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Abstract—The Mobile Crowd Sensing (MCS) paradigm en-
ables large-scale sensing opportunities at lower deployment costs
than dedicated infrastructures by utilizing the large number of
today’s mobile devices. In the context of MCS, end users with
sensing and computing devices can share and extract information
of common interest. In this article, we examine Crowd++, a MCS
application, which accurately estimates the number of people
talking in a certain place through unsupervised machine learning
analysis on audio segments captured by mobile devices. Such a
technique can find application in many domains, such as crowd
estimation, social sensing, and personal well-being assessment.
In this article, we demonstrate the utility of this technique in
the context of conference room usage estimation, social diary,
and social engagement in a power efficient manner followed by
a discussion on privacy and possible optimizations to Crowd++
software.

I. INTRODUCTION

Mobile Crowd Sensing (MCS) [1], [2] is a sensing paradigm

that complements traditional static-only deployments [3]. MCS

leverages human mobility to achieve a larger sensing scale

with lower infrastructure support, especially in places with

frequent human activities. Broadly speaking, MCS can find

application in both ambient sensing and social sensing, with

ambient sensing mainly targeting the monitoring or tracking of

physical phenomena such as pollution level, traffic congestion,

and parking availability. In the social sensing sphere MCS

applications can provide people with opportunities to connect

through social networks, share personal data and form social

interactions. In this article, we focus on the utility of MCS in

the context of social sensing.

The most direct form of social interaction occurs through

the spoken language and conversations. Given its rich context,

for decades scientists have proposed diverse methodologies to

analyze the audio recorded during people’s conversations to

characterize this particular social interaction through various

attributes such as speech content (what), speaker identification

(who) and emotion detection (how). Though these are excel-

lent drivers for many social sensing applications, there are

two potential limitations with the current approaches. First,

they need pre-labeled training data to train classifiers. Second,

while the analysis of their sensor data can be meaningful for

individuals, drawing statistical conclusions for crowds is very

challenging.

We note that one of the most important contextual attributes

of a conversation, namely, speaker count, has been largely

overlooked and can break new ground in MCS applications.

Speaker count specifies the number of people that participate

in a conversation, which is one of the primary metrics to

evaluate a social setting: how crowded is a restaurant, how

interactive is a lecture or a meeting, or how socially active a

person is [4], [5].

Given that mobile devices are becoming increasingly pow-

erful and ubiquitous, it is natural to envision new social

monitoring architectures, with the collection of these devices

being the only sensing and computing platform. In pursuit

of these goals, we design a system called Crowd++, where

we exploit the audio from the smartphones microphone to

draw the social fingerprints of a place, an event, or a person.

Although mobile audio inference has been previously used to

characterize places and events by picking up different sound

cues in the environment [6], [7], we tackle a complete new

angle. We infer the number of people in a conversation –

but not their identity1 – as well as their interactions from the

analysis of the voices contained in audio snippets captured by

the smartphones, without any prior knowledge of the speakers

and their speech characteristics [8].

One question that comes to mind is: Why do we need a

solution like Crowd++ to infer the number of people in a

place? Wouldn’t it be enough to simply count the number

of WiFi devices associated with an access point, piggyback

to a bluetooth scan result, measure co-location, use computer

vision techniques to analyze the number of people in video

images, or even use active methods that require the trans-

mission and analysis of audio tones? The answers to these

questions are quite straightforward: none of these techniques

in isolation is the solution to the problem. In order to read

the association table of an access point there is a need to

have access to the WiFi infrastructure, which is often not

allowed. Even if possible, a person with several WiFi devices

may generate false positives. A count based on the result

of a bluetooth discovery [9] is error-prone because of the

likelihood of reaching out to distant devices. RF-based device-

free localization techniques [10] require the support of an

infrastructure of several radio devices. Acoustic-based count-

ing engines as in [11] are error-prone because of surround-

ing noise and audio sensitivity to clothes. Counting people

through computer vision techniques [12] requires customized

infrastructure, suffers from privacy concerns, and is limited by

lighting condition. Crowd++ inference is instead based on a

much more localized event – speech – that can significantly

scope the count inference to specific geographic regions. It’s

also passive, since no active sounds by the devices need to be

1Except for the social diary use case, where we want to measure how active
a particular person is in his or her daily social interactions.
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played.

