
MobileMiner: Mining Your Frequent Patterns on Your Phone
Vijay Srinivasan

Samsung Research America
v.srinivasan@samsung.com

Saeed Moghaddam
Samsung Research America

s.moghaddam@samsung.com

Abhishek Mukherji
Samsung Research America
a.mukherji@samsung.com

Kiran K. Rachuri
Samsung Research America

k.rachuri@samsung.com

Chenren Xu*
WINLAB, Rutgers University

Emmanuel Munguia Tapia
Samsung Research America

ABSTRACT
Smartphones can collect considerable context data about the
user, ranging from apps used to places visited. Frequent user
patterns discovered from longitudinal, multi-modal context
data could help personalize and improve overall user expe-
rience. Our long term goal is to develop novel middleware
and algorithms to efficiently mine user behavior patterns en-
tirely on the phone by utilizing idle processor cycles. Mining
patterns on the mobile device provides better privacy guaran-
tees to users, and reduces dependency on cloud connectivity.
As an important step in this direction, we develop a novel
general-purpose service called MobileMiner that runs on the
phone and discovers frequent co-occurrence patterns indicat-
ing which context events frequently occur together. Using
longitudinal context data collected from 106 users over 1-3
months, we show that MobileMiner efficiently generates pat-
terns using limited phone resources. Further, we find inter-
esting behavior patterns for individual users and across users,
ranging from calling patterns to place visitation patterns. Fi-
nally, we show how our co-occurrence patterns can be used
by developers to improve the phone UI for launching apps or
calling contacts.
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INTRODUCTION
Smartphones can collect and infer rich contextual data about
users and how they use their phones. Using public APIs and
apps on most smartphone platforms [3, 5, 30], we can eas-
ily log raw contextual data about the user such as her loca-
tion, application usage, online activity, call and SMS behav-
ior, charging behavior, and battery usage. Also, a large vol-
ume of research in the Ubicomp community has been devoted
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Figure 1. Example co-occurrence patterns and their uses.

to using the raw location and physical sensor data to infer and
log higher level user context such as biking or driving [23],
or at a coffee shop [22]. In this work, we focus on the orthog-
onal, but equally important problem of inferring higher level
behavior patterns from a longitudinal log of the raw and in-
ferred context data collected by smartphones.

User behavior patterns can be expressed in a number of dif-
ferent ways [2, 4, 34]. For example, sequence mining al-
gorithms may uncover sequences of user contexts that occur
frequently [34], while statistical correlation functions may
express interesting relationships between numerical context
data such as activity level and sleep quality [13]. Our long-
term vision is to use longitudinal smartphone context to infer
diverse frequent patterns that capture different aspects of the
user’s behavior, and explore the utility of each type of pattern
in improving overall user experience. A key aspect of our vi-
sion is to leverage the computing potential of modern smart-
phones to perform the pattern mining entirely on the device.

Why Mine Co-occurrence Patterns?
In this work, as a first but important step towards our vi-
sion, we present a novel general-purpose service called Mo-
bileMiner that runs on the phone and discovers frequent
co-occurrence patterns indicating which context events fre-
quently occur together. Figure 1 shows illustrative co-
occurrence patterns for an example user. For example, the
first pattern could be expressed in an association rule [2] as
{Morning,Breakfast, AtHome} → {ReadNews}, and



Figure 2. Average smartphone idle time per day for six sample users.

indicates that the user typically reads news apps on the phone
whenever she has breakfast at home in the morning. Such a
pattern could be used preload news content and news apps to
memory ahead of time to reduce loading delays and improve
user experience. Similarly, as seen in Figure 1, we can pro-
vide convenient UI shortcuts to typical user tasks performed
at work in the afternoon, such as calling Alex, or opening a
project folder. Finally, we can even try to expose and alter fre-
quent patterns that are not beneficial to the user; for example,
Figure 1 shows a smart reminder to charge the phone before
the user typically goes to sleep with a half-empty battery. A
key benefit of using association rules is that they can be eas-
ily read and understood by both end users and developers,
and even be used in simple if-this-then-that style [14] mobile
recipes, compared to potentially more accurate but less read-
able classification models.

Why Mine Patterns on the Mobile Device?
Modern smartphones have powerful quad-core proces-
sors [10] and are also typically unused for a majority of time
such as at night when the user is sleeping and the phone is
charging. Compute-intensive pattern mining algorithms may
be run on the phone periodically during this idle time with
little or no impact on the end user. Figure 2 shows the aver-
age idle time per day on weekdays and weekends for 6 users
over 2 months of smartphone usage. We define the phone
to be idle whenever it is charging, there are no foreground
applications, and the battery level is at least 80%. Figure 2
shows that users have between 1-10 hours of idle time each
day, which may be aggregated across multiple days for min-
ing algorithms that do not need to refresh their patterns every
day. In fact, we show later in the paper that multiple instances
of mining algorithms may be run simultaneously on a quad-
core smartphone with little or no impact to user experience,
thus increasing the mining capacity during the idle time. An-
other key reason to run mining algorithms on the phone is to
provide better privacy guarantees to the user by ensuring that
personal context data is not transmitted to the cloud for min-
ing. Our approach is complementary to parallel efforts to im-
prove the privacy guarantees of sharing personal context data
with the cloud [20]. Finally, mining patterns on the device
may also provide benefits to users with lower-end phones in

developing or remote regions, where cloud connectivity and
data plans may be limited or absent.

