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ABSTRACT

Smartphones are excellent mobile sensing platforms, with the
microphone in particular being exercised in several audio in-
ference applications. We take smartphone audio inference a
step further and demonstrate for the first time that it’s possi-
ble to accurately estimate the number of people talking in a
certain place – with an average error distance of 1.5 speak-
ers – through unsupervised machine learning analysis on au-
dio segments captured by the smartphones. Inference occurs
transparently to the user and no human intervention is needed
to derive the classification model. Our results are based on
the design, implementation, and evaluation of a system called
Crowd++, involving 120 participants in 10 very different en-
vironments. We show that no dedicated external hardware or
cumbersome supervised learning approaches are needed but
only off-the-shelf smartphones used in a transparent manner.
We believe our findings have profound implications in many
research fields, including social sensing and personal wellbe-
ing assessment.
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INTRODUCTION

The most direct form of social interaction occurs through the
spoken language and conversations. Given its importance,
for decades scientists have proposed diverse methodologies
to analyze the audio recorded during people’s conversations
to distill the various attributes that characterize this particular
social interaction. In addition to the most obvious attributes
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of a conversation, i.e., its content [28], several types of con-
textual cues have also received attention including speaker
identification, conversation turn-taking, and characterization
of a social setting [9, 22, 13]. We, however, note that one
of the most important contextual attributes of a conversation,
namely, speaker count, has been largely overlooked. Speaker
count specifies the number of people that participate in a con-
versation, which is one of the primary metrics to evaluate a
social setting: how crowded is a restaurant, how interactive
is a lecture, or how socially active is a person [27, 24]. In
this paper, we aim to accurately extract this attribute from
recorded audio data directly on off-the-shelf smartphones,
without any supervision, and in different use cases.

Most of the previous studies that focused on the extraction
of conversation features all share a common thread: they of-
ten require specialized hardware – such as microphone ar-
rays, external dongles pairing with mobile phones, or video
cameras – and complex machine learning algorithms built
upon supervised training techniques requiring the collection
of large and diverse data sets to bootstrap the classification
models. The support of powerful backend servers is also of-
ten needed to drive these algorithms.

Given that smartphones are becoming increasingly powerful
and ubiquitous, it is natural to envision new social monitoring
architectures, with the smartphones being the only sensing
and computing platform. In pursuit of these goals, we design
a system called Crowd++, where we exploit the audio from
the smartphone’s microphone to draw the social fingerprints
of a place, an event, or a person. We do so by inferring the
number of people in a conversation – but not their identity –
as well as their interactions from the analysis of the voices
contained in the audio captured by the smartphones, without
any prior knowledge of the speakers and their speech char-
acteristics. Audio inference from smartphones’ microphones
has been previously used to characterize places and events by
picking up different sound cues in the environment [3]. How-
ever, for the first time, we show how to infer the number of
speakers in a conversation through voice analysis using the
audio recorded on off-the-shelf smartphones.

Crowd++ is unique given its number of contributions: (i)
it is entirely distributed, with no infrastructure support; (ii)
it applies completely unsupervised learning techniques and
no prior training is needed for the system to operate; (iii) it



is self-contained, in that, the sensing and machine learning
computation takes place entirely and efficiently on the smart-
phone itself as shown by our implementation on four different
Android smartphones and two tablet computers; (iv) it is ac-
curate, as shown by experiments where Crowd++ is used in
challenging environments with different audio characteristics
– from quiet to noisy and loud – with the phone both inside
and outside a pocket, and very short audio recordings; and (v)
it’s energy and resource-efficient.

In spite of Crowd++ not being perfect and potentially affected
by limitations – the count is based on active speakers and
noise can possibly impact the count accuracy – we still be-
lieve that ours is a competitive approach in many different
application scenarios. In the social realm for example: peo-
ple are often interested in finding “social hotspots,” where
occupants engage in different social behaviors: examples are
restaurants, bars, malls, and meeting rooms. What if we could
know in advance the number of people in a certain bar or
restaurant? It might help us make more informed decisions
as to which place to go.

While Crowd++ may be deemed only as an initial step, we
show that faithful people count estimates in conversations can
nevertheless be achieved with sufficient accuracy. We imple-
ment Crowd++ on four Android smartphones and two tablet
computers and collect over 1200 minutes of audio over the
course of three months from 120 different people. The au-
dio is recorded by Crowd++ in a range of different environ-
ments, from quiet ones – home and office – to noisy places
like restaurants, malls, and public squares. We show that the
average difference between the actual number of speakers and
the inferred count with Crowd++ is slightly over 1 for quiet
environments, while being no larger than 2 in very noisy out-
door environments. We conjecture that this accuracy is ade-
quate and meaningful for many applications – such as social
sensing applications, crowd monitoring and social hotspots
characterization just to name a few – that don’t necessitate
exact figures but only accurate estimates.

MOTIVATION AND CHALLENGES

Speaker count is an important type of contextual information
about conversations. Crowd++ is able to infer the number of
speakers in a dialog without requiring any prior knowledge of
the speech characteristics of the involved people because of
its unsupervised nature. We believe that the ability to capture
this information can support different classes of applications,
some of which are summarized below.

