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ABSTRACT
Radio frequency based device-free passive (DfP) localization tech-
niques have shown great potentials in localizing individual human
subjects, without requiring them to carry any radio devices. In this
study, we extend the DfP technique to count and localize multiple
subjects in indoor environments. To address the impact of multi-
path on indoor radio signals, we adopt a fingerprinting based ap-
proach to infer subject locations from observed signal strengths
through profiling the environment. When multiple subjects are
present, our objective is to use the profiling data collected bya
singlesubject to count and localizemultiple subjects without any
extra effort. In order to address the non-linearity of the impact of
multiple subjects, we propose a successive cancellation based al-
gorithm to iteratively determine the number of subjects. We model
indoor human trajectories as a state transition process, exploit in-
door human mobility constraints and integrate all information into
a conditional random field (CRF) to simultaneously localize mul-
tiple subjects. As a result, we call the proposed algorithmSCPL–
sequential counting, parallel localizing.

We test SCPL with two different indoor settings, one with size
150m2 and the other 400m2. In each setting, we have four differ-
ent subjects, walking around in the deployed areas, sometimes with
overlapping trajectories. Through extensive experimental results,
we show that SCPL can count the present subjects with 86% count-
ing percentage when their trajectories are not completely overlap-
ping. Our localization algorithms are also highly accurate, with an
average localization error distance of 1.3 m.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems
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1. INTRODUCTION
Ambient Intelligence (AmI) envisions that future smart environ-

ments will be sensitive and responsive to the presence of people,
thereby enhancing everyday life. Potential applications include el-
dercare, rescue operations, security enforcement, building occu-
pancy statistics, etc. The key to enable these ubiquitous applica-
tions is the ability to localize various subjects and objects in the
environment of interest. Device-free passive (DfP) localization has
been proposed as a way of detecting and tracking subjects with-
out the need to carry any tags or devices. It has the additional
advantage of being unobtrusive while offering good privacy protec-
tion. Over the past decades, researchers have studied ways of track-
ing device-free human subjects using different techniques such as
camera [9], capacitance [21], pressure [15], infrared [3] and ultra-
sonic [6]. However, they all suffer from serious limitations such as
occlusion [9, 3], high deployment cost [15, 21] or short range [6].

Radio frequency (RF)-based techniques have the advantages of
long-range, low-cost, and the ability to work through non-conducting
walls and obstacles Several RF-based DfP localization techniques
have been proposed in [29, 31, 16, 11, 23, 2, 24, 27, 7], and
these approaches observe how people disturb the pattern of radio
waves in an indoor space and derive their positions accordingly.
To do so, they collect training data to profile the deployed area,
and form mathematical models to relate observed signal strength
values to locations. DfP algorithms can be broadly categorized
into two groups:location-based, and link-based. Location-based
DfP schemes collect a radio map with the subject present in var-
ious predetermined locations, and then map the test location to
one of these trained locations based upon observed radio signals,
which is also known as fingerprinting, as studied in [29, 27]. Link-
based DfP schemes, however, capture the statistical relationship
between the received signal strength (RSS) of a radio link and
whether the subject is on the Line-of-Sight (LoS) of the radio link,
and consequently determine the subject’s location using geometric
approaches [31, 16, 2, 7].

Recognizing that merely tracking an individual might not be suf-
ficient for typical indoor scenarios, researchers have been pushing a
great amount of effort towards scaling to multiple device-free sub-
jects, such as in [32, 30, 13, 24, 27, 14]. They observe the change
of RSS mean or variance and propose different tracking algorithms.



The common thing missing is that the number of subjects is known,
which is a strong assumption. In addition, in cluttered indoor en-
vironments, subjects can cause collective nonlinear fading effects,
which might significantly degrade the tracking performance and
is not explicitly treated in the work above. On the other hand,
location-based schemes can be straightforward but prohibitive due
to the exponential increase in the training overhead if we need to
profile the system with different combinations of these subjects.

In this study, we propose and evaluate an efficient DfP scheme
for tracking multiple subjects using the training data collected by a
single subject to avoid expensive training overhead.

Our algorithm consists of two phases. In the first phase, wecount
how many subjects are present using successive cancellation in an
iterative fashion. In each iteration, we detect whether the room is
empty. If it is not empty, we identify the location for one subject,
and then subtract her impact on the RSS values from the collective
impact measured in the experiment. Care must be taken when sub-
tracting a subject’s impact as the change in the RSS values caused
by multiple subjects at the same time is smaller than the sum of
RSS changes from each individual subject. In order to compensate
for this, we need to multiply a coefficient to a subject’s impact and
then perform subtraction. The coefficient is specific to the subject’s
location as well as the link under consideration.

In the second phase, we localize the subjects after their number
is known. We partition the deployment area into cells and represent
a subject’s location using its cell number. We formulate the local-
ization problem as a conditional random field (CRF) by modeling
indoor human trajectories as a state transition process and consid-
ering mobility constraints such as walls. We then identify the cells
occupied by these subjects simultaneously. Since our counting pro-
cess is sequential and our localization process is parallel, we call
our algorithmSCPL.

We have tested SCPL in two indoor settings. The first setting
is an office environment consisting of cubicles and narrow aisles,
which is partitioned into 37 cells. We used the 13 transmitters and 9
receivers that were deployed for some earlier projects. The second
setting is an open floor indoor environment, which is partitioned
into 56 cells and deployed with 12 transmitters and 8 receivers.
In the training phase, we measured the RSS values using a single
subject. In the testing phase, we had four subjects with different
heights, weights and gender, and designed four different real life
office scenarios. These scenarios all had periods of time when mul-
tiple subjects walked side by side and thus had overlapping trajec-
tories. We can count the number of subjects accurately, with a 88%
counting percentage when the subjects were not walking side by
side, and a 80% counting percentage when they were.

Our localization results have good accuracies, with a average er-
ror distance of 1.3 m considering all the scenarios. We find that it is
beneficial to consider indoor human movement constraints accord-
ing to the floor map when localizing moving subjects and demon-
strate 24% improvement on average compared with no floor map
information provided.

