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Determining Driver Phone Use by Exploiting
Smartphone Integrated Sensors

Yan Wang, Yingying Chen, Jie Yang, Marco Gruteser, Richard P. Mar-

tin, Hongbo Liu, Luyang Liu, Cagdas Karatas

Abstract—This paper utilizes smartphone sensing of vehicle dynamics to determine driver phone use, which can facilitate many traffic

safety applications. Our system uses embedded sensors in smartphones, i.e., accelerometers and gyroscopes, to capture differences

in centripetal acceleration due to vehicle dynamics. These differences combined with angular speed can determine whether the phone

is on the left or right side of the vehicle. Our low infrastructure approach is flexible with different turn sizes and driving speeds.

Extensive experiments conducted with two vehicles in two different cities demonstrate that our system is robust to real driving

environments. Despite noisy sensor readings from smartphones, our approach can achieve a classification accuracy of over 90% with

a false positive rate of a few percent. We also find that by combining sensing results in a few turns, we can achieve better accuracy

(e.g., 95%) with a lower false positive rate. In addition, we seek to exploit the electromagnetic field measurement inside a vehicle to

complement vehicle dynamics for driver phone sensing under the scenarios when little vehicle dynamics is present, for example,

driving straight on highways or standing at roadsides.

Index Terms—Driving Safety, Driver Phone Detection, Smartphone, Accelerometer, Gyroscope, Magnetometer.
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1 INTRODUCTION

D ISTRACTED driving due to mobile devices contributes to

nearly one thousand fatalities per year [1] and is now

receiving attention not only from government regulators but also

within the highest executive levels of the mobile industry [2].

Indeed, the National Transportation Safety Board has called for

a nationwide ban on mobile devices behind the wheel [3], while

the mobile industry has adopted a subtler approach with apps that

seek to manage distraction. The AT&T DriveSafe app [4], for

example, silences the phone for incoming text messages while in

driving mode as discussed in [5], [6].

Such approaches depend on the phone being able to sense

when the user is driving, since experience with a phone’s silent

mode and instant message status has shown that users are not very

reliable at setting the status manually. Several known approaches

exist for detecting whether a phone user is in a vehicle. More

difficult, however, is determining whether a user is actually driving

or is simply a passenger in the vehicle. In our prior work, we

addressed this problem by exploiting built-in Bluetooth handsfree

systems in vehicles for audio localization of the phone. While

it is expected that the fraction of Bluetooth handsfree equipped

vehicle will rise significantly over the coming years, there is
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also considerable interest in techniques that are less dependent

on such infrastructure, so that they can be more easily retrofitted

into existing vehicles without Bluetooth.

In this paper, we explore a low-infrastructure approach that

senses acceleration due to vehicle dynamics to decide a phone’s

position. As in prior work, we seek to determine the in-vehicle

location of the phone and use that as a heuristic to determine

whether the phone is used by the driver or passenger. It uses a

fundamentally different sensing approach, however, to determine

this location. The key insight is that the centripetal acceleration

varies depending on the position in the car. By comparing the

measured acceleration from the phone with the acceleration mea-

sured at a reference point inside the car, the phone can decide

whether it is located left or right of the reference (i.e. on the driver

or passenger side). This technique can operate in conjunction

with our bump sensing technique for determining front or rear

location [7]. We refer to this approach as low-infrastructure since

it can more easily be retrofitted in existing cars by plugging in a

small OBD-II or cigarette light adapter. It does not require having

a handsfree bluetooth kit wired into the existing car audio system.

While the idea of utilizing centripetal acceleration differentials

between the target phone and the reference point seems simple,

many challenges arise in practice. First, the embedded sensors are

noisy and affected by unpredictable driving environments. A sec-

ond challenge is minimizing the additional infrastructure needed

beyond the phone. Third, the sensor readings in smartphones

are pose dependent, thus cannot be directly used to represent

the vehicle’s dynamics. To address these issues, we propose a

centripetal acceleration based driver phone use sensing algorithm

that mitigates the noise of the sensor readings and unpredictable

geometries, such as different size of turns, driving speed, and

driving styles. Extensive experimental results in both parking lots

and roads confirm the effectiveness and efficiency of our proposed

algorithm which requires no built-in infrastructure. In addition, we

notice that the traffic fatalities in rural areas, which have less turns



while driving, are slightly more than that occurred in urban areas

according to the U.S. Department of Transportation [8]. Therefore,

under the scenarios when little vehicle dynamics is present while

a phone’s position needs to be determined, such as the vehicle

is stationary or driving on highways or rural areas, we exploit

the electromagnetic field (i.e., EMF) measured at smartphone

(i.e., by using build-in magnetometer sensor) for driver phone

use detection to complement the vehicle dynamic based detection

system. Specifically, we make the following contributions:

• Proposing a method for distinguishing driver and pas-

senger phone use that is less dependent on built-in ve-

hicle infrastructure than the audio-ranging approach. It

determines the in-vehicle position of a phone by using

its sensors to monitor position dependent differences in

acceleration forces and comparing them with a vehicle

reference reading.

• Describing and evaluating multiple possible designs for

providing a vehicle reference reading, including a cigarette

lighter adapter with accelerometer sensor, an OBD-II port

adapter that provides vehicle speed reference readings

to the phone over Bluetooth, and opportunistically using

other phones as a reference.

• Designing algorithms that can use these various reference

inputs and can compensate for bias in the reference mea-

surements by taking into account data from both left and

right turns of a vehicle.

• Demonstrating through extensive experiments in a parking

lot and through real-world driving in two cities with

different phone models and vehicles that it is feasible

to determine phone position with high accuracy after the

vehicle has passed through a few curves.

• Exploiting the electromagnetic field measurement in dif-

ferent positions inside the vehicle to complement the

driver phone use detection approach based on vehicle

dynamics.

The experimental results show that by relying only on the plug-

in adapters, our proposed algorithm can achieve high detection

rates and low false positive rate in both parking lot and real driving

environments. By making use of a few turns, a more reliable

result can be obtained. Our results show that position can often be

determined after the vehicle drives out of a parking lot or before

it reaches a main road. We therefore believe that the detection

latency is acceptable. Our prototype implementation also shows

that current Android smartphones have adequate computational

capabilities to perform the signal processing needed in a standard

programming environment. In addition, our experiments show that

the electromagnetic field measurements can be used for driver

phone detection when little vehicle dynamics is present.

The rest of the paper is organized as follows. In Section 2, we

place our work in the broader context of reducing driver distraction

and using sensors on smartphones to facilitate driving safety and

vehicle monitoring applications. We provide the system overview

and core detection algorithm in Section 3. We then present our

system implementation by leveraging different infrastructures in

Section 4. In Section 6, we perform extensive evaluation of our

system in real-road driving environments involving two types of

phones and two vehicles in two cities. We discuss about a possible

infrastructure-free approach of determining driver phone use by

adding a phone’s GPS in Section 7. Finally, we conclude our work

in Section 8.

2 RELATED WORK

There has been active research work in detecting dangerous

behavior while operating an automobile [9], [10], [11], especially

for the driver distraction problem caused by hand-held devices.

Some recent work dedicated to mitigate driver phone distraction

includes Quiet Calls [12], Blind Sight [13], Negotiator [14], and

Lindqvist’s systems [5]. Furthermore, some apps are developed to

block incoming or outgoing calls and texts for the phones inside a

moving vehicle [15], [16], [17]. Apps such as [18] require special

devices installed inside the vehicle to enable blocking cellular

communications of a specific phone based on the readings from

the vehicle’s speedometer, or even rely on a radio jammer [19].

These studies either require prior knowledge of the phone use

by the driver (e.g., user activates the system indicating himself

as the driver) or blindly block calls/text of all the cellphones

inside the vehicle. These solutions, however, cannot automatically

distinguish a driver’s cell phone from a passenger’s.