Crowd Estimation and Social Hotspots Discovery. With
Crowd++ it would be possible to estimate the number of peo-
ple talking in certain places, such as restaurants, pubs, malls,
or even corporate meeting rooms. This information is useful
to assess the occupancy status of these places.

One question that comes to mind is: Why do we need a solu-
tion like Crowd++ to infer the number of people in a place?
Wouldn’t be enough to simply count the number of WiFi de-
vices associated with an access point, piggyback to a blue-
tooth scan result, measure co-location, use computer vision
techniques to analyze the number of people in video images,

or even use active methods that require the transmission and
analysis of audio tones? The answers to these questions are
quite straightforward: none of these techniques in isolation is
the solution to the problem. In order to read the association
table of an access point there is a need to have access to the
WiFi infrastructure, which is often not allowed. Even if pos-
sible, a person with several WiFi devices may generate false
positives. A count based on the result of a bluetooth discov-
ery [34] is error-prone because of the likelihood of reaching
out to distant devices. RF-based device-free localization tech-
niques [36] require the support of an infrastructure of several
radio devices. Acoustic-based counting engines as in [14]
are error-prone because of surrounding noise and audio sen-
sitivity to clothes. Counting people through computer vi-
sion techniques [7] requires customized infrastructure, suffers
from privacy concerns, and is limited by lighting condition.
Crowd++ inference is instead based on a much more localized
event – speech – that can significantly scope the count infer-
ence to specific geographic regions. It’s also passive, since no
active sounds by the devices need to be played.

We generally assume that people usually engage in conver-
sations in social public spaces such as restaurants, bars, or
conference rooms. We also acknowledge that in other places,
such as subway stations or movie theaters, silence is predom-
inant, making it difficult for Crowd++ to properly operate.
We, however, note that Crowd++ should not be deemed as
a replacement of any of the existing approaches. Rather, it
should be seen as a complementary solution that can be useful
to boost the crowd count accuracy by working in concert with
different techniques. Prior information about a certain place
– such as the average number of people attending the place –
combined with the properties of statistical sub-sampling can
also be used to boost the final count accuracy.

Personal Social Diary. Doctors analyze their patients’ so-
cial patterns to predict depression or social isolation and take
early actions. Rather than using ad-hoc hardware as in [27],
which could potentially perturb the quality of the measure-
ments, Crowd++ is installed on the smartphones of people
potentially affected by depression and operates unobtrusive
monitoring in a much more scalable, and less invasive fash-
ion. These patients’ social pattern could in fact be drawn by
the social engagement captured by Crowd++ as the patients
go about their daily lives.

Participant Engagement Estimation. What if a teacher
could assess, after a lecture, the level of engagement of their
students by simply looking at the number of students partici-
pating in discussions during the lecture and the frequency of
the discussions? This could be used as an indirect measure
of the class engagement and of the teacher’s effort in improv-
ing the quality of their teaching. Students would in turn be
motivated to run Crowd++ on their devices in order to share
with their friends, and in turn apprehend from other students,
information on the most lively lecture on campus.

Challenges

As in other smartphone audio inference applications,
Crowd++ is affected by some challenges: the phone’s loca-
tion, e.g., in or out of a pocket or bag, smartphone’s hardware



constraints, and noise polluting the audio are the main limit-
ing factors. Despite these limitations, we show through the
development and evaluation of Crowd++ that the system is
able to efficiently and accurately perform speaker count in a
diverse set of environments and settings.

PRIVACY

It is quite natural to raise privacy concerns when doing au-
dio analysis. These concerns become more serious when the
audio is captured with a smartphone, which is always with
the user, even in private spaces. With this in mind, we take
specific steps to make sure that users’ privacy is preserved.

Speakers’ identity is never revealed. Crowd++ isn’t able
to associate a voice fingerprint to a specific person and it’s
designed to only infer the number of different speakers in
an anonymized manner. Crowd++ could potentially identify
only the phone’s owner if the algorithm was actively trained
to recognize the owner’s voice. Identification of the owner
may be optionally added to either improve the speaker count
accuracy or in personal social diary applications.

The audio analysis is always performed locally on devices in
order to avoid sensitive data leaks. The audio is deleted right
after the audio features computation. Should communication
with backend be needed, the servers should be trusted and off-
the-shelf encryption methods for the communications should
be put in place. Only features extracted from the audio, rather
than the raw audio itself, should be sent to the server.

To guarantee the user’s privacy when the data is sent to a
backend server and to prevent attacks that exploit the audio
features to reconstruct the original audio, measures such as
the ones proposed by Liu et al. [18] should be put in place.
In this work, it is shown how to manipulate the features to a
point that they are still effective for a machine learning algo-
rithm to infer events while, however, obfuscating the under-
lying content of the raw audio.

Finally, by giving users the ability to configure the ap-
plication’s settings, Crowd++ should be allowed to work
only in specific locations – say, in public places. Through
geo-fencing technologies, the application could be automati-
cally activated and deactivated as directed by the user’s pre-
selected policies: e.g., activate it in the office and in restau-
rants but not at home.