Our technique, SCPL, is unique in at least four contributions:
(i) to our knowledge, it is the first work to systematically perform
simultaneous counting and localization for up to four device-free
subjects (moving or stationary) in large-scale deployments only us-
ing RF-based techniques; (ii) we designed a set of algorithms to
count and localize multiple subjects relying on the calibration data
collected by only a single individual; (iii) We also use plausible tra-
jectory constraints (e.g. not walking through walls) based on floor
map information, and integrate this information into the radio cal-
ibration data to further improve the tracking accuracies; and (iv)
we recognize the nonlinear fading effects caused by multiple sub-

jects in cluttered indoor environments, and design the algorithms to
mitigate the resulting error.

The rest of the paper is organized as follows. In Section 2,
we discuss the applications that benefit from passive localization
as well as our solution framework. Our solution consists of two
phases, counting the number of subjects (in Section 3) and localiz-
ing the subjects (in Section 4). Then we describe our experimental
setup in Section 5 and our detailed results in Section 6. We dis-
cuss the limitation and future direction of our work in Section 7
and review the related work in Section 8. Finally, we provide the
concluding remarks in Section 9.

2. BACKGROUND
Before presenting our SCPL algorithm, we first discuss potential

applications and the formulation of the problem.

2.1 Applications that Can Benefit from Pas-
sive Localization

Passive localization can find application in many important do-
mains. Below we give a few examples:

Elderly/Health Care: Elder people may fall down in their houses
for various reasons, such as tripping, momentary dizziness
or overexertion. Without prompt emergency care, this could
lead to life-threatening scenarios. Using trajectory based lo-
calization information, DfP can perform fall detection quickly
because the monitored subject will remain in an unusual lo-
cation for a long period of time.

Indoor Traffic Flow Statistics: Understanding patterns of human
indoor movement can be valuable in identifying hot spots and
corridors that help energy management and commercial site
selection. DfP provides a non-intrusive and private solution
to capturing indoor locations.

Home Security: DfP based home security is a major improve-
ment over camera-based intrusion detection because it can
not only detect the intrusion, but also track the intruders.

2.2 Problem Formulation
To solve the passive multi-subject localization problem, we adopt

a cell-based fingerprinting approach, similar to the one discussed
in [27].

Before we address the multi-subject problem, let us first look at
how we localize a single subject. We first partition the deployed
area intoK cells. In the training phase, we first measure the ambi-
ent RSS values forL links when the room is empty. Then a single
subject appears in each cell, walks randomly within that cell and
takesN RSS measurements from allL radio links. By subtracting
the ambient RSS vector from the collected data, we have a profil-
ing datasetD. D, aK × N × L matrix, quantifies how much a
single subject impacts the radio RSS values from each cell. Hav-
ing this profiling datasetD, we model the subject’s presence in cell
i as stateSi and thusD = {DS1

,DS2
, ...,DSK

}. In the testing
phase, we first measure the ambient RSS values when the room is
empty. Then a subject appears in a random location, and measures
the RSS values for allL links while making random moves in that
particular cell. Then we subtract the ambient RSS vector from this
measured data, and form an RSS vector,O, which shows how much
this subject impacts the radio links from this unknown cell. Based
on D andO, we can run classification algorithms to classify the
cell number of the unknown cell, thus localizing the subject.

Next we discuss how we extend the same framework to formu-
late the multi-subject localization problem. In the training phase,
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Figure 1: In terms of overall energy change indicatorγ, (a) “RSS Mean”, for zero, one, and two subjects. (b) “Absolute RSS Mean”
for the same measurement shows better discrimination between zero and more than zero subjects. (c) Two subjects separated by
more than 4 meters are clearly distinguishable from one subject.

our objective is to stilluse a single subject’s training datato keep
the training overhead low. Taking the training data for different
number of subjects will lead to prohibitive overheads, which we
will avoid. In the testing phase, multiple subjects appear in random
cells, sometimes in the same cell, and we measure the RSS values
for all the radio links. We calculateO in the same way as in the
single-subject case.

To calculate the locations for these subjects, we need to go through
two phases. In the first phase, we identify the number of sub-
jects that are present simultaneously,C, which we call thecounting
phase. In the second phase, we identify in which cells are theseC
subjects, which we call thelocalizingphase. Please note that sub-
jects are not stationary, but they move around within the deployed
area.

3. COUNTING THE NUMBER OF SUBJECTS
In this section, we first provide empirical data to help the read-

ers understand the impact of having multiple subjects on the radio
signals, especially nonlinear fading effect, and then describe our
sequential counting algorithm.

3.1 Understanding the Impact of Multiple Sub-
jects on RSS Values

Let us first understand the relationship between a single subject’s
impact on the room RSS level and multiple subjects’ impact. In
particular, we would like to find out whether the relationship is
linear.

As shown in previous studies such as [29, 31, 22, 2, 27], the RSS
level of a radio link changes when a subject is near its Line-of-
Sight (LoS). Based on this observation, we make a simple hypoth-
esis:more subjects will not only affect a larger number of spatially
distributed radio links, but they will also lead to a higher level of
RSS change on these links.If this is true, we can infer the number
of subjects that are present from the magnitude of the RSS change
that we observe in the deployed area. We use the sum of the indi-
vidual link RSS change to capture thetotal energy changein the
environment as

γ =
L
∑

l=1

Ol,

whereOl is the RSS change on linkl.
Next we look at how to capture the RSS change of linkl. A

straightforward metric is to subtract the mean ambient RSS value

for link l (when the room is empty) from the measured mean RSS
value for linkl, the result of which is referred to asRSS mean differ-
ence. RSS mean difference is a popular metric that has been used
in several studies, e.g., as seen in [29, 22, 2, 27]. However, upon
deliberation, we find that RSS mean difference is not suitable for
our purpose, mainly because the value is not always positive. Due
to the multi-path effect, the presence of a subject does not always
weaken a link, but sometimes, it may actually strengthen a link!
As a result, the RSS mean difference can be negative. In this case,
summing up each link’s RSS mean difference does not lead to the
correct total energy change in the environment because their values
may cancel out each other. To address this issue, we thus propose to
useabsolute RSS mean differencewhich has a more compact data
space than RSS mean when a cell is occupied.

