
On Building a Programmable Wireless High-Quality
Virtual Reality System Using Commodity Hardware

Ruiguang Zhong\�, Manni Wang\§, Zijian Chen\?, Luyang Liu\†,
Yunxin Liu\, Jiansong Zhang\, Lintao Zhang\, Thomas Moscibroda\

\Microsoft Research, Beijing, China
� Beijing University of Posts and Telecommunications, Beijing, China

§ Xi’an Jiaotong University, Xi’an, China
? Tsinghua University, Beijing, China

†WINLAB, Rutgers University, North Brunswick, NJ, USA

Abstract
All existing high-quality virtual reality (VR) systems (e.g.,
HTC Vive and Oculus Rift) are tethered, requiring an HDMI
cable to connect the head mounted display (HMD) to a PC
for rendering rich graphic contents. Such a tethered design
not only limits user mobility but also imposes hazards to
users. To get rid of the cable, “cable replacement” solutions
have been proposed but without any programmability at the
HMD side. In this paper, we explore how to build a pro-
grammable wireless high-quality VR system using commod-
ity hardware. With programmability at both the PC side and
the HMD side, our system provides extensibility and flexibil-
ity for exploring various new ideas and software-based tech-
niques in high-quality VR. We present our system design, de-
scribe challenges, explore possible solutions to cut the wire,
and compare the performance of different approaches for
transmitting the high-volume graphics data over a wireless
link. We share our experience and report preliminary find-
ings. Experimental results show that building a wireless high-
quality VR system is very challenging, and needs extensive
effort on both the software and hardware sides in order to
meet the performance requirements.

1. INTRODUCTION
In recent years, Virtual Reality (VR) has become increas-

ingly popular. In particular, existing VR head-mounted dis-
∗This work was done when Ruiguang Zhong, Manni Wang,
Zijian Chen and Luyang Liu were research interns at Mi-
crosoft Research.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

APSys ’17, September 2, 2017, Mumbai, India
c© 2017 ACM. ISBN 978-1-4503-5197-3/17/09. . . $15.00

DOI: https://doi.org/10.1145/3124680.3124723

HDMI WirelessHD

USB USB over Wi-Fi

USB

HDMI

WiGig

(a)

(b)

Programmable
unit

Figure 1: We propose a programmable high-quality
wireless VR design. (a) Today’s high-quality VR system
and cable replacement for wireless. (b) Programmable
wireless VR.

plays (HMDs) such as HTC Vive [6] and Oculus Rift [10] are
able to provide high-quality VR experience by leveraging a
powerful desktop PC to render rich graphics content at high
frame rates and visual quality. However, current HMDs are
all tethered: they must be connected to a PC via a USB ca-
ble for sending sensor data from the HMD to the PC and an
HDMI cable for sending graphic content from the PC back
to the HMD. These cables not only limit the user’s mobility
but also impose hazards such as a user tripping or wrapping
the cable around his neck.

Ideally, the cables used to tether the HMD with a PC should
be replaced by a wireless link. VR HMD companies have
been exploring the use of 60GHz wireless communication
to enable high-quality wireless VR [1, 7, 11], and propose
a “cable replacement" solution. For example, HTC has re-
vealed a wireless upgrade kit for HTC Vive, built in collab-
oration with the TPCAST wireless module [7]. This module
is based on the proprietary WirelessHD [17] standard and
implements the HDMI interface over 60GHz wireless with
a special compression algorithm. It can barely support the

transmission of the current HTC Vive’s graphics contents of
2160x1200 pixels at 90Hz. It also requires Wi-Fi to replace
the USB cable, as shown in Figure 1(a). However, such a
“cable replacement” solution is not programmable and thus
has limited extensibility and flexibility. It renders it impossi-
ble to explore various techniques in software to improve the
system performance.