In this paper, we present four main contributions.

Our first key contribution is the design and implementation of
the MobileMiner pattern mining service. MobileMiner runs
entirely on the phone and mines the user’s co-occurrence pat-
terns using limited phone resources. MobileMiner is extensi-
ble in allowing new context streams to be added, and is easily
configurable to mine patterns at multiple resolutions, such as
discover overall frequent patterns of a user or more detailed
patterns relating to specific context types such as app usage
or calls. As part of MobileMiner, we develop an optimized
weighted mining algorithm that efficiently mines patterns by
leveraging the repetitive nature of mobile context data. Mo-
bileMiner also provides a prediction engine that allows devel-
opers to use the co-occurrence patterns to retrieve predictions
about user context in the near future.

Our second major contribution is the experimental validation
of the feasibility of running the MobileMiner implementa-
tion on a phone using context logs that we collected from 106
users over 1-3 months of data. MobileMiner mines overall
user patterns over 1-3 months of data in 16.5 minutes, con-
sumes 0.01-3% of the phone’s battery charge per day, and is
15 times faster than a highly optimized version of the widely
used Apriori algorithm for association rule mining. Further,
our configurable approach mines detailed behavior patterns
about specific context types such as app usage in 21 seconds.

Thirdly, we analyze patterns from individual users to un-
derstand their utility in multiple use cases, and also ana-
lyze which patterns occur frequently across all our 106 users.
Commonly occurring patterns could be used to uncover and
express common sense knowledge about user context, and
also to improve user experience during the cold start period
when personal behavior patterns are being learned. Further,
we cluster users into groups based on their co-occurrence pat-
terns, and visualize patterns from individual groups to explore
the utility of learning common patterns in groups of users.

Finally, we implement two UI improvements using predic-
tions from MobileMiner. We predict the next outgoing call
or app launch, and provide users with convenient predictive
shortcut icons for the next contacts to be called or the next
apps to be launched. We outperform a majority predictor that
simply uses frequency counts. Further, we allow end users to
configure the number of app or call recommendations, and the
recall-precision tradeoff for predictions based on their indi-
vidual preferences. We conclude with a survey over 42 users
that probes the utility of our app prediction service and the
desired operating points for individual users.

SYSTEM DESIGN
Our MobileMiner service was implemented on the Tizen Mo-
bile platform for smartphones [30]. Tizen is an open and
flexible operating system that is under open source gover-
nance, open to all members who wish to participate, and re-
sides within the Linux Foundation [19]. The Tizen operating
system comes in multiple profiles to serve different industry



requirements: Tizen IVI (in-vehicle infotainment), Tizen Mo-
bile used in smartphones, Tizen TV, and Tizen Wearable used
in Samsung Gear [11].

Figure 3 shows the overview of our MobileMiner sys-
tem architecture. We formulate the co-occurrence pat-
tern mining problem as the well-known association rule
mining problem [2] from market basket data. From
the raw context data on the phone, we extract a se-
quence of timestamped baskets using the base basket ex-
tractor, where each basket indicates which contexts oc-
cur together at a given timestamp; for example, the bas-
ket {AtHome,ReadNews,Morning} could be followed
by {AtHome,Morning, ChargePhone, P layPandora}.
These baskets are input to a base rule miner that outputs fre-
quent co-occurrence patterns expressed as association rules.
Each association rule is of the form A → B, where A and
B are co-occurring sets of context events, and the association
rule indicates that the context events in B are likely to occur
whenever we observe the context events in A. For the associ-
ation rule A→ B, we define A as the antecedent and B as the
consequent. For rule A→ B, we also define two parameters:

• Support: Support represents the fraction of times the con-
text set A,B occurs in input baskets; in other words, the
joint probability P (A,B).

• Confidence: Confidence represents the proportion of times
B co-occurs in the same basket whenever A co-occurs in a
basket; in other words, the conditional probability P (B|A)

We apply a support and confidence threshold for each in-
stance of the rule miner, indicating the minimum support and
confidence of each rule discovered. Reducing the support
results in more patterns but also increases the running time
of the rule mining algorithm. Rule mining algorithms, espe-
cially optimized versions of the Apriori algorithm [8], have
been applied widely to supermarket basket data in order to
discover association rules between different items purchased
in a transaction. However, when Apriori is applied to mo-
bile context data, we observed a high running time spanning
several hours. To address this challenge, we developed a
weighted mining algorithm called WeMiT (Weighted Min-
ing of Temporal Patterns) that leverages the repetitive nature
of mobile context to significantly reduce the running time of
Apriori.

The base pattern miner shown in Figure 3 mines patterns
over a large number of base baskets spanning several months.
Therefore, we use a high support threshold to achieve a fea-
sible running time and discover user patterns over long du-
ration activities such as phone charging or place visitation.
However, if we are interested in patterns about user contexts
that are instantaneous or short-lived, such as launching apps
or making calls, we need to use a low support threshold over a
large number of base baskets, resulting in an unfeasibly high
running time. To address this challenge, using APIs exposed
by MobileMiner, we use an app usage filter to retrieve rele-
vant baskets of interest, such as only baskets containing app
launching context. We then mine rules specific to app usage
as shown in the app rule miner in Figure 3. Similar filters
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Figure 3. MobileMiner system architecture.

and rule miners may be instantiated for other contexts such as
outgoing calls or online activity.

