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Abstract—Collaborative object localization and sharing at
smart intersections promises to improve situational awareness
of traffic participants in key areas where hazards exist due
to visual obstructions. By sharing a moving object’s location
between different camera-equipped devices, it effectively extends
the vision of traffic participants beyond their field of view.
However, accurately sharing objects between moving clients is
extremely challenging due to the high accuracy requirements for
localizing both the client position and positions of its detected
objects. Therefore, we introduce EdgeSharing, a localization and
object sharing system leveraging the resources of edge cloud
platforms. EdgeSharing holds a real-time 3D feature map of
its coverage region to provide accurate localization and object
sharing service to the client devices passing through this region.
We further propose several optimization techniques to increase
the localization accuracy, reduce the bandwidth consumption and
decrease the offloading latency of the system. The result shows
that the system is able to achieve a mean vehicle localization
error of 0.28-1.27 meters, an object sharing accuracy of 82.3%-
91.4%, and a 54.7% object awareness increment in urban
streets and intersections. In addition, the proposed optimization
techniques reduce bandwidth consumption by 70.12% and end-
to-end latency by 40.09%.

I. INTRODUCTION

Urban streets and intersections are notorious traffic trouble
spots. According to the U.S. Department of Transportation, 51
percent of all injury crashes and 28 percent of all fatal crashes
in the United States occur at intersections [1]. Many accidents,
which occur at intersections involve visual occlusions of cars
or vulnerable road users. This is a challenge that instrumenting
individual vehicles with sensors, as in current automated
driving and advanced driver assistance system, cannot fully
solve since they can suffer from similar occlusions.

Ubiquitous sensors and computational resources on the road
raise the possibility of smart intersections that address such
occlusions through object sharing. Object sharing systems
promise to extend traffic participants’ awareness beyond their
field of views by sharing the moving objects detected from
different camera perspectives and positions. For example, a
leading vehicle can share its detected front vehicle or pedes-
trian locations to a following vehicle whose field of view has
been blocked by the leading vehicle. Meanwhile, the following
vehicle can also share the traffic participants detected in the
blind spot of the leading vehicle to extend its awareness.
Furthermore, a deployed camera at an intersection can localize
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each object in the intersection and provides this information
to all clients in the nearby region.

Accurately sharing objects between moving clients is ex-
tremely challenging due to the high accuracy and low latency
requirement for localizing both the client position and po-
sitions of its detected objects. Compared to GPS and other
inertial sensing methods that are widely recognized to be less
accurate in dense city scenarios, visual odometry solutions
(e.g. SLAM) are more feasible in such situations where rich
visual features exist. These solutions typically determine the
position and orientation of a client device by analyzing the
associated vision inputs (e.g. camera image, Lidar depth map,
etc.) with a map constructed by 3D features. However, these
solutions require large amounts of computation and storage
resources on the end devices to store the large feature map
and run computational intensive tasks on captured frames. In
a profiling task of a popular open-sourced SLAM algorithm
ORB-SLAM, we find that the 3D feature map of a single
intersection, block, or straight way in a normal city requires
more than 100MB of memory to store (Figure 1(a)). This
makes it almost impossible for mobile devices to store a city
or state-level 3D feature map locally. We also find that the
mapping latency of ORB-SLAM increases with the number
of keyframes in the map, as shown in Figure 1(b). A feature
map with around 800 keyframes (similar to the number of
keyframes in an intersection) requires around 40ms to track a
frame on an Intel I7 5500U CPU, which makes it extremely
hard to run at high frequency on current mobile devices.
Additionally, running sophisticated object detection on mobile
devices is also extremely challenging [2].

Today’s visual odometry method on mobile devices either
run in small closed spaces (e.g. a room) or offload image
features up to the cloud for assistance. Most of existing AR/VR
platforms, including Apple ARKit [3], Google ARCore [4],
Microsoft Hololens [5], and Oculus Go [6], are able to achieve
real-time SLAM in small spaces with mostly stationary scenes.
Mapping in large and open spaces are even more challenging
due to the large variations in the environment. Existing outdoor
mapping technologies adopted by self-driving cars requires
the vehicle to equipped with high computational resources
(e.g. GPU or FPGA) and also store a large precomputed
3D feature maps onboard to achieve accurate visual based
localization. Other applications such as Google Map’s AR
navigation app [7] offloads image feature matching process
to the cloud. For object sharing, AVR [8] allows vehicles
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Fig. 1. Challenges of running object sharing system on mobile nodes.

to share point clouds between each another through V2V
communication. However, it still requires each vehicle to have
large computation resources and comprehensive 3D feature
map on board. While cloud offload is a feasible way to
overcome these limitations of the device’s resources, it requires
a long transmission latency to upload the visual information
to the remote cloud. It is therefore highly desirable to offload
localization and object sharing platform on in a way that
reduces latency incurred by frame transmission so that it can
support driving and vehicle control applications.