Our experimental results confirm that the absolute RSS mean
difference is a more suitable metric. In this set of experiments, we
collect the RSS values when there are 0, 1 and 2 subjects who make
random movements (with pauses) in the deployed area. We com-
pute the correspondingγ value by using both RSS mean difference
and absolute RSS mean difference, and plot their histograms in Fig-
ures 1(a)-(b) respectively. In Figure 1(a), when the room is empty,
we observeγ values∈ [−10, 10) which means the overall energy
level is rather stable. However, with 40% to 50% of chances, we
still observeγ ∈ [−10, 10) when subjects are present. This is be-
cause individual RSS mean differences can cancel out each other,
and thus their sum is not a good indicator of the total energy change
caused by having multiple subjects.

Absolute RSS mean difference is a better metric, as shown in
Figure 1(b). Theγ value when there are two subjects is statistically
greater than theγ value when there is only one subject. As a result,
in the rest of this paper, unless explicitly noted, we use absolute
RSS mean difference as the metric to capture the RSS change in the
environment. Finally, we note that theγ value alone is inadequate
to distinguish between one or two subjects.

By looking at the two-subject data more carefully, we can further
separate them into two groups based on the distance between the
subjects. If the distance is more than 4 meters (we choose this
threshold from the data sets), we call the two subjectsfaraway, and
call the subjectsnearby if the distance is less. We then plot the
histograms of these groups in Figure 1(c). When subjects are close
to each other, more links will be affected by both subjects, and
fewer links are affected by only one of the subjects. Consequently,
theγ value in this case will be smaller than theγ value when the
two subjects are farther apart. Furthermore, we point out that the



γ value when we haveC subjects at the same time is smaller than
the sum of the individualγ value from each subject. As a result, it
is hard to distinguish having two subjects close to each other from
having only one subject.

In summary, we have two main observations from these experi-
ments. First, the absolute RSS mean difference is a suitable metric
to capture the impact caused by the appearance of a subject. Sec-
ond, the total energy change,γ, reflects the level of impact subjects
have in the room, but we cannot rely on the value ofγ alone to
infer how many subjects are present becauseγ is not linearly pro-
portional to the number of subjects.

3.2 Counting Subjects Using Successive Can-
cellation

We use successive cancellation to count the number of subjects.
When multiple subjects coexist, it often so happens that one subject
has a stronger influence on the radio signal than the rest. Thus, our
counting algorithm goes through several rounds. In each round, we
estimate the strongest subject’s cell number in this round assum-
ing there is only a single subject,i, and then subtract her share of
RSS change from the remaining RSS vectorO to obtain the new
remaining RSS vector that will be used in the next round.

If this problem were linear, we could simply subtract the mean
vectorµi associated with celli in the profiling dataD from the
observed RSS vectorO. However, as shown in the previous sub-
section, the total impact from multiple subjects is not linear to the
number of subjects – the impact observed whenC subjects appear
at the same time is smaller than the sum of each subject’s impact
if they appear one at at time. To be more precise,O is an un-
derestimation of the linear combination of the mean values of the
associated cells that we collected inD. To address this issue, in-
stead of subtractingµi directly fromO, we multiply a coefficient
that is less than 1 toµi and subtract this normalized term fromO.
This coefficient, however, is not uniform across all the cell and link
combinations; instead, it is specific to each cell and link pair be-
cause different cells have different impacts on a link. We will then
calculate the location-link coefficient matrix,B = (βi,l) whereβi,l

is the coefficient for celli and linkl.
Our algorithm to calculate the coefficient matrixB is detailed in

Algorithm 1. The basic idea is that, for each linkl, we compute the
correlation between a cell pair,(i, j) with respect to linkl. The two
cells that both are close to a link are highly correlated with respect
to this link. We usehl

ij to denote this correlation1. Note that all
the RSS values in profiling data are non-negative, and thus we have
hl
ij ≥ 0. For each celli, we pivot that cell and compute theβil as

βil =
hl
ii

√

K
∑

j=1

hl
ij

2

.

Basically, when two subjects occupy cellsi andj respectively, and
only one of them affects linkl, they have low correlation and the
value ofhl

ij is close to0. On the other hand, when they both affect
link l, the value ofhl

ij will reflect their positive correlation.
Once we determine the location-link coefficient matrixB, we de-

scribe our successive cancellation based counting algorithm (shown
in Algorithm 2), which can identify the subject countC from the
observation RSS vectorO using the profiling RSS matrixD col-
lected by a single subject. We first computeγ0’s andγ1’s from the
1Notice that we use correlationhl

ij instead of correlation coeffi-
cientρlij becauseρlii will always be1 and thus guarantee its dom-
inance among the all the cells on all the links when the celli is
detected first, which is not true.

Algorithm 1: Location-Link Correlation Algorithm
input : D- The training data collected fromL links amongK

states/cells
output: B - The location-link coefficient matrix

1 for l = 1→ L do
2 h← zero matrix ofK ×K
3 for i = 1→ K do
4 for j = 1→ K do
5 I ← training data indices associated with stateSi

6 J ← training data indices associated with stateSj

7 // Compute the link correlation
8 hij ← E [DIlDJl]

9 for i = 1→ K do

10 normfactor ←

√

K
∑

j=1
hij

2

11 // Compute the location-link coefficient for celli and linkl

12 βil ←
hii

normfactor

ambient RSS vector and the profiling RSS matrixD respectively.
Then, we construct a 95% confidence interval for the distribution of
γ0’s andγ1’s and refer to the associated lower and upper bounds as
c0L, c0U , c1L, c1U . From the observation RSS vector,O, we first com-
pute itsγ value and then perform a presence detection: ifγ < c0U ,
we claim the room is empty. Otherwise, we will claim there is at
least one subject present and start to iteratively count the number
of subjects using successive cancellation to finally determine the
value ofC.

In each successive cancellation iteration, we do the following:

• Presence Detection.We first perform a presence detection
by checking ifγ ≥ c1U to find out whether there is any more
subject in the room. Please note that this condition is stronger
thanγ ≥ c0U , and we will take care of the last iteration sepa-
rately. If the presence detection returns a ‘yes’, we increment
the detected subject countC, and go to the next step. Other-
wise, we end the algorithm.

• Cell Identification. If there is a subject in this iteration, we
estimate the occupied cellq by

q = argmax
i∈S

P (O|Si),

whereS is the set of remaining unoccupied cells.

• Contribution Subtraction.Next, we cancel the impact of this
subject from cellq by subtractingµql · βql from Ol for each
link l.