External client applications use our pattern retriever compo-
nent to not only retrieve overall and detailed patterns, but also
retrieve predictions about contexts in the near future based
on the MobileMiner prediction engine. In the rest of this
section, we elaborate in more detail about the basket extrac-
tion and filtering component, the rule mining algorithm, and
the prediction engine used to predict future contexts based on
co-occurrence patterns. In our current implementation, client
applications use our miner scheduler to periodically schedule
the mining algorithm whenever the phone is idle.

Basket Extraction and Filtering
We first extract co-occurrence baskets from the diverse con-
text data streams input to the co-occurrence engine. As the
frequent pattern mining algorithm works on categorical data,
we discretize continuous context data to a set of small dis-
crete values; for example, location is discretized into major
location categories such as home, work, and outside, and bat-
tery levels to 10 equal-sized bins from 0-100.

Base Basket Extraction: The basket extraction process is
illustrated in Figure 4 using a simple example. Each
context data stream is composed of a sequence of inter-
val events with a categorical context item. The basket
extractor module creates a sequence of timestamped con-
text baskets based on temporal overlap between the inter-
val events. Each context basket consists of a set of con-
text names that occur together at a given timestamp. In
Figure 4, we show some sample time instants indicated
by the vertical dashed lines and the corresponding con-
text baskets created below for each time instant. We see
that {Morning,AtHome,ListenToJazz,ReadComics}
is recorded as a context basket denoting that when the user
was at home on a Monday morning, she listened to jazz mu-
sic on her phone while reading comics. During the extrac-
tion process, we add additional derived items such as day of
week, time of day at hour granularity, and time of day at a
higher granularity such as morning or evening. The goal is to
generate generalized rules where possible, as a set of events



Figure 4. Compressed Basket Extraction.

may not necessarily co-occur at the same exact hour of day,
but may frequently co-occur in the morning or on weekdays.

The default sampling interval used to create the item-
sets (distance between dashed black lines in Figure 4)
is 30 seconds. Due to the repetitive nature of con-
text data, we observe that basket extraction leads to
several duplicate baskets. For example, if the sam-
pling interval is 30 seconds, and the set of items
{Morning,AtHome,ListenToJazz,ReadComics} hap-
pens for 100 minutes over 3 months, then there will be 200
such context baskets. Instead of repeating the baskets, we
compress each basket into a compressed or weighted basket
and associate a weight with each compressed basket, indicat-
ing the number of times it repeats. Examples of compressed
baskets are shown in Figure 4. These weighted baskets are
used by our WeMiT algorithm to achieve a faster execution
time compared to the widely used Apriori algorithm. Also,
our basket extractor is configurable to compute baskets over
larger sampling intervals of 30 minutes to 3 hours, enabling us
to extract baskets with co-occurring context events separated
by longer time durations; for example, an SMS to contact1
occurs within 10 minutes of a phone call to contact2. De-
tailed analysis of the utility of patterns retrieved using longer
sampling intervals is deferred for future work.

Basket Filtering: Using the basket filtering component, we
allow developers to filter baskets of interest to their applica-
tion domain. As mentioned above, the filtering step is used
to improve the efficiency of the rule mining algorithm when
discovering detailed rules about specific context types such as
app launches. Developers specify the set of baskets they are
interested in using a boolean expression over context items.
For example, developers may retrieve only baskets relating
to app usage as shown by the app usage filter in Figure 3, or
specify a complex boolean expression such as all baskets with
no foreground application, battery level greater than 80%, and
phone charging. We also provide utility functions in the bas-
ket filtering component, including functions for adding new
last context features to baskets such as the last app used or the
last contact called. We found these features to be especially
useful in improving the accuracy of call or app predictions
using MobileMiner patterns. In general, mining rules over a
filtered subset of baskets is faster compared to mining rules

from the complete base baskets. Also, rules mined from the
filtered baskets are free of the noise from the rest of the data.

Weighted Rule Mining
The weighted rule mining algorithm accepts as input
weighted context baskets and outputs association rules of
the form A → B. The rule miner first generates fre-
quent itemsets of all sizes, indicating which sets of con-
text events frequently occur together. An itemset is de-
fined as frequent if it occurs at least as many times as
the support threshold defined earlier. An example fre-
quent itemset is: {AtHome,UsingWiFi,Between10 −
11pm,ChargingPhone}. From the frequent itemset, all
possible combinations of association rules of the form
A → B are generated, as long as the rule’s confi-
dence exceeds the confidence threshold defined earlier. An
example association rule generated from the above fre-
quent itemset is: {AtHome,UsingWiFi, 10 − 11pm} →
{ChargingPhone}; this rule could help predict if the user
is likely to charge the phone given the current context. A key
challenge in association rule mining is to efficiently discover
the frequent itemsets; from the frequent itemsets, we found it
computationally inexpensive to evaluate all possible associa-
tion rules with a limited number of consequents.