Since diverse sensors have been integrated in smartphones,

they are endowed with powerful capabilities that can be used to

sense vehicle dynamics and facilitate a broad array of applica-

tions related to driving safety and road monitoring. The moving

vehicle can be detected based on the embedded smartphone

sensors and the cellular signal, for example, accelerations and

cellular signal strength [20], [21], [22], [23]. Other studies use

smartphone embedded sensors to alert dangerous driving, monitor

road conditions, and detect traffic accidents [10], [24], [25], [26].

Dai et.al. [24] propose a system to detect and alert dangerous

vehicle maneuvers by utilizing the accelerometer and the ori-

entation sensor. WreckWatch [25] detects traffic accidents using

the accelerometer and microphone. Johnson et.al. [10] present a

system using Dynamic Time Warping (DTW) and smartphone

based sensor-fusion to detect and recognize vehicular motions.

Furthermore, smartphone sensors are also used to monitor the

road conditions [26], [27], [28], e.g., the accelerometer in a

smartphone is able to detect a large acceleration perpendicular to

the road surface when the vehicle passes bumps or potholes on the

road. These studies confirm the feasibility of utilizing sensors on

smartphones to sense the vehicle dynamics, which may be further

used to automatically determine the driver phone use.

Towards the most related work in detecting driver phone

use, Chu et.al. [29] present a driver detection system (DDS) by

utilizing multiple sensors (including accelerometer, gyroscope,

and microphone) in smartphones to capture the features of driver’s

movement. However, this approach is sensitive to the behavior of

each individual, and highly depends on the position where drivers

carry the phone, which is less practical. Nawaz et.al. [30] develop

a low-energy system that can recognize different routes and detect

driving activities by using time warping angular speeds measured

by the smartphone during transit. However, the system requires

training data from phone users. Yang et.al. [6], [7] introduce an

acoustic relative-ranging system that classifies on which car seat

a phone is being used leveraging the car’s audio infrastructure.

This approach relies on the vehicle’s audio system. Different from

the above work, in this project we explore a low-infrastructure

approach that focuses on sensing acceleration forces from vehicle

dynamics to determine the phone’s position inside the car.

3 SYSTEM DESIGN

To build a low-infrastructure solution leveraging embedded sen-

sors on smartphones, we devise an approach that senses position-
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Fig. 1. Illustration of same angular speed but different centripetal ac-
celeration, tangential speed, and the radius of the circular movement at
different in-vehicle positions.

dependent acceleration forces when a vehicle turns. In this section,

we provide background information, system challenges, overview

of our system design, and a driver phone use sensing algorithm.

3.1 Background

When a vehicle makes a turn, it experiences a centripetal force,

which has its direction orthogonal to the direction of movement of

the vehicle and toward the center of the turn. This centripetal force

generates a centripetal acceleration a also pointing toward the

center of the curve. Assuming a turn following a perfect circle, the

centripetal acceleration (a) can be obtained by using the angular

speed (ω), the tangential velocity (v) and the radius (r) of the

turn [31]:

a = ωv = ω2r =
v2

r
. (1)

The relationship of these parameters are illustrated in Figure 1.

Phones located on passenger- and driver-side positions inside

the vehicle will have the same angular speed but follow circles

of different radii. Based on Equation (1), it can be seen that

different radii at constant angular speed will lead to differences

in centripetal acceleration on these positions.

Inspired by this simple yet useful physics observation, we

seek to measure such centripetal acceleration differences with

smartphone sensors to design a low-infrastructure solution for

determining driver phone use.

3.2 Challenges and Goals

Building such a system involves a number of challenges in both

design and implementation:

Robustness to Real-Road Driving Environments. The cen-

tripetal acceleration is affected by a number of factors including

the different size of turns, driving speed, and driving style. Fur-

thermore, vibrations from the vehicle (e.g., a running engine) and

environment (e.g., wind) all contribute to noisy sensor readings.

Thus, the algorithm to obtain the centripetal acceleration has to be

robust to deal with real road driving environments.

Achieving Single Phone Sensing. The approach should work

even when only a single phone is present in the vehicle, since it is

not always clear that this phone belongs to the driver.

Determining the Pose of the Phone. The measured sensor

readings from smartphones can not be directly applied to produce

vehicle dynamics (e.g., centripetal acceleration) without knowing

the pose of the phone inside the vehicle. An effective re-orientation
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Fig. 2. Overview of system flow.

mechanism is needed to align the phone’s pose with the vehicle’s

coordinate system.

Computational Feasibility on Smartphones. The driver

phone sensing process should complete in a short time on standard

smartphone platforms.

3.3 System Overview

The basic idea of our system is to examine the centripetal ac-

celeration (sensed by the smartphones during a turn) at different

positions inside the vehicle. Figure 1 shows when a vehicle making

a left turn, the driver side has smaller centripetal acceleration

(aLD) than that at the vehicle’s center (aLM ), which in turn

has smaller centripetal acceleration than that at the passenger side

(aLP ). In general, compared to the center of the vehicle the driver

phone always has a smaller radius (and thus experiences smaller

centripetal acceleration) when the vehicle makes a left turn and

a larger radius (corresponding to larger centripetal acceleration)

when the vehicle makes a right turn. Therefore, if the phone’s

centripetal acceleration is smaller than that at the center in a

left turn, or larger in the case of a right turn, then the phone is

on the left side of the vehicle. Our system can thus utilize the

difference of the centripetal acceleration experienced at different

positions within the vehicle to distinguish the driver phone use

from passengers’.

A vehicle usually undergoes multiple turns at the beginning of

a trip (e.g., pulling out of a parking lot or driving in local streets

before getting onto main roads). The difference of the phone’s

centripetal acceleration obtained by comparing left and right turns

can help to determine whether the phone is at the driver side or

passenger side. However, this approach requires turns made by

the vehicle have the same radii, which is not practical in real-road

driving environments. Our system seeks to find a solution that can

exploit the difference of centripetal acceleration from the same

turn to sense the driver phone use. The advantage of this solution

is that our system can work under real-world driving scenarios

with various turn sizes and driving speeds.

In particular, our system can obtain the difference of the

centripetal acceleration within a turn by employing a reference

centripetal acceleration, such as that at the vehicle’s center or from

a second phone. There are three ways of utilizing a reference cen-

tripetal acceleration that we implement in our system: 1) A low-

cost cigarette lighter adapter containing an accelerometer acting as



a reference point. Our system can directly compare the centripetal

acceleration of the phone in the vehicle to that obtained from the

cigarette lighter adapter to determine the driver phone use. 2) The

speed of the vehicle obtained from the OBD-II port adapter can

be used to calculate the centripetal acceleration at the vehicle’s

center, which is compared to the centripetal acceleration of the

smartphone to detect the driver phone use. The OBD-II interface

has been made mandatory for all vehicles sold in the United States

since 1996. 3) When there are multiple occupants in the car, a

passenger phone in the same vehicle can be employed. Our system

can compare the centripetal acceleration of the passenger phone

and that of the driver phone. This approach, however, relies on

the presence of (and communicating to) a second phone in the

vehicle. In this work, we focus on solutions (i.e., solutions 1 and

2) that a single phone can perform self-determination of the driver

phone use through sensing. The plug-in adapters could share the

reference readings with the phone over Bluetooth.

Realizing our approach requires three sub-tasks: Coordinate

Ali-gnment, Data Calibration, and Vehicle Dynamic based Posi-

tion Detection. The flow of our system is illustrated in Figure 2.

