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ABSTRACT
Device-free passive (DfP) localization is proposed to localize hu-
man subjects indoors by observing how the subject disturbs the pat-
tern of the radio signals without having the subject wear a tag. In
our previous work, we have proposed a probabilistic classification
based DfP technique, which we call PC-DfP in short, and demon-
strated that PC-DfP can classify which cell (32 cells in total) is oc-
cupied by the stationary subject with an accuracy as high as 97.2%
in a one-bedroom apartment. In this paper, we focus on extending
PC-DfP to track a mobile subject in indoor environments by taking
into consideration that a human subject’s locations should form a
continuous trajectory. Through experiments in a 10× 15 meters
open plan office, we show that we can achieve better accuracies by
exploiting the property of continuous mobility trajectories.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Algorithm, Experimentation, Measurement

Keywords
Device-free Passive Tracking, Linear Discriminant Analysis, Tra-
jectory

1. INTRODUCTION
The ability to continuously track human subjects in indoor envi-

ronments can enable a large array of important applications. Among
existing localization methods, radio-frequency (RF) based device-
free passive (DfP) localization does not inconvenience people, is
unobtrusive, and offers good privacy protection [7, 9, 4, 6]. Es-
pecially, PC-DfP [6] is proposed as a general framework for prob-
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abilistic classification based device-free passive localization tech-
nique by formulating the localization problem as a classification
problem. To achieve high classification accuracies, PC-DfP takes
extra care to mitigate the adverse impact of indoor multipath. The
results show that in an indoor area that is partitioned into 32 cells,
PC-DfP can classify the occupied cell by a stationary subject with
an accuracy as high as 97.2% in a one-bedroom apartment, and an
accuracy of 93.8% in an open-plan office.

In this paper, we focus on tracking mobile subjects using PC-
DfP. We argue that human mobility can actually introduce new op-
portunities for optimizing the localization accuracies in a real in-
door environment. In a deployed indoor area, PC-DfP discretizes
physical locations into cells, which simplifies the representation of
the neighbor relationship among cells, given that the size of the cell
is small enough to satisfy the required localization precision. We
conduct our experiments using existing sensors/tags deployed in a
10× 15 meter indoor lab office, which is shown in 1(a). We parti-
tion the deployed area into 32 cubicle-sized cells, as shown in 1(b).
Throughout the experiments, we have two key observations. First,
people usually move on continuous trajectories, and as a result their
locations should exhibit continuity with time. In other words, a sub-
ject’s next location should be bounded within a list of cells adjacent
to his/her current cell. Second, various obstacles such as walls and
pillars in an indoor environment also bound human movement, fur-
ther reducing the number of possible cells that a subject can move
to from a given cell. Both of these observations suggest that mobil-
ity may actually improve localization accuracies. Our experimental
results confirm our hypotheses and show that we can improve our
tracking performance from 93.7% to 94.6% in terms of cell estima-
tion accuracy and 1.2 to 1.0 meter in terms of average localization
error distance comparing a stationary and a moving subject.

2. TRACKING STRATEGIES
In this section, we first provide an overview of the working of

PC-DfP, and then we introduce how we exploit human mobility
information to assist PC-DfP in tracking mobile subjects.

2.1 Overview of PC-DfP
The key innovation of PC-DfP is the measures we devise to mit-

igate the errors caused by the multi-path effect correctly charac-
terize a room. PC-DfP has the following steps. First, we slice a
deployed region into cells, and seek to identify the occupied cell of
the subject. Second, we collect received signal strength (RSS) val-
ues of each radio link, which compose our training data, by having
the subject make random movements within each cell and treating



RSS vectors from all the links as a class. Third, based on the train-
ing data, we build a proper classifier and use it to determine the cell
with the maximum likelihood of containing the subject. Particu-
larly, in [6], Linear Discriminant Analysis (LDA) [2] is proven as
a satisfactory classification algorithm to solve the indoor localiza-
tion problem. We assume the density of each class k is multivariate
Gaussian with meanµk and a common covariance matrixΣ:
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Applying Bayes rule, we have the objective function

ŷ = argmaxkfk(x)πk.

In the log-scale, we can write the discriminant function as

δk(x) = xTΣ−1µk −
1

2
µk

TΣ−1µk + log πk,

and we find the cell estimation model:

ŷ = argmaxkδk(x).

Thus,ŷ is the estimated cell based on the observed RSS vectorx.
In our experiment, the number of samplesnk for each class is the
same across the all the cells. Therefore the class prior probability
πi = 1/K for all the classes, whereK is the total number of class.

2.2 Exploiting Human Mobility Trajectory Un-
der PC-DfP

PC-DfP can be used to not only localize a static subject’s posi-
tion, but also track his/her moving trajectory. Tracking a moving
subject actually introduces new optimization opportunities - we can
improve our localization results by considering the fact that hu-
man’s locations from adjacent time intervals should form a contin-
uous trajectory. In cell-based approach, we define neighbors and
rings for each cell.