In this paper, we introduce EdgeSharing, a first collabo-
rative localization and object sharing system leveraging the
resources of an edge cloud platform and the visual inputs from
participating mobile clients (e.g., vehicles and pedestrians).
In EdgeSharing, the edge cloud constructs a 3D feature map
of its coverage region from images and depth readings from
a dedicated data collection vehicle or crowdsourced from
participating clients. This 3D feature map is then used to
provide accurate localization services to client devices passing
through this region. Leveraging the computation power on the
edge cloud, EdgeSharing also detects object locations on the
images offloaded by participating clients. These locations are
stored in a sharing database and can be shared with other
clients in the same region. With EdgeSharing installed on
the edge cloud, nearby vehicles are able to learn extra object
(e.g., traffic participants) locations from the edge cloud, which
are outside the vehicles field of view. This improves their
situational awareness and safety.

To support accurate localization and object sharing while
reducing latency and bandwidth consumption, we propose
several optimization techniques. In particular, a Context-Aware
Feature Selection uses the edge’s computational resources to
filter out feature points on potential moving objects in the
offloaded images to increase SLAM localization accuracy.
We also introduce a Collaborative Local Tracking mechanism
to significantly reduce the bandwidth consumption of frame
transmission by only offloading selected keyframes to the edge
cloud, while using a lightweight local tracking method to keep
track of the location of the client and its detected objects on
the end device. In addition, we design a Parallel Streaming
and Processing method to enable parallel video streaming and
cloud processing, which largely reduces the end-to-end latency
of EdgeSharing.

EdgeSharing is able to achieve high-quality and real-time lo-
calization and accurate object sharing with only small amounts

of cloud computation and bandwidth resources. Our evaluation
result demonstrates that the system is able to achieve a mean
vehicle localization error of 0.2813-1.2717 meters, an object
sharing accuracy of 82.3%-91.44%, and a 54.68% object
awareness increment in urban streets and intersections. In
addition, the proposed optimization techniques are able to
reduce 70.12% of bandwidth consumption and reduce 40.09%
of the end-to-end latency.

The contributions of this work can be summarized as
follows:
• Designing the first real-time collaborative localization

and object sharing system EdgeSharing, leveraging the
support of the edge cloud.

• Proposing a practical solution to localize and share ob-
jects detected by dynamic moving devices.

• Improving the localization accuracy with context-aware
feature selection mechanism.

• Reducing offloading bandwidth with a collaborative local
tracking method.

• Decreasing the end-to-end latency using a parallel stream-
ing and processing pipeline.

• Implementing and evaluating the EdgeSharing system
based on commodity hardware and showing that the
proposed system can achieve high-quality and real-time
localization and accurate object sharing with only small
amounts of cloud computation and bandwidth resources.

II. EDGESHARING DESIGN

EdgeSharing provides high-quality real-time object sharing
services to travelers in dense city traffic scenarios leveraging
large computational resources at the edge cloud. First, this
platform allows mobile clients, such as vehicles and pedes-
trians to offload computations of the visual localization task
onto the edge cloud while maintaining low latency and high
accuracy. Second, it collects and merges sensor data from
these mobile clients and other infrastructure sensors near the
edge that offer different perspectives onto the intersection.
Merging accuracy benefits from sharing rich data streams
so that perspectives can be accurately aligned based on a
large set of feature points. Merging information from different
perspectives allows vehicles to see into blind spots and other
areas of the intersection that are occluded by objects. More
complete information about traffic participant positions and
trajectories allows improving efficiency and safety in advanced
driver assistance as well as automated driving systems. The
whole system consists of two parties: clients and an edge
server, as illustrated in Figure 2.

Clients. Clients can be broadly considered as any mobile
nodes with visual sensors that have connectivity to the edge
cloud server. In EdgeSharing, these mobile clients can be
split into two categories: producer and consumer, with some
devices acting as both. Producers are mobile clients like
advanced self-driving cars, street cameras or flying drones that
continuously offload captured RGB frames and depth readings
to the server to help the server localize position of objects in
the 3D environment. Consumers are mobile clients such as



Fig. 2. System Design

smartphones, smartglasses, and commercial vehicles that keep
receiving the information of surrounding objects within the
local region by offloading the video frame captured by its
equipped camera.

Edge Server. An edge server is a regional edge cloud or
data center that gathers sensor readings of all participating
mobile clients, detects objects from different perspectives, and
provides such information back to mobile clients for safety
services. As illustrated in Figure 2, the edge server consists of
three key services: Device Localization, Object Detection, and
Object Sharing. In order to benefit from the objects detected
by different mobile clients, EdgeSharing needs to estimate
accurate 3D pose information (location and orientation) of
each participating client in the world coordinate system. While
GPS and inertial sensor data provide low-cost location and
orientation data, it is widely recognized to be noisy and inac-
curate in urban canyons. The Device Localization procedure
of EdgeSharing estimates the 3D transformation matrix with
visual odometry techniques leveraging the offloaded frames
from the client device. EdgeSharing redesigns a popular ORB-
SLAM algorithm to work in this edge offloading scenario –
the edge server collects the offloaded frames from mobile
clients to generate the 3D map and uses it to help localize
these devices. In the Object Detection service, the system
first leverages a state-of-the-art object detection algorithm
to detect locations of a new object in the image frame.
EdgeSharing then uses the depth information provided by the
producer client to estimate the 3D localization of each such
object in its camera coordinate system, and then projects the
position to the world coordinate system with the perspective
projection from the Device Localization service. All detected
object locations are stored in an object database on the edge
server. The last component is Object Sharing service which
shares the stored object locations in the database with nearby
clients. EdgeSharing projects the position of each object in the
database back to the client’s coordinate system and returns this
information back to the client. We further detail this system
in the following subsections.