Formally, let I = {i1, i2, , in} be a set of context items, such
as At Work or Monday. Let B = {b1, b2, , bn} denote the
context baskets generated using the basket extractor, such
as {AtHome,Morning,Monday}. Given B, the goal of
frequent itemset mining is to discover all subsets of context
items I co-occurring more than a threshold number of times
denoted by the support threshold; the resulting subsets of I
are called frequent itemsets. Using a lower support value in-
creases the running time of the mining algorithm and gener-
ates a higher number of frequent itemsets.

Apriori Algorithm: We first evaluate an optimized version of
the Apriori algorithm [2] for frequent itemset mining. The
Apriori algorithm is a ”bottom up” mining approach that first
generates frequent itemsets Fn of size n (initialized to 1) and
then repeatedly generates itemsets Fn+1 of size n+ 1 by us-
ing the downward closure property of support which states
that all subsets of a frequent itemset are also frequent. To
evaluate if a candidate itemset is frequent, we make one pass
through the entire set of baskets B to check if its frequency
exceeds the support threshold. A naive implementation of the
Apriori algorithm evaluates |Ifreq|.|Fn| candidate itemsets at
each (n + 1)th iteration of the algorithm, where Ifreq de-
notes the set of singleton frequent itemsets. In our optimized
version, for each candidate itemset X in the (n + 1)th itera-
tion of the algorithm, we check if each subset of X of size n
is already a frequent itemset generated in the previous itera-
tion. If there is at least one subset that is not frequent, can-
didate itemset X is pruned; thus, we avoid the need to make
a single pass through the entire basket set B for the pruned
itemsets, reducing running time significantly. However, the
optimized Apriori algorithm still requires several hours when
mining longitudinal baskets over several months, thus moti-
vating the need for more efficient mining algorithms suitable
for a smartphone.



Figure 5. Distribution of basket frequencies for a sample user.

WeMiT Algorithm: In typical itemset mining problems such
as supermarket basket mining, the input co-occurrence item-
sets are slightly different; for example, the chances of buying
exactly the same items at the same time and location are low.
However, as Figure 5 shows for a sample user, many mobile
context baskets are repeated exactly due to the slow changing
nature of user context and activities; only 2% of itemsets are
unique and 61% of itemsets occur more than 100 times.

On average, we observed a 92.5% decrease in the number of
the compressed weighted baskets compared to the number of
uncompressed baskets extracted in the base basket extractor;
we leverage this by using only the weighted baskets as input
for WeMiT. Since the weighted baskets are smaller, the run-
ning time of frequent itemset mining, which requires several
passes through all the baskets to evaluate candidate itemsets,
is greatly reduced. In particular we use the weighted baskets
B = {bw1

1 , bw2
2 , , bwn

n }, where wk is the weight of basket bk,
and modify the definition of support of an itemset X in the
weighted baskets B to be:

∑n
i=1 contain(b

wi
i , X).wi , where

contain(p, q) = {1 if q ⊆ p | 0 otherwise }. The downward
closure property of support used in Apriori is true for the new
definition of weighted support as well. We implement the
WeMiT algorithm on Tizen phones and show that WeMiT re-
duces the running time of our optimized Apriori algorithm by
15 times on average.

Context Prediction
The co-occurrence patterns generated by the MobileMiner al-
gorithm may be used to predict future context events, such as
the next app used or the next contact called. While there is
a large body of work on using association rules for classifi-
cation and prediction [33, 17], we implement a practical pre-
diction algorithm that is designed to return prediction results
within a second on resource-constrained smartphones.

Figure 6 shows how context prediction is performed using
co-occurrence patterns. The prediction engine is input the
current context (say {Morning,AtWork}) and also the tar-
get context to be predicted such as the next app used or
next contact called. Given this input, we search the asso-
ciation rules generated by MobileMiner to find rules where
the antecedents are a subset of the current context and the
consequent matches the target context category; an example
matching rule is: {Morning} → {UseGmail} with confi-
dence 0.9. We return a list of predictions based on the mul-
tiple contexts found in the consequents of matching associ-

Prediction 
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MobileMiner 

Patterns

Current 

Context

Ranked 

Context 

Predictions

Figure 6. Context prediction using co-occurrence patterns.

ation rules. For example, if we find another matching rule
{AtWork,Morning} → {UseOutlook} with confidence
0.9, we return both the Gmail and Outlook app predictions.
We rank the predicted contexts based on the decreasing or-
der of confidence values for each unique prediction, where
the confidence value for a prediction is computed as the max-
imum confidence value among all matching rules found for
that prediction. For example, the confidence value for the
Gmail prediction would be 0.9 even if there is another rule
{AtWork} → {UseGmail} with confidence 0.8. When the
confidence values for two different predictions match, we fa-
vor rules with a higher intersection of context items between
the rule antecedent and the current context; in our simple ex-
ample above, we favor the Outlook app over the Gmail app
prediction, since the matching association rule for Outlook
has two antecedents in common with the current context, as
opposed to one for Gmail.

EVALUATION

Context Data Collection
To evaluate our MobileMiner service, we collect mobile con-
text data from 106 participants recruited. We develop an
Android application called EasyTrack using the Funf sens-
ing library [3] to collect anonymized and encrypted context
data. We used commercial crowd-sourcing platforms to re-
cruit users for our data collection [31]; we had healthy mix
of gender and occupation over our 106 participants. On av-
erage, for each user, we observed 440 unique context events,
including apps used, contacts called, or locations visited. For
evaluation purposes, we included the following timestamped
context events: (1) call events including call type (incoming,
outgoing, missed, voice mail), duration, and number, (2) SMS
events including SMS type and number, (3) inferred place
identifiers of home, work and outside, (4) location cluster la-
bel for the current location obtained using a simple location
clustering algorithm, (5) phone charging status, (6) battery
levels, (7) foreground app usage events, (8) WiFi or cell con-
nectivity, (9) cell ID of the current location, (10) binary move-
ment status of the user.