When the target phone detects the Bluetooth connection (e.g. from

the cigarette lighter adapter when the driver enters the car), it

starts collecting readings from its accelerometer and gyroscope,

which are used to derive the phone’s acceleration and angular

speed. Our system performs Coordinate Alignment so that the

centripetal acceleration and angular speed derived from the phone

sensors are aligned with the vehicle’s. The coordinate alignment

is only performed when our system starts or when the system

detects the gyroscope readings crossing certain thresholds, which

is caused by the change of phone’s position. Once the vehicle

is detected to start making a turn, the target phone collects

the information from the reference point (e.g., acceleration from

cigarette lighter adapter or speed from the OBD-II port adapter).

The phone further conducts calibration on the data collected by

itself as well as the data reported by the reference point. Our

data calibration process includes three steps: Data Interpolation,

Trace Synchronization, and Acceleration Adjustment, which aims

to synchronize the traces from different sources and reduce the

hardware bias caused by different phone models. Finally, Position

Detection determines the phone’s position in car leveraging the

cumulative difference of centripetal acceleration (e.g., k samples

around the maximum angular speed) and combining the turn

direction determined from the sign of the angular speed. We next

describe how to sense vehicle dynamics using smartphones and

present the core component, Detection Algorithm, in our system.

We leave the detailed presentation of Coordinate Alignment and

Data Calibration to the next section (Section 4).

There are situations when little vehicle dynamics is present

while the driver phone use detection needs to be performed due to

the change of phone’s position. For example, when the vehicle

is stationary or driving on main roads with less curves, but

the phone’s position is changed inside the vehicle. Under such

scenarios, our system resort to use the electromagnetic field (i.e.,

EMF) differential between the smartphone and the reference point

(e.g., EMF measured at the cigarette lighter adapter) to perform

driver phone use detection. The intuition behind this is that the

EMF measurements at different in-vehicle positions are different

and have relative stable distribution at each location due to the

impact of in-vehicle electronic devices, such as batteries, engines,

and circuits. As illustrated in Figure 2, after collecting EMF

measurements from the reference point, our Magnetometer Data

Fig. 3. Coordinate systems of a smartphone and a vehicle.

Calibration process synchronizes the traces from different sources

and remove outliers. Next, the EMF-based Position Detection

determines the phone’s position based on the ratio of the EMF

measured at the phone to that of the reference point. We leave

the detailed presentation of EMF-based position detection to the

Section 5.

3.4 Sensing Vehicle Dynamics

Phone and Vehicle Alignment. We utilize the 3-axis accelerome-

ter and 3-axis gyroscope embedded in the smartphone to obtain the

centripetal acceleration while the vehicle makes a turn. There are

two coordinate systems, one for the smartphone ({Xp, Yp, Zp})

and the other for the vehicle ({Xc, Yc, Zc}), as illustrated in

Figure 3. To simplify the description of our approach, we assume

the smartphone’s coordinate system is already aligned with the

vehicle’s (i.e., aligned). We will describe how to align the phone’s

coordinate system in Section 4.2.

Deriving Centripetal Acceleration via Accelerometers. As

illustrated in Figure 3, Xc points to the passenger side of the

vehicle (i.e., opposite side of the driver). The X-axis acceleration

reading on the phone reflects the centripetal acceleration (i.e., a)

when the vehicle makes a turn. As illustrated in Figure 4, the X-

axis reading is zero when the vehicle is driving along a straight

line and reaches its positive or negative peak when the vehicle goes

into the middle of a turn. The sign of the acceleration on the X-

axis is determined by the turn direction due to that the centripetal

acceleration is always pointing to the center of a turn. Thus, the

X-axis acceleration is negative when the vehicle is making a left

turn, and vice versa. Additionally, the Yc points to the head of

the vehicle. Thus, the Y -axis acceleration reading of the phone

indicates the acceleration of the tangential speed (i.e., v) of the

vehicle in a turn.

Determining Turn Directions using the Gyroscope. To

compare the centripetal acceleration at different positions inside

the vehicle, we need to determine the turn direction, i.e., whether

the vehicle is making a right turn or a left turn. The Z-axis

gyroscope reading on the phone can be utilized to represent the

vehicle angular speed of the turn. Figure 4 illustrates the rotation

rate on Z-axis of a gyroscope on the phone during a left and

right turn respectively. A counter clockwise rotation around Z-axis

generates positive reading, which indicates the vehicle is making

a left turn; otherwise, the gyroscope generates negative reading,

indicating the vehicle is making a right turn.

3.5 Algorithm for Sensing Driver Phone Use

It is essential to understand what are the important factors affecting

the difference of the centripetal acceleration between two different

positions inside the vehicle. We have the following lemma to

capture such factors:
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Fig. 4. Accelerometer and Gyroscope readings when a smartphone is aligned with the vehicle who undergoes a left and a right turn respectively.

Lemma 1. The difference of centripetal acceleration between

two in-vehicle positions is determined by the angular speed and

relative distance between these two positions.

Proof. Assume there are two positions in the vehicle, one is

the target position which is unknown, and the other is a known

reference position, e.g., the center of the vehicle. When the vehicle

is making a left turn, assume the radius of the target phone is rL,

and the radius of the reference position is thus rLM = rL +∆r,

where ∆r is the relative distance between the target position and

the reference position. The difference of centripetal acceleration

between these two positions can then be represented as

∆aL = aL − aLM = ω2

LrL − ω2

L(rL +∆r) = −ω2

L∆r. (2)

Similarly, when the vehicle is making a right turn, the difference of

centripetal acceleration between the target phone and the reference

position is ∆aR = ω2

R∆r. Based on the equations above, it is

clear that the difference of the centripetal acceleration between

two positions inside the vehicle is determined by the angular speed

of the vehicle and the distance between these two positions.

The above analysis shows that the difference of centripetal

acceleration only depends on the relative distance between two po-

sitions inside the vehicle and angular speed during the turn. Thus,

our approach of using the difference of centripetal acceleration is

scalable to handle any turns with different radii. The larger the

angular speed is, the more powerful the discrimination becomes

in the centripetal acceleration when sensing driver phone use.

Moreover, when undergoing left turns, the centripetal acceleration

of the driver phone is smaller than that at the reference point (such

as the cigarette lighter adapter and OBD-II port adapter), whereas

it is larger than that of the reference point when going through

right turns. Therefore, given the difference of the centripetal

acceleration and the turning direction, our system is able to

determine whether the phone is a driver phone or passenger one.

Specifically, our algorithm determines the driver phone use within

a single turn using the following hypothesis test:
{

(a− aM )ω > 0,H0 : passenger phone

(a− aM )ω < 0,H1 : driver phone,
(3)

where a is the centripetal acceleration of the smartphone measured

from its X-axis accelerometer, aM is the centripetal acceleration

of the reference position, and ω denotes the angular speed mea-

sured from smartphone’s Z-axis gyroscope sensor. The sign of ω
reflects the turn direction, e.g., ω is positive when the vehicle is

making a left turn.

Cumulative Difference Comparison. Finally, the differences

of centripetal acceleration within the turning period are accumu-

lated in our algorithm so that to improve the detection robustness.

Particularly, our algorithm utilizes 21 samples of acceleration

readings at the time when the angular speed reaches its maximum

value. The cumulative difference of centripetal acceleration is then

combined together with the turning direction to decide whether the

target phone is on the driver side or the passenger side.

Feasibility Study. Figure 5 depicts the difference of cen-

tripetal acceleration between driver’s phone and passenger’s when

our vehicle went through 57 left turns and 60 right turns respec-

tively. The results are categorized in three ways: angular speed,

car speed and turn radius. It is encouraging that there is an

obvious trend that increasing angular speed results in a larger

value of difference of centripetal acceleration (as observed in

Figure 5 (a)). Whereas the difference does not change much when

increasing the vehicular driving speed and turn radius as shown in

Figure 5 (b) and (c).