A. Device Localization Service

To enable accurate object sharing in urban streets with
dense traffic, EdgeSharing requires estimating the position and
orientation of each participating client in the coverage region.
This allows the system to calculate the relative transformation
between two different objects and share the information with
clients.

EdgeSharing leverages a popular SLAM framework (i.e.
ORB-SLAM) as its device localization solution. We redesign
the ORB-SLAM solution to generate a high-quality 3D feature
map of the coverage region of an edge cloud server (e.g. an
intersection) using offloaded images from participating clients
and use this map to localize the participating mobile clients
in this local region on-the-fly.

To build the feature map for Device Localization, we use a
dedicated data collection vehicles to drive through the region
from different directions for several times and offload captured
frames to the edge server. The server uses the ORB-SLAM
algorithm to generate 3D feature map either offline or online.
There has been several similar research that constructs feature
map using crowdsourced frames from travelers in the street [9].
Once the map is constructed, the edge server is able to provide
Device Localization service to the mobile devices by matching
the ORB feature points from their offloaded images to features
in the 3D feature map. The system further optimizes the pose
of the device with RANSAC and motion model constraints.
The final output of the Device Localization service is a world
to camera transformation matrix (Tcw) that is able to transform
a point’s 3D location between the world coordinate system
and the camera coordinate system. This matrix is also refer to
the combination of a rotation matrix (Rcw) and a translation
matrix (tcw) between the two coordinate system.

B. Object Detection and Object Sharing Service

After localizing the 3D position and orientation of each
client, EdgeSharing adopts an Object Detection service to
detect objects in the field-of-view of those producer clients
from their offloaded images and project these objects to the
global coordinate system. Then the system uses an Object
Sharing service to share locations of those objects to all
consumer clients in the coverage of the edge server. This
effectively extends the vision of traffic participants beyond
their field of view. We first introduce Object Detection service,
which contains two key components: Object Bounding Box
Detection and Object 3D Localization.

Object Bounding Box Detection. EdgeSharing leverages
state-of-the-art CNN based Object Detection models to iden-
tify object locations on each frame’s pixel coordinate system.
Specifically, we use a ResNet-50 based Faster RCNN Object
Detection model to detect objects on each offloaded video
frame. This model takes the raw RGB frame as the input and
outputs the object types and their 2D bounding boxes in the
frame’s pixel coordinate system. The model is trained with
Microsoft Coco dataset, which contains 91 different object
types, including person, car, motorcycle, bicycle, bus, truck,
traffic light, and different street signs that frequently appear in
urban streets and useful for a variety of safety services.

Object 3D Localization. In order to share the detected
object to other clients, EdgeSharing needs to project the
location of each object from the producer’s perspective to
other consumer’s perspective. To enable this, the Object 3D
Localization process works in the following procedures: (1).
The system estimates the depth of each object with respect



(a) Object detection on the RGB
frame.

(b) Estimate depth of each detected
object using the depth map of the
frame.

Fig. 3. Object 3D Localization.

to the camera’s coordinate system. This step can be achieved
using depth sensors from the vehicle (e.g. Lidar, Radar, RGBD
camera or stereo camera), or based on other monocular based
depth estimation techniques [10], [11]. (2). The system then
uses perspective projection to transform the location of all
detected objects from the 2D pixel coordinate frame to the
3D world coordinate frame. Equation 1 shows the projection
equation of projecting a point from the pixel coordinate system
(u, v) to the camera’s coordinate system (xc, yc, zc), and then
to the world coordinate system (xw, yw, zw). As shown in
Figure 3, EdgeSharing uses the center point of each bounding
boxes as the location of this object (u, v) on the frame’s pixel
coordinate system, and uses the median depth value inside the
bounding box as its depth towards the camera’s coordinate
system (zc). With the position information of the object and
the intrinsic matrix (K) of the camera, the system is able to
transform each object to the camera’s coordinate system. After
that, EdgeSharing further calculates the position of each object
in the world coordinate system leveraging the client’s Extrinsic
Matrix (Tcw) calculated by the Device Localization service.
(3). All detected locations of objects are immediately stored in
a Shared Object Database, a storage engine on the edge cloud
that stores the real-time 3D object locations in its coverage
area. The Shared Object Database gathers the location of
each object from images offloaded by nearby clients, while
providing this information for object sharing. To maintain a
timely object sharing, each collected object will be expired if
no position update is provided by the client after 50 ms from
the time the object has been detected.

λ
[
u v 1

]T
= K

[
xc yc zc 1

]T
= KTcw

[
xw yw zw 1

]T (1)

Object Sharing. Finally, EdgeSharing shares objects inside
the Shared Object Database to the client to provide them more
information beyond their line-of-sight. In particular, the system
transforms all shared objects within its coverage region from
the world coordinate system to the client camera’s coordinate
system based on the transformation matrix (Tcw) calculated
from the Device Localization service. The server combines
the shared object locations and send them back to consumer
clients.