SYSTEM DESIGN

Crowd++ estimates the number of active speakers in a group
of people. It consists of three steps: (1) speech detection, (2)
feature extraction, and (3) counting. In the speech detection
phase, we extract the speech segments from the audio data
by filtering out silence periods and background noise. In the
feature extraction phase, we compute the feature vectors from
the active speech data. In the counting phase, we first select
the distance function that is used to maximize the dissimilar-
ity between different speakers’ voice, and then apply an un-
supervised learning technique that, operating on the feature
vectors with the support of the distance function, determines
the speaker count. An overview of the Crowd++ pipelined
approach is shown in Figure 1.
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Figure 1. Crowd++ sequence of operations.

Speech Detection

As soon as an audio clip is recorded, we segment the clip into
smaller segments of equal length. Each segment, which is
3-second long, is the basic audio processing unit. Through
experimentation we find this duration to be acceptable for
the trade-off between inference delay and inference accuracy.
It also captures adequately the turn-taking pattern normally
present in everyday conversations [22]. This choice is also
supported by previous studies showing that the median utter-
ance duration of telephone conversations between customers
of a major U.S. phone company and its customer service rep-
resentatives is 2.74 seconds [31].

The result of the segmentation of an audio clip S is a sequence
of N different segments, S = {S1, S2, ..., SN}. Next we fil-
ter out segments containing long periods of silence or where
noise is predominant. We use each segment’s pitch value for
this purpose.

Pitch [32] is directly related to the speaker’s vocal cord, and
therefore, by being intimately connected with the speaker vo-
cal trait, it’s robust against noise and other external factors.
Pitch has been widely used in speaker identification [5] and
speaker trait identification [20] problems. When estimated
accurately, pitch information can be used to assist the voice
activity detection task in a noisy acoustic environment. In
this study, we select YIN [8], a time-domain pitch calculation
algorithm based on autocorrelation. While some other pitch
estimation algorithms, such as Wu [35] and SAcC [17], might
exhibit better accuracy, YIN is simpler, more energy-efficient,
and robust to noise – hence more suitable for mobile devices.

Traditionally, energy-based methods such as the ones dis-
cussed in [11] have been used for voice data detection, but
they are unsuitable for processing audio collected by smart-
phones. When recording audio, smartphones are usually
placed at a certain distance from the speakers. As a result,
even in absence of speech, the ambient audio energy could
be high enough to trigger false positives in energy-based al-
gorithms. Pitch, on the other hand, is a better alternative be-
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(a) One-second utterance
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(b) Two-second utterance
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(c) Three-second utterance

Figure 2. Cosine similarity distance demonstrates better speaker distinguishing capabilities with longer utterance.

cause human pitch is distinctly different than pitch obtained
in absence of speech.

We then apply the pitch estimation algorithm on all the seg-
ments to only admit those where the pitch falls within the
range of 50 to 450 Hz, the typical pitch interval for human
voice [4]. In this way, we apply a filtering technique to re-
move all the segments with long periods of silence or back-
ground noise. We note that using pitch to detect speech is not
always the best approach because of pitch being only asso-
ciated with voiced phoneme. However, in our setting, each
basic acoustic segment is 3 seconds long with a probability
of lack of voiced parts in such a time frame being quite low.
In our evaluation, we collected over 1200 minutes audio and
verified that pitch is a feasible solution for our purposes.

Speaker Distinguishing Features and System Calibration

Having filtered out the non-speech and background noise au-
dio segments, our next step is to extract the features that can
efficiently distinguish speakers. We have explored various
feature sets that are largely used in the speech processing
community, such as LPCC [23], RASTA [12], and different
combinations of them. We find that MFCC [10] and pitch,
when used together, provide the best inference results. In the
following, we discuss the details on how these feature vectors
are used in our counting algorithm.

MFCC and its Distance Metric

MFCC is one of the most effective and general-purpose fea-
tures in speech processing [10]. In Crowd++, we use the co-
efficients between the 2nd and the 20th coefficient in order
not to model the DC (direct current) component of the audio
from the first coefficient. A 19-dimensional MFCC vector is
then formed out of each 32 msec frame.

In order to perform the counting, we need to rely on a dis-
tance metric that allows Crowd++ to distinguish speech from
different speakers by comparing MFCC vectors from differ-
ent audio segments. An ideal distance metric should demon-
strate a perfect discriminative capability when computed on
data from two different speakers. After investigating several
common distance metric options – e.g., Average Linkage and
2-Gaussian Mixture Model (GMM) Generalized Likelihood
Ratio (GLR)1 – we find that Cosine Similarity (CS) is the best
candidate as it minimizes the computation overhead in terms
of real-time factor (RTF), defined as the processing time per

1We use 2-GMM because a higher order GMM fails to converge in
the parameter fitting phase.

second, and the expected error probability (EEP) metric. The
EEP is defined as:∫ τ

−∞

p (x|ωd) dx+

∫ ∞

τ

p (x|ωs) dx,

where p (x|ωs) and p (x|ωd) represent, respectively, the prob-
ability density functions (pdfs) of the distance from the same
speaker and different speakers, and τ is the data point where
these two pdfs present the same value. Table 1 shows that
the best performance for both the RTF and EEP metrics is
achieved using CS. This confirms the superiority of the CS
distance compared to a GMM approach, heavily used in the
literature in audio processing applications.