Utilizing Multiple Turns. Our algorithm can further improve

the detection performance by combining multiple single turn

results (e.g., N turns) through a simple majority voting process:














∑N

i=1

(ai − aiM )ωi

|(ai − aiM )ωi|
> 0,H0 : passenger phone

∑N

i=1

(ai − aiM )ωi

|(ai − aiM )ωi|
< 0,H1 : driver phone,

(4)

where ai, aiM , and ωi are the smartphone’s centripetal accelera-

tion, reference centripetal acceleration, and smartphone’s angular

speed in ith turn.

3.6 Detection Using Mixed Turns

The accuracy of the reference point affects the performance of our

sensing algorithm. We find that observations from the reference
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point can be biased. For example, the vehicle speed provided by

OBD-II is an overestimation possibly due to worn tires. Such

a bias affects the algorithm accuracy when using the difference

of centripetal acceleration within the same turn. Since a vehicle

usually undergoes multiple turns during a trip, we exploit the

centripetal acceleration obtained from mixed turns, i.e., comparing

the normalized centripetal acceleration of the phone under a left

turn to that of a right turn. The normalized centripetal acceleration

is defined as the ratio of the measured centripetal acceleration of

the phone to the centripetal acceleration derived from the refer-

ence point. Using normalized centripetal acceleration enables our

algorithm to work with mixed turns with different turn sizes and

driving speeds encountered under real-road driving environments.

The system can automatically launch this detection once a left

turn and a right turn are identified based on gyroscope readings,

irrespective of the sequence of these turns.

Impact of Bias. The reference centripetal acceleration a′LM

(for example under the left turn) can be expressed as:

a′LM = aLMβ (5)

where aLM is unbiased centripetal acceleration of the reference

point and β is the bias. When the OBD-II port adapter is used

as the reference point, β comes from the biased estimate of

the vehicle speed. Then the difference in centripetal acceleration

becomes:

∆aL = aL − a′LM = (1− β)aL − βω2

L∆r. (6)

When there is no bias (i.e., β = 1), the above expression

becomes Equation (2). However, the existence of bias (β 6= 1)

can arbitrarily change the sign of the difference in centripetal

acceleration, making the detection result inaccurate.

Working with Mixed Turns. Our algorithm compares the

normalized centripetal acceleration of the phone under a left turn

to that of a right turn to eliminate the impact of bias coming

from the reference point. We denote the normalized centripetal

acceleration of the phone under a left and right turn as âL = aL

a′

LM

and âR = aR

a′

RM

, respectively. The difference of the normalized

centripetal acceleration under the left and right turn can then be

expressed as:

∆âr = âL − âR =
aL
a′LM

−
aR
a′RM

=
aL

aLMβ
−

aR
aRMβ

=
1

β
(
aL
aLM

−
aR
aRM

). (7)

If the phone is at the driver side, aLM is always larger than aL
(i.e., aL

aLM

< 1), whereas aRM is always smaller than aR (i.e.,

aR

aRM
> 1). Thus, we always have ∆âr < 0. Similarly, if the

phone is at the passenger side, we always have ∆âr > 0. Thus,

the sign of ∆âr becomes independent of the bias, turn size and

driving speed. Our driver phone sensing with mixed turns can be

further formulated as the following hypothesis test:
{

âL − âR > 0,H0 : passenger phone

âL − âR < 0,H1 : driver phone.
(8)

We envision that our system can intelligently perform driver phone

detection based on the availability of turns. This means that when

a single turn is available, our system applies the algorithm involves

the single turn. When multiple/mixed turns are available, our

system performs more accurate driver phone detection using the

accumulative multiple/mixed turns.

4 SYSTEM IMPLEMENTATION

In this section, we present the Data Calibration and Coordinate

Alignment sub-tasks in our system. We then describe two system

approaches, one using the cigarette lighter adapter with an ac-

celerometer sensor and the other using the OBD-II port adapter as

the reference points.

4.1 Data Calibration for Enhanced Reliability

In real-road driving environments, many factors (such as running

engines and wind) affect the readings from the accelerometers and

gyroscopes on smartphones. The sensor readings obtained can be

noisy and unreliable. To address this issue, we develop several

steps in our system to perform data calibration for robust detection.

Our data calibration sub-task has the following capability:

filter noise from sensor readings, ensure the synchronization

between sensor readings from different sources, and reduce bias

caused by hardware difference in smartphones.

4.1.1 Data Interpolation

To reduce the noise in readings obtained from the accelerometers,

we apply a moving average filter to the sensor readings. However,

we observe that although a fixed sampling rate is used, the real

sampling interval has a small variation. Therefore, before applying

the moving average filter, we interpolate to estimate the samples

at evenly spaced time series points, i.e. [t0, t0 + δ, t0 + 2δ, . . .],
where δ is the interpolation step and t0 is the starting time

stamps for the readings. Similarly, we also apply interpolation

to readings from the gyroscope to obtain a uniform time interval

between consecutive samples for comparison. In our experiments,
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Fig. 6. Illustration of trace synchronization mechanism via tangential
acceleration.

we observe that a small time window of 5 samples for the moving

average filter and a δ of 0.05s for the interpolation step are good

enough to produce reliable sensing results.

4.1.2 Trace Synchronization

This procedure is used to synchronize the sensor readings from the

phone and the readings at the reference point (e.g., the cigarette

lighter adapter or OBD-II port adapter) since these readings come

from two sources with different clocks. In our approach, two types

of reference data are involved, one is the centripetal acceleration

of the vehicle (reference acceleration from the cigarette lighter

adapter), and the other is the speed of the vehicle (reference speed

from OBD-II port adapter). To synchronize the phone’s centripetal

acceleration readings with the ones from the reference acceleration

we calculate the cross correlation between these two sequence

of readings in time series. When the cross correlation reaches

the maximum, these two sequence of readings are synchronized

because both sequences reflect vehicle’s movement.

However, when the speed obtained from the OBD-II port

adapter is used as the reference point, synchronization becomes

more challenging. We develop a synchronization mechanism

utilizing vehicle’s acceleration, leveraging the change point in

the tangential acceleration during normal driving, to synchronize

the trace of reference speed from OBD-II with the acceleration

reading trace from smartphone in time series. The rationale behind

this mechanism is that the time point that the vehicle changes from

acceleration to deceleration during normal driving is the point that

the vehicle reaches its maximum speed. Figure 6 illustrates how

the tangential acceleration value change facilitates the synchro-

nization with the reference speed trace. The time (t2) that the

reference speed from OBD-II reaches its local maximum should

match the time (t1) that the vehicle’s tangential acceleration (i.e.

the acceleration on the Y axis) changes from positive to negative.

Thus, for the reference speed trace (from OBD-II), we can perform

synchronization by subtracting the time difference (t2 − t1) from

all its time stamps.

4.1.3 Acceleration Adjustment

Acceleration adjustment is used to reduce the bias caused by hard-

ware differences in smartphones through adjusting the centripetal

Because the centripetal acceleration only exists during a turn, the

readings on the X-axis accelerometer of the phone should be zero

when the vehicle is moving along a straight line. Nevertheless, the

acceleration on the X-axis may have a constant value different

from zero due to different hardware characteristics in different

phone models. To reduce such a bias, our system performs the

following adjustment: 1) use the phone’s gyroscope to determine

the time period that the vehicle is driving along a straight line,

Fig. 7. Illustration of how the phone’s coordinate system is aligned to the
vehicle’s coordinate system.

i.e., the time period with no rotation rate on the Z-axis gyroscope;

2) calculate the mean value of the X-axis acceleration during this

time period; and (3) subtract the calculated mean value from all

the X-axis acceleration readings to remove the constant bias.

