
It’s Tea Time: Do You Know Where Your Mug Is?

Robert S. Moore∗

romoore@cs.rutgers.edu
Bernhard Firner†

bfirner@winlab.rutgers.edu
Chenren Xu†

lendlice@winlab.rutgers.edu

Richard Howard†

reh@winlab.rutgers.edu
Richard P. Martin∗

rmartin@cs.rutgers.edu
Yanyong Zhang†

yyzhang@winlab.rutgers.edu
∗Computer Science Dept, Rutgers University, Piscataway, NJ, USA

†WINLAB, Rutgers University, North Brunswick, NJ, USA

ABSTRACT
The transition to Internet of Things depends on the ability to create
small, simple applications that are easily written and can be flexibly
combined into larger, more powerful systems. We have designed an
infrastructure to meet this need and report on a year’s experience
expanding and using it in an open-plan academic office space with
up to a hundred sensors enabling nearly a dozen applications rang-
ing from announcing tea time in the break room, notifying users
that the conference room is in use, to printing documents from a
web-based map. Applications are simple to write, modular, easily
reused, and can incorporate diverse data inputs in a heterogeneous
sensing environment. We discuss our efforts to incrementally im-
prove user interfaces and system management.

Keywords
Smart Building, Modularity, Reusability.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems.

General Terms
Design, Experimentation

1. INTRODUCTION
It’s lunchtime so Bob walks to the other side of the building to

heat his casserole in the communal kitchen. There is already a line
in front of the microwave but it would be a waste of time to walk
back to his office so Bob just waits outside the kitchen. Alice walks
into the kitchen, looks at the busy microwave, and joins Bob.

“I wish I knew when the microwave was busy so I didn’t have
to spend so much time waiting in line,” says Alice. Bob nods in
agreement and looks at the coffee pot. “Do you know how old that
coffee is?" Alice shrugs.

Bob dumps out the coffee and starts a fresh brew. “You know,
we work in a technology lab, there should be a way we can monitor
these things remotely.” Alice pulls out her smartphone and starts its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to poston servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotPlanet’13,August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2177-8/13/08 ...$15.00.

web browser. After a brief search she replies, “Some hackers have
made internet coffee machines, but there’s nothing on Amazon.”

The microwave is finally free so Bob starts warming his food.
“How about a smart microwave?” Alice shakes her head. “Maybe
we could build one.”

Eve walks into the kitchen, searching for something. “Hey, have
you seen the duct tape?” Alice and Bob shake their heads. Eve
storms out, griping “If only we had a Marauder’s Map, I’d hack it
to track that roll of tape instead of people.”

Alice and Bob exchange a knowing glance. They know what they
need to build, but how can they make such a platform for their per-
sonal application needs from scratch?

Vision of Internet of Things
Mark Weiser proposed connecting network devices to enhance build-
ing computing systems when before in-home networking was common-
place [5]. As networking devices became more commonplace, Ger-
shenfeld et al. proposed that increasing presence of individually
networked devices would lead to anInternet of Things(IoT) where
data from common objects in the home and office would always be
available [2].

The Internet of Things Quest
To build an IoT platform, ideally we would have a system or mid-
dleware that software and hardware modules could “plug into” with
little effort [1]. This would allow us to start with a small test sys-
tem, for instance it could be a single sensor on the coffee pot and
a small amount of code that tells Alice and Bob when coffee is
brewed. The system should be flexible enough that when a power
sensor is brought to monitor the microwave, it could be added into
the system easily. The system must also be flexible enough to add
new information, such as real-time location information for a Ma-
rauder’s Map [6].

The key feature we explore in this work is the concept of organic
growth applied to IoT systems. The research challenge arises be-
cause it is impossible to predict what applications people will want,
and thus what sensing will be needed. In this paper we describe
our experiences incrementally deploying and organically expand-
ing our IoT system.