Distance Model EEP RTF

Cosine Similarity (CS) 0.1687 0.003
Average Linkage (AL) 0.5787 0.01
2-Gaussian Mixture Model (GMM) 0.5742 1.17

Table 1. Cosine Similarity outperforms Average linkage and 2-Gaussian

Mixture Model in terms of expected error probability (EEP) and real
time factor (RTF) based on 3-second utterances.

For the audio data processing, we partition the data into
smaller segments, and assume the speech within a segment
belongs to the same speaker. We then calculate the MFCC
vectors for each segment and determine whether two seg-
ments belong to the same speaker by looking at their distance.
We plot the cosine similarity distance density with different
segment lengths (1, 2, 3 seconds) in Figure 2. We observe
that the size of the overlap decreases as the length of the seg-
ment increases, which confirms the intuition that it is easier
to distinguish multiple speakers when longer samples are col-
lected. Finally, Figure 2 also provides hints about the best
possible CS distance threshold that allows the differentiation
of different speakers.

Pitch and Gender Identification

In addition to assisting the speech detection process as dis-
cussed above, pitch can also be used to identify the gender of
the speaker because the most distinctive trait between male
and female voices is their fundamental frequency or pitch.
The average pitch for men falls between 100 and 146Hz,
whereas for women it is usually between 188 and 221Hz,
as demonstrated in [4]. By relying on gender identification,
Crowd++ speaker count accuracy is increased because of its
disambiguation role. For instance, if two participants (one
male and the other female) present similar MFCC features,
their pitch difference can help distinguish between the two.



Crowd++ Counting Engine

The last step is about the computation of the speaker count.
Having extracted n different audio segments containing hu-
man voice, Crowd++ derives the feature vectors from each
segment. Let M1,M2, ...,Mn be the sequence of feature vec-
tors for all the segments, where Mi is the MFCC feature vec-
tors for segment Si.

Our counting algorithm involves two rounds. In the first
round, we aggregate neighboring segments that produce sim-
ilar features. Traditional speech processing methods use
agglomerative hierarchical clustering [15] that requires the
comparison between each segment with every other seg-
ment in the set, which incurs a computational complexity of
O(n2). We instead employ a much more lightweight clus-
tering method, i.e., forward clustering, which needs to visit
all the segments only once. In forward clustering, we start
from segment 1 (i.e., S1), and compare it against S2. If their
MFCC features are close enough, i.e., dCS(M1,M2) < θs,
we merge these two segments into a new S1. Next we com-
pare this new S1 with S3. If they are still similar, we will
merge them too. Otherwise, we stop comparing with S1, and
begin to compare S3 and S4. In contrast with hierarchical
clustering, forward clustering incurs much less computation
and energy overhead given its linear time complexity O(n).
The rationale behind forward clustering is that there usually
exists temporal correlation in speech – the likelihood of con-
tiguous segments containing the same voice is high when the
segments are short enough. After running the forward clus-
tering algorithm, we have fewer and longer segments, to the
result of the merging step. We also note that longer segments
have better performance in distinguishing different speakers
and further boost counting accuracy.

Let’s now denote with C the set of inferred speakers. When
computing the distance dCS(i, j) between two different fea-
ture vectors Mi (which is the MFCC vector from a new seg-
ment i) and Nj (which is the MFCC vector of a previously
inferred speaker, Cj) we have three possible outcomes:

• Existing Speaker: If dCS(i, j) < θs and we infer a same
gender, then we treat these two voice segments as belong-
ing to the same person, namely Cj . In this case, we do not
update C by adding new inferred speakers, but only update
Cj’s MFCC vector as Mi. If this condition is true for mul-
tiple existing speakers, we update the MFCC of the speaker
that gives the lowest CS distance.

• New Speaker: If dCS(i, j) > θd or different genders are
inferred for all the members in C, we then tag this voice
data as from a new speaker, the |C|+ 1-th speaker, and
add it to the admitted crowd C, where |C| denotes the size
of C.

• Uncertainty: If dCS(i, j) ≥ θs for all j’s but dCS(i, k) ≤
θd for some k (both j, k ≤ |C|), then we cannot decide
whether this utterance is from an existing speaker or a new
speaker. In this case, we discard this data point.

The θs and θd thresholds are empirically determined in the
calibration phase before we conduct the evaluation. We note
that the optimal threshold values may vary across different

phone models because the microphones have different inter-
nal sensitivity levels. The choice of these two thresholds is
driven by the desire to be conservative in the discovery of new
speakers while minimizing the number of false positives.

