
the edge.” https://www.nvidia.com/en-us/data-center/products/egx-a100/.

[30] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-
resource packing for cluster schedulers,” ACM SIGCOMM Computer Communica-
tion Review, vol. 44, no. 4, pp. 455–466, 2014.

[31] L. Peterson, T. Anderson, S. Katti, N. McKeown, G. Parulkar, J. Rexford, M. Satya-
narayanan, O. Sunay, and A. Vahdat, “Democratizing the network edge,” ACM
SIGCOMM Computer Communication Review, vol. 49, no. 2, pp. 31–36, 2019.

[32] S. Yang, E. Bailey, Z. Yang, J. Ostrometzky, G. Zussman, I. Seskar, and Z. Kostic,
“Cosmos smart intersection: Edge compute and communications for bird’s eye
object tracking,” in Proc. 4th International Workshop on Smart Edge Computing
and Networking (SmartEdge’20), 2020.

[33] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

[34] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose
estimation,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2334–2343, 2017.

[35] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep learn-
ing framework for edge video analytics,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, pp. 1421–1429, IEEE, 2018.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[37] “Nvidia jetson nano, the ai platform for autonomous everything.” https://www.
nvidia.com/jetson-nano.

[38] “Amazon sagemaker: Machine learning for every developer and data scientist.”
https://aws.amazon.com/sagemaker/.

[39] K. Sun, B. Xiao, D. Liu, and J.Wang, “Deep high-resolution representation learning
for human pose estimation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[40] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, et al., “Challenge: Cosmos: A
city-scale programmable testbed for experimentation with advanced wireless,”
in Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking, pp. 1–13, 2020.

[41] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, et al., “Speed/accuracy trade-offs for modern convolu-
tional object detectors,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7310–7311, 2017.

[42] “Nvidia jetson tx2, the fastest, most power-efficient embedded ai computing
device.” https://developer.nvidia.com/embedded/jetson-tx2.

[43] M. Wang, C.-c. Huang, and J. Li, “Supporting very large models using automatic
dataflow graph partitioning,” in Proceedings of the Fourteenth EuroSys Conference
2019, p. 26, ACM, 2019.

[44] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger, and
B. Leibe, “Mots: Multi-object tracking and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7942–7951, 2019.

[45] M. Najibi, B. Singh, and L. S. Davis, “Autofocus: Efficient multi-scale inference,”
in Proceedings of the IEEE International Conference on Computer Vision, pp. 9745–
9755, 2019.

[46] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhut-
dinov, “Spatially adaptive computation time for residual networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1039–1048,
2017.

[47] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end
attention-based large vocabulary speech recognition,” in 2016 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pp. 4945–4949,
IEEE, 2016.

[48] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based lstm for aspect-level
sentiment classification,” in Proceedings of the 2016 conference on empirical methods
in natural language processing, pp. 606–615, 2016.

[49] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A dual-stage
attention-based recurrent neural network for time series prediction,” arXiv
preprint arXiv:1704.02971, 2017.

[50] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999.

https://enterprise.verizon.com/business/learn/edge-computing/
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.nvidia.com/en-us/data-center/products/egx-a100/
https://www.nvidia.com/jetson-nano
https://www.nvidia.com/jetson-nano
https://aws.amazon.com/sagemaker/
https://developer.nvidia.com/embedded/jetson-tx2

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Zhang, Wuyang, et al.

[51] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast online object
tracking and segmentation: A unifying approach,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1328–1338, 2019.

[52] P. Hintjens, ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.",
2013.

[53] “Build and run docker containers leveraging nvidia gpus.” https://github.com/
NVIDIA/nvidia-docker.

[54] “Nvidia gpu-accelerated jpeg encoder and decoder.” https://developer.nvidia.com/
nvjpeg.

[55] A. Narayanan, J. Carpenter, E. Ramadan, Q. Liu, Y. Liu, F. Qian, and Z.-L. Zhang,
“A first measurement study of commercial mmwave 5g performance on smart-
phones,” arXiv preprint arXiv:1909.07532, 2019.

[56] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object
detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6154–6162, 2018.

[57] H. Zhang, H. Chang, B. Ma, N.Wang, and X. Chen, “Dynamic r-cnn: Towards high
quality object detection via dynamic training,” arXiv preprint arXiv:2004.06002,
2020.

[58] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object
detection,” in Proceedings of the IEEE international conference on computer vision,
pp. 9627–9636, 2019.