C. System Optimization

In addition, we propose several optimization techniques to
improve the performance of EdgeSharing. First, we design

Fig. 4. Context Aware Feature
Selection

Fig. 5. Parallel Streaming and Process-
ing

a Context Aware Feature Selection method to select only
stable features on each frame to estimate the pose of the
device in the Device Localization service (Section III). This
method takes advantage of the powerful computation resource
on the edge server to detect movable objects and uses the
detected object bounding boxes to do the feature selection.
Second, EdgeSharing adopts a Collaborative Local Tracking
mechanism to reduce offloading bandwidth while maintaining
a high tracking accuracy (Section IV). Last, we implement
a Parallel Streaming and Processing pipeline to decrease the
end-to-end latency of the whole offloading tasks by efficiently
pipelining streaming and image processing processes in par-
allel (Section V).

III. CONTEXT AWARE FEATURE SELECTION

EdgeSharing applies a Context Aware Feature Selection
mechanism to increase the accuracy of our device localization
service in dense traffic scenarios. While SLAM based visual
odometry method has been adopted as the key inside-out track-
ing method for mobile devices, it is still widely recognized
to be vulnerable to moving objects in the scene [12]. This
method relies on matching feature points between continuous
captured frames and uses them with motion model constraints
to derive instant changes over time. The key principle underlies
this mechanism is that most of the matched feature points
are not moving between frames in the world coordinate
system. However, this is very hard to guarantee in dense
traffic scenarios, where large amounts of moving objects (e.g.
vehicles, pedestrians, etc.) exist. To overcome this challenge,
we propose a Context Aware Feature Selection method to
filter out potential moving features in the scene and only
use stable feature matches to estimate the location changes.
The intuition of this approach is that feature points located
inside the detected object bounding boxes of movable objects
are more likely to move than other background regions. By
taking advantage of the Object Detection service, EdgeSharing
directly filtered out the feature points that lie in the bounding
boxes of potential moving objects. In particular, we consider
the following objects as potential moving objects: car, bus,
truck, motorcycle, bicycle, and person.

Figure 4 shows an illustration of our feature selection
method when processing one of the offloaded frames. The
green markers are the feature matches between the frame and
feature points in the 3D map. The blue markers represent
the matches with previous frames and red markers are the
discarded matches due to they lie in the bounding boxes of
detected potential moving objects. In the Device Localization



Fig. 6. Collaborative Local Tracking

service, the system only matches green and blue feature points
with the 3D feature points and uses them to derive the location
of the device. We further show how this mechanism can
increase the localization accuracy in dense city traffic scenarios
in Section VII.

IV. COLLABORATIVE LOCAL TRACKING

EdgeSharing requires participants to keep offloading video
frames to the server through the wireless link, which require
significant bandwidth. To eliminate this large overhead, a
natural way is to reduce the offloading frequency. However,
this results in a low device localization accuracy due to
the low update rate. To overcome this trade-off between the
localization accuracy and bandwidth consumption, we propose
a Collaborative Local Tracking to adaptively schedule frame
offloading and apply local tracking on device to mitigate the
localization quality degradation caused by the low offloading
frequency. As shown in Figure 6, the offloaded frames still
follow the regular procedures described in Section II, while the
local frames go through a local tracking process to estimate
the location changes of the client as well as the position of its
detected objects. This Collaborative Local Tracking contains
several key components: Local Device Tracking, Local Object
Tracking, and Adaptive Offloading.

Local Device Tracking. As shown in Figure 6, the Local
Device Tracking module has three components: (1) Image
downsampling, (2) Homography calculation, and (3) Transfor-
mation calculation. In the first step, the system downsamples
the raw frame to a smaller resolution (from 800x600 to
400*300) to reduce the time complexity of following feature
extraction and matching. In the second step, the system cal-
culates the homograpgy matrix between the current frame and
the last frame, which contains the perspective transformation
between two frames. In particular, the system first extracts
ORB feature points from the current frame, and find feature
matches between current frame with the last offloaded frame.
The system then runs a RANSAC with projective motion
model to get a group of reliable feature matches between two
frames from the raw feature pairs. Finally, the system uses
an SVD method to estimate the homography matrix between
two frames. As shown in Equation 2, Homography matrix is
a 3× 3 matrix that is an image to image mapping matrix that
is able to transform each pixel’s homogeneous coordinate of
the last frame ([u, v, 1]T ) to the corresponding coordinate on
the current frame ([u′, v′, 1]T ).

λ

u′v′
1

 = H

uv
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

uv
1

 (2)

With the homography matrix between two frames, the
system extracts the rotation and translation matrix between two
images, and uses them to build the transformation matrix Tc′c
that can transform a 3D point in the camera’s homogeneous
coordinate system of the last frame ([x, y, z, 1]) to the corre-
sponding points in the current camera’s homogeneous coor-
dinate system ([x′, y′, z′, 1]). After that, the system calculates
the transformation matrix from the world coordinate system
(Tc′w) to the camera’s coordinate system using Equation 3.

Tc′w = Tc′cTcw (3)

With this Local Device Tracking method, EdgeSharing is
able to localize the position of the client device in real-time
without the necessity of offloading every frame to the edge
server. For a local processed frame, the mobile client only
needs to send the updated location of the device to the edge
server, and the server can use this information to share objects
from the database to this client.