To summarize, our counting algorithm is designed to be ro-
bust and resource-aware. To this end, we rely on an energy
efficient and noise-resilient pitch estimation algorithm, and
introduce the cosine similarity distance function, an efficient
distance metric at the core of our counting engine.

EVALUATION

A detailed description of the Crowd++ evaluation results is
presented in this section.

Crowd++ App Implementation

We have implemented Crowd++ on the Android platform us-
ing Java and installed it on multiple smartphones – HTC EVO
4G, Samsung Galaxy S2, S3, Google Nexus 4, – and tablets –
Samsung Galaxy Tab 2 and Google Nexus 7. The raw audio
is recorded at an 8 KHz frequency, 16 bit pulse-code modu-
lation (PCM). We use 32 msec hamming window with 50%
overlap for computing the MFCC, and the YIN pitch tracker.
The code base of Crowd++ has been optimized to minimize
the CPU processing time and energy consumption.

Energy Considerations

In Table 2, we report the latency for processing 1-second au-
dio segments in terms of MFCC and pitch computation, and
the time needed to run the speaker count algorithm on the
different devices. The results show that Crowd++ execution
time is fast, topping 320 msec and only 171 msec on a Galaxy
S3. In addition, we demonstrate Crowd++ energy efficiency
in a continuous sensing scenario. We adopt the duty-cycling
approach of recording for 5-minute followed by the speaker
count algorithm and sleeping for T minutes. We choose the
Galaxy S2 phone and plot in Figure 3 the phone’s battery
duration as a function of the sleep time T between consec-
utive recordings (similar results can be found for other de-
vices). We observe that even with short sleeping intervals,
i.e., 15 minutes, the phone can last up to 23 hours. All
the measurements are collected with the WiFi service run-
ning in background on the phone. These battery durations
are all compatible with the use of a phone in a normal daily
routine. It has to be noted that these battery durations are
achieved with a fixed duty-cycle policy, providing a perfor-
mance lower bound. Given that Crowd++ would mostly run
in public spaces only, longer sleeping intervals would extend
the battery duration even further.

Latency HTC Samsung Samsung Google Google
(msec) EVO 4g Galaxy S2 Galaxy S3 Nexus 4 Nexus 7

MFCC 42.90 36.71 24.41 22.86 23.14
Pitch 102.71 80.36 58.11 47.93 58.33
Count 175.16 150.47 89.01 83.53 70.23
Total 320.77 267.54 171.53 154.32 151.7

Table 2. Average latency for processing 1-second audio for MFCC cal-

culation, Pitch calculation, and speaker counting using different phone
models.
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Performance Metric

We define Error Count Distance as |Ĉ − C|, where C is the

actual number of speakers and Ĉ is the estimated speaker
count. The metric is calculated using the absolute value of
the error to avoid the terms canceling out because of their
positive and negative contributions. The average error count
distance is a proxy for the Crowd++ count accuracy.

System Calibration

Before the feature computation of an arbitrary speech seg-
ment, we first need to set appropriate values for the parame-
ters required by the CS metric to properly operate. For this
purpose, we have performed a preliminary calibration phase
at the beginning of the study, where we collect audio from
10 participants (5 males and 5 females) from different coun-
tries with different accents. To guarantee robust calibration,
we use different phone models mentioned earlier with differ-
ent placements (on the table and in the pocket), different dis-
tances (in a range of 2 meters), and orientations with respect
to the speaker. We empirically chose 15 and 30, respectively,
for the θs and θd thresholds used by the cosine similarity dis-
tance metric introduced in the previous section. θs and θd
are chosen as the median value from p (x|ωs) and p (x|ωd),
which is a little off from τ mentioned earlier to filter out the
speech containing overlap and pause.

Performance with a Single Group of Speakers

We first conduct a set of controlled experiments to benchmark
the performance of Crowd++. The experiment consists of 10
different sessions. The first session includes one speaker, and
the number of speakers is incremented by 1 in each following
session. As a result, the 10th session includes 10 speakers. In
each session, every speaker sits at an oval table and speaks in
turns as in a conversation. Figure 4 illustrates the experimen-
tal setting. We use 7 smartphones for the audio recording –
one smartphone (phone 0) is placed at the center of the table;
3 smartphones (phones 1-3) are placed on the table at a dis-
tance of 0.5 m, 1 m, and 1.5 m from the center; 3 smartphones
(phones 4-6) are placed inside speakers’ pockets.

Counting Accuracy vs. Phone Position

During a conversation, phones are usually placed on the ta-
ble. Therefore, we look at how the phone’s position on the
table affects the error count. The results are shown in Fig-
ure 5. The results show that Crowd++ is rather robust against

various conversation group sizes and phone positions. The er-
ror count distance is usually within 1, sometimes 2, and very
rarely 3 (in 2 out of 40 cases). From this set of results, we can
draw the following conclusions: First, in a quiet indoor en-
vironment, Crowd++ gives accurate speaker count estimates.
Second, the phone’s position on the table does not have an
obvious impact on the inference accuracy.