We also acknowledge that in other places, such as subway

stations or movie theaters, silence or loud noise can dominate,

making it difficult for Crowd++ to properly operate. We,

however, note that Crowd++ should not be deemed as a

replacement of any of the existing approaches. Rather, it

should be seen as a complementary solution that can be useful

to boost the crowd count accuracy by working in concert with

different techniques. Prior information about a certain place –

such as the average number of people attending the place –

combined with the properties of statistical sub-sampling can

also be used to boost the final count accuracy.

We have implemented Crowd++ on four Android smart-

phones and two tablet computers and collected over 1200

minutes of audio over the course of three months from 120

different people. The audio is recorded by Crowd++ in a range

of different environments, from quiet ones – home and office –

to noisy places like restaurants, malls, and public squares. We

show that the average difference between the actual number

of speakers and the inferred count with Crowd++ is slightly

over 1 for quiet environments, and no larger than 2 in very

noisy outdoor environments [8]. While Crowd++ may be

deemed only as an initial step, we show that faithful people

count estimates in conversations can nevertheless be achieved

with sufficient accuracy. We conjecture that this accuracy

is adequate and meaningful for many applications – such

as social sensing applications, crowd monitoring and social

hotspots characterization just to name a few – where exact

count estimation is not necessarily a requirement.

The code release of the Crowd++ application can be found

here [13].

II. UNSUPERVISED SPEAKER COUNTING

The knowledge of a person’s social activity level, or a

social setting’s popularity, is important for many applications.

These two scenarios appear very different, but they can be

both characterized by the number of active speakers in the

conversation. To estimate the number of active speakers in

a group of people, we decompose this process into three

steps: (1) speech detection, (2) feature extraction, and (3)

counting. In the speech detection phase, we discard the silence

periods and background noise, and only keep the human voice

segments. In the feature extraction phase, we then extract the

feature which can uniquely characterize each speaker from the

speech data. In the counting phase, we use a distance function

to characterize the dissimilarity if the two speech segments

come from different speakers, and then apply an unsupervised

learning technique that, operating on the feature vectors with

the support of the distance model, finally determines the

speaker count. We refer to this application as Crowd++ and

we show the overview of the Crowd++ pipelined approach in

Figure 1.

A. Speech Features and Distance Metrics

Crowd++ learning algorithm is based on a feature vector

composed by pitch and mfcc features, as largely used in

speech processing algorithms. A distance model to quantify the

Digitized

Audio Signal

Framing

Hamming

Windows

Pitch

Estimation

MFCC

Vectors

Speech

Segments

Gender

Identification

Unsupervised

Counting Algorithm

Speech

Features

Speaker

Count

Speech

Detection

Fig. 1. The sequence of operations in Crowd++.

dissimilarity between feature vectors, hence between speakers

is employed. We first introduce a few terms that are essential

to our counting algorithm.

Pitch: In speech, pitch is the relative highness or lowness of

a tone perceived by the ear, which depends on the number of

vibrations per second produced by the vocal cords. We have

two general observations about pitch. First, human pitch is

distinctively different from that of other creatures, or sounds

from objects. Second, male’s pitch is statistically lower than

female’s. As a result, given an audio segment, we can use its

pitch value to tell whether there is any human speech in the

segment, and further, to tell the gender of the speaker.