Local Object Tracking. In addition to Local Device Track-
ing, EdgeSharing also enables object tracking when the frame
is kept on the device for local processing. The Local Object
Tracking has three main procedures. First, the system reuses
the feature point matches between the current frame and
the last frame to shift the bounding box of each object to
the corresponding location in the current frame. Then the
system uses the same method introduced in Section II to
find the position of the object in the camera’s coordinate
frame using its new bounding box location and depth readings.
After that, the location of the object can be projected to the
world coordinate system using the transformation matrix Tc′w
calculated in the Local Device Tracking module. Finally, the
client device transmits the device transformation matrix and all
object locations to the edge server to update the share object
database. This Local Object Tracking technique can help the
producer client update the position of already detected object
without continuously uploading frames to the edge server.

Adaptive Offloading. However, it is impossible to keep
every frames process locally, since continuous frame by frame
tracking on client devices leads to increasing drift overtime.
The client device needs to periodically offload frames to the
edge server to correct the localization drift using the 3D feature
map. In addition, the edge server also generate fresh objects
and their locations using its Object Detection service.

Therefore, we design an Adaptive Offloading mechanism
to determine whether the client device should offload the
current frame to the edge server or keep it for local tracking.
The key intuition behinds this method is that we want to
offload the frames that have large changes compare to the last
offloaded frame. In EdgeSharing, Adaptive Offloading uses the
number of feature matches between the last offloaded frame
and the last frame to determine whether the last frame still
have considerable amounts of feature matches with the last



offloaded frame. If the number of feature matches drops below
the a threshold, Edgesharing can no longer maintain a high
tracking accuracy on the client side. Therefore, the system
should offload this frame to the edge server to process. On
the other hand, if there are still decent amounts of matches
with the last offloaded frame, the system processes the frame
locally. We empirically pick 40 pairs as the threshold and
report the result in Section VII.

V. PARALLEL STREAMING AND PROCESSING

EdgeSharing also strives to reduce the end-to-end latency
of the transmission and processing pipeline. The whole pro-
cessing pipeline consists of frame streaming and several cloud
processing procedures that usually have an end-to-end latency
of more than 50ms. Such long latency may significantly reduce
the accuracy of localization and object sharing, since the
location of objects may already change after the system get
the new detection result. To provide users with an optimal
experience, EdgeSharing adopts a Parallel Streaming and
Processing pipeline to paralyze the processing pipeline of tasks
on different resources of the edge cloud platform. This method
results in a large decrease of end-to-end latency spend on each
offloading task.

As shown in Figure 5, the baseline of the offloading pipeline
consists of four key procedures: (1) Frame transmission from
the client device to the edge server, (2) Object detection on the
offloaded frame, (3) Feature processing on the offloaded frame
(i.e. feature extraction and matching), and (4) Post processing,
including camera pose estimation, object location estimation
and object sharing. We observed that both the transmission and
image processing on the edge server take considerable time
and run sequentially, it ends up with a long end-to-end latency
for the entire system. In EdgeSharing, the client device splits
each offloaded frame into four slices and transmit them one by
one. Once each slice arrives at the edge server, the system can
immediately start feature extraction and object detection tasks
on it without waiting for the whole frame to arrive. In addition,
we also paralyze the procedures of object detection and feature
processing by offloading the object detection to run on the
onboard GPU. After all object detection and feature processing
task finished, the system starts to the post processing stage and
finish the rest of the task. Parallel Streaming and Process is
able to achieve almost half latency reduction compared to the
baseline approach.

VI. IMPLEMENTATION

Our implementation is entirely based on commodity hard-
ware and contains more than 5000 lines of code.

Hardware Setup. We emulate the whole system using
a group of commodity hardware. On the client side, We
use a mobile development board Nvidia Jetson TX2 as the
client processing device. Jetson TX2 contains a 256-core
NVIDIA Pascal GPU and a Dual-Core NVIDIA Denver 2
64-Bit CPU on board, which has similar computation power
compared to today’s high-end mobile phones, while much
worse than the typical computation device of self-driving cars,

such as the NVIDIA DRIVE series. This board also support
up to 802.11ac wireless connection, which also satisfies the
requirement of wireless video streaming.

On the edge cloud side, We use a workstation PC equipped
with an Intel i7-6850K CPU and an Nvidia Titan XP GPU
as our edge server to process all offloaded tasks. This PC
also connects to a TP-Link AC1900 router through a 1Gbps
Ethernet cable. This provides the wireless communication
channel between the server and client devices. Both devices
run Ubuntu 16.04 OS.

Software Implementation. The whole system is built upon
several open sourced projects and libraries, including ORB-
SLAM2 [12], OpenCV [13], Nvidia JetPack [14], Nvidia
Multimedia API [15], Nvidia TensorRT [16], and the Nvidia
Video Codec SDK [17]. We describe the implementation of
the edge server and the mobile client as follow.