While our entire data collection effort lasted more than 6
months, we observed that some users were more active in the
data collection, while other users participated only for a few
days before disabling or uninstalling the application. In Fig-
ure 7, we show the distribution of the number of full days of
data without any data loss that we effectively collected from
our 106 users. At least 40 users collected more than 40 days
of full data, while around 25 users only collected 21-40 days
of data.
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System Performance
We measure the performance of our MobileMiner system on
a Tizen phone with the equivalent hardware configuration of
the Samsung galaxy S3. Our goal was to answer the three
main questions explained below in detail.

Is it feasible to run MobileMiner components on the phone?
To answer this question, we measure the running time, CPU
utilization, and memory consumption of individual MobileM-
iner components for a representative subset of 28 users from
our full set of 106 users with 2-3 months of context data. Fig-
ure 8 shows the results for four important MobileMiner func-
tions: (1) the base basket extraction, (2) the base rule mining
used to mine overall patterns of users, (3) the basket filtering
for an example application of app usage pattern mining, and
(4) the rule mining of app usage patterns. We used a relative
support threshold of 1% of all base baskets for base rule min-
ing, and an absolute support threshold of 20 occurrences for
the app usage rule mining.

We observe that base basket extraction takes less than 2 sec-
onds to process one day of context data; this is because the
extraction process is incremental and needs to access only
the past day’s data. We observe on average that compression
reduces the number of baskets by 92.5%, which improves
the running time of our WeMiT algorithm compared to the
widely used Apriori algorithm. The base rule mining is the
most time consuming of our components, and requires 16.5
minutes on the phone to mine base patterns over 2-3 months
of data. However, given our observations about the idle time
on smartphones from Figure 2, users can easily accommo-
date 17 minutes of phone resources for mining once every
2-3 days. The memory consumption of rule mining is moder-
ately high, but still acceptable since it is run when the phone
is idle and there are no foreground applications. We observe
more than 46000 rules generated by the rule miner. Our pat-
tern retriever APIs allow developers and end users to retrieve
much smaller sets of patterns based on their domain of inter-
est, confidence and support threshold. Also, our prediction
engine automatically combines information from all gener-
ated rules to provide an accurate prediction of future context.

From Figure 8, we also observe that the filtering of app us-
age baskets takes less than 2 seconds per day, and the total
time required to mine fine-grained user patterns about app
usage is only 21.2 seconds. Thus, rule mining on filtered sub-
sets of baskets is an efficient approach for developers to mine

Figure 8. MobileMiner Performance.

Figure 9. Comparison of WeMit performance with Apriori.

patterns based on their domain of interest. Since the app us-
age baskets are instantaneous events, we observe only a 55%
compression in the number of baskets; however, given the
small number of uncompressed app usage baskets, the run-
ning time of app rule mining remains low.

Also, we observe from Figure 8 that the CPU utilization of
MobileMiner components is less than 25%. Based on em-
pirical experiments, we were able to simultaneously execute
3 instances of MobileMiner on our smartphone device with
no perceptible reduction in frames per second for a popular
image processing app. This shows that instances of mining
algorithms operating on different context domains such app
usage or outgoing calls could be run simultaneously during
the phone’s idle time to increase the mining capacity.

Finally, in Figure 8, we report the energy consumed per day
by MobileMiner as a percentage of the Galaxy S3’s full bat-
tery charge (7.98Wh), assuming we perform the mining once
per week. We use the Monsoon power meter [24] to measure
the power consumption of each component across five sam-
ple users. If we run the mining once per week, discovering
base and app usage rules consumes 0.45% and 0.01% respec-
tively. Even if we run the mining once per day, discovering
base and app usage rules consumes only 3.09% and 0.05%
respectively. For the majority of users, the effective power
consumption of mining could be zero or negligible, since the
mining is performed during the surplus time when the phone
is plugged in and fully charged. Since we are interested in
long-term patterns, we envisage running the co-occurrence
engine only infrequently, such as once per day or week. In
the future, we propose to estimate the appropriate frequency
of mining based on the rate of change of user patterns and the
application needs.

How does WeMiT compare to Apriori?
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Figure 10. Co-occurrence patterns for sample user 38. We show the confidence of each rule in the matrix visualization.

We evaluate the impact of using compressed baskets and our
weighted mining algorithm on the performance of base rule
mining. Since the running time of Apriori is of the order of
several hours for some users, we restrict ourselves to a subset
of 13 users to compare Apriori with WeMiT. Figure 9 shows
the results of our running time comparison for support values
ranging from 1% to 7%. For lower support values, which is of
higher interest to uncover patterns about important short dura-
tion activities such as walking or exercising, we observe that
WeMiT is 15 times faster than the Apriori algorithm. For this
subset of users, Apriori requires a running time of 20 minutes
on the phone, while WeMiT discovers the same patterns in
78.5 seconds. Thus, we observe that compressing and using
the weighted baskets for mining mobile context data signifi-
cantly reduces the running time of pattern mining.