MFCC: MFCC (Mel Frequency Cepstrum Coefficients) is a

representation of the short-term power spectrum of a sound,

based on a linear cosine transformation of a log power

spectrum on a nonlinear mel scale of frequency, which approx-

imates the sensitivity of the human ear. Thus, it can efficiently

characterize each speaker. Usually, the vector containing the

2nd-13th coefficients is good enough for human voice charac-

terization.

Feature Distance: After obtaining the speech feature vectors,

we need a distance model to quantify the dissimilarity between

the voice-feature vectors. We select the cosine similarity

distance, which is essentially the angle between two vectors

in the geometric hyperplane. With this distance model, we can

get a general idea of the distance distribution of speech vectors

from the same speaker and speech vectors from different

speakers. Such distributions are key to our speaker counting

process.

B. Speaker Counting Process

Here we discuss the speaker counting algorithm. The first

step is to segment the audio recording into n equal length

audio segments. For each segment, we compute its pitch and

MFCC vectors. After detecting whether there is human speech
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in the segment based upon its pitch value, we filter out noises

and only keep those speech segments.

The main idea for speaker counting is to distinguish differ-

ent speakers from the audio segments. Thus, the most critical

part is speaker distinction, i.e., to identify if the two audio

segments come from the same speaker or not. Given two

speech segments, we tell whether they belong to the same

speaker as follows:

• Same Speaker: If the MFCC distance is less than θs and

the pitch infers the same gender.

• Different Speakers: If the MFCC distance is larger than

θd or the pitch infers different genders.

• Uncertainty: otherwise.

The thresholds, θs and θd, are empirically determined in the

calibration phase before we conduct the evaluation. We note

that the optimal threshold values may vary across different

phone models because of different sensitivity levels of mobile

device microphones. The choice of these two thresholds is

driven by the desire to be conservative in the discovery of new

speakers while minimizing the number of false positives. In

our implementation, we first conducted a calibration phase by

collect monologue speech from 10 participants (5 males and

5 females) from different countries with different accents with

difference phone models. Next, we segment the their speech

into smaller segments and compute the MFCC distance values

from the same speaker and different speakers and denote them

as Ds and Dd respectively. Finally, θs and θd are chosen as

the median value from Ds and Dd. During this process, each

phone model collects its audio data and determines its own

optimal values for θs and θd. More detailed information can

be found in [13].

This speaker distinction function is the core of our counting

algorithm, which consists of two steps.

Round One: Forward Clustering. Here we aggregate neigh-

boring segments that produce similar features. More specif-

ically, we merge the neighboring segments if the speaker

distinction function tells that they come from the speaker.

This clustering algorithm scans each segment once resulting

in a linear time complexity. The rationale behind forward

clustering is that there usually exists temporal correlation in

speech – the likelihood of contiguous segments containing the

same voice is high when the segments are short enough. After

running the forward clustering algorithm, we have fewer and

longer segments. We also note that longer segments have better

performance in distinguishing different speakers and further

boosting counting accuracy.

Round Two: Speaker Counting. At this stage, we first label

the first speech segment as the first speaker. Next, we keep

scanning the following segments by applying our speaker

distinction function. If the new speech segment comes from

one or more of the identified voices, we merge it with the most

similar one. On the contrary, we count a new speaker if and

only if it is different from all the identified voices. We discard

the speech segments that are not distinguishable enough, such

as the speech with partial silence, overlap, or unvoiced data.

For more details about the Crowd++ learning algorithm please

refer to [8].

Crowd++ is designed to operate in a fully distributed man-

ner, with the inference being performed by each smartphone

individually. However, a more cooperative approach as in [14]

involving multiple devices at the same time in the inference

process, could also be adopted to further boost the inference

accuracy.

As we discuss in the following section, Crowd++ can be

harnessed in different MCS application scenarios, some of

them being, for instance, the assessment of people’s social

activity level or popularity of a certain place. In the rest of

this section, we discuss three possible Crowd++ applications.