The edge server-side implementation contains three key
components: Frame Decoding, Object Detection and Frame
Tracking, which are designed to run in three different threads
to avoid blocking each other. In Frame Decoding thread, the
edge server keeps decoding frame slides transmitted from the
client device and feeds them to the Object Detection thread
and the Frame Tracking thread immediately after comple-
tion. The Object Detection thread is implemented using the
Nvidia TensorRT, which is a high-performance deep learning
inference optimizer designed for Nvidia GPUs. To push the
limit of inference latency on the server side PC, we use the
INT8 calibration tool [18] in TensorRT to optimize the object
detection model, and achieves 3-4 times latency improvement
on the same setup. The Frame Tracking thread is developed
based on the ORB-SLAM2 algorithm [12]. We modify the
original project to fit our requirement of parallel processing
and feature selection. In particular, we create a Frame object
for each frame slide and use it to extract key points and
ORB descriptors on each slide. Then the feature matching
is performed by matching each feature point on a slide with
features on the entire last frame. To implement the Context-
aware Feature Selection method, we perform a filter on the
match feature pairs in the post processing stage, leveraging
the object bounding boxes detected in the Object Detection
thread.

We implement the client side functions on the Nvidia Jetson
TX2 with its JetPack SDK and OpenCV. The implementation
follows the design flow in Figure 2 and Figure 6. We use
OpenCV to achieve the image downsampling, cropping, and
various transformation matrix calculation. To implement the
Parallel Streaming and Inference module, we enable the slice
mode for the video encoder and use the setSliceLength()
function with a proper length to let the encoder split a frame
into four slices. Each slide is immediately transmitted out to
the edge server to process.

VII. EVALUATION

In this section, we evaluate the performance of the Edge-
Sharing system in terms of its device localization accuracy,



(a) Dataset 1: 4-way
Stop Sign.

(b) Dataset 2: City In-
tersection.

(c) Dataset 3: LA Inter-
section.

Fig. 7. Experimental datasets.

object sharing latency, bandwidth consumption, and end-to-
end latency. The results demonstrate that our system is able to
achieve both the high accuracy and the low latency require-
ment for device localization and object sharing in urban streets.
The system is able to achieve a mean vehicle localization error
of 0.28-1.27 meters, an object sharing accuracy of 82.3%-
91.4%, and a 54.68% object awareness increment in urban
streets and intersections. In addition, the proposed optimiza-
tion techniques are able to reduce 70.12% of bandwidth
consumption and reduce 40.09% of the end-to-end latency.

A. Experiment Setup

We use the setup and implementation described in Sec-
tion VI to conduct experiments. Two different object sharing
tasks are designed to evaluate the performance of our system:
a vehicle to vehicle object sharing task and an infrastructure
to vehicle object sharing task. In V2V object sharing scenario,
the EdgeSharing server collects object position from producer
vehicles with both cameras and depth sensors and provides
object sharing service to all consumer vehicles with only RGB
cameras. In the infrastructure to vehicle sharing scenario, the
EdgeSharing gets object position from a street camera, and
shares detected objects to all vehicles with RGB cameras.

For repeatable experiments, we use three collected datasets
as described in the section VII-B to conduct our experiment.
During the experiment, we simulate the whole offloading and
sharing process following the workflow described in Section II.

B. Dataset Description

We collected three different datasets to evaluate the per-
formance of our system. To first evaluate the system under
perfect data inputs, we collect two datasets using an open-
source simulator for autonomous driving called CARLA [19].
CARLA provides open digital assets (urban layouts, buildings,
vehicles) that were created for this purpose and can be used
freely. We carefully choose one 4-way stop sign intersection
and another city intersection from CARLA’s map 3 and map
5 to collect dataset for our experiment. Figure 7(a) and
Figure 7(b) show the top view of two intersections. During
the data collection, we spawn 400 vehicles equipped with front
view cameras in random locations on the map. In the 4-way
stop sign intersection, we aim to evaluate V2V object sharing,
therefore, each vehicle is equipped an additional depth camera
to record the corresponding depth for each pixel on the RGB
image. In map 5, we put a street camera and another depth
camera at the capturing position of Figure 7(b) to evaluate
I2V sharing scenario. The street camera keeps capturing 120-
degree field of view and 1280x720 resolution frames at 30 fps,
while vehicles are capturing frames 90 fov 800x600 resolution

Dataset Approaches Position
(meter)

Orientation
(degree)

4-way
Stop Sign

Baseline 0.65 2.01
+ Feature Selection 0.32 0.57
+ Local Tracking 0.39 0.82

City
Intersection

Baseline 0.58 1.88
+ Feature Selection 0.28 0.52
+ Local Tracking 0.37 0.76

LA
Intersection

Baseline Fail N/A
+ Feature Selection 1.27 N/A
+ Local Tracking 1.68 N/A

TABLE I
MEAN POSITION AND ORIENTATION ERROR OF THREE DIFFERENT

APPROACHES ON THREE DATASETS.

frames at 30 fps. All images are recorded with synchronized
time-stamps for our evaluation. We also log the position and
orientation data of each participant as groundtruth for the
following evaluation.

To further evaluate the performance of EdgeSharing in real
traffic scenarios, we collect another 120-hour dataset in an
intersection in Los Angeles, CA. In this dataset, we use
GoPros mounted at the bottom center under the windshield
to record the full driver’s front view videos with 1280×720
resolution at 30 fps. The 30Hz GPS readings are also recorded
using the embedded GPS sensor in GoPros. During the data
collection, ten different drivers were driving together as a fleet
in an urban street back and forth for 30 times. Figure 7(c) show
an frame of the video captured by the third vehicle of the fleet.