4.2 Coordinate Alignment

Our system cannot derive meaningful vehicle dynamics from

sensor readings on the smartphone unless the phone’s coordinate

system is aligned with the vehicle’s. The Coordinate Alignment

sub-task aligns the phone’s coordinate system with the vehi-

cle’s by utilizing the accelerometers and gyroscopes on smart-

phones. As illustrated in Figure 7, the phone’s coordinate system

({Xp, Yp, Zp}) is determined by the pose of the phone inside the

vehicle. Our coordinate alignment aims to find a rotation matrix

R to rotate the phone’s coordinate system to match with the

vehicle’s ({Xc, Yc, Zc}). We define three unit coordinate vectors

under the vehicle’s coordinate system as î, ĵ and k̂ for Xc, Yc and

Zc axis respectively (i.e., î = [1, 0, 0]T in vehicle’s coordinate

system). We denote the corresponding coordinates of these three

unit vectors in the phone’s coordinate system as:

q̂ = [xq , yq, zq]
T , (9)

where q ∈ i, j, k, and the rotation matrix is given by [32]:

R =







xi xj xk

yi yj yk
zi zj zk







(10)

Our coordinate alignment sub-task utilizing smartphone’s ac-

celerometer and gyroscope readings to obtain each element in the

rotation matrix R consists of three steps:

Deriving k̂. We can apply a low pass filter (e.g., exponential

smoothing) on the three axes accelerometer readings on the phone

to obtain the constant components from these three accelerations

and derive the gravity acceleration [33], which is then be normal-

ized to generate the unit vector k̂ = [xk, yk, zk]
T .

Deriving ĵ. To obtain ĵ, we utilize the fact that the three-axes

accelerometer readings of the phone are caused by vehicle’s ac-

celeration or deceleration when driving straight. For example, we

can obtain ĵ = [xj , yj , zj]
T through extracting the accelerometer

readings when the vehicle decelerates (e.g., the vehicle usually

decelerates before making turns or encountering traffic lights and

stop sign). The gyroscope is used to determine whether the vehicle

is driving straight (i.e., with zero rotation rate). We note the gravity

component needs to be excluded because it distributes on all three

axes of the phone when the phone’s coordinate system is not

aligned with the vehicle’s.
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Obtaining î. Since the coordinate system follows the right

hand rule, we can determine the unit vector î = ĵ × k̂ =
[xi, yi, zi]

T .

After obtaining the rotation matrix R, given the sensor reading

vector in the phone’s coordinate system s, we can obtain the

rotated sensor reading vector s′ aligned with vehicle’s coordinate

system by applying a rotation matrix R as: s
′ = s × R. We

note that there are existing studies utilizing the sensors embedded

in smartphones to calibrate the coordinate systems between the

phone and the vehicle [26]. Different from the previous study,

our coordinate alignment mechanism does not require working

with the GPS on the phone, and thus is more accurate and energy

efficient.

When the Coordinate Realignment is Needed? During driv-

ing, the phone’s position may change due to unintentional body

movements or intentionally moved by the user. So after the initial

coordinate alignment performed when our system starts, tracking

the phone’s position change and performing realignment of the

two coordinate systems is desired. To track the phone’s position

change, the centripetal acceleration of the phone (in the aligned

coordinate system) is examined while driving straight. Under this

case, the centripetal acceleration on the X-axis accelerometer of

the phone should be zero. Thus, if the centripetal acceleration of

the phone on the X axis of phone’s aligned coordinate system

exceeds a threshold while the vehicle is running straight, our

system determines that the phone’s position is changed. Then a

new rotation matrix will be generated by following the steps in

the coordinate alignment method presented in Section 4.2.

4.3 Reference Using a Cigarette Lighter Adapter

We next show how a low-cost cigarette lighter adapter containing

an accelerometer can be employed as a reference point in our

system. The location of the cigarette lighter charger is ideal for

the reference point since it is located at the center of the front

seats. Our system can thus distinguish driver phone use from

passenger’s by comparing the centripetal acceleration of the phone

to that of the reference point. The centripetal acceleration of the

reference point can be obtained from the cigarette lighter adapter’s

accelerometer. The measured centripetal acceleration from the

cigarette lighter adapter is then transmitted to the target phone

via Bluetooth for comparison.

Since at the beginning of a trip, a vehicle usually makes

multiple turns to pull out of a parking lot or drive on local streets

before getting onto main roads, we demonstrate the feasibility of

the cigarette-lighter-adapter-based approach by driving a car in the

parking lot of Babbio Center at Stevens Institute of Technology

for over a one month time period. During our experiments, we

utilize a smartphone (the adapter phone) and place it at the

location of the cigarette lighter charger to simulate the cigarette
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Fig. 9. Centripetal acceleration at different positions inside the vehicle
under 20 left and 20 right turns in parking lot.

lighter adapter containing an accelerometer. To distinguish the

driver phone use from the passenger’s, we place two iPhone4s

at driver and passenger side respectively. We have 65 turns in total

including both left and right turns at the parking lot. Each turn has

about 90 degrees and lasts for about 20 seconds (which includes

the time period when driving straight and turning). The radii of

the turns are approximately 10 meters and the speed of the turns

is around 10mph. Note that without notice, the sensor readings

we are referring to are after coordinate alignment.

Figure 8 presents the detection rate versus false positive rate

when applying driver phone sensing algorithm within the same

turn. The detection rate indicates how many cases of driver

phone use are correctly detected, whereas the false positive rate

shows how many cases of passenger phone use are mistakenly

classified as driver phone use. It is encouraging that our system

can achieve above a 90% detection rate with about a 6% false

positive rate using a single turn. Once the algorithm is applied

when the vehicle undergoes multiple turns, the performance has a

substantial improvement. For example, with 3 turns, the detection

rate can be improved to 99.7% with much less false positive (3%),

whereas with 5 turns, our system can reach 100% detection rate

with less than 1% false positive (0.4% to be exact). These results

confirms the feasibility of sensing vehicle dynamics to determine

driver phone use.

4.4 Reference Using an OBD-II Port Adapter

The OBD-II interface has been made mandatory for all vehicles

sold in the United States after 1996, and inexpensive OBD-II port

adapters with Bluetooth connection are readily available in the

market. We can forward the speed of the vehicle from the OBD-II

port adapter to the smartphone via a Bluetooth connection. In our

system implementation, we utilize a low cost OBD-II port adapter,

which allows us to collect the vehicle’s speed from the OBD-II

port adapter via a USB connection, to use the speed of the vehicle

as the reference point. The centripetal acceleration of the car’s

center (i.e., reference point) is the product of the OBD-II speed

and the angular speed measured by the target phone. The driver

phone use can be detected by comparing the phone’s centripetal

acceleration to that of the vehicle’s center.

4.4.1 OBD-II Speed

We use the ElmScan 5 compact OBD-II scan toolkit (about 30
dollars) to obtain the OBD-II speed, which has a sampling rate of

about 20 samples/s. The OBD-II speed represents the speed of the

car’s center since it is calculated based on the averaged distance

traversed by four tires. Thus, the calculated centripetal acceleration

based on the OBD-II speed and the angular speed is for the

center of the vehicle. However, the OBD-II speed estimation
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Fig. 10. ROC curve when using multiple turns and OBD-II speed in parking lot.

is a conservative overestimation to allow for changes in tires’

circumferences. We assume the reported speed is proportional

to the true speed: v′M = vM × β, where v′M and vM are the

estimated and true speed respectively. We also assume that the

value of β is constant per vehicle, even though there is a slight

variation in practice due to the change of tire pressure. We study

the impact of the bias (β) on the performance of our algorithm in

our experiments.

4.4.2 Evaluation

We use the same experiment setup as we had in the parking

lot in Section 4.3. Figure 9 shows the scatter plot on the cen-

tripetal accelerations from three sources: smartphone at driver

seat, smartphone at passenger seat, and the calculated one for the

vehicle’s center based on the OBD-II speed, under 20 left turns

and 20 right turns respectively. Note that we did the OBD-II speed

adjustment by setting the speed adjustment coefficient β = 1.1.