In the last round, we simply check ifγ < c1U , which actually
relax the lower bound ofγ1, which means we consider the possi-
bility that when the last subject is detected in our algorithm, the
correspondingγ is lower than thec1L. This further compensates for
the over-subtraction in our earlier iterations.

4. LOCALIZING MULTIPLE MOVING SUB-
JECTS WHEN THE SUBJECT COUNT
IS KNOWN

In this section, we discuss how we localize multiple moving sub-
jects when the subject count is known. In SCPL, we track multiple
subjects in parallel, unlike in the counting phase where we count
the number of subjects sequentially. Radio interference is very



Algorithm 2: Successive Cancellation-Based Device-free Pas-
sive Counting Algorithm

input : D- The training data collected fromL links amongK cells
S- The states{S1, ..., SK} associated with theK cells
O- The testing data collected fromL links when subjects are

in unknown locations
B - The estimated location-link coefficient matrix generated

from Algorithm 1
c0L, c0U - The lower and upper bounds of the 95% confidence

interval when there is no subjects in the deployed area
c1L, c1U - The lower and upper bounds of the 95% confidence

interval when there is one subject in the deployed area
output: C- The estimated number of subjects present in the deployed

area

1 C ← 0

2 γ ←
L
∑

l=1
Ol

3 // Presence detection
4 if γ ≤ c0U then
5 return C;

6 // Count the present subjects
7 else
8 while truedo
9 if γ ≥ c1U then

10 // Estimate the most likely occupied cell
11 q ← argmaxi∈S P (O|Si)
12 // Remove the training data associated with the estimated

cell in each round
13 D ← D\Dq

14 S ← S\q
15 // Update the testing data by removing the partial impact

caused by the detected subject in each round
16 for l = 1→ L do
17 Ol ← Ol − βqlµql

18 C ← C + 1
19 // Update the overall affect energy indicator

20 γ ←
L
∑

l=1
Ol

21 else ifγ < c1U then
22 C ← C + 1
23 return C;

complex and unpredictable, especially when multiple subjects are
present and a link is affected by multiple people. In this case, it is
hard to quantify the exact impact of a subject. Even after consid-
ering the cell link coefficient matrixB, we may still overestimate
(or, underestimate) a subject’s impact on a link. These errors, while
insignificant enough not to hurt the counting process, will lead to
inferior localization results. On the other hand, parallel tracking
keeps all the raw RSS values and can provide better results.

4.1 Understanding the Challenge of Localiz-
ing Multiple Subjects

Before presenting our localization algorithm, we first take a closer
look at how multiple subjects collectively affect the RSS values and
thus complicate the localization problem through empirical data.
The complexity of this problem mainly stems from the multi-path
effect [17], a typical error source in RF-based indoor localization.
In this problem, multi-path can cause nonlinear interference in a
radio space when multiple subjects are present. More precisely,
when multiple subjects coexist in different locations, the resulting
RSS value will not be simply the summation of the individual RSS
values from a single subject independently in those locations. The

gap between these two is larger when these subjects are close to
each other. To validate this conjecture, we randomly select a few
positions with certain distances apart. We first have one subject,
A, collect the RSS measurements by standing stationary in these
locations. Then, we involve another subject, B with similar height
and weight as A, and have them stand in two different positions,
sayi andj. We useOi andOj to denote the measured RSS vector
when A is standing in positionsi andj independently, andOij the
measured RSS vector when A and B are standing in positionsi and
j simultaneously. In a linear space, vectorOij would be simply
the summation ofOi andOj . However, as mentioned before, this
problem is nonlinear, especially when subjects are close to each
other. To quantify the degree of nonlinearity, we define theRSS
Error Residualas

∆Ol = Ol
ij −Ol

i −Ol
j ,

for link l. A larger∆Ol value indicates a higher non-linear de-
gree. To articulate the nonlinearity nature, we remove linkl if its
Ol

ij , O
l
i, O

l
j values are all less than 1 because these links are actu-

ally not affected by the subjects in any case. We plot the histograms
of the remainingOl values in Figure 2.

From Figure 2, we have three main observations. Firstly, when
the two subjects stand side by side (i.e., the distance between them
is 0 m), there are only about 30% and 50% chances that we see
|∆Ol| < 2 for RSS mean and absolute RSS mean respectively,
which validates our problem is indeed nonlinear. As the distance
becomes longer than 2m, the probability of having|∆Ol| < 2
rises to more than 70% for both RSS mean difference and absolute
RSS mean difference. Secondly, the error residual can be nega-
tive under RSS mean difference, but is positive under absolute RSS
mean difference in most cases, suggestingOij is consistently an
underestimation ofOi + Oj . This property is desirable because it
ensures Monotonicity.

Finally, we define thetotal RSS Error Residualas:

ε =
L
∑

l=1

|∆Ol|,

which measures the deviation between the profiling data and the
RSS measurement in a multi-subject problem. We plot the his-
togram in Figure 3 and observe that the absolute RSS mean has a
smallerε value, and thus more appropriate for our purposes.

4.2 Conditional Random Field Formulation
Tracking moving subjects actually introduces new optimization

opportunities - we can improve our localization results by consid-
ering the fact that human locations from adjacent time intervals
should form a continuous trajectory, which can be further mod-
eled as a state transition process under conditional random field
(CRF) [10]. CRFs are a type of discriminative undirected prob-
abilistic graphical model. We use them to decode the sequential
RSS observations into continuous mobility trajectories.

The first step towards formulating a conditional random field is
to form the sensor model and transition model respectively. In our
problem, we haveK states:S = {S1, S2, ..., SK}. In a single-
subject problem, stateSi means the subject is located in celli.
The sensor model essentially infers the current state based on the
observation RSS vectorO, which is to generate a cell likelihood
map based uponO. For a single subject case, we would like to
maximize the likelihoodP (q = Si|O,D) when celli is occupied.
In other words, when the subject is located in celli in the testing
phase, we would like to maximize the probability that the estimated
state/cellq matches the actually occupied celli. We assume the
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Figure 2: The RSS residual error forms a double-sided distribution when using RSS
mean, while it is approximately single-sided distributed using absolute RSS mean.
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observed RSS vectors in each state follow a multivariate Gaussian
with shared covariance, as in [27], and denote

δi (O) = P (O|Si) ,

where

P (O|Si) ∼ N (µi,Σ) .