Cell neighborsis defined as a list of cells which are possibly reach-
able by a subject in next reasonable time interval with respect to the
current cell. Here, we introduce the concept of theorder of neigh-
bor. For an arbitrary cellc, its 1-order neighbors are its immediate
adjacent cells in physical space in terms of human trajectory, and its
2-order neighbors are all the immediate adjacent cells of its 1-order
neighbors, etc. In particular, we define the 0-order neighbors as the
case in which we do not consider any its neighbor information. For
instance, in Figure 1(b), cell 15 is cell 10’s 1-order neighbor, and
cell 14 is cell 10’s 2-order neighbor. We would like to point out
that in a real indoor space, the geometric distance is not equivalent
to the physical distance in terms of human trajectory. A good ex-
ample is that cell 5 is a adjacent to cell 15 in geometry, but in most
cases human subject cannot walk from cell 10 to cell 5 within a
short time interval. Therefore, in our approach, 5 is excluded from
the list of cell 10’s 1-order neighbors.

Cell ring is defined as the area consisting of all the cell neighbors
including the cell itself under the certain number of order. In other
words, thei-th ring of cellc is the area consisting of the following
cells: c itself, its1-order neighbors, ..., up to itsi-order neighbors.
For instance, in Figure 1(b), cell 10’s1-th ring consists of cells 10,
15, and its2-th ring consists of cells 10, 14, 15, 16, 20. Particu-
larly, 0-th ring of cell is the cell itself. If the subject appears in
a specific cell in an interval, then we assume the subject can only
appear within this cell’srth ring in the next time interval. In more
detail, suppose the subject is in cellc in the previous interval, and
we are using PC-DfP to estimate in which cell the subject is in the
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Figure 1: In (a), we show the first author’s lab in which we
deployed our system. In (b), we show the experimental topol-
ogy. The office deployment region is partitioned into 32 cubicle-
sized cells. Thirteen transmitters and nine receivers are de-
ployed. We show the cell boundaries in this plot.

current interval. In [6], PC-DfP simply returns the cell with the
highest likelihood. In this paper, we search for the cell with the
highest likelihood from cellc’s rth ring. In other words, when we
say we adopt ther-order neighbor, each estimated cell comes from
the cells inside the previous cell’srth ring. We now denote the
state variableyt−1 andyt to represent the cells at the previous time
interval and the current moment respectively. The domain of this
variable is the set of all the cells{c1, c2, ..., cK}. LetRINGr (c)
be the cellc’s rth ring and letNr (c) be the size of that set. Then
our movement transition model ends up with:

P (yt = k|yt−1 = j) = Tjk = (1/Nr (j) if k ∈ RINGr (c) else 0) .

We derive our new cell estimation model as:

ŷt = argmaxkδk(xt)Tjk, where j = ŷt−1

We believe the tracking performance can be improved by adding
this additional constraint. The valuer is an important parameter



Table 1: Tracking performance when different order of rings are adopted.

Cell Estimation Accuracy(%) Average Error Distance(m)
Mobility Path 0-order 1-order 2-order 0-order 1-order 2-order

Cleanup 92.6 71.0 93.8 1.1 2.2 1.0
Daily 94.7 70.7 95.3 1.2 2.5 1.0

Average 93.7 70.9 94.6 1.2 2.4 1.0

Cleanup Path

(a)

Daily Path

(b)

Figure 2: Two mobility paths: (a) a cleanup path and (b) a daily path.
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Figure 3: Tracking performance: (a) a cleanup path, and (b) a dailypath.

that we are going to study and evaluate through experiments in this
paper.

3. EXPERIMENTAL RESULTS
Our experimental setup consists of a centralized PC serving as

the system manager, thirteen wireless transmitters and nine wire-
less receivers. Each transmitter broadcasts a packet with its unique
id every 0.25 second. The receivers receive the packets, extractthe
RSS values and forward them to the centralized PC for data collec-
tion and analysis.

The deployment takes place in a office room with the total area
of 10× 15 meters, which contains office furniture as shown in Fig-
ure 1(a). The room is spatially divided into 32 cubicle-sized cells as

shown in Figure 1(b). In the training phase, the first author moves
around within each of these cells and makes 100 RSS measure-
ments for all the links. Then, in the testing phase, as shown in Fig-
ure 2(a) and 2(b), the first author follows two mobility patterns: (1)
cleanup path, in which the first author imitates the path when the
cleanup person walks through all the cubicles to clean the trash bin
everyday, and (2)daily path, in which the first author follows the
most frequent mobility pattern in real-life: enters the room, crosses
an aisle, prints paper in his cubicle, and walks through another aisle
to retrieve his paper. We consider a tracking interval successful if
the estimated cell is the same as the occupied cell. We sample the
RSS measurements every second and take the median value as our
observation data. To evaluate our tracking performance, we define
cell estimation accuracy as the success rate among all the tracking



intervals, and localization error distance as the average distance be-
tween the actual location and the center of the estimated cell. We
test our tracking performance when we adopt 0-order, 1-order, and
2-order neighbors respectively.