The rest of the paper is organized as follows. In Section2 we
outline our approach to building an IoT system. In Section3 we
detail our first steps toward building the system. In Section4 we
summarize the various components that have expanded the capa-
bilities of the system over the past year. Finally, in Section7 we
summarize our work and describe our next steps.

2. DESIGN GOALS
We begin our discussion of the system’s design goals by outlin-

ing a few basic characteristics that are desirable, practicable, and
useful in an IoT system.

• Simplicity The system should make the fewest assumptions
possible. Namely concerning hardware capabilities, data con-
straints, and application goals.

• Modularity Components should be clearly defined and sep-
arated from each other. Vertically-integrated solutions rarely
achieve the amount of flexibility such a system should pro-
vide, so a layered approach will be preferred. Interfaces
should be simple, only as complex as necessary to achieve
their purpose, and any APIs should be designed in a language-
or hardware-neutral manner.

• HeterogeneityThe system should support a wide range of
application types and goals. It should unify the different
components in such a way that enables interaction between
them, but never so much that it restricts those same interac-
tions.

• ReusabilityAlongside modularity, the system should encour-
age developers to avoid duplicating efforts by making data
and component reuse as easy as possible. In general, reusing
existing data should be easier than recomputing it.

With the systems’ primary characteristics or goals in mind, we
will start with a thought experiment to motivate both the design and
the development direction. Not only an example of what we wish
to achieve with the system, the thought experiment will serve as an
acid test.

2.1 The Thought Experiment
Joe is a software developer who was just assigned a new project:

build an application that will allow users to quickly identify which
conference rooms are vacant and which are occupied. Luckily for
Joe, Alice and Bob have already deployed an IoT platform. Joe’s
first step, then, is to inspect the system and see what data is avail-
able about the conference rooms.

The system needs to have a centralized view of the data, so that
developers can quickly inspect and determine what information is
available for them. The system need not be centralized, but a uni-
fied view needs to be available. We will call this view theWorld
Model and for the moment assume that it is a single entity. The
World Model unifies the data from the system and presents asim-
plified view to developers who wish to produce new system com-
ponents.

It is reasonable to assume that we will have a large variety of data
stored in the World Model: sensor readings, images, text, building
parameters, and many other kinds of data. To support arbitrary data
types and relationships, we will use a very simple structure to rep-
resent information. Each point of data in the World Model will be
represented by aIdentifier (ID) and a set of zero or more associ-
atedAttributes that describe the ID. The ID will take the form of a
“dotted-string”,e.g., “hallway.light bulb”, “UUID.ABCDEF1234”,
or “My Favorite ID \.”. While many types of data lend themselves
to categorization or hierarchies, others do not. The decimal (.) will
serve as a special value, denoting separations between the layers of
an information hierarchy. At this time, both the definition and for-
mat of hierarchical data is treated as an informal convention, and is
not enforced.

Joe inspects the World Model and sees that there is already a
power sensor on the conference room projectors — Alice and Bob

decided that they were interested in power consumption for more
than just the microwave. The system is also tracking WiFi device
locations so that the network operators can identify “hot spots” of
activity and more effectively deploy access points. Joe decides that
he canreusethese two types of data to add an “in use” attribute
to the conference rooms. He decides that if the projector is turned
on, the room isprobablyin use, but someone may have forgotten
to turn it off before leaving so the “in use” attribute will express
a probability rather than a binary state. If a WiFi device is also
present in the room, he will raise the confidence level of his new
Attribute.

The component that Joe is proposing to add, a program that will
produce a new piece of information in the World Model, is called a
solver. The system should support a plethora of solvers, each con-
suming and producing different types of information. Each of these
solvers will effectively be amodule, which when added to the sys-
tem expands the world model. The combination of these individual
solvers, producing for and consuming data from the World Model,
will form a very rich and dynamic representation of the environ-
ment.