However, the sensor model is imperfect because of the deep fading
effect that can cause estimation error through only a few links2.
Therefore, the cell associated with the maximum probability might
be far from the ground truth.

Next, we look at the transition model. In each clock tickt =
1, 2, ..., T , the system makes a transition to stateqt. This process
models the movement of a subject – the subject moves to a new
cell in each tick. We choose a first order CRF, which means the
next cell number depends on the current cell number, rather than
any earlier history because we do not want to assume any specific
human movement trajectories. In our model, subjects can either
walk along a straight line, take turns or wander back and forth.

The subject’s trajectory can thus be characterized as a parametric
Markov random process with thetransition modeldefined as the
probability of a transition from statei at timet−1 to statej at time
t in form of

T = P (qt|qt−1),

where

Tij = P (qt = Sj |qt−1 = Si).

The intuition here is that people cannot walk through walls or
cross rooms in a single tick. We believe these mobility constraints
can be used to fix most of the errors in the sensor model caused by
deep fades.

In our cell-based approach, we define the following:

Cell neighbors are a list of adjacent cells which can be entered
from the current cell without violating mobility constraints.

Order of neighbor is defined as the number of cells a person must
pass through to reach a specific cell from the current cell without
violating mobility constraints. We assume the subject moves to a
new cell every clock tick. For example, as far as celli is con-
cerned, the 1-order neighbors include its immediate adjacent cells,
and its 2-order neighbors include the immediate adjacent cells of
its 1-order neighbors (excludingi andi’s first order neighbors).
2Because of deep fading from multipath, adjacent points can have
dramatically different RSS values, leading to large estimation er-
rors.

Trajectory ring with radiusr is defined as the area consisting of
cell i, i’s 1-order neighbors, 2-order neighbors, ..., up to itsr-order
neighbors. Particularly, 0-order trajectory ring consists of all the
cells.

Let Ωr (i) be the cells included ini’s r-trajectory ring and let
Nr (i) be the size ofΩr (i). Our transition model thus becomes:

Tij =

{ 1
Nr(i)

for j ∈ Ωr (i)

0 for j /∈ Ωr (i)

4.3 Localization Algorithm
Having constructed the sensor model and transition model, we

can translate the problem of subject tracking to the problem of find-
ing the most likely sequence of state transitions in a continuous
time stream. TheViterbi algorithm [5] definesVj(t), the highest
probability of a single path of lengtht which accounts for the first
t observations and ends in stateSj :

Vj(t) = argmax
q1,q2,...,qt−1

P (q1q2...qt = j, O1O2...Ot|T, δ).

By induction

Vj(1) = δj(O1),

Vj(t+ 1) = argmax
i

Vi(t)Tijδj(Ot+1),

which is similar as discussed in [26].
Generalizing to the multi-subject case, we denoteδ1:K(O) =

{δ1(O), δ2(O), ..., δK(O)} from the sensor model to represent the
likelihood of each state. We denoteQ = {q1, ..., qC}, whereC is
the total number of present subjects. For the current stateQt, we
have

(

K

C

)

possible permutations of subject locations. For each per-
mutationj, we denoteQj = {q1, ..., qC} and compute the Viterbi
score

Fj =

C
∑

i=1

δqi
t

(Ot)Tqi
t−1

qi
t

.

We then pick thej value that is associated with the maximum
Viterbi score as the current state.

We describe our device-free multi-subject localization algorithm
in Algorithm 3. We believe we can achieve best localization results
when we consider 1 or 2-order trajectory ring, which is better than
the 0-order case used in our earlier work [27], and is also confirmed
by our experimental results presented in Section 6.



Algorithm 3: Trajectory-Based Device-free Multi-subject Lo-
calization Algorithm

input : D- The training data collected fromL links amongK cells
T - The transition model
O1:t- The testing data collected fromL links when subjects

are in unknown locations
C- The estimated number of present subjects in the deployed

area
Q1- The initial state(s) of the present subjects

output: Q1:t- The most like sequence of the trajectories of the
present subjects

1 for i = 2→ t do
2 δ1:K(Oi)← P (Oi|D)

3 Π← is the set of all the possible permutations of
(

K
C

)

4 Qi ← argmaxj∈Π ViterbiScore(Qi−1, Qj , δ1:K(Oi), T )

5. EXPERIMENTAL SETUP
In this section, we briefly describe the experimental setup, the

data collection process and the metric we use for performance eval-
uation.

5.1 System Description
The radio devices used in our experiments contain a Chipcon

CC1100 radio transceiver and a 16-bit Silicon Laboratories C8051-
F321 microprocessor powered by a 20 mm diameter lithium coin
cell battery, the CR2032. The receivers have a USB connector for
loss-free data collection but are otherwise identical to the transmit-
ters. In our experiments, the radio operates in the unlicensed bands
at 909.1 MHz. Transmitters use MSK modulation, a 250 Kbps data
rate, and a programmed output power of 0 dBm. Each transmit-
ter periodically broadcasts a 10-byte packet (8 bytes of sync and
preamble and 2 bytes of payload consisting of transmitter’s id and
sequence number) every 100 millisecond. When the receiver re-
ceives a packet, it measures the RSS values and wraps the trans-
mitter id, receiver id, RSS, timestamp (on the receiver side) into a
“data packet”. The packets are forwarded to a centralized system
where the data can be analyzed by independent “solvers” that per-
form various data processing functions. These include packet loss
calculations [4], mobility detection [8], counting, localization, and
data interpolation. More detail of the system can be found on the
Owl Platform website [1].

5.2 Data Collection
In our experiments, the RSS data is collected as a mean value

over a 1 second window for each link. We choose a 1 second win-
dow because a normal person can at most walk across one cell dur-
ing a second. In the training phase, a single subject made random
walk for 30 seconds in each cell and collected 30 RSS vectors as
the profiling data. In this testing phase, we designed four scenarios
for each environment, and in each scenario the subject(s) individ-
ually form a continuous mobility trajectory for about 30 seconds.
The subjects are walking at a speed of about 0.5m per second. The
training phase was performed in the early morning while the testing
phase happened the afternoon of the same day.