In this paper, we report on our efforts to build a wireless
high-quality VR system. We focus on two key aspects. First,
the system is developed using commodity hardware so that
it is flexible and easy to reproduce by other researchers and
commercial organizations. Second, different from the “cable
replacement” approach, we provide programmability to the
system. To this end, we propose to use WiGig [16] to pro-
vide an IP network between a HMD and a PC. As shown in
Figure 1(b), we add a programmable unit to a HMD to re-
ceive and process the graphics contents streamed from a PC,
as well as to send the sensor data from the HMD to the PC.
As a result, we provide programmability at both the PC side
and the HMD side of our system for maximum extensibility
and flexibility. With full programmability, our system can be
used to explore various research techniques on both the PC
and the HMD side, and collaboratively improve the VR per-
formance and user experience. Example techniques include
different compression algorithms, content prefetching, pose
prediction and collaborative rendering (some of them will be
discussed in §6). As new VR HMDs are targeting at ever
higher resolutions and frame rates, e.g., 4K or 8K at 120Hz,
these advanced techniques may play a critical role in future
VR systems that are hard to implement without programma-
bility.

In the following sections, we present our system design
and the challenges (§2), describe how to replace the wire
with wireless connection using commodity hardware (§3),
explore different approaches to transmit high-volume graphic
data from a PC to a HMD (§4), compare their performance
(§5), discuss the limitations of our work and the potential
techniques to further optimize the system performance (§6),
survey the related work (§7), and conclude our work (§8).

2. SYSTEM DESIGN AND CHALLENGES
Figure 2 shows the architecture of our proposed system

design, focusing on the graphics processing. VR apps run on
the PC and use its powerful GPU to render rich graphic con-
tents. The rendered frames are transmitted to the HMD over
a wireless link. The HMD is integrated with a programmable
device that processes the received frames from the PC and
displays them on the HMD. Such a programmable device is
expected to be small, portable and low power.

At the high level, the above architecture is similar to thin-
client systems. However, the key difference is system per-
formance. As the graphic rendering is accelerated using the
GPU on the PC, existing tools like Microsoft Remote Desk-
top [9] and RealVNC [12] cannot be directly used to stream
the graphic contents from the PC to the HMD. Indeed, high-
quality VR apps (e.g., high-end 3D VR games) impose very
high requirements and challenges on the system performance.

Display resolution (pixels) Raw data rate (Gbps)
2048x1080 (2K) 4.8

2160x1200 (HTC Vive) 5.6
3840x2160 (4K UHD) 17.9
7680x4320 (8K UHD) 71.7

Table 1: Raw data rates of different display resolutions
at a frame rate of 90Hz, with three bytes per pixel.

Requirements. High-quality VR apps require high network
throughput and low end-to-end system latency. Table 1 shows
the required data throughput in different display resolutions
with a frame rate of 90Hz. Assuming we use three bytes
to encode the RGB data of each pixel 1, without compres-
sion, the raw data rate of HTC Vive (2160x1200) is 5.6Gbps,
much higher than all the existing wireless-communication
products including Wi-Fi and 60GHz wireless communica-
tion 2. In the cases of 4K UHD and 8K UHD, the required
data rates are even as high as 17.9Gbps and 71.7Gbps, re-
spectively.

As for latency, with a frame rate of 90Hz, the system must
be able to render, transmit, and display a high-resolution
frame every 11ms, to ensure a smooth user experience. For
future VR targeting at a frame rate of 120Hz, the frame time
is even reduced to only 8.3ms. Furthermore, high-quality
VR also requires a total end-to-end (i.e., motion-to-photon)
latency of 20-25ms [20]. That is, once the HMD moves, the
system must be able to display a new frame generated from
the new pose of the HMD within 20-25ms.

Challenges. Meeting the above requirements are very chal-
lenging. As the required data rate is beyond the capabil-
ity of existing wireless-communication products, compres-
sion is necessary to reduce the data traffic transmitted over
the wireless link. However, compressing and decompressing
the data also generate extra overheads and thus make it even
more challenging to achieve the required system latency.