But Joe isn’t entirely satisfied with this solution: what if some-
one leaves the projector on AND forgets their cell phone? He needs
something more definite for his project, so he decides that monitor-
ing chair utilization will give him the data he needs. If someone is
in the chair, he can be almost 100% sure that the room is in use,
more sure than just with data from projector and WiFi information.
With this in mind, he asks Alice and Bob to install seat pressure sen-
sors in all of the conference rooms. They agree on a standard ID
format for the new sensors, perhaps “conference room.X.chair.Y”,
whereX and Y are unique identifiers for conference rooms and
chairs, respectively. They also decide how the value of this new
attribute will be represented: a single-byte value with 0 for empty
and 1 for occupied. They agree that in a month the new sensors can
be delivered to the first of the conference rooms and the solver writ-
ten, the rest of the conference rooms will be deployed on a rolling
schedule.

Joe knows how to inspect the system, and is familiar with the
idea that solvers are required to interpret the raw sensor data. Once
an ID format is agreed upon, Joe can start writing his application. If
the data isn’t yet present, he can fall back on the existing projector
and WiFi data, and once chair data is available he makes use of it.
Nonetheless Joe doesn’t need to knowhow the data is generated:
he doesn’t want to know the localization algorithm, or how the pro-
jector power is monitored, so the system should hide unnecessary
complexity.

Supporting an arbitrary number and type of solvers is an im-
portant feature of the system. The simplest solvers take sensed or
external data and feed them into the World Model with the neces-
sary contextual information,e.g., temperature, occupancy, location,
or calendar events. A large number of these simple solvers can be
produced, each independent of the other. Once these data are pro-
vided to the World Model, however, a new type of solver can be
written thatconsumesthese data from the World Model, performs
an analysis, and pushes new data back into the World Model. It may
also consume information from outside of the system. In this way,
it is possible to incrementally build increasingly complex solvers
that depend upon one another. Since the World Model is the in-
terface between each of them, dependencies may be hidden and a
simple model of the system is preserved.

Joe builds his prototype application and demos it to his project
manager. He mentions how he is generating the confidence value,
how he has written a simulator for the new chair sensors, and how
the new application will automatically make use of the data once it

is available. The project is finalized and deployed for company use.
After a few weeks, the new chair sensors are installed, the chair
solver started, and his application starts using the data without
any changes.

Joe has taken us through what we hope will be the general use
case for the system we develop. There are a few issues we need to
address before we’re ready to design the system. Namely, how will
solvers get access to raw sensor data? How do we manage various
solver dependencies in a simple and uniform way? Is a hierarchy
for World Model IDs necessary? If so, how should it be enforced?

2.2 Working Out the Details
To provide a uniform way for solvers to access sensing data from

a potentially wide assortment of underlying sensors, we introduce
the idea of theAggregator, a simple component that acts as a sink
for all the sensors, and a source of data for solvers. Since few
solvers will require data from all sensors present, the Aggregator
should allow solvers to specify only those sensors that they wish to
receive data from. A secondary advantage of this is reducing the
amount of data that needs to be transmitted from the Aggregator
to the Solver. The Aggregator should also remain agnostic to the
types of data that it is sending. It should not provide more than a
filter-and-forward service for the solvers, leaving data analysis for
the higher layers of the system.

The Aggregator is important because it separates the task of adding
a sensor from interpreting its data and allows for many users to eas-
ily reuse sensor data. Imagine if the system was a monolithic silo
— Alice and Bob have put a power sensor on the projector because
they were curious about the projector bulb lifetime. When Joe asks
how he can access the sensor data, Alice and Bob regretfully tell
him that reading sensor data is tied into their stand alone piece of
software. Specifically, if the sensor “pushes” data, Joe will have to
modify their software to receive projector data, or Alice and Bob
will need to modify the sensor to send data to two applications. If
data is “pulled” from the sensor then the two groups must worry
about unforeseen interactions between simultaneous pull requests.