III. CROWD++ APPLICATIONS IN MOBILE CROWD

SENSING

A. Crowd Estimation and Social Hotspots Discovery

We assume that people usually engage in conversations

in social public spaces such as restaurants, pubs, student

center, or meeting rooms. Therefore, we can use Crowd++ to

estimate the number of people talking, and use this information

to assess the “crowded-ness” of these places. As a proof-

of-concept, we have deployed three smartphones running

Crowd++, each in a different conference room at WINLAB,

Rutgers University, to track the occupancy of each room. We

have written a HotRoom smartphone app that samples the room

every 15 minutes by recording the sound in the room for 5

minutes. We continuously ran this app in all three conference

rooms for two weeks.

The three conference rooms at WINLAB are shown in

Figure 4. Two of them are in the main area (Room B and

C), while the third one (Room A) is located in the left wing

of the building that is connected to the main area through a

long hallway. Room C is much larger than Room B, with

the former holding 30 seats while the latter only 6 seats.

The third one, Room A, can hold 8 seats. Usually Room

A and B are more popular than Room C because a large

portion of the meetings are often with only a small number

of participants. This is further confirmed by the occupancy

data of the three conference rooms that are observed Monday

through Friday, as shown in Figure 2 and 3, where we sum

up the inferred speaker count across different workdays from

9 am to 9 pm for two weeks. Among the three conference

rooms, A is the most popular one due to its more private

location. For Room A, we observe two regular patterns: around

10 am, which is the regular meeting time for a WINLAB

spinoff startup, and around 3:30 pm which is when most of

the faculty meet their students. Room B is mostly occupied

in the afternoon. Among the three conference rooms, room

C is the least popular because it is a much larger space,

usually reserved only for big events such as Ph.D. defense.

Nonetheless, in many cases, only one person is inferred even

in Room C. This can be an underestimation of the ground truth

because usually the presenter talks dominantly during his/her

defense.

We also show the heat map of conference room usage

at 3:30 pm on Tuesday of the first week in Figure 4. This

pictorial representation is quite useful and helps people realize

the status of a room when looking for empty spaces. Without
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Fig. 2. Room occupancy at WINLAB during the first week of the Crowd++ deployment.
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Fig. 3. Room occupancy at WINLAB during the second week of the Crowd++ deployment.
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Fig. 4. The hotmap of WINLAB conference usage at 15:30 pm on 2013.11.12. Fig. 5. Our envisioned hotspot map in Rutgers when speaker count
results are obtained from large-scale analysis of crowd audio.

Crowd++ there would be a need to deploy costly and static

sensing infrastructures.

With Crowd++ running at large-scale we could provide

town-wide heat maps of the most popular social places, as

shown in Figure 5. This information could be used, for

example, to augment local search results showing the most

popular bars, restaurants, stores, and venues where people

gather in large groups.

B. Personal Social Diary.

Doctors analyze their patients’ social patterns to predict de-

pression or social isolation and take early actions. Rather than

using ad-hoc hardware [4], which could potentially perturb

the quality of the measurements, Crowd++ can be installed on

the smartphones of people potentially affected by depression

to monitor their social engagement in a more scalable, and

less invasive manner. Crowd++ would operate transparently as

these people go about their daily lives. To this goal, Crowd++

could also be used to build a person’s social diary, inferring

how many people the person talks to and at what time, which

is a useful tool to seniors, Alzheimer patients, and people with

clinic depression.

As a proof-of-concept, we have recruited three participants,

a teacher, a student, and a company employee, to use our

SocialDiary supported by Crowd++ app to record their con-

versations for a week. This app records audio every 2 hours for

8 minutes. We show the log for the student on a weekday and

a weekend in Figure 6. From the social diary, we observe that

the student has very different social patterns on workdays than

weekends: on a typical weekday, she gets up early, attends a
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class with active discussion, attends work meetings with his

advisor in the afternoon, and has lunch and dinner mostly

alone. On weekends, her pattern is flipped: she gets up very

late, has a long brunch with his friends, and dinner with a

family member.