Table 1 summarizes the tracking performance of all the experi-
mental results. We notice that both paths show the similar behav-
ior. First, 1-order neighbor case is worse than 0-order neighbor.
We check all the testing errors in 0-order cases and found that most
of these mis-estimated cells are the 1-order neighbors of the actual
cell. In the 1-order case, if the mis-estimated cell’s1-th ring does
not cover the actual cell for the next interval, then this mistake in a
single interval may cascade to subsequent intervals, which we call
dead loop error. In other words, the solution space might converge
into several cells adjacent to each other forever, while the subject is
actually far away. This problem, however, can be solved by adopt-
ing 2-order neighbor because once such a dead loop error begins,
there is a high probability that the actual cell (which is also with the
maximum likelihood among all the cells) for the next time interval
can still be captured within the 2-th ring of the mis-estimated cell
at the current moment and consequently be correctly estimated. We
believe adopting 2-order neighbor can reduce the errors in 1-order
case based on two observations in the 0-order case. First, we did
not have two errors in any consecutive time interval, which pro-
vides a basis to prevent the dead loop error from being continued
if we choose an appropriate number of order. Second, as we men-
tioned before, most of the error cells are the 1-order neighbors of
the actual cells, which potentially offer the chances that the system
can stop dead loop error for the next time interval by increasing the
solution space. However, we need to point out the case that if the
error cell happens to be one of the 2-order neighbor of the actual
cell, the dead loop error might happen in the 2-order neighbor case
as well. We did not encounter this issue in our experiments, and
will conduct more experiments to attach this potential challenge.
Either adopting higher-order neighbor or randomly adopting the 0-
order neighbor might help reduce the error in this situation. We
will conduct a more solid study in our future work.

Our experimental results show that we achieve 94.6% cell esti-
mation accuracy and 1.0 m localization error distance in the2-order
neighbor case, which is the best among these three cases. In ad-
dition, both Figure 2(a) and 2(b) show2-order neighbor case has
a shorter tail than0-order and1-order cases in both paths, which
suggest2-order neighbor performs the best in the worst case. This
is because for every single test, 2-order neighbor bounds the lo-
calization error distance between two most far away cells. 1-order
neighbor bounds more tight, but might suffer from the dead loop
error. 0-order neighbor does not bound the error distance at all.

4. RELATED WORK
Several DfP approaches have been proposed in the literature.

In this section, we discuss the related work in device-free passive
tracking.

In [7, 3], DfP tracking is done through fingerprint matching.
A passive radio map is constructed during the training phase by
recording RSS measurements with a subject standing at pre-determined
locations. During the testing phase, the subject appears in one of
these locations, and the system can match the observed RSS read-
ings to the RSS readings from one of the trained locations based
upon minimum Euclidean distance. PC-DfP [6] shares the same
philosophy with [7, 3] and takes special care in the training phase
to minimize the RF signal variation within short distances to miti-
gate the error caused by the multipath effect.

Radio tomography imaging [4, 1] is a technique to reconstruct
the tomographic image for tracking device-free subjects. Here,

the authors assume that the relationship between a subject’s loca-
tion and the radio signal variation can be mathematically modeled.
In [4, 1], based upon the shadowing effect, i.e. radio signal strength
(RSS) is attenuated when the Line-of-Sight (LoS) is blocked caused
by the subject. A linear attenuation model and a Sequential Monte
Carlo model are proposed respectively. These techniques are un-
likely to fare well in a cluttered indoor environment because the
in [6] authors observed that a person blocking the LoS can only
attenuate the RSS with a 50% probability.

In [9, 10], a grid sensor array is deployed on the ceiling for the
tracking purpose. An “influential” link is one whose RSS change
exceeds a preset threshold. The authors calculate a subject’s loca-
tion based upon the observation that these influential links tend to
cluster around the subject. This work is extended in [8] with trian-
gle sensor array deployment and training information. In VRTI [5],
the authors leverage the RSS dynamics caused by the moving sub-
ject to generate a radio tomographic imaging for tracking.

Among all the existing works, we would like to point out not only
fingerprint-based schemes (including ours) need a training phase,
but other schemes such as radio tomography and grid sensor array
also need a training phase to determine a suitable threshold value
to detect if a subject is on the radio LoS.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we extend PC-DfP to track a mobile subject in in-

door environments by taking into consideration that a human sub-
ject’s locations should form a continuous trajectory. Experimental
results show that we achieve better localization accuracy by care-
fully tuning the system parameter – the neighbor order. More study
will be conducted to further improve the tracking performance and
to track multiple subjects.
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