With the Aggregator these problems are easily avoided. Whether
sensor data is “pulled” or “pushed” it is only read once and the Ag-
gregator distributes it to interested parties and any number of appli-
cations can be written that use the data, without fear of interactions
between them.

Over time, it is reasonable to assume that a large number of
solvers will be written for the system, each making some new type
of information available to the system. As the system expands and
the number of solvers grows, we need to make sure that developers
can easily navigate and extract the data they need from an ever-
increasing world model. By utilizing the World Model as a single
source of all these attributes, developers never have to worry about
where their dependencies are running, how to invoke them, or the
transitive dependencies involved (dependencies of dependencies).

2.3 Putting It All Together
Figure1 provides a nicely-structured view of the different layers

of the system. By keeping the layers well-defined and interfaces
clear, we can hide unnecessary details and modularize the compo-
nents.

At the highest level, we have theApplication Layer , where user
applications reside. The Application Layer will also include utility
software that uses system data and provides it to other applications.

Next, we see theWorld Model Layer , containing the World
Model. It will serve as a centralized point of contact for solvers
and clients to request information about the system and the envi-
ronment.

Application Layer

World Model Layer

Analysis Layer

Aggregation Layer

Sensing Layer

Virtual Sensor

Networks

Traditional

Sensors

Data Pub/Sub

World Data

Feedback Loop

Data Pub/Sub

Sensor Data

Stream

Figure 1: An outline of the proposed system architecture. All
of the major components are identified and the primary data
pathways are indicated as arrows.

Continuing down, a number of solvers are present in theAnaly-
sis Layer. The solvers here consume raw data from sensors below
as well as information from the World Model, and produce new
data in the World Model. By keeping each solver as simple and
specialized as possible, we can maximize opportunities for reuse
and efficiency.

Just below the Analysis Layer is theAggregation Layer, where
a unified view of sensor data is provided to solvers. The Aggregator
presents a simple publication/subscription model to solvers, and
performs simple filtering for the solvers to reduce the amount of
unnecessary data being sent.

The lowest layer of the system is theSensing Layer, where var-
ious sensors reside. The only assumption the system makes about
this layer is that the sensing components are capable of providing
data to the aggregator over a simple TCP/IP-based protocol.

3. INITIAL DEPLOYMENT EXPERIENCE
We began the project with the mindset that tracking objects over

time was going to be integral to many of our desired applications,
though we later discovered this to be a poor assumption. Location
tracking based on received signal strength has a “long tail” in its
error curve that makes it difficult to implement many applications

that rely upon consistent accuracy. Instead, we combined location
tracking with other results, such as mobility detection and simple
sensing, to accomplish our goals.

3.1 Starting with Localization and Tracking
Because tracking individual items is an essential part of our sys-

tem, the first version had an Aggregator, World Model, and Bayesian
localization [4] solver as the only components. Our early work fo-
cused on tracking custom radio tags, whose pictures are shown in
Figure3.2(a).

Our architecture allowed us to easily add new wireless devices to
track, but the initial version of the localization solver was not very
flexible. In particular, we found that we wanted to use some of
the intermediate information computed by the localization solver
but did not want to replicate the code. For example, both pas-
sive and active mobility detection needed vectors of received signal
strength; sharing these values would allow much easier implemen-
tations of those solvers.

We thus decided to break up the single localization solver into
three parts: an “on-demand” solver that computes signal strength
statistics, a mobility detection solver that would detect when ob-
jects had moved through signal variance [3], and a localization
solver that relied on the other two. Mobility information is used as
a hint to determine when localization should be performed. In this
way we have the solvers build on each other, achieving the original
goal of device localization, and enabling other applications to use
signal strength vectors and mobility independently.

The new localization solver was triggered by actual mobility
in the environment, and we immediately noticed that localization
results were closer to “real time” since the system was only re-
localizing objects when they moved. As a failsafe, we also pro-
grammed it to localize any object that hadn’t been localized for
more than five minutes, in case of errors in the mobility detection
solver.