Counting Accuracy when Phones on Table vs. in Pocket

Figure 6 compares the mean error count distance for phones
placed on the table (namely, phones 1-3) and phones placed
inside a pants pocket (namely, phones 4-6). We find that
in general, phones placed inside a pocket provide larger er-
ror count distances, similar to the trend observed in earlier
smartphone-based audio sensing studies [25]. As a result, we
suggest that in order to achieve accurate speaker count esti-
mates, users should place their phones on the table to extend
the sensing range of the microphone.

Counting Accuracy with Different Aggregation Methods

Given the proximity to the speakers, multiple phones record
audio at the same time. We exploit this redundancy and com-
pare different ways of aggregating the results. Specifically,
we collect the speaker count estimates from all the 7 phones
and show the mean, median and mode of all the samples in
Figure 7. The results show that the median and mode value
give better speaker count estimates because they are more ro-
bust to estimation errors, and mode is better than the median
in most of the cases.

Performance with Multiple Groups

We now investigate the performance of Crowd++ when oper-
ating in an environment where different groups of people are
next to each other. This is the case of a restaurant for exam-
ple, with each table occupied by a number of people. In this
case, the speech from a nearby group could impact the results
of the counting. In order to demonstrate that Crowd++ can
work in such a scenario, we have conducted another bench-
mark experiment to mimic a restaurant setting by having two
and three groups of people talking at adjacent tables in the
same room. Each group entertains separate conversations oc-
curring in parallel. For each group, two phones are deployed:
the first one held by one speaker and the second one in another
speaker’s pocket. In the two-group scenario, each group has
5 participants, while in the three-group scenario each group
has 3 participants. The groups are separated by a 3-meter gap.
We record 3 audio clips in each scenario.

We show the estimated speaker count in Figure 8. It is inter-
esting to see that when we have multiple groups talking at the
same time, the phones in the pocket have a slightly better per-
formance. This is because the phone in the pocket is still able
to pick up the group members’ voice while filtering out – for
the clothing muffling effect – more distant sounds. Overall,
both the phones in each group are able to accurately estimate
the speaker count, with an average error distance of 1.5. It is
important to realize that only 1 device is sufficient in a group
of people to infer the speaker count.

In order to estimate the total number of people in a restau-
rant, our solution involves having each group estimate its size,
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Figure 8. The phones inside the pockets present
better counting results when multiple groups of
speakers are co-located.

and then using the sum as the total people count. In this ex-
periment, we also evaluate the performance of this solution,
which is shown in Figure 8 as well. We find that the average
error count distance is reported 1 and 2 for the phones placed
in the pockets or on the table. As a result, we believe that
our divide-and-conquer solution works well in practice, espe-
cially considering the privacy concerns involved in uploading
the audio features to the cloud for aggregation.

Performance with Various Conversation Parameters

In reality, many factors could impact the counting perfor-
mance, such as utterance length, overlapping speech, and
the duration of the recorded audio clip. Precisely controlling
these parameters at the same time in real world experiments
is often unfeasible. For this reason, we follow a common
approach in the speech community and generate a separate
dataset, as previously shown in [26]. Specifically, we collect
audio recordings from 4 male and 4 female participants us-
ing a smartphone. We ask each speaker to talk for 3 minutes
and record the audio clips. We then segment these clips into
smaller segments of random lengths and assemble them to
generate audio data. We model the utterance length as a ran-
dom variable following a log-normal distribution with mean
of δ and standard deviation of 1 according to the configura-
tions used in [31]. By default, each generated audio clip has
2, 4, 6, or 8 speakers, is 8 minutes long, no overlap, and is
assigned a value of δ = 3.

Counting Accuracy with Audio Clip Duration

In this set of experiments, we vary the audio duration from 2,
to 4, 6 and 8 minutes. We report the average error count dis-
tances with these different audio durations in Figure 9. The

results show that to achieve a good counting accuracy, we
need longer audio clips. As shown in the plot, 8-minute au-
dio clips are usually long enough to achieve an average error
count distance of 1. This is meaningful since we target the in-
ference in social spaces, where usually people tend to remain
for more than 8 minutes.

Counting Accuracy with Overlapping Percentage

Earlier studies [6] show that conversations are often charac-
terized by interruptions of one speaker to another. In this set
of experiments, we look at the impact of the percentage of
the overlapping speech. We vary the overlapping percentage
from 0%, 5%, 10%, 20% to 40% and show the results in Fig-
ure 10. We find that the overlapping percentage does not have
a noticeable impact on the performance of Crowd++. Even
with overlaps of 40% the average error distance of Crowd++
is about 1.

Counting Accuracy with Utterance Length

In daily conversations, utterance duration can vary according
to the setting: people tend to be interrupted more frequently
in casual chats and less in formal meetings. We then look at
the impact of the utterance length, which we make it of 1,
2, 3, 5, and 8 seconds. The average error count distance is
shown in Figure 11. We observe that we have slightly worse
results when the utterance length is 1 or 2 seconds, shorter
than the processing unit of 3 seconds. Even so, the average
error distance is 1.5. When the utterance length is longer than
3 seconds, the average counting error distance decreases to 1.