We observe that the centripetal acceleration calculated based on

OBD-II speed is in between the centripetal acceleration of the

driver phone and passenger phone. This indicates that employing

the centripetal acceleration derived from the OBD-II speed is an

effective reference point for determining driver phone use.

Figure 10 depicts the detection rate versus false positive rate by

applying our algorithm when using multiple turns under different

bias β. With a small bias β = 1.1, we can achieve 91% detection

rate with 5% false positive rate under two turns. By increasing the

number of turns, the performance can be significantly improved.

For example, with 3 and 5 turns, the detection rate is improved

to 93% with 5% false positive rate and 97% detection rate with

only 3% false positive rate, respectively. We find that the bias

β is critical to the detection performance when only data for

few turns is available, but the sensitivity to β decreases with

the increasing number of turns, as shown in Figure 10. When

data for multiple turns is available, our approach does not rely

on a careful calibration of β, rather, a simple approximation is

sufficient. Note that the bias can be learned offline. Alternatively,

our algorithm based on mixed turns (Section 3.6) can eliminate the

impact of the biased OBD-II speed. We present the results from

using mixed turns tested from real-road driving environments in

the next section.

5 ELECTROMAGNETIC BASED DRIVER PHONE

USE DETECTION

In this section, we explore to use electromagnetic field (EMF),

which can be sensed by smartphone build-in magnetometer, to

detect driver phone use when turns are not available, such as when

driving straight on a highway or waiting for traffic lights. Such
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Fig. 11. Comparison of histograms of EMF measured at different posi-
tions in a vehicle.

method does not require vehicle dynamics, and complements the

vehicle dynamic based detection method.

5.1 Measuring Electromagnetic Field by Using Smart-

phones

A EMF is a physical field that can be easily measured by magne-

tometers in smartphones. The magnetometer is usually affected

by the local electromagnetic field produced by electronically

charged objects (e.g., battery, circuits, and power generator). In

our experiments, we observe that when smartphones are placed on

the driver side of a vehicle, the EMF measurements are statistically

larger than those collected on the passenger side. In addition,

we observe that the EMF measured at the middle of a vehicle

is statistically less than the EMF from the driver as well. The

reason behind this is that the driver’s position is closer to more

electronically charged components in most vehicles (e.g., engines,

airbags, fuse boxes), the EMF at the driver’s position is thus

stronger than that of other in-vehicle positions. We illustrate the

different distributions of EMF from the driver side, passenger

side and the middle of a vehicle in Figure 11. We notice that

the EMF measurements collected in local roads have much larger

variance than those collected in highways or stationary scenarios.

We believe such differences are mainly due to the closer distance

to complex EMF environments along local roads and frequent

driving events in vehicles, such as braking and turning the steering

wheel, which trigger electronic signals. This suggests that the

EMF based approach is less desirable in local-driving environ-

ments but can serve as a complementary to the approach based on

vehicle dynamics. And the EMF measurements are only collected

when the driver phone detection task needs to be carried out (e.g.,

the phone has changed the position inside the vehicle) but little

vehicle dynamics is present. We note that the EMF based method

may be affected by devices with strong magnetic field (such as

motors and large metals), but in most cases, the mobile devices

carried by passengers are so small that they do not generate strong

magnetic fields that can affect our system.



(a) Driving trajectory in Hoboken, NJ

(b) Driving trajectory in Pontiac, MI

Fig. 12. Daily commute routes used for real-road driving evaluation in
Hoboken, NJ and Pontiac, MI.

5.2 Position Detection Using Magnetometers

Based on the observation that different in-vehicle positrons have

different distributions of EMF, we thus can compare the EMF

distribution measured at the smartphone to that of the refer-

ence point to detect driver phone use. We assume there is a

low-cost cigarette lighter adapter installed in the middle of the

vehicle, which has 3-axis accelerometer and magnetometer. We

also assume that smartphones can obtain data from the adapter

via Bluetooth. Given the collected EMF measurments, we first

perform the Magnetometer Data Calibration to pre-process EMF

data before preforming Phone Position Detection.

Magnetometer Data Calibration. Since the EMF is affected

by electronically charged objects both inside and outside vehicle,

it is necessary to mitigate the impact from outside vehicles to

facilitate the in-vehicle position determination. We first utilize

data interpolation and trace synchronization (Section 4.1) to obtain

synchronized EMF traces with evenly separated measurements. As

the phone’s in-vehicle position is relatively stable, the magnetic

effect of the objects from inside vehicles is much more stable than

that of the objects from outside vehicles. We then calculate the

moving average of both EMF traces with a moving time window

of w s to smooth drastic changes due to the impact from outside

vehicles.

Phone Position Determination. We denote the EMF traces

from the smartphone and the cigarette lighter adapter af-

ter calibration as F = [f1, . . . , fl, . . . , fL] and FM =
[fM,1, . . . , fM,l, . . . , fM,L], respectively. Since the driver’s po-

sition is usually surrounded by more in-vehicle electronic devices

than these of both the passenger side and the middle of the

vehicle, the EMF measured at the driver side should be larger

than that of both the passenger side and the middle of the vehicle.

Therefore, for each EMF measurement fl, we calculate the EMF

ratio ϕl = fl/fM,l and declare the phone is on the driver side if

ϕ is larger than a threshold τ . Our driver phone sensing with EMF
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Fig. 13. ROC curve when using the acceleration from the adapter phone
as the reference point.

can be formulated as the following hypothesis test:
{

ϕl ≥ τ,H1 : driver phone

ϕl < τ,H0 : passenger phone.
(11)

We further utilize a simple majority voting process to improve the

detection performance by using consecutive measurements.

6 EVALUATION IN REAL-ROAD DRIVING ENVIRON-

MENTS

In this section, we evaluate our proposed driver phone use sensing

system in real road driving environments using two types of

phones in two different cities.

6.1 Experimental Setup

6.1.1 Phones and Vehicles

We conduct our experiments with two types of phones: iphone4

and HTC 3D. Both phones have a Bluetooth radio, 3-axis ac-

celerometer and gyroscope. The iphone4 is equipped with a 1GHz

ARM Cortex-A8 CPU and 512M RAM running with iOS5.2,

whereas the HTC 3D has a Qualcomm MSM8660 1.2GHz CPU

and 1G RAM running with Android 2.4. Both the accelerometer

and gyroscope sampling rate are 20 samples/s. There are two

vehicles used in our experiments: a Honda Accord (Car A) and

an Acura sedan (Car B).

6.1.2 Real Road Driving Scenarios

To evaluate our proposed system, we conduct experiments using

the iphone4 for over one month when Car A is used as the daily

commute vehicle in Hoboken, NJ. Hoboken has a typical urban

setting. To test the generality of our system, we further experiment

with the HTC 3D using Car B to commute to work in Pontiac, MI

for over one week. Pontiac presents a suburban environment. The

driving routes are depicted in Figure 12. The phones are placed

in either the driver or passenger seat/door during the experiments.

Each of the traces contains 10 to 20-minute of driving. Table 1

summarizes the details on the traces collected in these two cities.

In total, we have 292 left turns and 278 right turns in Hoboken,

NJ, and 211 left turns and 219 right turns in Pontiac, MI.

Location Left turns Right turns Car Phone

Hoboken,NJ 292 278 Car A iphone4

Pontiac,MI 211 219 Car B HTC 3D

TABLE 1
Traces collected in Hoboken, NJ and Pontiac, MI.
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6.1.3 Prototype

We implement our sensing driver phone use system using the

Android platform. The prototype runs as an Android App and

collects readings from the accelerometer and gyroscope in the

smartphone. It then runs through the detection algorithm using

either single or multiple turns to determine whether the phone is

at the driver or passenger side. Our prototype also works with the

OBD-II port adapter via Bluetooth. We also present the results

using iPhone 4 by applying trace driven off-line analysis.