5.3 Deployment Cost
In this study, we deployed our system in two different indoor

settings which we will shown in Section 6. Our “solver” is running
on a laptop (Intel i7-640LM 2.13GHz, 8GB RAM). For the 150
m2 setting, it took 15 minutes to collect the training data, 0.003
seconds for the solver to fit the model parameters, and 3.4 seconds
to compute the location-link correlation coefficients. The second

area was 2.7 times larger (400m2), but data collection only took
30 minutes, the solver was actually faster (0.002 seconds), and the
time to compute the correlation coefficients only increased by a
factor of about 1.5 (5.3 seconds).

5.4 Performance Metrics
We use the following performance metrics to measure our count-

ing and localizing algorithms.
Counting Percentageis given by:

1−
|Ĉ − C|

C
,

whereĈ is the estimated subject count andC is the actual subject
count.
Error Distance is defined as:

d(Q, Q̂) =
1

C
min
π∈Π

C
∑

i=1

d(qi, q̂π(i)),

whereΠ includes all the possible permutations of{1, 2, ..., C},
d(q, q̂) is the Euclidean distance between the ground truthq and the
estimated position̂q. Q = {q1, q2, ..., qC} andQ̂ = {q̂1, q̂2, ..., q̂C}
are within the pre-profiled finite statesS = {S1, S2, ..., SK}. In
this study,q is the subject’s actual location and̂q is her estimated
location (i.e., center of the estimated cell).

6. EXPERIMENTAL RESULTS
In this section, we summarize the results we have obtained from

two indoor settings. In each setting, we had multiple subjects each
walking along a trajectory.

6.1 Results from Office Setting
Our first setting is a typical office environment, consisting of cu-

bicles and aisles with a total area of 150m2. The environment is
quite cluttered as shown in Figure 4(a). The area is broken down
to 37 cells such as cubicles and aisle segments, as shown in Fig-
ure 4(b). We utilized 13 radio transmitters and 9 radio receivers,
whose locations and corresponding link LoS’s are shown in Fig-
ure 4(c). Here, we need to point out that these devices were in-
stalled for some earlier projects, not specifically for this one, and
therefore, the link density per cell is non-uniform. This, however,
represents a more realistic setting, through which we can show that
SCPL can achieve good results without dedicated sensor deploy-
ment.

We had four subjects (A, B, C and D) in this series of experi-
ments. We went through several example scenarios and illustrate
them in Figure 5:

• One Subject Scenario:A left her boss’s office, and walked
along the aisle to her cubicle.

• Two Subject Scenario:When B entered the room, A was
walking on the aisle towards him. B waited until they met
and walked together for some time, and then separated to go
back to their own seats.

• Three Subject Scenario:While A and B followed the move-
ment patterns in the above two subject scenario, C walked on
the other aisle from one cubicle to another.

• Four Subject Scenario:While A, B, and C followed the move-
ment patterns in the above three subject scenario, D was sit-
ting on her seat.



(a) Test Field

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

(b) Cell Locations

Tx

Rx: Radio Receiver

Tx

Tx

Tx

Tx

Tx

Tx

Tx

Tx

Tx

Tx

Tx

Rx

Rx

Rx

Rx

Rx

Rx

Rx

Rx

Rx

Tx: Radio Transmitter

Radio Link

Tx

Cell Boundary

(c) Radio Link Distribution

Figure 4: In (a), we show the office in which we deployed our system.In (b), we show that the office deployment region is partitioned
into 37 cubicle-sized cells of interest. In (c), we show the locations of the pre-installed 13 radio transmitters, 9 radio receivers and the
corresponding Line-of-Sight links.
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Figure 5: We show the experimental trajectories of subjects A,
B, C and D in the office setting. Note the the trajectories of A
and B are partially overlapped at the same time.
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Figure 6: In a multi-subject case, our counting algorithm has a
better performance when their trajectories are not overlapped
than overlapped.
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Figure 7: Counting percentage improve-
ment when the RSS change is normalized
by location-link coefficients in the office
setting.
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time using our successive cancellation-
based counting algorithm in the office
setting.
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Figure 9: We achieve best localization ac-
curacy averaging all the test cases when
we adopt 1 or 2-order trajectory rings in
the office setting.

6.1.1 Counting Results
The difficulty of subject counting increases when multiple sub-

jects walk together (in the same cell). Thus, we present our count-
ing results in the following three ways: (a) all the experimental data
(referred to asmixed), (b) the experimental data for when multiple
subjects walked together and thus had overlapping trajectories (re-
ferred to asoverlap trajectory), and (c) the experimental data for

when multiple subject trajectories did not overlap (referred to as
non-overlap trajectory). Figure 6 shows the counting percentages
in all three cases.

We observe that when we have multiple subjects, the counting
percentage is higher in the non-overlap trajectory case. The average
counting percentage across all cases is 84%, the average counting
percentage for non-overlap cases is 90%, and the average counting
percentage for overlap cases is 80%.



Next, we show the performance improvement of subtracting a
normalized RSS contribution by location-link coefficients compared
to directly subtracting a cell’s mean RSS change. We show the
counting percentage results in these two cases in Figure 7. When
we have one or two subjects, the non-linearity is not very obvious,
and these two methods have very similar results. When we have
more than two subjects, the non-linearity of the signal change be-
comes very pronounced, and using a normalized RSS contribution
can yield better counting results. Specifically, we observe a 36%
improvement with three subjects, and a 24% improvement with
four subjects.

Finally, we show our subject counting results in Figure 8, in
which all the four tests last 32 seconds. In the single-subject case,
we see two individuals, between time tick 12 and 20. This is likely
because there is an overestimate ofγ near cells 13, 19, and 25,
because of a denser than average link space or proximity to the
receiver. In the two-subject case, we under-estimate the subject
count by one between time tick 10 and 26 because the two subjects
merged their trajectories in those time periods. The errors caused
by temporally overlapping trajectories can also be easily addressed
as follows. We continuously run the counting algorithm, and once
we notice the estimated subject count suddenly drops, we check
their locations before the sudden drop. If no subject’s location was
close to the exit, then we can conclude that two or more (depending
upon the change in the count) were in close proximity. Of course,
this information should be validated from the subject location in-
formation. For the three subjects case, we see the same problem
when subjects A and B merge their trajectories. For the four sub-
ject case, this error is reduced a bit because subject D is always in
cell 10, where has a relatively high density of radio links.

6.1.2 Localization Results
We show the mean of localization error distances in Figure 9

with different ring order parameters. In our setting, we choose 10
as the upper bound of the ring order because all cells are within 10
hops of each other.