As shown in Figure 2, decoupling the HMD from the PC
introduces multiple extra steps in the data-processing pro-
cedure. In the original tethered case, VR apps render their
graphic contents using GPU via the VR SDK and graphics
stack, and the rendered results are directly sent to the HMD
via an HDMI cable. However, in Figure 2, we introduce the
following extra steps: the sender retrieves a rendered frame
from the GPU to the host memory using the system graph-
ics API (1), compresses the frame to reduce the data size
(2), sends the compressed data to the NIC (network inter-
face card) via the network stack (3), the NIC transmits the
data from the PC to the HMD via the wireless link (4), the
receiver receives the compressed data (5), decompresses

1In modern graphics systems, a pixel is represented with
four bytes in the RGBA color space where “A” means Al-
pha channel. As we always transmit the final frames of full
screen, we can remove the Alpha-channel byte to reduce the
data volume by 25%.
2Although the specifications of 60GHz wireless communica-
tions define data rates higher than 5.6Gbps, existing products
can only achieve less than 2.5Gbps data throughput.

GPU NIC

Graphic
stack

Net
stack

VR apps

VR SDK
Sender

User mode

Kernel mode

High-perf PC with powerful GPU

GPUNIC

Graphic
stack

Net
stack

Receiver
User mode

Kernel mode

Small device integrated with HMD

HDMI

Wireless link (WiGig)

❺❶

❷

❸

❹

❻

❼

HMD

Data flow

Shortcut

Figure 2: System architecture.

the data (6), and passes the decompressed data to the GPU
(7).

The above seven extra steps all introduce extra latency.
Furthermore, there are multiple extra data copies during the
data processing. On the PC side, the frames are first copied
from the GPU memory to host memory and then copied from
the sender to the NIC. On the HMD side, the data also must
be copied from the NIC to the receiver and then to the GPU.
Given the high data volume, those data copies also impose
significant latency.

3. CUTTING THE WIRE
We have built a prototype wireless VR system using com-

modity hardware. To cut the wire of a HMD, we studied
the commodity WiGig products from two vendors: Intel and
Qualcomm. As all high-quality HMDs including HTC Vive
used in our system only work on Windows platform but the
Qualcomm WiGig modules do not support Windows due to
the lack of driver, we choose to use the Intel WiGig modules
to build our wireless VR system.

In our system, we use a desktop PC with an Intel Core i7-
4790 CPU, 16GB memory and a NVIDIA TITAN X GPU,
to run VR apps and render all the graphic contents. We use
a Dell XPS M3800 laptop to act as the programmable unit
which receives graphic contents from the PC. The laptop has
a NVIDIA K1100M GPU. We connect the laptop to a HTC
Vive HMD via HDMI and USB. Both the PC and the laptop
run Windows 10.

Specifically, we use Intel WiGig modules of 17265 and
W13100 to setup a wireless IP network link between the
PC and the laptop. On the PC side, we use an Intel WiGig
NIC [8] that is based on Intel 17265 module. We connect the
NIC to the PC through PCIe. On the HMD side, we use a
Dell WiGig dock station [3] that is based on Intel W13100
module. However, the dock station provides only Ethernet
port and USB port for data transmission, which limits the
achievable data throughput of the dock station. We connect
the dock station to the laptop via a Gigabit Ethernet cable and
a USB 3.0 cable. Consequently, the HMD sends its sensor in-
formation through USB to the dock station, and the dock sta-
tion receives the rendered graphic contents and passes them
back to the laptop through Ethernet.

Performance of the wireless link. We measured the perfor-
mance of the wireless link in our system. We used Ping to

Round trip time (RTT) < 2ms
Throughput 851Mbps

Table 2: Latency and throughput of the wireless link.

measure the round trip time (RTT) and Iperf to measure the
network throughput of TCP. The results are shown in Table 2.
On average, the RTT was less than 2ms and the throughput
was 851Mbps. Note that we used a 1Gbps Ethernet cable
to connect the Intel WiGig card to the laptop and thus the
network bottleneck was indeed the Ethernet cable, which is
a limitation of our current prototype. According to WiGig
specification, the physical data rate is up to 7Gbps and the
data throughput at the application level is expected to be up
to 4.7Gbps. We also measured the throughput of Qualcomm
WiGig modules (on Linux) and it was 2.5Gbps, without the
bottleneck of Ethernet cable. We expect that Intel WiGig
chipset has a similar throughput without the Ethernet bottle-
neck. In the future, we plan to remove the Ethernet bottle-
neck and connect the WiGig module into the laptop directly,
so that the full WiGig bandwidth can be utilized.