Large-scale Experiments

To demonstrate that Crowd++ can accurately count speak-
ers in different conditions, we have installed the app in six
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android devices and recruited six volunteers to collect 109
different audio instances with 120 people speakers for a to-
tal of 1034 minutes of recorded audio. The conversations
are recorded during normal family and friend interactions.
In each setting, the participants are within 1 meter from the
phone. We can broadly group the audio clips into three cate-
gories based on the location of the recordings:

• Private Indoor Environments: In this category, audio clips
are recorded in quiet indoor environments, including sem-
inar rooms, office and home during, respectively, differ-
ent events: meetings, lunch and home conversations. The
phones are placed on the table during the recording. In
spite of these conversations taking place in private indoor
settings, background noise is still present, for example pa-
per flipping, door’s closing/opening, chair movement, etc.

• Public Indoor Environments: In this scenario, audio clips
are recorded in different public indoor environments when
participants are sitting in restaurants, food courts or mov-
ing in supermarkets and shopping malls. The phones are
placed in the pocket. The background noise in these envi-
ronments is mainly generated by surrounding people, mu-
sic, and various service operations.

• Outdoor Environments: The last class of recordings are
collected in outdoor places such as parking lots and restau-
rant outdoor seats, where the background noise mainly
comes from cars, wind and other activities. The phones
are placed in the pocket during recordings.

Table 3 summarizes the signal-to-noise ratio (SNR) es-
timation [16], average error count distance (AECD) and
the average error count percentage (AECP)2 from all the
experiments. We observe a lower SNR and a higher AECD
and AECP, when we move from private indoor, to public
indoor and outdoor environments. We also observe that
the error count increases when the crowd becomes larger
because of more conflicting audio sources. The maximum
AECD in private indoor scenarios is 2. In more challenging
environments, e.g., public indoors and outdoors, the accuracy
degrades. Being Crowd++ designed to infer social hotspots
mainly indoors, we conjecture that the indoor error range can
be considered adequate for many applications.

2An alternative counting performance metric, defined as
|Ĉ−C|

C
.

Private Indoor Environments

Speaker # Sample # Place SNR AECD AECP
2 4 Home 21 0 0%
3 11 Office 24.6 0.82 27.3%
4 8 Office 21.4 1.25 31.3%
5 7 Kitchen 20.9 1.28 25.6%
6 10 Kitchen 17.6 2 33%

Overall 40 Quiet Indoor 21.5 1.07 23.4%

Public Indoor Environments

Speaker # Sample # Place SNR AECD AECP
2 2 Restaurant 8.6 0 0%
3 6 Food Court 13.2 1.5 50%
4 7 Coffee Shop 8.2 1.86 46.5%
5 17 Shopping Mall 12.2 1.82 36.4%
7 12 Super Market 13.8 1.58 22.6%

Overall 44 Noisy Indoor 11.2 1.35 31.1%

Outdoor Environments

Speaker # Sample # Place SNR AECD AECP
2 4 Plaza 16.8 0.5 25%
3 6 Parking Lot 16.6 1.2 40%
4 7 Plaza 13 2.29 57.3%
5 2 Parking Lot 12.2 2.5 50%
6 6 Patio 13.9 2.67 44.5%

Overall 25 Noisy Outdoor 14.5 1.83 43.4%

Table 3. The detailed breakdown of the error counts for all the audio
clips. We observe that average error count distances and average error
count percentage for private indoor is less than in public indoor, and

outdoor environments.

Crowd++ Use Cases

Finally, to demonstrate the utility of Crowd++, we have im-
plemented three proof-of-concept use cases where knowing
the number of speakers in a conversation is important.

Where Is the Most Crowded Restaurant?

Crowd++ can be exercised to find the most crowded restau-
rant in the area. To provide such a service, we envision there
is at least one smartphone at each table running Crowd++,
which counts the number of people talking at the table. Then
we calculate the total number of people in the restaurant by
summing up the people at each table.

In this study, we have recruited participants to record audio at
four different restaurants, including formal restaurants, cof-
fee shops, food courts in a mall and in a university student
center. The results are shown in Table 3 in the public indoor
environments section, where AECD is 1.3. We believe that
this level of accuracy should be adequate for this use case
since, again, our goal is to infer an estimate of the count in a
lightweight manner. More accurate results could be achieved
in cooperation with other techniques.
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social patterns on work days and weekends.

Are you a social person?

In the second use case, Crowd++ can be used to build a per-
son’s social diary – how many people the person talks to, and
at what time – which is particularly useful for seniors or peo-
ple with clinic depression.

In this study, we have recruited three participants, a teacher,
a student, and a company employee, who have been using the
SocialDiary app to record their conversation log for a week.
The SocialDiary app records audio every 2-hour for 8 min-
utes. We show the log for the student participant on a week-
day and a weekend in Figure 12. From the social diary, we
observe that the student’s day starts much later on the week-
end. Also, he talks more in the morning and early afternoon
on a weekday and at more recreational events – lunch and
dinner – during weekends.

Is your audience engaged?