3.2 Adding Sensing
Recognizing that tracking was not going to be sufficient for all

of our desired applications, we added simple infrastructure moni-
toring. The radio tags we chose had input pins that allowed us to
attach simple sensors and also had a temperature sensor integrated
with the microcontroller. Some examples of these sensors appear
in Figure3.2.

We programmed the physically modified tags and attached them
to various objects around the lab: magnetic switches on doors to
see when they open and close, power sensors for projectors and
televisions, and programmed the on-board temperature sensor for
the coffee machine. We also put a standard tag on the handle of the
coffee carafe and would use mobility detection for this tag to detect
when people had picked up the carafe and poured a cup of coffee.

Using the temperature and carafe tags on the coffee maker, we
created a “coffee solver” which would produce the “coffee brewed”
attribute with a date/time value. The brew time would be based on
monitoring the temperature of the coffee pot sensor, identified as a
rise above a threshold value.

Our next change occurred when the original coffee machine broke
down and was replaced by one that no longer enabled easy temper-
ature monitoring. Because of the popularity of brew notifications,
we devised a new technique where a switch was attached to the cof-
fee maker sensor that would be triggered whenever the user loaded
it with fresh water. The coffee solver was changed to update the
brew status whenever the switch was triggered, with a 20-minute
cool-down period to avoid double counting. This transition was
seamless to the applications that used data from the coffee solver

(a) (b)

(c) (d)

Figure 2: (a) shows the relative sizes of the sensor we are us-
ing for most tracking and monitoring (on left) and a different
sensor we used for its water and heat resistant packaging (on
right). (b), (c), and (d) show our sensor deployed to track a
mug, detect when a door opens or closes, and detect when a
chair is in use.

– updates before and after the change were indistinguishable to the
higher layers of the system. The switch-based approach allowed us
to use the same solver to detect coffee brew events, door open/close
events, chair use status, and other information that had a switch
sensor. This solver was about 140 lines of C++ code.

Encouraged by the integration of the coffee solver with our daily
activities, we developed another solver to help automate a lab social
event. Some afternoons, members of the lab meet in the shared
kitchen to socialize over some coffee, tea, and snacks. We called
this “Tea Time” and it continues to be a popular event. However,
it is an ah-hoc, unscheduled affair, that depends on who is in the
lab and if snacks are available. Before tea-time occurs the people
who want to initiate the gathering must go through the troublesome
process of gathering everyone to the kitchen. To make this process
easier we wanted to write a solver to detect when tea time occurred
so that we could notify people automatically.

We didn’t want to write single-purpose solver just to detect tea
time, so we wrote a generic solver, called thegathering solver, to
detect gatherings of different kinds of items in defined regions. Tea
time was then defined as three or more mugs localizing to within
the kitchen area between 2 and 5pm on a weekday. This solver was
written in about 130 lines of C++ code.

4. APPLICATION DEVELOPMENT
In the previous section, we detailed how the system grew in the

early stage of deployment. In this section, we will describe a small
sample of additional solvers and applications that were added to the
system over time. These solvers are diverse in nature and intended
to serve different user groups. This experience has demonstrated
that the design of our system has made an application developer’s
job rather easy.

WiFi Device Monitoring: In preparation for a second system de-
ployment which centered around WiFi (IEEE 802.11) devices, we

 0

 1

 2

 3

 4

 5

C
h
a
ir

s
 i
n
 U

s
e

off

on

Mon
00:00

Mon
06:00

Mon
12:00

Mon
18:00

Tue
00:00

Tue
06:00

Tue
12:00

Tue
18:00

P
ro

je
c
to

r
S
ta

tu
s

Time of Day

(a)

 20

 40

 60

 80

 100

 120

Tr
a
ffi

c
 (

P
a
c
k
e
ts

/S
e
c
o
n
d
)