4. TRANSMITTING GRAPHIC DATA
As aforementioned, the key challenge in wireless VR sys-

tems is how to efficiently transmit the high-volume graphic
data from a PC for rendering to a HMD to meet the through-
put and latency requirements. Using our prototype system,
we explore the following three approaches in this paper.

CPU-based. As shown in Figure 2, a straightforward ap-
proach is writing a user-mode Sender program on the render-
ing PC to retrieve each rendered frame, compress it, and send
the compressed data over the network. On the HMD side, the
Receiver program receives the compressed data from the net-
work, decompresses it, and displays the frame. All the data
compression and decompression are done using the CPU at
the both sides. We call this approach CPU-based and treat it
as the baseline approach to be optimized. We use the Win-
dows Desktop Duplication API to capture rendered frames
and compress them into the JPEG format.

GPU-based. As all frames are rendered by GPU and stored
in GPU memory, one natural method to optimize the CPU-
based approach is using GPU to compress frames. This in-
place compression reduces the memory-copy cost of copying

large frames from GPU memory to host memory 3. Also, as
the JPEG encoder divides a large frame (2160x1200 pixels in
HTC Vive) into small blocks (8x8 pixels by default) and en-
codes each block individually, we may leverage many GPU
cores to compress the blocks in parallel. As a result, the com-
pression time can be significantly reduced. Similarly, on the
HMD side, we can also use GPU to decompress the received
frames. In our implementation, we use the CUDA API [2]
for in-GPU JPEG compression and decompression.

GPU+pipeline. The GPU-based approach may be further
optimized by using parallel pipelines. By carefully arranging
the data-processing pipelines, we may make the data com-
pression, data transmission, and data decompression paral-
lel. In specific, on the rendering PC, we divide a large frame
into multiple block groups 4 and compress each block group
one by one. After one block group is compressed, we im-
mediately use a separate thread to send them out over the
wireless link. At the same time, we continue to compress
the next block group. Similarly, at the HMD side, once a
compressed block group is received, we immediately start to
decompress it. Therefore, we are able to shorten the total
time of the end-to-end data processing.

5. EVALUATION
We have conducted a set of experiments to evaluate the

performance of the three data-transmission approaches, in
terms of frame-processing time and end-to-end latency.

5.1 Experimental Setup
We implemented the three approaches described in in §4.

We use the desktop PC mentioned in §3 as the rendering PC
and use a HTC Vive as the HMD. At the HMD side, besides
the Dell laptop mentioned in §3, we also use another PC to
study what computation power is needed to decompress the
received frames. The PC has a NVIDIA GeForce 970 GPU
which is more powerful than the GPU of the laptop but still
less powerful than the rendering PC’s GPU. We conducted
two sets of experiments for these two cases and name them as
PC and Laptop, respectively. We repeated each experiment
for five times and report the average results. All the three
devices (two PCs and one laptop) run Windows 10.

5.2 Experimental Results
Frame-processing time. Table 3 shows the frame-processing
time including the total time and the time spent in the follow-
ing steps: render a frame using the GPU (Render), capture
the rendered frame (Capture), compress the frame (Com-
press), transmit the compressed frame over the wireless link
(Send/recv), and decompress the received frame (Decompress).
To measure these times, we used “The Lab” VR game [14].

In all the three approaches, frames were always rendered
on the GPU of the rendering PC. Thus, the frame-rendering

3We still need to copy the compressed data to host memory
but the data size is much smaller.
4In our implementation, we divide each frame into eight
block groups. This number may be further fine-tuned.

time was the same in any approach. It took 6.1ms to ren-
der a frame. However, the CPU-based approach took more
than 13ms to capture a frame, much longer than the capture
time of only 0.2ms in other approaches. This is because in
the CPU-based approach, the data of the whole frame (more
than 10MB for 2160x1200 pixels) must be copied from the
GPU memory to the host memory, and the Desktop Duplica-
tion API must wait for a full frame ready to be copied out. In
other approaches, we directly locate the address of the ren-
dered frame in the GPU memory and do not need to copy the
data to the host memory. Consequently, the capture time was
reduced significantly.