Patterns Generated
We visualize sample co-occurrence patterns generated from
our context logs over 106 users with the goal of answering
the two main questions below.

What are some sample patterns and how do we use them?
We visualize a small subset of association rules generated for
a sample user to analyze the patterns generated by MobileM-
iner. Figure 10 shows sample patterns generated for user 38
from our dataset of 106 users. Figure 10a shows base pat-
terns mined by the base pattern miner, and Figure 10b shows
detailed patterns about outgoing calls made by the user. Each
row of the matrix visualized in Figure 10 represents an as-
sociation rule. The row name corresponds to the consequent
of the rule, while the column names correspond to the an-
tecedents of the rule. For each row, we color a cell only if the
association rule contains the antecedent specified in the col-
umn and the consequent specified in the row. Cells are color
coded based on the confidence value expressed in percentage
as shown in Figure 10c.

Figure 10a shows base patterns for user 38 for long dura-
tion contexts such as Wi-Fi connectivity or home occupancy.
Due to space constraints, we display only one sample pattern
per consequent for this visualization and limit ourselves to 10
rules. We use a support threshold of 1% to generate these pat-
terns. While there may be several rules for WiFi connectivity
for user 38, the first row shows a sample rule which indicates

WiFi connectivity whenever she is at home in the morning
in cell ID C4. However, from row 5, we see that when she
is in the same cell ID C4 but outside her home and charging
her phone, she is connected to a cell network and not WiFi.
Similarly, row 2 shows that she is at home whenever she is in
cell ID C4 in the morning, and her phone is plugged in and
fully charged. Such patterns can be used in several applica-
tions including: (1) preloading data intensive content when
she expects to have only cell connectivity in the near future,
(2) sensing expensive contexts such as place identifiers using
cheaper attributes such as charging status and battery levels,
and (3)providing reminders to set a low power mode or charge
the phone based on typical charging and discharging patterns.

Figure 10b shows the outgoing call patterns for user 38,
which could be used to provide shortcut icons for the next
contact likely to be called. From Figure 10b, we see that user
38 calls user A and user E again after calling them last. Also,
user 38 calls user A on weekends when connected to a cell
network, while she calls user B on weekdays when connected
to Wi-Fi at home. In the next section, we will show how
we use co-occurrence patterns to predict the next outgoing
call and improve upon the common approach of showing fre-
quently called contacts in popular phone platforms [5, 15].

What are some common patterns across multiple users?
We analyze commonly occurring co-occurrence patterns
across multiple users, and how we can potentially use them.
Figure 11 shows common co-occurrence patterns across mul-
tiple users using the same matrix visualization in Figure 10
as above; however, the main difference is that in Figure 11, in
each cell, rather than the confidence, we show the percentage
of users the pattern occurs in, either among all users (Fig-
ure 11a), or among smaller groups of users with very similar
co-occurrence patterns (Figures 11b and 11c). We only show
patterns that have at least 80% confidence 1% support.

Figure 11a shows the most common patterns across all our
106 users. The most frequent pattern occurring in 84% of
106 users is a common sense pattern that indicates the phone
is discharging if the phone battery level is high in the morn-
ing, as the user wakes up, unplugs the phone and begins to
use it. Another common pattern is that the user is typically
outside of home and work when connected to a cell network.
Such common patterns could be used to bootstrap an initial



(a) All users. (b) Sample group 1. (c) Sample group 2.

Figure 11. Common rules across multiple users. For each rule, we show the percentage of users the rule occurs in, either among all users (Figure 11a),
or among smaller groups of users with very similar co-occurrence patterns (Figures 11b and 11c).

set of patterns while MobileMiner slowly learns personal co-
occurrence patterns over time. Common patterns could be
a useful way to express and use common sense knowledge
about user context from a particular community of users, such
as office goers or students.

Additionally, we cluster users using the k-means clustering
algorithm [12] based on the number of common patterns be-
tween any pair of users. Figures 11b and 11c show the com-
mon co-occurrence patterns for two groups of users from this
clustering; we show the percentages of users each pattern oc-
curs in among users in each group. We see that all group
1 users are stationary when connected to a cell network on
weekend nights while all group 2 users are stationary when at
home and connected to Wi-Fi. Group 1 users are usually out-
side when connected to a cell network in the evening, while
group 2 users are usually at home when connected to Wi-Fi
on weekday nights. In the future, we will explore how these
group patterns could be used for group activity scheduling, or
extrapolating patterns from a group to an individual to enable
recommendation services.