 5

 15

 25

 35

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

W
iF

i
D

e
v
ic

e
s

Day of the Week

(b)

Figure 3: Data and screenshots from conference room usage (a)
and WiFi monitoring (b).

added WiFi radio cards to some of our receivers and a solver that
monitors the number of active devices throughout the day. Ev-
ery minute it samples a WiFi channel for 20 seconds and records
the number of unique MAC addresses and traffic level measured
in packets per second. Due to user privacy concerns, we are not
recording device addresses or tracking specific devices. Count-
ing the number of active WiFi devices, however, has allowed us to
identify periods of high WiFi utilization or WiFi failure, as shown
in Figure 3(b). As the next step, we plan to combine this with
anonymized location information for smartphones to identify spatio-
temporal regions of high utilization, which we believe will enable
a large array of applications that center around presence detection
and event detection.

Passive Localization: Tracking human subjects is of interest to
many potential applications. Our system offers several options for
this purpose. As mentioned above, it can track a person’s smart-
phone through the WiFi monitoring solver, or it can tag and track
a person’s coffee mug through the active localization solver. In ad-
dition, we also implemented a device-free passive localization and
counting solver [8, 7] that find how many people and where are
they based upon their impact on ambient radio signals. Passive lo-
calization can trace people without revealing the identities of them,
and is suitable for applications with strong privacy concerns. In
the current state, we can only localize a small number of people
(≤ 4) in the same room. We are exploring the possibility of in-
tegrating a camera [9] or off-the-shelf smartphones to bring more
sensor modalities to extend the solver to track more people.

Figure 4: A portion of the HTML map that we developed to re-
place our early Flash-based map. We have removed option pan-
els and other features and focused on a subsection of the map
to make details clear. Question marks indicate objects which
are unknown to the map.

Conference Room in Use:This is the implementation of our orig-
inal thought experiment. We added chair sensors to all the chairs
in two different conference rooms in our laboratory/office space.
We combined this information with a power sensor connected to
the projector or television in the room, and reported that the room
was occupied when the projector was on and at least one chair was
occupied. An example of this data for one of our conference rooms
appears in Figure3(a).

The data provided by this solver shows details of the conference
room that may be useful to the people managing the lab space. For
instance, the single chair used between 2 and 8 AM might imply
that someone slept in the lab that night so a couch in a private area
might be a good addition to the lab. We can also see that there were
two distinct meetings between 11 AM and 2PM because there was
a drop in chair use and the projector turned off at noon. However,
one chair remained in use over the course of both meetings so there
was probably a person who attended both.

Marauder’s Map: We first built a simple Flash-based live status
map that showed a map of the lab space and the locations of each
localized object as an icon displayed on the map so that users could
see where objects were in real time. The map shows the real-time
locations and status on the map. Status was indicated with different
icons: doors opened and closed in real time, projectors lit-up, TV
screens flickered to life, etc. We found that requiring flash was
actually limiting user adoption so we reimplemented the status map
as a Ruby generated HTML page in just over 400 lines of code,
pictured in Figure4.

The map provides an easy way to check for conference room
usage since chair icons change to indicate if a person is sitting in
them and the projector shows a light to show that it is currently on.
Microwave status is displayed in a similar fashion, so Alice and
Bob would be pleased with the system.

5. USER INTERFACES
For a laboratory-wide system like ours, user interfaces are of

critical importance. On the road of getting our system out to more
users, we have made a considerable amount of effort to improve
our user interfaces.

The map is a very natural user interface for status information
that can be seen “at a glance,” such as the usage of conference
rooms or the location of a lost mug. The map interface also revealed
some weaknesses in our assumptions – we actually noticed that the
chairs “migrated” around the office, making their occupancy status
much less useful for determining the conference room status as they
ended up in entirely different rooms. This lead to several “chair
hunts” to find the instrumented chairs and bring them back to the
conference rooms.