C. Accuracy of Device Localization

EdgeSharing is able to achieve high accuracy of device
localization under many different urban traffic scenarios. We
first measure the device localization accuracy of EdgeSharing
in three approaches: the baseline solution (Baseline), our
solution with the Context-aware Feature Selection method (+
Feature Selection), and our solution with both the Context-
aware Feature Selection and the Collaborative Local Tracking
method (+ Local Tracking). The baseline approach follows
the standard pipeline we introduced in Section II. We evaluate
the detection accuracy of EdgeSharing with two key metrics:
the position error and the orientation error of the device,
as shown in Table I. For the 4-way stop sign intersection
and the city intersection dataset, we create a dedicated map
generation vehicle in the simulator and let it drive through
the intersection from different directions and lines for several
times. The captured 30fps RGB frames and depth maps are
used to generate the map. For the LA intersection dataset,
we use two videos from the leading vehicle to construct the
feature map. The map is then used to help the other vehicles
localize themselves in the same intersection. As shown in
Table I, the proposed Context-aware Feature Selection is
able to increase the localization accuracy for the first two
datasets. In the 4-way stop sign dataset, EdgeSharing reduces
the mean position error from 0.65 meters to 0.32 meters,
and reduces the mean orientation error from 2.01 degrees to
0.57 degrees. Similarly, EdgeSharing also reduces the mean
position error and mean orientation error to 0.28 meters and
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Fig. 8. CDF of device localization of EdgeSharing.

0.52 degrees correspondingly. For the LA dataset, we only
evaluate the performance of position error since we did not
collect orientation groundtruth. For the baseline approach, we
find that EdgeSharing fails to build a meaningful feature map
due to the interference of moving objects and the vehicle’s
own dash. With the Context-aware Feature Selection method,
EdgeSharing is able to achieve a pretty good performance of
around 1.27 meters. In addition, we show that the proposed
Collaborative Local Tracking method does not significantly
reduce the localization accuracy, as listed in Table I.

We further show the cumulative distribution function (CDF)
of localization error for the city intersection dataset in Fig-
ure 8(a). The 95 percentile of the position error distribution
is 0.49 meter for the approach with Context-aware Feature
Selection and 2.2 meters for the baseline approach. Similarly,
Figure 8(b) shows the CDF of position error in the LA dataset.
The result demonstrates that our Context-aware Feature Selec-
tion technique is able to reduce the localization error and keep
most of the tracking error in a very low value range.

D. Accuracy of Object Sharing

Our system is able to achieve high localization accuracy
for object sharing in urban streets, and provides higher object
awareness to individual vehicles to enlarge their vision. We
first estimate object localization accuracy on the first and third
dataset to understand what percentage of detected objects is
correct among all detected objects. To calculate the accuracy,
we calculate the 3D location of the object in the world coor-
dinate system use the object 3D localization method described
in section II-B, and check whether we can find a vehicle
from the collected groundtruth data in an given error tolerance
range. As shown in Figure 9(a), we can observe the approach
with Context Aware Feature Selection is able to achieve the
highest sharing accuracy compared to other methods for the
same error tolerance. And for the same approach, the accuracy
increases as the error tolerance increases. The sharing accuracy
of the Context Aware Feature Selection approach with an error
tolerance of 4 meters is able to achieve 91.44%. For the
LA dataset, we only calculate the sharing accuracy of our
data collection vehicles in the scene. The result of Context
Aware Feature Selection approach and Collaborative Local
Tracking approach are depicted in Figure 9(b), which shows
our system is able to achieve 82.3% sharing accuracy with 4-
meter error tolerance in the dataset collected in real scenarios
with imperfect sensors. Note that the wrong detection can be
considered as the combination effect of device localization
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Fig. 9. Accuracy of Object Sharing.

error, depth sensor error, object detection algorithm error, and
the error caused by vehicle shape.

Second, we want to understand how many more objects can
one vehicle be aware of with the support of EdgeSharing. To
achieve this, we define object awareness as the percentage
of objects that one vehicle is aware of in the region of the
intersection. We compute the object awareness of each vehicle
in the intersection at each timestamp with three approaches:
own vision, location sharing only, and location and object
sharing in three different error tolerance. In the own vision
approach, each vehicle only knows the objects within its field
of view. With location sharing, the producers in the street
are able to store their position in the shared object database
for sharing. With object sharing, these producers further store
the locations of the detected object to the database. In the
experiment of the 4-way stop sign dataset, we randomly assign
25 vehicles as producer and calculate the object awareness for
the rest of vehicles in the region of the intersection. For the
city intersection dataset, we only use the street camera as the
producer and calculate the object awareness for all vehicles in
the region of the intersection. In Figure 9(c) and Figure 9(d),
we can find that object awareness is significantly increasing
with the support of location sharing and object sharing from
the producer clients.