[59] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, “Foveabox: Beyound anchor-based
object detection,” IEEE Transactions on Image Processing, vol. 29, pp. 7389–7398,
2020.

[60] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye, “Freeanchor: Learning to match anchors
for visual object detection,” in Advances in Neural Information Processing Systems,
pp. 147–155, 2019.

[61] C. Zhu, Y. He, and M. Savvides, “Feature selective anchor-free module for single-
shot object detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 840–849, 2019.

[62] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Nas-fpn: Learning scalable feature pyramid
architecture for object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7036–7045, 2019.

[63] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

[64] P. Voigtlaender,M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger, and B. Leibe,
“Mots: Multi-object tracking and segmentation,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[65] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[66] M. Andriluka, U. Iqbal, E. Ensafutdinov, L. Pishchulin, A. Milan, J. Gall, and S. B.,
“PoseTrack: A benchmark for human pose estimation and tracking,” in CVPR,
2018.

[67] R. Alp Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose
estimation in the wild,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7297–7306, 2018.

[68] “Nvidia tensorrt programmable inference accelerator.” https://developer.nvidia.
com/tensorrt.

[69] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2015.

[70] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene un-
derstanding,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015.
[72] Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity recognition

using wearables,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 2, pp. 1–28, 2017.

[73] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “Sr-lstm: State refinement
for lstm towards pedestrian trajectory prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 12085–12094, 2019.

[74] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep
regression networks,” in European Conference on Computer Vision, pp. 749–765,
Springer, 2016.

[75] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing 360 video
streaming with a better understanding of quality perception,” in Proceedings of
the ACM Special Interest Group on Data Communication, pp. 394–407, 2019.

[76] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: scalable
adaptation of video analytics,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pp. 253–266, 2018.

[77] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freed-
man, “Live video analytics at scale with approximation and delay-tolerance,” in
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), pp. 377–392, 2017.

[78] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “Awstream: Adaptive
wide-area streaming analytics,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, pp. 236–252, 2018.
[79] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neu-

rosurgeon: Collaborative intelligence between the cloud and mobile edge,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 1, pp. 615–629, 2017.

[80] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed adaptive
deep learning inference on resource-constrained iot edge clusters,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
pp. 2348–2359, 2018.

[81] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-
Chowdhury, “Frugal following: Power thrifty object detection and tracking for
mobile augmented reality,” in Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, pp. 96–109, 2019.

[82] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and J. Jiang,
“Server-driven video streaming for deep learning inference,” in Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
pp. 557–570, 2020.

[83] A. Veit and S. Belongie, “Convolutional networks with adaptive inference graphs,”
in Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–18,
2018.

[84] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep model
compression for mobile devices: A usage-driven model selection framework,”
in Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 389–400, 2018.

[85] S. Jiang, Z. Ma, X. Zeng, C. Xu, M. Zhang, C. Zhang, and Y. Liu, “Scylla: Qoe-aware
continuous mobile vision with fpga-based dynamic deep neural network reconfig-
uration,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pp. 1369–1378, IEEE, 2020.

[86] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: principled cache for
mobile deep vision,” in Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking, pp. 129–144, ACM, 2018.

[87] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation
with residual transfer networks,” in Advances in Neural Information Processing
Systems, pp. 136–144, 2016.

[88] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:
efficient inference engine on compressed deep neural network,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–
254, IEEE, 2016.

https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

	Abstract
	1 Introduction
	2 Motivation and Challenges
	3 Overview and Design Guidelines
	3.1 Recurrent Region Proposal Prediction
	3.2 RP-Centric Video Frame Partitioning and Offloading

	4 Fast Recurrent RP Prediction
	4.1 Problem Definition and Objective
	4.2 Attention-Based LSTM Network
	4.3 Region Proposal Indexing
	4.4 Handling Objects When First Appear

	5 RP-Centric Video Frame Partitioning and Offloading
	5.1 Problem Statement
	5.2 Why Not Directly Schedule Each Individual RP Task?
	5.3 Partitioning & Offloading of RP-Box
	5.4 Estimating Server Capacity and RP Computation Cost

	6 System Implementation
	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Evaluation of RP-Centric Partitioning and Offloading
	7.3 Accuracy of Deep Vision Applications
	7.4 Dealing with Dynamic Network Condition and GPU Utilization
	7.5 Elf System Overhead on Mobile Side
	7.6 Evaluation of RP Prediction

	8 Related Work
	9 Conclusion and Future Work
	10 Acknowledgments
	References