Our first observation is that the use of the trajectory information
can improve the localization performance by 13.6% – the overall
mean localization error distance drops from1.25m (with 0-order
trajectory ring) [27] to about1.08m (with 1-order trajectory ring).
We note that the error distance for a single subject does not benefit
from using trajectory information because the profiling data is good
enough for this case [29, 27]. Multiple subjects, especially when
they are close to each other, will cause non-linear radio interfer-
ence, and thus the data collected from the mutually affected links
alone cannot give very accurate localization results. Therefore, the
sensor model alone is insufficient for high accuracies. Secondly,
we observe that the localization results are less accurate in those
cells with lower radio link densities, such as in cell 34-37, because
subjects may cause negligible changes to the RSS space at a few
points in those cells. Thirdly, trajectory information helps prevent
the error distance increases dramatically as the increasing number
of subjects. Finally, our environment is an office space consisting
of cubicles and aisles, and the possible paths a subject can take
are rather limited. As a result, we achieve the best localization ac-
curacies with 1 or 2 order trajectory ring. Due to the movement
constraints, a higher order trajectory ring has the same result as not
considering any neighbors at all (i.e., 0 ring order). We hypothesize
that this may not be true in a more open indoor environment such
as (large) homes, malls and museums.

6.2 Results from Open Floor Space
The second test setting is a more open floor of total 400m2,

as shown in Figure 10(a). We used this setting to model an open
hall with a few posters on exhibition, and SCPL can be used to
detect traffic flow and infer the most popular poster. We deployed
12 transmitters and 8 receivers in such a way that the link density
has a relatively even distribution across the cells, as shown in Fig-
ure 10(b). We would like to point out that we used fewer devices
in this setting than in the previous one, though this one had a larger
area. Also, this environment is even more challenging in that half
of the radio devices are deployed on a wall which also has dozens
of computers and other metal parts, significantly degrading radio
propagation.

The space was partitioned into a uniform grid of 56 cells, and
we involved four different subjects in this test and show their tra-
jectories in Figure 10(c). We repeated the same four scenarios as
in the previous setting. We plot our counting results in Figure 11.
We achieve a 100% counting percentage when there was only a
single subject, which is better than the previous setting because the
link density is more even in this case. We achieve a counting per-
centage of 83%, 80%, and 82% for two, three and four subjects
respectively, resulting in a 86% counting percentage in total. We
have achieved better results when we normalize a subject’s impact
from a certain cell on the RSS with the location-link coefficients.
We observe similar trends as in the previous setting: the results
are the same for one or two subjects, and improved from 67% to
80%, and from 75% to 86% when we have three and four subjects,
respectively. The estimated subject is shown in Figure 12.

We present the localization results in Figure 13. In the localiza-
tion part, we observe similar patterns as in the previous setting: we
achieve better localization accuracy using trajectory information.
We achieve the best localization accuracy when we adopt the 2 or-
der trajectory ring, which is 1.49m, a 35% improved compared to
the 0-order trajectory ring case [27].

7. LIMITATIONS AND FUTURE WORK
In this section, we discuss the limitation of SCPL.

7.1 Algorithms
Recognizing human mobility constraints in indoor environments

leads to different trajectory-based tracking optimizations. Under
our framework of discretized physical space, our localization algo-
rithm relies on a greedy search for the optimal solution to find the
most likely trajectories followed by the individuals. Unfortunately,
this has factorial computation complexity because it involvesC-
permutations ofK3 and potentially introduces prohibitive overhead
to meet real-time requirements, especially whenK grows rapidly
in a large-scale environment. However, as we observed from the ex-
perimental results from the two different settings, we have achieved
the best localization accuracies using only the 1 or 2-order trajec-
tory ring, which means we can not only achieve good accuracy,
but also significantly reduce the computational complexity by re-
ducing the permutation space from

(

K

C

)

to
(

K′

C

)

, whereK′ is the
cell union of each individual’s 1 or 2-order trajectory rings. Un-
der 1-order trajectory ring, it took 0.87 seconds and 0.88 seconds
to count and localize four subjects in our two different settings re-
spectively. We would expect that it will take more than 1 second
to track at least five subjects, which fails to afford real-time track-
ing requirement with this hardware. Another family of trajectory
based tracking incorporates a particle filter [18], such as the one
used in [24, 13]. However, the primary weakness of particle fil-
ters is the computational complexity required to run the algorithm
for the large number of particles needed to achieve accurate re-

3C is the subject count andK is the total number of cells.



(a) Test Field

Rx

Tx

Rx

Tx

Tx Tx Rx

Tx

TxRx

Tx Rx TxRxTx

Rx

Tx

Rx

Tx

Tx

(b) Radio Link Distribution

A B

C

D

(c) Test Trajectories
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time using our successive cancellation-
based counting algorithm in the open
floor space.
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Figure 13: We consistently achieve best
localization accuracy when we adopt 1 or
2-order trajectory rings in the open floor
space

sults. For example, 500 particles were needed for tracking each
individual and it took 7.6 seconds for four subjects in each time
step, as reported in [13]. Overall, there is plenty space to optimize
the trade-off between accuracy and computational cost in tracking
multiple subjects for future work.

7.2 Long-term Test
In a long-run test, any RF-based localization schemes suffer not

only from temporal fading, but also from environmental changes. A
small piece of metal can change the tuning of the antenna shift the
radiation pattern or even the radio frequency of the nearby transmit-
ter or receiver. Either or both of these effects can change the under-
lying propagation pattern and, hence, the RSS values on the links.
To avoid frequent manual recalibration, we present two schemes in
our earlier work [27, 28] to maintain the localization accuracy over
a long-term test. In [27], we simply remove the radio links expe-
riencing deep fading by watching RSS values over time, which is
able to maintain a cell estimation accuracy of 90% over one month.
In [28], we present a camera-assisted auto recalibration – when the
camera occasionally turns on, it localizes the subject and calibrates
the RF data automatically. Both schemes have limitations: the per-
formance of the first scheme will degrade when the number of re-
maining links is too small, while the second one needs extra hard-
ware. Realizing these limitations, we will investigate sophisticated
auto-calibration methods as part of the future work.

8. RELATED WORK
In this section, we briefly review the related literature in RF-

based counting and localizing device-free human subjects.