EXAMPLE USE CASES: APP AND CALL PREDICTION
We use the co-occurrence patterns and the prediction engine
of our MobileMiner service to implement two example use
cases. We predict the next contact called or the next app
launched by the user and provide convenient UI shortcuts
for likely user actions. The main benefit of such a service
is to lessen the burden of searching for the contact or app on
the phone. Figure 12 shows two screenshots of our app rec-
ommendation service implemented on Tizen. We display the
recommended apps as shortcuts in the quick panel. We allow
users to set the number of shortcut icons they would like to
receive. As seen in Figure 12, a useful feature of our system
is that we actually show users the pattern that was used to rec-
ommend each app, since co-occurrence patterns are human-
readable; such a feature could be very helpful for users in un-
derstanding and debugging our app recommendation service.
To evaluate the accuracy of app and call predictions, we use
two standard evaluation metrics from the classification and
prediction literature:

• Recall is the proportion of app launches or outgoing calls
for which we show recommendations to the user

• Precision is the proportion of times the user uses one of
our shortcut icons to complete his task

Typically, higher recall results in a lower precision and vice
versa. In our system, we use a threshold on the confidence
of the highest ranked prediction to decide whether or not to
show recommendations to the user. Using a lower confidence
threshold results in higher recall, and using a higher confi-
dence threshold results in a lower recall and higher preci-
sion. Further, we allow users to configure the recall-precision
tradeoff based on their individual preferences. Given the
above experimental setup, we answer two main questions
with our evaluation.

What is the Recall-precision Tradeoff of Our Predictions?
To evaluate the recall-precision tradeoff our services, we re-
play our MobileMiner algorithm on the longitudinal trace
of app launch and outgoing call data with increasing con-
fidence thresholds. Figures 13a shows the recall-precision
tradeoff for app recommendations for 1,3,5, and 7 shortcut
icons shown to the end user. We also compare our prediction
approach against a majority predictor that predicts the most
frequently launched apps, as used in commercial phone plat-
forms [5, 15]. Figure 13a shows the app prediction results
over all 106 users, while 13c shows the call prediction results
over a smaller subset of 25 users with 1,3, and 5 shortcut icons
for contacts; we limited our evaluation for call prediction be-
cause we eliminated a large number of users who had very
limited call logs.

Figures 13a and 13c show that prediction based on co-
occurrence pattern outperforms the majority classifier based
on the metric of area under the recall-precision curve. When
making predictions up to 50% of the time, in general, we
achieve a 89-184% improvement in precision over the ma-
jority predictor in correctly predicting the next app launched
or next contact launched. As will be discussed in Table 1 for
app recommendations, users can select the operating point of
interest to them on the recall-precision curve; some users pre-
fer 90% precision with 3 app recommendations and a recall
of 35%, while other users prefer a precision of 80% with 5
app recommendations and a recall of 68%.

Comparing figures 13a and 13c, we find that the prediction
accuracy of both the majority and MobileMiner predictors



Figure 12. App recommendation service with shortcut icons. For each
app, we show the reason why it was displayed based on the matching
co-occurrence pattern.

is lower for call recommendations compared to app recom-
mendations. The reason might be due to the smaller amount
of call log data from which to learn co-occurrence patterns,
while another reason could be that users have less predictable
calling patterns compared to app usage patterns. Further ex-
ploration of this reason, and potential new basket features to
improve call prediction accuracy is deferred for future work.

How do we choose the support value for mining patterns? An
important challenge in rule mining approaches is to choose
the appropriate support threshold to discover patterns. In Fig-
ure 13b, we show the effect of the absolute support threshold
on the accuracy of MobileMiner app predictions for 3 app
recommendations. On average, we see a 4-5% improvement
in precision as the support decreases from 20 to 5. Thus, min-
ing patterns that occur even only 5 times could be potentially
useful in improving prediction accuracy. The average running
time for MobileMiner for support values of 20, 15, 10, and 5
are 12.4, 37.1, 174.8, and 2218.2 seconds respectively. De-
velopers can use both the recall-precision curves and the exe-
cution time of the miner to determine the appropriate support
threshold for their use case. For example, a developer may
choose a support value of 10 to achieve reasonable prediction
accuracy without incurring considerable phone resources.

What do Users Think of Our App Prediction Service?
We conducted a user survey with 42 participants using an on-
line survey tool [29] to collect feedback from real, external
users not involved in the research effort about the usefulness
of our app recommendation service and the performance ex-
pectations of users. We recruited a subset of 42 users from the
106 users used in our performance evaluation to answer this
survey. One limitation of our survey is that the respondents
did not actually use our app recommendation service, since
it was implemented on Tizen phones that were not commer-
cially available at the time the survey was conducted. In the
future, we plan to deploy our app recommendation service
in-situ over a large number of users to collect their real-time
feedback in using our service, by porting our Tizen MobileM-
iner implementation to Android. Respondents answered the
survey based on a clear explanation of our app recommen-
dation service with screenshots of the app showing multi-
ple recommendations. In the survey, we used the following

Table 1. Responses to the question: Based on the data collected, which of
the following configurations would you prefer with regards to precision,
number of recommendations, and recall?

Precision No. of Recall Responses
recommendations

90% 3 35% 30.95%
80% 3 51% 16.67%
80% 5 68% 23.81%
80% 7 80% 11.90%
75% 3 66% 4.76%
75% 5 87% 11.9%
75% 7 100% 19.05%

simplified explanations of recall and precision to ask about
user preferences on the recall-precision tradeoff: (a) Recall
was defined as: recommendation frequency - percentage of
times that the service recommends apps to you, and (b) preci-
sion was defined as: accuracy - Percentage of times that you
select one of the service’s recommended apps.

Below we present the questions and results of our user sur-
vey. Overall, we found that users would respond positively to
our app recommendation service. Further, we found that each
user had different preferences for the recall-precision tradeoff
and the number of app recommendations, which further sup-
ports our configurable approach of allowing users to choose
the confidence level of each prediction.