The CPU-based approach also took a significant longer
time than other approaches in compressing frames. The CPU-
based approach took about 110ms to compress a frame but
the GPU-based approach took only less than 5ms. This is be-
cause that the GPU-based approach is able to use many GPU
cores to speed up the compression. Similarly, the GPU-based
approach also significantly outperformed than the CPU-based
approach in data decompression. The CPU-based approach
took 31ms and 55ms to decompress a frame in the PC case
and the Laptop case, respectively. The corresponding num-
bers in the GPU-based approach were 2.4ms and 17ms, re-
spectively.

The network transmission time was the same in all the
approaches because the same JPEG-compression algorithm
was used. To ensure high VR quality and good user expe-
rience, we choose 95% quality in the JPEG compression,
resulting in visually-invisible difference between the com-
pressed frame and the original frame. After the compression,
it took less than 6ms to transmit a frame over the wireless
link.

With in-GPU compression and decompression, the total
frame-processing time was reduced from 166.9ms (PC case)
and 189.5ms (Laptop case) to only 18.8ms (PC case) and
33.7ms (Laptop case), compared to the CPU-based approach.
With the parallel pipelines, we could further reduce the to-
tal frame-processing time to 13ms (PC case) and 23.9ms
(Laptop case) 5. Excluding the frame-rendering time of
6.1ms, the total extra latency introduced by our approach is
6.9ms in the PC case and 17.8ms in the Laptop case. These
results demonstrate that the GPU-based optimization tech-
niques are effective in improving the system performance.

User-perceivable latency. We also measured how much
end-to-end extra latency that users may perceive in the ap-
proach of GPU+pipeline, compared to the native tethered
case. To do it, we connected another HTC Vive HMD to the
rendering PC via an HDMI cable but just use it as a normal
display without generating any sensor inputs. As a result,
we could view the same VR game on the two HMDs: the lo-
cal one that received frames directly via the HDMI cable and
the remote one that received frames remotely via the wireless
link. We used two smartphones to record the outputs of the
two HMDs at the same time at 240 frames per second. We
also generate audio signals for time synchronization between

5Note that we attribute the gain of parallel pipeline to Com-
press and Decompress and keep the Send/recv time constant.

Time (ms)
Render Capture Compress Send/recv Decompress Total

PC Laptop PC Laptop PC Laptop PC Laptop PC Laptop PC Laptop
CPU-based 6.1 6.1 13.9 13.4 109.9 108.9 5.9 5.9 31.1 55.2 166.9 189.5
GPU-based 6.1 6.1 0.2 0.2 4.2 4.5 5.9 5.9 2.4 17.0 18.8 33.7

GPU+pipeline 6.1 6.1 0.2 0.2 0.5 0.6 5.9 5.9 0.3 11.1 13.0 23.9

Table 3: Frame-processing time (each step and the total) of the three data-transmission approaches.

the two smartphones. By analyzing the video clips recorded
by the two smartphones, we could decide the time differ-
ence between the moment a frame was displayed in the local
HMD and the moment the same frame was displayed in the
remote HMD. Such a time difference is the extra end-to-end
latency perceivable to users. On average, the measured extra
end-to-end latency was 12±2ms (the error is for the 240fps
video recording) in the PC case. Users may perceive such a
latency, but the experience is acceptable. For the Laptop
case, because the extra latency of 17.8ms is larger than the
frame time of 11ms (i.e., 90Hz), the GPU cannot decom-
press frames in time. Thus, the frames are accumulated and
the user experience is very bad. To get a smooth user expe-
rience, we have to drop frames periodically. In this case, the
measured extra end-to-end latency was 25±2ms.

5.3 Observations
We make the following observations from the above ex-

perimental results. First, the CPU-based approach does not
work due to the poor performance in compressing and de-
compressing frames. Second, using GPU can effectively
help improve the performance of compression and decom-
pression, and the parallel pipeline technique can further re-
duce the extra latency in processing frames. However, even
with the optimizations of using GPU and parallel pipeline,
it is still hard to meet the performance requirement of high-
quality VR, unless we use a very powerful GPU to decode
the frames. However, in practice, we cannot attach a very
powerful device to a HMD due to the large size and the high
power consumption.

