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Abstract
In this paper, we present the design, implementation and

evaluation of a RF-based device-free passive localization
strategy using active RFID nodes. Patterns of the measured
power on multiple radio links are used to determine the lo-
cation of a person in a room in a home environment. We
develop an adaptive algorithm and training technique to min-
imize multi-path effects. With experimental deployment ina
5× 8 meters room, we demonstrate that our system can suc-
cessfully localize an individual to a 30-inch grid square with
an 97.2% accuracy and 0.36 meters average error distance.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

General Terms
Algorithm, Experimentation, Measurement

Keywords
RFID, Device-free Passive Localization

1 Introduction
As wireless sensor networks become more pervasive,

sensor-based context-aware applications are becoming in-
creasingly available. These systems can automatically col-
lect contextual information in the home or work environ-
ment, and this information can improve automation, increase
safety, and reduce labor costs. One of the fundamental func-
tions of such applications is localizing people and objects.

Radio frequency based localization techniques have re-
ceived much attention due to their ubiquity and low cost.
RADAR [1] localizes people in indoor environments by re-
quiring people to carry wireless transmitters. To eliminate
this limitation, Youssef [3] announces the availability of
device-free passive (DfP) localization. In other words, the
person can be tracked without carrying a transmitter. Never-
theless, DfP localization in an indoor environment is a very
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challenging problem, mainly due to the well-known “multi-
path” effect, which is caused by the reflection and diffraction
of the RF signal from objects in the environment. We ad-
dress this by formulating the localization problem as a linear
classification problem, and validate our formulation through
extensive experimentation in a one-bedroom apartment.

2 Localization Strategies
Due to multi-path in a cluttered environment, a subject

moving across the line-of-sight of a radio link can affect the
RF signals in a complicated and unpredictable fashion. The
details of multi-path depend upon the position and composi-
tion of all objects in the deployed region, and therefore pre-
cise calculations are impossible. Hence, we use training data
to characterize the room from a statistical perspective. Inour
approach, we first slice a deployed region into equal-sized
cells, and then we localize a subject to a cell. For this pur-
pose, we obtain the training data by collecting the RF sig-
nal of each radio link when the subject moves around within
each of these cells. Based on this training information, we
can determine the cell with the maximum likelihood of con-
taining the subject. We treat all the possible vectors for ra-
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Figure 1. Experimental Topology. The one-bedroom de-
ployment region is partitioned into 32 cells. Eight trans-
mitters and eight receivers are deployed.
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Figure 2. Localization accuracy
versus the number of most impor-
tant principal discriminant compo-
nents.
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Figure 3. Localization accuracy
with 95% confidence interval error
bar versus the number of training
measurements.
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Figure 4. Localization accuracy box-
plot versus the number of RF devices
that fail to work from all the combi-
nations of RFID devices.

dio signal strength from all the radio links when a subject
is located in a cell as a class. We treat each class as a multi-
variate Gaussian, construct a multi-class training dataset, and
use Linear Discriminant Analysis (LDA) as our classification
algorithm to solve the indoor localization problem. We use
RSS (Received Signal Strength) as our quantitative measure-
ments of a radio link’s signal strength. Suppose we haveL
independent radio links andK cells in the indoor region in
which we intend to localize a subject. In the training phase,
for each cellk, we collect a set of RSS values with the subject
present in this cell. When the subject is in cellk, we collect
the RSS measurements from all the links as[xk,1, ...,xk,L],
which composes a RSS vector,xk for cell k. At the end of
the training phase, a K-class classifier is built based on these
training data, and subsequently used to classify the testing
subject with unknown class label based on LDA algorithm
in the testing phase.

LDA aims to find a linear combination of features which
characterize or separate two or more classes [2]. We assume
the density function of each class k is multivariate Gaussian
fk(x) and derive the objective functionargmaxk fk(x). When
we collect the training data for each cell, we make a sub-
ject move randomly within the cell rather than stand still. In
this way, we average the variance caused by multi-path ef-
fect and subject’s different orientations. In the testing phase,
we make another subject appear randomly in a cell within
the deployed region. We collect the RSS data, plug in the
data into the K-class classifier and find the class label with
the maximum value from objective functions among all the
classes. We estimate that cell contains the subject.

3 Experimental Results
Our experimental setup consists of a host PC serving as

the system manager and eight RFID transmitters and eight
RFID receivers providing 64 radio links. The radios operate
at 433.1 MHz. Each transmitter broadcasts a packet with its
unique id every 100 milliseconds. The receivers receive the
packets, extract the RSS values and forward them to the host
PC over USB for data collection and analysis.

The deployment takes place in a one-bedroom apartment
with the total area of 5× 8 meters, which contains furni-
ture as shown in Figure 1. The room is spatially divided into
32 cells (size of each cell is 30× 30 inch). In the train-

ing phase, the first author stands in each of these cells and
makes 100 RSS measurements for all 64 links. Then, in the
testing phase, we have another subject (with different height
and weight from the first author) stand in a random cell with
a random orientation, which is repeated independently 3200
times. We consider a test successful if the estimated cell is
the same as the occupied cell. To evaluate localization per-
formance, we define localization accuracy as the success rate
among all the tests, and average error distance as the average
distance between the actual location and the center of the es-
timated cell. Applying our LDA algorithm, we successfully
localize an subject to a 30-inch grid square with an 97.2%
accuracy and 0.36 meters average error distance.

Furthermore, we have also studied the system perfor-
mance when we try to reduce the computational over-
head, decrease the training time, and with missing devices.
Through eigen-decomposition, we select the most important
principal discriminant components from both the training
data and testing data, and show our localization accuracy in
Figure 2. We find that if we are willing to reduce the local-
ization accuracy from 97% to 90%, then choosing the first
10 of 64 discriminant components will be sufficient. Reduc-
ing training complexity is important. In Figure 3, we plot
the localization accuracy with 95% confidence interval as a
function of the number of training measurements per cell.
We observe that with only 8 of 100 training measurements in
each cell, we can achieve 90% localization accuracy. Mini-
mizing hardware is important as well. We analyze our data
by selectively removing all the combinations of devices with
corresponding radio links, and show the localization accu-
racy boxplot as a function of number of RFID devices fail to
work in Figure 4. We find that our system can even achieve
as high as 90% localization accuracy even if 3 transmitters
and 3 receivers are missing.
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