C. Event Engagement Estimation.

Crowd++ can be used to estimate how engaging an event

is, i.e., the level of interaction between speakers. For example,

as a student, you may want to take the class where the

teacher promotes interactions with students during lectures.

This feature could be captured by the number of people who

talk during a lecture. Such a measurement could allow parents

to be aware of their kids’ participation in the classroom as well.

Or, for those attending large public meetings with potentially

multiple working groups. In this scenario, an attendee may

want to join the group with the most active discussions. In

both scenarios, Crowd++ can be used to capture the level of

engagement in the event with interesting social implications.

As a preliminary experiment, we have recorded 2 lectures

and 2 recitation sessions on a university campus and 4 semi-

nars from an industrial working space. Each recording lasts 60

minutes. We segment each audio into six 10-minute segments

and estimate the speaker count in each segment, as well as the

total speaker count for the whole period. We show how the

speaker count varies with time in Figure 7. We observe that

the recitation involves less interaction of all – the instructor

spends most of the time showing how to solve the homework

problems on the blackboard. The regular class has a steady

interaction level throughout the duration, while the seminar

presents more questions at the beginning.

A more comprehensive set of results about Crowd++ per-

formance in different scenarios, including noisy environments

can be found in [8].

IV. ENERGY CONSUMPTION

In order to operate correctly and accurately, ideally

Crowd++ should run continuously on a mobile device. Contin-

uous audio recording and processing, however, would severely

impact the battery performance, and necessary precautions

need to be taken. We adopt a duty-cycling approach to sens-

ing and inference. In our implementation, Crowd++ records
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audio for 5 minutes every 15 minutes. The Crowd++ count

inference is performed upon every recording. We chose the

HTC EVO 4g, Samsung Galaxy S2, S4, Google Nexus 4 and

Motorola Moto X as five different devices to test the battery

duration with these parameters. Our measurements in Figure 8

show that the battery can last more than 24 hours using the

latest smartphone devices. All the measurements are collected

with the WiFi service running in background on the phone

and include both the audio recording and processing. These

battery durations are compatible with the normal usage of a

phone, which is typically recharged at night. We note that

these battery durations are achieved with a fixed duty-cycle,

providing a lower bound on the battery lifetime. Energy boost

could be obtained, for example, by running Crowd++ only in

public places. This policy would serve two purposes: longer

battery life and privacy in private spaces.

V. DISCUSSION

In this section, we discuss the energy optimization, privacy

concern, and feasibility of Crowd++.

A. How can we further conserve energy?

Further conserving energy consumption (beyond fixed duty

cycling) presents unique challenges. Inferring speaker count

is data intensive for both recording and processing. Unlike
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speech recognition and speaker identification in which the re-

quired speech data are relatively short e.g., around 10 seconds,

speaker count can only be extracted from a conversation if we

have at least a few minutes of audio data in order to capture

everyone’s voice. To conserve energy, the ideal policy is to

turn on the microphone when and only when the conversation

takes place, which is hard to implement unless a low-power

secondary mic, like in the Motorola Moto X is available.

Instead, we can explore the following approaches.

Heterogenous Processing: One way to achieve energy ef-

ficiency is through the addition of a hardware dongle that

separates speech detection and audio processing. For example,

SpeakerSense [15] uses an external MSP430 based hardware

dongle to detect speech in a low power mode and wake up the

smartphone “just in time” for audio processing. Another way

is to assign the speech processing task to a dedicated core to

achieve energy efficiency. For example, Moto X is equipped

with such a core in its CPU architecture so that all the speech-

related processing can be done on this core that is optimized

for such tasks.

Context-based Opportunistic Sampling: We can also ex-

plore the possibility of predicting when a conversation takes

place and turn on the speaker counting service accordingly.