One possible way may be using special hardware. Indeed,
most GPUs have dedicated hardware codec for image/video
encoding and decoding. We also studied the performance of
this hardware-based approach. We used the NVIDIA Video
Codes SDK [15] (NVENCODE and NVDECODE) to en-
code and decode frames on the rendering PC and the Dell
Laptop, respectively. We use the H.264 encoder and de-
coder with the highest quality. However, with this approach,
we cannot make the encoding/decoding process parallel with
the network transmission and the total frame-processing time
(compression, transmission and decompression) is more than
30ms. Thus, it still cannot meet the performance require-
ments of high-quality VR.

Consequently, we argue that building wireless high-quality
VR systems is a very challenging task and that is probably
why the industry still does not have such a system available
yet. New, powerful and low-power hardware is desirable to
solve the problem.

6. DISCUSSION
In this section, we discuss the limitations of our work and

more optimization techniques to further improve the perfor-
mance of our wireless VR system.

6.1 Limitation
Our current wireless VR prototype is incomplete and has

many limitations. Particularly, it cannot achieve the per-
formance requirements of high-quality VR in terms of la-
tency. In this paper, we focus on exploring possible solutions
to enable high-quality wireless VR systems and reporting
preliminary results, rather than providing a complete solu-
tion. Given the gap between the performance requirements
of high-quality VR and the capability of the current hard-
ware, we argue that software techniques will play a critical
role in enabling high-quality wireless VR systems and thus
we propose the programmable design.

The use of the laptop as the programmable unit is im-
practical for commercial products. Practical wireless HMDs
must be light weighted and portable. To this end, a smart-
phone sized programmable unit is desirable. Power con-
sumption is also a critical consideration. In our prototype,
the HTC Vive itself and the WiGig wireless consume a small
power of less than 4W (both in working state) but the power
consumption of the laptop can be more than 40W, which kills
a battery quickly that users could carry. We are investigat-
ing more hardware choices for a better balance among size,
weight and power.

6.2 Further Optimization
In this section, we discuss more optimization techniques

to further improve the performance of our wireless VR sys-
tem.

Direct data passing between GPU and NIC. To shorten
the data-processing pipeline in Figure 2 and further reduce
the latency, it is desirable to setup a direct data path be-
tween GPU and NIC so the frames do not need to traverse
the kernel/user mode boundary with multiple times of data
copying. This is illustrated by the shortcut lines in Fig-
ure 2. At the rendering PC side, a frame is compressed and
stored in the GPU memory. Instead of copying the com-
pressed data to the host memory and then sending the data
to the NIC, we may allow the NIC to directly access the
GPU memory and send the compressed data over the wire-
less link without data copying. Similarly, at the HMD side,
the NIC may directly store the received data into the GPU
memory without going through the host memory. This ap-
proach is possible because that both GPU and NIC are con-

nected to the same PCIe bus, and thus they can directly ac-
cess each other’s memory via PCIe protocol after properly
configured [22]. Besides careful configurations and memory
management, doing so also requires a network stack imple-
mented in the GPU or NIC. We plan to study how to design a
simple network protocol specifically tailored for our VR sce-
nario to enable this direct-data-passing and zero-data-copy
technique between GPU and NIC.

Some NVIDIA GPUs (e.g., Tesla and Quadro GPUs) sup-
port GPUDirect RDMA [5] that enables a direct path for data
exchange between a GPU and a third-party peer device us-
ing standard features of PCIe. However, GPUDirect RDMA
cannot help in our VR system because there is no RDMA-
enable wireless NIC available that can work with GPUDirect
RDMA technology.