E. Bandwidth Consumption

EdgeSharing uses the Collaborate Local Tracking method to
significantly reduce the bandwidth consumption while main-
taining a low localization error. To demonstrate this, we tune
the offloading threshold (feature matching pair number) used
in Collaborate Local Tracking to illustrate the relationship
between localization error and the bandwidth consumption
of our system. Figure 10 shows this relationship of the city
intersection dataset. Compared to the fully offloaded scenarios,
EdgeSharing is able to reduce the bandwidth consumption,
while only has a slight increment on the localization error.
For example, if we choose to use 40 matching pairs as the
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offloading threshold, we can reduce the bandwidth consump-
tion of the urban intersection dataset from 40.34 Mbps to only
12.05 Mbps, while only increasing the localization error from
0.2813 to 0.365 meters. Similarly, we also observe the same
pattern for the LA dataset we collected in real cases.

F. Latency

EdgeSharing includes a Parallel Streaming and Processing
(PSP) pipeline to reduce the end-to-end latency of the system.
We conduct a real-time experiment on the city intersection
dataset using the setup introduced in Section VI, and compare
the sequential approach and the PSP approach. As shown in
Figure 11, we divide the offloading latency into streaming,
object detection, feature processing, and post processing la-
tency for the sequential approach, and use a PSP latency for
the third method, because the processes run in parallel. The
streaming latency contains time spending on encoding (1.6ms
on Jetson TX2), transmission, and decoding tasks (less than
1ms on edge server). In the sequential approach, the mean
end-to-end latency to finish the entire pipeline of one frame
is 52.66ms, while our solution requires only 31.55ms, which
makes it possible for the system to deliver 30fps object sharing
experience to the participated clients.

VIII. RELATED WORK

Collaborative Sensing in Connected Vehicles. Connected
vehicles allows cars to share information and sensor reading
to other devices both inside as well as outside the vehicle.
Traditional vehicular communication systems (e.g. DSRC)
has been used to solve plenty of traffic issues by sharing
safety messages to other nodes on the road [20]–[24]. Many
recent works further explore to use millimeter wave to provide
much higher bandwidth for the vehicular communication [25]–
[27]. With such great resources, there have been other work
that focuses on sharing the camera perceptions through V2V
networks not limited for autonomous vehicles but also for
other Advanced Driving Assistance Systems (ADAS). The
see-through system [28] and AVR system [8] share visions
between vehicles through wireless connections to extend their
field of view. Compared to direct sharing methods that require
vehicles to have large computation resources on-board, edge
cloud-based object sharing system like EdgeSharing has the
benefits of easier system upgrading and maintenance, as well
as the better computation resources for more sophisticated
algorithms.

Vision Task Offloading. Offloading computation-intensive
tasks to cloud or edge cloud infrastructures is a feasible way to
enable continuous vision analytics on power and computation
constraint devices. Chen et al. [29] evaluate the performance
of seven edge computing applications in terms of latency.
DeepDecision [30] designs a framework to decide whether
to offload the object detection task to the edge cloud or do
local inference based on the network conditions. Lavea [31]
offloads computation between clients and nearby edge nodes
to provide low-latency video analytics. VideoStorm [32] and
Chameleon [33] achieve higher accuracy video analytics with
the same amount of computational resources on the cloud by
adapting the video configurations. Several other works [34]–
[36] also demonstrate the benefit of using edge cloud to
accelerate AR systems. These works have demonstrated the
benefit of using edge offloading in many different applications,
which also supports the idea of EdgeSharing.

Device Localization. Accurate device localization is a key
component of EdgeSharing system. Except from GPS signals,
Some other techniques such as inertial sensor [37], wireless
signal [38] and visual sensors [12] on the device to improve the
localization accuracy. Among these techniques, visual odom-
etry techniques have shown its great performance in tracking
devices in the environment where rich visual features exist.
Several popular visual SLAM algorithms, including ORB-
SLAM2 [12] and LSD-SLAM [39], have shown their superior
performance in mapping and localization in small space such
as an indoor environment with very few moving objects. These
techniques have also been adopted in commercial AR or VR
platforms, such as ARKit [3], ARCore [4], Hololens [5] and
Oculus Go [6]. In this work, we use the existing ORB-SLAM2
as our localization solution.

Adaptive Video Streaming. Several 360-degree video
streaming works [40]–[42] also adopt the idea of RoI encoding
to reduce the latency and bandwidth consumption of the
streaming process. Adaptive video streaming techniques have
also been adopted by mobile gaming [43], [44] and virtual
reality system [45], [46] to achieve high-quality experience
on mobile thin clients.

IX. CONCLUSION

In this paper, we introduced EdgeSharing, a first collab-
orative localization and object sharing system leveraging the
resources of an edge cloud platform and the visual inputs from
participating mobile clients (e.g., vehicles and pedestrians). In
EdgeSharing, the edge cloud uses a 3D feature map of its
coverage region to provide accurate localization services to
the client devices passing through this region. Additionally,
EdgeSharing also leverages the computation power on the edge
cloud to detect object locations on the images offloaded by
participating clients, localizes them in 3D space, and shares
them with other clients in the same region. With EdgeSharing,
nearby vehicles can learn extra object (e.g., traffic participant)
locations from the edge cloud, which are outside the vehicle’s
field of view, which improves their situational awareness and
safety.
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