How often will users use our app recommendation service?
57% of users said that they will use the service regularly.
42% felt that they will use the service sometimes, and all the
respondents said that the service is useful.

Where should the shortcut icons be placed? 40% of users
prefer to see the icons on their phones’ lock screen, 26% on
their phones’ quick panel, and 33% prefer them in the main
tool bar at the bottom of the home screen.

How many shortcut icons should be displayed? 71% of the
survey respondents prefer to receive 4 to 6 icons, whereas
26% of the respondents would like to receive 1 to 3 icons.
Very few of them prefer more than 6 predictive icons.

Will users prefer a recall less than 100% for improved pre-
cision? 54% of users prefer higher precision with recall less
than 100%. 9% of users would prefer to always receive the
recommendations and 35% said that either case (i.e., always
showing recommendations or only when the confidence is
high) would be acceptable.

What is recall-precision tradeoff preferred by users? Based
on our recall-precision tradeoff plots in Figure 13a, we asked
users about their preferred operating points. We observed a
considerable variation among the responses regarding user
preferences for precision, number of recommendations, and
recall. The results are summarized in Table 1. Thus, our ap-
proach of allowing users to configure this tradeoff based on
their individual preferences could be valuable.

RELATED WORK
Association rule and frequent itemset mining has been recog-
nized as an increasingly critical technology for data-intensive
decision-making [1, 2, 12]. Most works have focused on im-
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Figure 13. Recall-precision tradeoff for app and call prediction using co-occurrence patterns. Prediction using co-occurrence patterns significantly
outperforms a majority predictor (Figures 13a and 13c). Decreasing support shows a marginal improvement in app prediction accuracy (Figure 13b).

proving the efficiency of mining algorithms [1, 2] for large
scale data in the cloud or desktop environments. Yet, the us-
ability of such algorithms on mobile devices remains ques-
tionable due to the high computational complexity and the
need to transmit personal data to the cloud. In this work, we
focus on this relatively unexplored problem of on-device min-
ing of co-occurrence patterns over users mobile context data.

Context-aware computation on mobile devices has gained a
lot of interest recently. Particularly, energy-efficient tech-
niques for inferring a user’s activities [16], locations [6, 18,
21], and proximity to others [7] have been proposed. How-
ever, only a few existing works have explored using longi-
tudinal context data for mining typical user behaviors; an ex-
ample is the ACE system (Acquisitional Context Engine) [25]
that mines co-occurrence patterns among context events, and
exploits the patterns to speculatively sense the users context
in an energy-efficient manner, which could be another appli-
cation of MobileMiner. However, unlike our work, ACE does
not develop an optimized version of the rule mining algorithm
that is run on the phone; instead, ACE pushes all context
data to a remote server where the pattern mining takes several
hours to complete, resulting in privacy, data cost, and latency
concerns.

Some approaches use specialized predictive classifiers and
other targeted approaches [27, 35, 26, 32] for phone opti-
mizations such as app launching or app preloading. Com-
pared to such an approach, our MobileMiner approach has
several advantages. First, our approach is more generaliz-
able: using the same set of patterns generated, we can predict
the next app launched, the next contact called, the next web
page visited, or even the next action within an app. Further,
our approach provides more configurability by allowing users
to trade off prediction accuracy with prediction selectivity by
varying the confidence threshold. Also, since our patterns are
exhaustive and include all possible subsets of antecedents, our
system can gracefully make predictions with lower accuracy
even with missing context events. Finally, our co-occurrence
patterns are more readable and directly usable by end users in
mobile recipes [14], compared to potentially more accurate
but less readable classifiers.

A preliminary version [28] of our work proposing the basic
idea of on-device mining of mobile user patterns has been
presented as a poster, without presenting details about the de-
tailed system design, evaluation, the patterns generated, and
the use cases of app and call prediction.

CONCLUSIONS
In this paper, we presented the novel MobileMiner system
for mining frequent co-occurrence patterns on the phone in-
dicating which context events frequently occur together. Us-
ing longitudinal context data collected from 106 users over
1-3 months, we showed that MobileMiner efficiently gener-
ates patterns using limited phone resources, achieving a per-
formance improvement of 15 times over the Apriori mining
algorithm, and generating overall frequent patterns in 16 min-
utes and detailed app usage patterns in 21 seconds. We found
interesting behavior patterns for individual users and across
users, ranging from calling patterns to place visitation pat-
terns. Finally, we showed how our co-occurrence patterns can
be used to improve the phone UI for launching apps or calling
contacts, by predicting the next app or contact invoked based
on MobileMiner patterns; we concluded with a user survey
that showed the promise of our app prediction service.

In the future, we propose to explore several research di-
rections to improve MobileMiner. We plan to explore co-
occurrence patterns of events over longer time durations of
the order of hours or days. To improve efficiency, we propose
to evaluate approximate, incremental rule mining algorithms
[9]. We plan to to systematically determine the correct fre-
quency of running the mining algorithms based on the rate
of change of user patterns and the application needs. In the
future, we also plan to perform a comparison of our context
prediction approach with more widely used classifier-based
approaches, from the standpoints of accuracy, efficiency, us-
ability, and ability to trade off recall-precision. Finally, we
are interested in extending our work to other types of patterns
such as sequential or correlation patterns to improve the po-
tential benefits for end users.
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