Collaborations between a HMD and its rendering PC. A
HMD may work together with its rendering PC to further im-
prove the VR experience. For example, with gaze tracking
on a HMD, we may send high-resolution pixels only for the
area of the display where the user is looking at. For the rest
of part of the display, we may provide low-resolution images
(e.g., by compressing the images deeply) without compro-
mising the user experience. This selective-compression ap-
proach may be very valuable for extremely-high-resolution
HMDs, e.g., 4K, 8K or even higher, as the required data
throughput may be far beyond the capacity of the possible
wireless communications. Another example is frame pre-
fetching and caching. Based on predicted pose of the HMD,
the PC may pre-compute future frames and push them to
HMD before they are requested. If the pose predication is
correct, the required frames are immediately ready in the
HMD and thus the latency is significantly reduced. Simi-
larly, by caching previous frames, if the HMD cannot re-
ceive a required new frame in time, it may use its current
pose and cached frames to generate a new frame to ensure
smooth user experience. Furthermore, the HMD and its ren-
dering PC may render frames in a collaborative matter, e.g.,
each rendering different frames or different parts of a frame.
Such a collaborative rendering approach may fully utilize the
computation power of both the rendering PC and the HMD
and thus further reduces the latency.

Exploring these advanced techniques requires programma-
bility not only at the rendering PC side but also at the HMD
side, which is the value that the system we have proposed in
this paper may provide.

7. RELATED WORK
Standalone VR systems. Besides the tethered VR HMDs
like HTC Vive [6] and Oculus Rift [10], there are also self-
contained, portable VR systems such as Samsung Gear VR [13]
and Google Cardboard [4] that run VR apps by sliding a
smartphone into the headset. Those VR systems are limited
by the capability of smartphones, cannot run high-quality
VR apps, and thus are not the focus of this paper.

High-quality wireless VR. There is a huge interest in high-
quality (PC-based) wireless VR systems. HTC [7], Optoma [11]

and SiBeam [1] announced 60GHz wireless VR products but
none of them are publicly available yet. No or very few de-
tails on those products are provided. All of them are not
programmable. Our goal is to provide a programmable high-
quality wireless VR system so that researcher and develop-
ers can leverage it to explore many different techniques and
ideas.

VR research. The prosperity of modern VR systems has
also attracted many interests in research communities. For
example, MoVR [18] tries to solve the blocking and mobility
issues of mmWave radios. MoVR built a mmWave reflector
that is able to reconfigure its angles of incidence and reflec-
tion to mitigate the effect of mmWave blockage. Our work
is complementary to MoVR and can benefit from MoVR re-
flector to improve the network performance. FlashBack [20]
proposes to use pre-rendered graphics cache to improve VR
experience on mobile devices. It is also complementary to
our work.

Game streaming and offloading. In the higher-level con-
text of gaming, Outatime [23] is a speculative execution sys-
tem to mask network latency in streaming games from cloud
to mobile devices. It speculatively renders frames of fu-
ture for low-latency continuous interactions of mobile cloud
gaming. Kahawai [21] is a system that provides high-quality
gaming on mobile devices through offloading the GPU com-
putation to a nearby server. In Kahawai, a mobile device and
a nearby server work together to render game contents. For
example, the mobile device may render frames with reduced
detail and the server renders rich graphic contents with more
details. The ideas of Outatime and Kahawai may be applied
to VR systems. They require full programmability at both
ends and thus can benefit from our design and is comple-
mentary to our work.

Wireless communication. Wireless communication is a fun-
damental enabling technique for high-quality wireless VR
systems. Given the limited data throughput provided by Wi-
Fi, the trend is exploring higher-frequency radios such as
60GHz wireless communication. Existing efforts include
WirelessHD [17] and WiGig [16] etc. However, compared
to Wi-Fi, 60GHz wireless communication relies on direc-
tional transmission and tends to require light of sight, and
thus has the issues of blockage and mobility. For our wire-
less VR scenario, we require sender antenna to be placed
on ceiling, thereby providing light of sight transmission to
HMD in most cases. On the other hand, we expect the recent
active research on mobility and blockage handling [25, 26,
19, 24] will greatly mitigate the issues.

8. CONCLUSION
In this paper, we have explored how to build a wireless

high-quality VR system. Using commodity hardware, our
aim is to build a ready-to-use system for researchers. By
providing programmability at both the rendering PC side and
the HMD side, our system enables researchers to explore
various new ideas and software-based techniques. We im-
plement three approaches for transmitting the high-volume

graphics data and conduct experiments to evaluate their per-
formance. Experimental results show that our optimizations
of using GPU and parallel pipeline significantly improve per-
formance, but they are still not enough to meet the perfor-
mance requirements of high-quality VR systems. We also
discuss other advanced techniques for further improving the
system performance. New hardware and new software tech-
niques such as collaborative rendering are desirable to enable
wireless high-quality VR systems.

9. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our

shepherd, Prashant Shenoy, for their valuable comments.

10. REFERENCES
[1] 60 GHz: Taking the VR Experience to the Next Level.

http://www.sibeam.com/en/Blogs/2016/March/
60GHZTakingtheVRExperience.aspx.

[2] CUDA Toolkit.
https://developer.nvidia.com/cuda-toolkit.

[3] Dell Wireless Dock. http://www.dell.com/en-us/shop/
accessories/apd/452-bbux?sku=452-BBUX.

[4] Google Cardboard. https://vr.google.com/cardboard/.
[5] GPUDirect RDMA. http:

//docs.nvidia.com/cuda/gpudirect-rdma/index.html.
[6] HTC Vive. https://www.vive.com/.
[7] HTC Vive TPCAST wireless upgrade kit.

https://www.vive.com/cn/accessory/tpcast/.
[8] Intel Tri-Band Wireless-AC 17265.

https://www.intel.com/content/www/us/en/
wireless-products/tri-band-wireless-ac-17265.html.

[9] Microsoft Remote Desktop Clients. https://technet.
microsoft.com/en-us/library/dn473009(v=ws.11).aspx.

[10] Oculus Rift. https://www.oculus.com/rift/.
[11] Optoma’s wireless VR headset frees you from PC

cables. http:
//www.pcworld.com/article/3044542/virtual-reality/
optomas-new-wireless-vr-headset-frees-you-from-pc-cables.
html.

[12] RealVNC: Remote Access Software for Desktop and
Mobile. https://www.realvnc.com/.

[13] Samsung Gear VR.
http://www.samsung.com/global/galaxy/gear-vr/.

[14] The Lab VR game.
http://store.steampowered.com/app/450390/.

[15] The NVIDIA Video Codes SDK.
https://developer.nvidia.com/nvidia-video-codec-sdk.

[16] Wireless gigabit Alliance. http://www.wigig.org/.
[17] WirelessHD. http://www.wirelesshd.org/.
[18] O. Abari, D. Bharadia, A. Duffield, and D. Katabi.

Enabling high-quality untethered virtual reality. In
Proceedings of the NSDI’17, 2017.

[19] O. Abari, H. Hassanieh, M. Rodriguez, and D. Katabi.
Millimeter wave communications: From
point-to-point links to agile network connections. In
Proceedings of the HotNets’16, 2016.

[20] K. Boos, D. Chu, and E. Cuervo. Flashback:
Immersive virtual reality on mobile devices via
rendering memoization. In Proceedings of the
MobiSys’16, 2016.

[21] E. Cuervoy, A. Wolmany, L. P. Coxz, K. Lebeck,
A. Razeenz, S. Saroiuy, and M. Musuvathi. Kahawai:
High-quality mobile gaming using gpu offload. In
Proceedings of the MobiSys’15, 2015.

[22] S. Kato, J. Aumiller, and S. Brandt. Zero-copy i/o
processing for low-latency gpu computing. In
Proceedings of the ICCPS’13, 2013.

[23] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,
S. Grizan, A. Wolman, and J. Flinn. Outatime: Using
speculation to enable low-latency continuous
interaction for cloud gaming. In Proceedings of the
MobiSys’15, 2015.

[24] T. Nitsche, A. B. Flores, E. W. Knightly, and
J. Widmer. Steering with eyes closed: Mm-wave beam
steering without in-band measurement. In Proceedings
of the INFOCOM’15, 2015.

[25] M. E. Rasekh, Z. Marzi, Y. Zhu, U. Madhow, and
H. Zheng. Noncoherent mmwave path tracking. In
Proceedings of the HotMobile’17, 2017.

[26] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra.
Beamspy: Enabling robust 60 ghz links under
blockage. In Proceedings of the NSDI’16, 2016.