6.1.4 Metrics

To evaluate the performance of our system, we define the follow-

ing metrics:

Accuracy. Accuracy is defined as the percentage of the trials

that were correctly classified as driver phone use or passenger

phone use.

Detection Rate (DR) and False Positive Rate (FPR). De-

tection rate is defined as the percentage of driver phone use that

are correctly identified by our system, whereas the False positive

rate is defined as the percentage of passenger phone use that are

classified as driver phone use.

Detection Latency. We define the detection delay as the time

needed to make a decision on whether it’s a driver phone use or

passenger use starting from driving a vehicle.

6.2 Evaluation Using a Cigarette Lighter Adapter

We evaluate the effectiveness of using the adapter phone placed

at the cigarette lighter charger as the reference when driving

Car A in Hoboken, NJ and Car B in Pontiac, MI. Figure 13

presents the detection rate versus false positive rate when applying

our algorithm to determine the driver phone use. We observe

that within one turn, our system achieves over a 80% detection

rate with less than a 10% false positive rate for both traces in

Hoboken and Pontiac. By utilizing multiple turns for detection, the

performance is further improved. Specifically, for the experiments

in Hoboken, the detection rate goes up to 97% with a 3% false

positive rate with 3 turns. And with 5 turns, our system can achieve

a 99.1% detection rate with less than a 1% false positive rate

(0.3% to be exact) in Hoboken. Similarly, for the experiments in

Pontiac, we can achieve a 91.4% detection rate with a 2.4% false

positive rate by using 3 turns, and a 98.42% detection rate with a

0.92% false positive rate by using 5 turns. This indicates that our

system can achieve very high detection accuracy when the vehicle

undergoes only a few turns. We note that the best performance in

the ROC curves is achieved when the threshold (for the hypothesis

testing as described in Equation (8)) is about 10cm away from the

center of the car to the passenger side.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

D
e
te

c
ti
o
n
 R

a
te

1 set of mixed turns

2 sets of mixed turns

3 sets of mixed turns

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

D
e
te

c
ti
o
n
 R

a
te

1 set of mixed turns

2 sets of mixed turns

3 sets of mixed turns

(a) Without turn selection (b) With turn selection

Fig. 15. ROC curve when using the speede from an OBD-II port adapter
as the reference point under mixed turns using iPhone4, Car A in
Hoboken NJ.

6.3 Evaluation Using an OBD-II Port Adapter

We further evaluate using the OBD-II speed as reference by

applying mixed turns detection, which eliminates the dependence

on the bias caused by using the OBD-II.

Filtering Turns with Angular Speed. The noise in the

sensing data affects the results of the hypothesis test. Our system

adopts a strategy to select turns with a large angular speed so

that to get a larger difference of acceleration, thus making our

algorithm more robust to noisy sensor readings. As shown in

Equation (2), the larger the angular speed is, the more powerful the

discrimination becomes in the centripetal acceleration. Given the

certain noise level presented in the sensing data, we can thus filter

out the turns with small angular speed to improve the detection

performance. Our strategy is to choose the turns based on the

maximum angular speed and filter out those with the maximum

angular speed below a threshold. Figure 14 shows that through our

study with 570 turns collected from real-road driving in Hoboken,

NJ over one month time period, over 80% of the turns have

maximum angular speed larger than 0.5 rad/s. This suggests that

applying our turn selection strategy to cope with the noisy sensing

data will only sacrifice a small portion of the data. We thus choose

0.5 rad/s as the threshold in our study.

Results. Figure 15 presents the system performance when

using mixed turns with and without turn selection based on driving

traces in Hoboken, NJ. We observe that the performance under

turn selection is 20% better than that without turn selection. In

particular, with the turn selection strategy, the detection rate is

about 80% with a false positive rate of 20% under only 1 set of

mixed turns, whereas the detection rate goes up to 91% with only

a 5% false positive rate based on 3 sets of mixed turns.

6.4 Detection Latency

In reality, it is common that a vehicle experiences more turns at

the beginning of a trip before getting onto main roads, such as

driving the vehicle out of the parking lot and then driving on local

streets. These turns make our system able to determine whether the

phone is driver’s or passenger’s. When sensing driver phone use

is conducted using a single turn, the detection latency consists of

the algorithm execution time and the turning time (which includes

time for sensing data collection). In our system prototype, we find

that the algorithm execution time is at the level of sub-millisecond.

Thus, the detection latency is determined by the turning time.

Based on our experiments summarized in Table 1, the average

turning time is about 10s in both Hoboken, NJ and Pontiac, MI.

When multiple turns are employed in our detection algorithm,

the time interval between two turns, measured between two
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maximum angular speeds, dominates the total detection latency.

We observe that the average time interval between two turns

in Hoboken, NJ is about 28s, while it is 18s in Pontiac, MI.

Therefore, the latency of our algorithm is the sum of turning

times and the time between turns. For instance, when we use two

turns with the cigarette lighter adapter, the latency is about 48s
and 38s in Hoboken and Pontiac respectively. This indicates that

our driver phone sensing algorithm has an acceptable detection

latency in environments including both urban and suburban. The

time delay in Hoboken city is longer than that in Pontiac. This is

because Hoboken has the urban city setting and the driving routes

involve more traffic lights and stop signs. Therefore, vehicles

experience longer waiting time before making turns. We note that

the detection latency may be affected by different driving styles

and environments. We believe that the results in Hoboken and

Pontiac are illustrative for the detection latency of our system in

urban and suburban environments.

6.5 Evaluation Using Dual Phones

When there are passengers in the vehicle, our system can leverage

a second phone instead of an adapter on the car to determine

the driver phone. While we have not found any detailed statis-

tics on driver versus passenger cell phone use in vehicles, a

federal accident database (FARS) [34] reveals that about 38%
of automobile trips include passengers. Basically, our system

can directly compare the centripetal acceleration of these two

phones to determine the one on the left side is the driver’s phone.

These two phones can exchange their centripetal acceleration via

Bluetooth. To evaluate such an approach, we carry out a series

of experiments by putting one phone at two driver’s locations:

driver’s left pocket (position A), driver’s right pocket (position B),

and the other phone at two passenger’s locations: passenger’s left

pocket (position C), and passenger’s right pocket (position D).

Figure 16 shows the detection accuracy of employing the

second phone as reference when driving in two cities when

undergoing 1, 2, and 3 turns. We observe that when undergoing

one turn the scenario A-D achieves the best detection accuracy,

which is over 95% because the two phones have the largest

distance between each other in the vehicle, while the scenario B-C

with two phones located in the closest positions achieves about

70% accuracy under one turn. This is because the significance of

the difference of centripetal acceleration between two phones is

only affected by the relative distance between them. We find that

the accuracy for B-C scenario can go up to 90% when undergoing

3 turns. We observe similar detection accuracy in Pontiac, for

instance, the scenario A-D can achieve the detection accuracy over

95.6% and 99.8% for 1 and 3 turns respectively. These results

show that using the acceleration from the second phone as the

reference generally has good performance in real-world driving

tests. Moreover, by using multiple turns, the detection accuracy
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Fig. 17. Comparison of ROC curve when using the EMF from an adapt
phone as the reference point in three different cars while driving straight
on highways and maintaining stationary on urban streets.

can be further improved, especially for the phones that are placed

very close to each other (i.e. the B-C scenario).

6.6 Evaluation Using Magnetometers

We evaluate the effectiveness of the EMF based method with three

different types of vehicles: a small size sedan (Toyota Corolla),

a full size sedan (Honda Accord), and a SUV (Nissan Rogue).