Although the map itself is useful for some results, it is not suit-
able for some other applications such as “fresh coffee” – users had
to “hover” their mouse over the coffee pot icon on the map to see a
tooltip value with the last brew time and cups poured. To make the
system more attractive to coffee lovers we decided to implement a
push-based notification system. We set up a mailing list that users
could subscribe to, and we also created a Twitter account, both for
the coffee pot in our lab. To make signing up for updates as easy
as possible we deployed QR codes as shortcuts to subscribe to the
coffee mailing list.

6. SYSTEM MANAGEMENT
We have developed two utility solvers that can help us manage

the system. The first one is a packet loss monitoring solver that can
track which packets were heard by which receiver(s). This solver
can help us quickly identify malfunctioning equipment and avoid
radio “dead zones” for better localization accuracies.

Another utility solver is the solver monitoring solver. As the
system grew more complex, we recognized the need for automated
system monitoring and failure reporting. To that end, we wrote a
simple solver that would look at running processes on our solver
hosts and report when solvers had crashed or otherwise stopped
working. We recognize that this monitoring capability is currently
quite limited, and are working to expand it into a more comprehen-
sive system management utility with a web-based interface.

Our deployment has expanded significantly over the two years
of its deployment. Throughout all of these changes, the only sys-
temic failures were when the entire building housing our servers
lost power (including emergency power). For all the other situa-
tions, the sensors, receivers, Aggregator, and World Model server
continued to operate normally. When components failed, their de-
pendent components stopped seeing events, but always degraded
gracefully. When repairs or replacements were made, downstream
components started working once again.

7. CONCLUSIONS
Over the course of our two year deployment, we built an IoT

system that was able to grow organically with users’ needs. Our
decision to provide a single World Model was very effective. The
simple interface it provided, as well as the flexible data model used,
enabled the re-use of information in the system. Combined with a
modular approach to solver development, we were able to create
complex applications by layering and combining simple compo-
nents. Our choice of narrow, network-based APIs, combined with
API interface libraries in multiple languages gave developers the
freedom to choose what worked best for their component develop-
ment. As the number of sensors grew from 1 to nearly 100, the
system was able to continuously operate without error, and scaling
was not an issue.

8. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi. A Middleware for

Fast and Flexible Sensor Network Deployment. InVLDB,
2006.

[2] C. D. Gershenfeld N, Krikorian R. The internet of things.
Scientific American, 2004.

[3] K. Kleisouris, B. Firner, R. Howard, Y. Zhang, and R. P.
Martin. Detecting intra-room mobility with signal strength
descriptors. InACM MobiHoc, 2010.

[4] D. Madigan, E. Einahrawy, R. Martin, W.-H. Ju, P. Krishnan,
and A. S. Krishnakumar. Bayesian indoor positioning
systems. InIEEE INFOCOM, 2005.

[5] Mark Weiser. The Computer for the Twenty-First Century.
Scientific American, 1991.

[6] J. K. Rowling.Harry Potter and the Prisoner of Azkaban.
1999.

[7] C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe,
R. Howard, F. Zhang, and N. An. Scpl: indoor device-free
multi-subject counting and localization using radio signal
strength. InACM/IEEE IPSN, 2013.

[8] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin.
Improving rf-based device-free passive localization in
cluttered indoor environments through probabilistic
classification methods. InACM/IEEE IPSN, 2012.

[9] C. Xu, M. Gao, B. Firner, Y. Zhang, R. Howard, and J. Li.
Towards robust device-free passive localization through
automatic camera-assisted recalibration. InACM SenSys,
2012.

	1 Introduction
	2 Design Goals
	2.1 The Thought Experiment
	2.2 Working Out the Details
	2.3 Putting It All Together

	3 Initial Deployment Experience
	3.1 Starting with Localization and Tracking
	3.2 Adding Sensing

	4 Application Development
	5 User Interfaces
	6 System Management
	7 Conclusions
	8 References