8.1 Device-Free Counting
Nakatsuka et al. [12] first demonstrated the feasibility of us-

ing radio signal strength to estimate the crowd density. The au-
thors setup two radio nodes and observe that RSS decreases as the
number of subjects increases when they are all sitting between the
nodes. We, however, point out that SCPL is the first work that sys-
tematically counts device-free subjects in large scale deployment,
to our best knowledge.

8.2 Device-Free Localization
In 2006, Woyach et al. [25] first experimentally demonstrated the

feasibility of localizing device-free subjects by observing a differ-
ence in RSS changes by a subject moving between (resulting signal
shadowing effect) and in the vicinity (causing small-scale fading)
of a pair of transmitter and receiver. From then on, several DfP ap-
proaches have been proposed in the literature, which can be broadly
categorized into two groups as follows.

Location-based schemes:This approach is also known as “finger-
printing”, a popular approach for RF-based localization. It was first
studied in [29] in the context of passive localization. The authors
first collect a radio map with the subject present in a few prede-



Grid Array [30] RTI [7] NUZZER [19] SCPL
Meausred physical quantity RSS variance RSS attenuation RSS change RSS change
Non-LoS localization No Yes Yes Yes
Nodes density High High Low Median
Prior knowledge of node locationsYes Yes No No
Tracking static subjects No Yes Yes Yes
Deployment scale Median Small Large Large
Training overhead Low Low High Median

Table 1: Comparison of different RF-based passive localization systems.

termined locations, and then map the test location to one of these
trained locations based upon observed radio signals. This method
explicitly measures the multipath effect on RSS in each different
position, and thus avoids modeling errors. In addition, it does not
require a node deployment as dense as in link-based schemes be-
cause when the subject is in the position has no intersection with
any radio LoS links, the RSS ground truth still can provide a distin-
guishable record from other positions. This work is extended to a
much larger deployment in Nuzzer [19]. In [27], Xu et al. propose
to formulate this localization problem into a probabilistic classifi-
cation problem and use a cell-based calibration with random walk
method profiling the system in order to mitigate the error caused
by the multipath effect in cluttered indoor environments, improve
the localization accuracy and meanwhile reduce the profiling over-
head. However, the downside of fingerprinting is also evident: the
calibration procedure is relatively tedious.

Link-based schemes:These techniques look for those radio links
close to the target subjects and further determine the locations of
the targets based on the RSS dynamics. Zhang et al. [31] set up a
sensor grid array on the ceiling to track subjects on the ground. An
“influential” link is one whose RSS variance exceeds a empirical
threshold. The authors determine a subject’s location based upon
the observation that these influential links tend to cluster around
the subject. This technique forms a consistent link-based model
to relate the subject’s location relative to the radio link locations.
In [32]. the authors extend their algorithms to track up to subjects
separated by at least 5 m. In [30], the monitored area is partitioned
into different triangle sections, and the nodes in neighbor section
are working at different communication channels to reduce the in-
terference among nodes. The authors applied support vector regres-
sion model to track up to two subjects. The fundamental limitations
of this series of work is that (i) not all the monitored places have
the facilities to mount nodes on the ceiling; (ii) this work uses RSS
variance as the data primitive, which is essentially the amplitude
and phase shift of the ground reflection multipath caused by the of
human subjects only in motion. In other words, the system might
fail to work if the subjects stop walking. Another sets of work fol-
lowing Link-based DfP is radio tomographic imaging (RTI). Wil-
son et al. [22] use tomographic reconstruction to estimate an image
of human presence in the deployment area of the network. RSS at-
tenuation is used as data primitive in [22], which effectively works
in outdoor or uncluttered indoor space without rich multipath. Rec-
ognizing the nature of multipath fading, Wilson et al. defined the
concept of fade-level [24], which captures the ambient RSS char-
acteristics of each link and categorize the links into deep fade (the
RSS will increase on average when the LoS is blocked) and anti-
fade (the RSS decreases when the LoS is obstructed) through fitting
the calibration data to a skewed Laplace distribution. The authors
demonstrate this technique’s effectiveness through testing in same
setting over time and a totally different setting without the effort of

re-estimating the model parameters. Kaltiokallio et al. [7] further
exploit channel diversities to enhance the tracking accuracy. Tak-
ing the framework of RTI, another sets of work is done based on se-
quential Monte Carlo sampling techniques. Chen et al. [2] propose
to use auxiliary particle filtering method to simultaneously localize
the nodes and a single subject in an outdoor setting. In [20], the au-
thor introduce a measurement model which assumes the attenuation
in RSS due to the simultaneous presence of multiple subjects on the
LoS is approximately equal to the sum of the attenuations caused
by the individuals. This model is then applied in [13, 14] for track-
ing up to four subjects in outdoor and indoor settings. In general,
link-based schemes have two advantages: (i) the algorithms are ro-
bust to the environmental change because the subject’s location is
directly estimated based on its relative distance to each individual
radio link LoS; (ii) it requires less calibration effort - only sensor
locations and ambient RSS for each link is needed. However, it
requires a dense nodes deployment to provide enough radio LoS
links to cover all the physical space.

Finally, we summarize the differences between our system and
the recent DfP RF-based localization systems in Table 1.

9. CONCLUSION
In this paper, we present SCPL, an accurate counting and local-

ization system for device-free subjects. We demonstrate the feasi-
bility of using the profiling data collected with only a single subject
present to count and localize multiple subjects in the same environ-
ment with no extra hardware or data collection. Through extensive
experimental results, we show that SCPL works well in two dif-
ferent typical indoor environments of 150m2 (office cubicles) and
400m2 (open floor plan) deployed using an infrastructure of only
20 to 22 devices. In both spaces, we can achieve about an 86% av-
erage counting percentage and 1.3 m average localization error dis-
tance for up to 4 subjects. Finally, we shows that though a complex
environment like the office cubicles is expected to have worse ra-
dio propagation, we can leverage the increased mobility constraints
that go with a complex environment to maintain or even improve
accuracy in these situations.

Finally, we point out that if we rely on a single subject’s training
data, the number of subjects that can be accurately counted and
localized is rather limited. We had success with up to 4 subjects, but
were not very successful with more subjects. In our future work,
we will look at how we can accurately localize a larger number of
subjects with reasonable overheads.
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