We conduct the real-driving experiments under two scenarios in

NJ: one is driving on highway I-95 and the other is maintaining

the vehicle stationary on urban streets. We first fix the moving

time window to 35s and compare the performance of our system

in three different vehicles. Figure 17 shows the comparison of

the performance between three vehicles while driving straight on

highways and maintaining stationary on urban streets. We observe

that our system can achieve more than 90% detection rate with

less than 10% false positive rate on three different vehicles in

both highway and urban-street scenarios. In particular, we find

that Nissan Rogue has relatively better performance because more

significant difference of EMF is obtained due to larger interior

space of the car. We note that the EMF in a vehicle is mainly

determined by the layout of the in-vehicle electronic devices and

circuits and may vary in different vehicles. Thus it is possible to

build EMF profiles for different types of vehicles, which can help

our system to achieve high performance in different vehicles.

Impact of the size of the moving time window.Figure 18

presents the detection rate versus false positive rate of driver

phone use detection in the Corolla when applying different size

of moving time windows. We observe that with a 5s moving time

window, our system achieves more than 80% detection rate with a

10% false positive rate. In particular, comparing to driving on the

highway, the detection rate is higher when the vehicle is stationary,

i.e., around 90%, suggesting that results from stationary case are

more reliable than that of mobile case due to stationary case

involves less dynamic changes of the magnetic environments. In

addition, larger moving time window results in better performance.

Specifically, the detection rate in both highway and stationary

cases go up to more than 90% with a 10% false positive rate

when the moving time window is 25s. This indicates that our

system can achieve high detection accuracy under a small system

latency.

7 DISCUSSION

In this section, we first discuss how this technique can be extended

with front-rear detection based on acceleration forces created

when the vehicle passes over bumps. We then discuss our initial

attempts and results towards a completely phone-based solution,

that is a solution that also eliminates the requirement for the plugin
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Fig. 18. ROC curve when using the EMF from an adapt phone as
the reference point with different sizes of moving window while driving
straight on highways and maintaining stationary on urban streets.

adapter. Finally, we speculate about other vehicle sensors that

could be used as a reference point, when vehicles become a more

open platform.

7.1 Extended System with Front-Rear Detection

While left-right classification is able to disambiguate the majority

of in-vehicle phone use situations, a complete system for driver

phone detection involves both left-right and front-rear classifi-

cations of phone position. The left-right classification approach

proposed in this study can be integrated with the front-rear ac-

celerometer classification described in our previous work [7]. The

basic idea of this front-rear classification is that the acceleration

forces on a vehicle when passing over speed bumps, potholes,

or other uneven surfaces are also position dependent. Consider

that the front wheels will hit the bump first, followed by the rear

wheels a short time later. Since the front seats are closer to the

front wheels, phones at this position will observe a stronger effect

from this bump than phones on the rear seats. Our prior experiment

show that it could achieve as high as 90% accuracy when passing

two bumps and 94% when passing three bumps.

7.2 Towards Infrastructure-Free Driver Phone Use De-

tection

One possible infrastructure-free approach is to use the smart-

phone’s GPS speed measurement as a reference. At the first

glance, using a speed measurement at the phone position does

not seem suitable as a reference. This is less clear however

when taking, for example, the GPS chip’s internal processing

and smoothing into account. Consider a phone on one side and

a vehicle moving in a straight line with a constant velocity. In this

case, both the instantaneous and smoothed velocities will be the

same. When the vehicle turns, the value of the smoothed velocity

will lag closer to the center velocity. Assuming the phone’s

gyroscopes and accelerometers are closer to the instantaneous

values, the difference could be used to discriminate the side of

the vehicle.

The filters used on GPS chipsets are often proprietary, so

we perform experiments to test this hypothesis. We place two

iPhone4s on two front doors, and also employ a third iPhone4

in a center cup holder to collect the tangential speed of the

center of the vehicle. As compared in Figure 19, the histogram

of the differences between the GPS speed of the center phone

and the two phones on two front doors indicate that the GPS

speed is not sensitive to the in-vehicle position, thus making using

the smartphone’s GPS speed tractable. And our further real road

driving experiments demonstrate that our algorithm can achieve

over 80% detection rate with 3 sets of mixed turns without turn

selection. Figure 20 shows an example for traces collected in
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Fig. 19. Histogram of differential GPS speed between the phone’s posi-
tion on left/right door and at the center of the vehicle.

Hoboken, NJ. Furthermore, based on turns with ω > 0.5rad/s,

our algorithm can achieve much better detection rate, that is 90%
and 95% in Hoboken and Pontiac respectively. These results show

some promise in using the GPS speed measured by the phone

to derive the vehicle reference and possible achieve completely

infra-structure-free driver detection. While cannot fully explain

these observations, we believe these results warrant further study.

7.3 Power Consumption

Our driver phone use detection system can be implemented with

low power consumption. Table 7.3 shows that the power consump-

tion of the sensors used in our system is very low. Additionally, we

note that the most significant power consumption of our approach

is from data processing using the main processor of the phone.

We believe that this power consumption can be largely reduced

by leveraging emerging motion processors [35] (e.g., the M7 in

iPhone 5S or the Contextual Computing Processor of Motorola

X8 chipset in Moto X), which consume much less power than the

main processor, and have been widely adopted in many always-

on applications (e.g., step counting and activity recognition). In

addition, the detection of driver phone use is more likely to

be triggered for only few times when the phone is used in a

moving vehicle. Therefore, the power consumption of utilizing

the accelerometers, gyroscopes, and magnetometers will not be a

burden comparing to normal smartphone usage.

7.4 Integration with Additional Vehicle Sensors

Our work also points to a more intriguing possibility of vehicular

smartphone applications where all the vehicle’s sensors are avail-

able to an authorized smartphone. While ODB-II to Bluetooth is

a first step in this direction, much richer interfaces with addi-

tional information are possible and have been realized in select

vehicles. For example, the Open-XC interfaces [40] provides

additional vehicle parameters to Android phones. Of particular

interest, is the steering wheel angle measured by a steering wheel

position sensor [41] (this sensor normal provides information for

electronic stability control). Having such information available

would provide additional and potentially more accurate means

for determining the turn radius of the vehicle and estimating

acceleration forces at a vehicle reference point.

8 CONCLUSION

In this paper we demonstrate a low-infrastructure approach for

discriminating between a phone in the driver or passenger position

Accelerometer Gyroscope Magnetometer Bluetooth

Power 1.5 mW [36] 10 mW [37] 1 mW [38] 10 mW [39]

TABLE 2
Comparison of power consumptions between different sensors.
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Fig. 20. ROC of driver phone use sensing in Hoboken with mixed turns
algorithm and GPS speed.

of a moving vehicle by sensing vehicle dynamics. It does not

rely on a built-in handsfree Bluetooth system in the car but

only on the phone’s embedded sensors and a simple plug-in

reference module for the cigarette lighter or OBD-II port. The

insight that the centripetal acceleration varies depending on the

position in the car enables us to build a system that exploits

the difference of centripetal acceleration at different positions

inside the vehicle to determine the driver phone when turning.

Our system accomplishes the task by comparing the measured

centripetal acceleration at the phone with that from a reference

point in the vehicle. Instead of such a reference point, the system

could also leverage a second phone in the car to perform detection

when available.

We demonstrate the generality of our approach through exten-

sive experiments with two different phone types and two different

cars in two cities over a month-long time period. Our findings

show that our approach yields close to 100% accuracy using only

a few turns with less than 3% false positive rate. While the system

has to wait until the vehicle has passed through one or more

turns, our experiments show that detection is often possible by

the time a vehicle leaves a parking lot or before it reaches a main

road, so the determination is available for the vast majority of

trips. Furthermore, we develop an electromagnetic field (EMF)

based approach to complete our driver phone use detection task

under all kinds of real-world driving scenarios. Our real-driving

experiments demonstrate that the EMF based approach is accurate

when little vehicle dynamics is present.
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