In the third use case, we show that Crowd++ can be used to
measure the level of interaction of a lecture or seminar. Such
a measurement could allow parents to be aware of their kids’
participation in a classroom for example. Or it can be used
to annotate a seminar or lecture to fast forward to the part
with more active discussions when watching a video or audio
recording of the event for example.

In this study, we record 2 regular classes and 2 recitation ses-
sions at a university campus and 4 seminars from an indus-
try lab. Each recording lasts 60 minutes. We segment each
audio into six 10-minute segments and estimate the speaker
count in each segment, as well as the total speaker count for
the whole period. We show how the speaker count varies as
time progresses in Figure 13. We observe that the recitation
involves less interaction of all – the instructor spends most
of the time showing how to solve the homework problems
on the blackboard. The regular class has a steady interac-
tion level throughout the duration, while the seminar presents
more questions at the beginning.

DISCUSSION

A possible source of interference is voice generated by TV
or radio equipment. Would these background voices cause
Crowd++ to over-count? The answer is no. Given the audio
modulation techniques applied to TV and radio broadcast it
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Figure 13. Seminars and classroom lectures have different interaction
patterns over the time.

has been proven that audio segments dominated by TV or ra-
dio sources can be effectively filtered out [21]. When there is
instead significant overlap between people’s live voices and
TV or radio audio, source separation can be performed [19].

We acknowledge that in some cases the accuracy of Crowd++
could be improved; however, Crowd++ has been designed to
perform people counting on mobile devices with no infras-
tructure intervention and in an energy and resource-efficient
manner. Because of this, Crowd++ doesn’t rely on complex
speech processing algorithms that would yield higher accu-
racy; its design favors efficiency and mobility support. We are
currently exploring further optimizations, such as sparse sam-
pling techniques to reduce the computation overhead. More-
over, noise cancellation achieved with the multiple micro-
phones that can be found in most recent smarpthones would
likely provide a further accuracy boost.

RELATED WORK

We review the most relevant literature on smartphone audio
inference applications and speaker count techniques.

Audio Sensing and Inference on Smartphones

A large body of research demonstrates the use of the mo-
bile phone’s microphone to opportunistically analyze audio
for event and context characterization. Examples of smart-
phone context-aware applications are Darwin [25] and Speak-
erSense [22] to perform speaker identification. Surround-
Sense [3] analyzes audio events for place fingerprinting. The
EmotionSense project [29] demonstrates the possibility to
classify humans’ emotions through audio analysis. Ambi-
ent noise is leveraged to improve indoor localization results
in [33]. All these projects have often in common the use of
cumbersome supervised learning approaches, the use of ex-
ternal hardware in some cases, and the need to rely on ex-
ternal servers to operate the learning process. In contrast,
Crowd++ is entirely unsupervised, with sensing and process-
ing entirely occurring on the mobile device itself.

Speaker Counting

Some speaker counting techniques can be found in the litera-
ture. The closest related research to Crowd++ is [1] and [26].
Agneessens et al. [1] present a pitch estimation algorithm to
recognize a single speaker from audio recordings containing



two speakers with 70% of the times correctly estimate the
speaker count (referred to as counting accuracy). Crowd++
goes beyond this binary classification approach by tackling a
much harder problem, where the number of speakers is up to
10 or even more. Moreover, Crowd++ runs an unsupervised
learning algorithm without taking any training data from the
target speakers. Ofoegbu et al. [26] present 60% counting
accuracy for 4 speakers (versus Crowd++’s 68% counting ac-
curacy under the same conditions and settings) and a gen-
eralized residual radio algorithm with a computational com-
plexity of O(N2) (versus Crowd++’s O(N)). Moreover, the
data set in [26] is based on staged data from the HTIMIT
database [30] containing transcribed speech of American En-
glish speakers. Crowd++’s focus instead is the analysis of
audio recordings challenged by noise, mobility and obsta-
cles as people go about their daily lives. Another relevant
technique is speaker diarization [2], which essentially deter-
mines “who spoke when” in an audio recording that contains
an unknown amount of speech and also an unknown number
of speakers. However, the main objective of diarization is
to cluster the homogeneous speech rather than determine the
optimal number of clusters. In addition, it usually relies on
computationally expensive models (GMM, HMM) and algo-
rithms (BIC, MCMC), which are not suitable for off-the-shelf
smartphones.

CONCLUSION AND FUTURE WORK

In this paper, we presented Crowd++, a scalable and energy
efficient speaker count application for smartphones based on
the microphone’s audio analysis. Crowd++ is novel in many
dimensions: it is completely unsupervised and no prior mod-
els or external hardware are necessary to operate. It doesn’t
require any infrastructure and runs entirely on the mobile
device. We implemented Crowd++ on different Android
platforms and showed, through solid experimentation, that
Crowd++ presents adequate inference accuracy in many di-
verse conditions, from quiet to noisy environments. In con-
trast to more complex and less scalable counting techniques,
Crowd++ is a lightweight approach that can support many
different application scenarios: from social sensing – to de-
termine social hotspots – to personal wellbeing assessment
and social diary, place characterization, and more accurate
localization techniques.
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