Next we explain how this may work using a method driven

by a personal social diary. The main idea is that we can

learn a person’s conversation patterns with respect to various

personal/environmental contexts.

• Proximity Detection. Given that it is safe to assume that

people always carry a smartphone, we can detect phone

proximity through short-range radio analysis techniques

to determine whether two phones are close to each other,

which is an indicator that the people may engage in a

conversation. Proximity may be then used as a soft hint

for Crowd++ to start audio sensing.

• Lightweight Sampling. A more efficient sensing and pro-

cessing duty-cycling technique could be adopted. For

example, the duty-cycle could follow a backoff policy,

where the microphone samples for a small-duration just to

detect voices. If no voice is detected then an exponential

backoff could be applied to the sensing sleeping time.

The backoff is reset when a voice is detected.

• Learning-Based Prediction. We can collect a person’s

conversation log for a period of time, and learn her

conversation pattern. For example, we may be able to

correlate the likelihood of the user to talk to others with

time of the day, calendar events, or certain phone usage

patterns. Crowd++ could again use this as a hint that

could drive smarter duty-cycling policies.

B. Privacy

It is quite natural to raise privacy concerns when doing audio

analysis. These concerns become more serious when the audio

is captured with a smartphone, which is often in private spaces,

e.g., home. With this in mind, we take specific steps to make

sure that users’ privacy is preserved.

Speakers’ identity is never revealed. Crowd++ isn’t able

to associate a voice fingerprint to a specific person and it’s

designed to only infer the number of different speakers in

an anonymized manner. Crowd++ could potentially identify

only the phone’s owner if the algorithm was actively trained

to recognize the owner’s voice. Identification of the owner

may be optionally added to either improve the speaker count

accuracy or used in personal social diary applications.

The audio analysis is always performed locally on devices

in order to avoid sensitive data leaks. The audio is deleted right

after the audio features computation. Should communication

with backend be needed, the servers should be trusted and off-

the-shelf encryption methods for the communications should

be put in place. Only features extracted from the audio, rather

than the raw audio itself, should be sent to the server.

To guarantee the user’s privacy when the data is sent to a

backend server and to prevent attacks that exploit the audio

features to reconstruct the original audio, measures such as

the ones proposed by Liu et al. [16] should be put in place.

In this work, it is shown how to manipulate the MFCC

features to a point that they are still effective for a machine

learning algorithm to infer events while, however, obfuscating

the underlying content of the raw audio.

Finally, by giving users the ability to configure the applica-

tion’s settings, Crowd++ should be allowed to work only in

specific locations – say, in public places. Through geo-fencing

technologies, the application could be automatically activated

and deactivated as directed by the user’s pre-selected policies:

e.g., activate it in the office and in restaurants but not at home.

C. Feasibility of Crowd++

We acknowledge that the performance of Crowd++ is

affected by the smartphone location and surrounding audio

context. For example, the audio quality degrades when the

phones are in pockets or backpacks. Nevertheless, as the

popularity of sensing-equipped mobile devices and wearables,

e.g., smart glasses, watches, bracelets, and rings (Figure 9)

increases, more device can participate in the inference process

offsetting the errors of any individual inference. Moreover,

in a context of pervasive and ubiquitous continuous sensing

enabled by all these devices, we expect a steady growth of

services and applications designed to infer people context and

behavior to augment an add new dimensions to existing social,

medical, and utility applications.

VI. CONCLUSION

In this article, we presented an example of a MCS in-

stance called Crowd++, a scalable, privacy-aware, and energy-

efficient speaker-count application based on audio analysis

from mobile devices’ microphones. In contrast to more com-

plex and less scalable counting techniques, Crowd++ is a

lightweight approach that can support many different appli-

cation scenarios: from social sensing – to determine social

hotspots – to personal wellbeing assessment and social diary

and social engagement, place characterization, and more ac-

curate localization techniques.
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Fig. 9. Feasibility of audio inference.
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