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ABSTRACT

Vehicular ad-hoc networks present great opportunity for in-
formation exchange and equal opportunity for abuse. Vali-
dating traffic information without imposing significant com-
munication overheads is a hard problem. In this paper, we
propose a solution for validating aggregated data. The main
idea is to use random checks to probabilistically catch the at-
tacker, and thereby discourage attacks in the network. Our
solution relies on PKI based authentication and assumes a
tamper-proof service in each car to carry out certain secure
operations such as signing and timestamping. We try to
keep the set of secure operations as small as possible, in ac-
cordance with the principle of economy of mechanism. We
show that our solution provides security without significant
communication overheads.

1. INTRODUCTION

Although significant work has been done on designing
protocols for vehicular networks, ensuring the security of
these systems remains a challenge. Conflicting goals, such
as anonymity and authentication, must often be taken into
account. Messages are exchanged using unreliable wireless
communications [1] and across a highly dynamic ad-hoc net-
work. In spite of this, critical data must be delivered quickly
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before it becomes outdated and useless. Attacks in vehicu-
lar networks vary according to the resources and motives of
the attacker [14, 10]. In a passive attack, communication be-
tween cars is subject to eavesdropping. The motivation can
be tracking a given car or profiling its driver. Active attacks
involve injecting, altering, or blocking network packets. Ex-
amples include: Denial of Service(DoS), message omission,
spoofing, and bogus information attacks.

In this paper, we focus on spoofing and bogus information
attacks. In a spoof, a car creates fake car identities and
broadcasts fake data as if it were received from those cars.
A bogus information attack involves injecting information
that does not correspond to real events or observations. For
example, drivers in a hurry may try to divert traffic by falsely
reporting a traffic jam on the road ahead; or a car might
report false location information about itself and other cars,
so as to deny involvement in an accident. Reputation-based
schemes are hard to devise given the ad-hoc nature of the
network— a car would interact with another car for a few
seconds, a few minutes at most, and would probably never
hear from it again. Also, reputation schemes usually imply
strong identities, which violate privacy and anonymity.

A mechanism for validating data on the fly must be em-
ployed. One approach (Golle et at [5]), is to correlate data
from different cars and cross-validate it against a set of rules
(e.g " cars located within wireless range at a given time must
have observed each other”). If most cars are honest, data
from a malicious car can be identified and discarded. In this
approach, strong authentication is not required but mes-
sages must be signed to distinguish data generated by dif-
ferent cars. This approach is limited in the set of attacks it
can counter, and fails if the number of malicious cars in a re-
gion is greater than the number of honest cars. In the early
stages of vehicular networks, low density areas will be quite
common, as few cars will be equipped with the necessary
hardware/software. In low density areas, a few colluding ag-
gregators could easily outnumber honest aggregators. Also,
cross-validation works under the assumption that there are
multiple sources of information (i.e multiple cars observing



the same event), which is not always the case. This ap-
proach requires a set of rules against which the incoming
information is cross-validated and incurs data overhead due
to digital signatures.

Raya et al [14] suggest using stronger identities to avoid
spoofs and outsider attacks, and to establish the identity of
the message sender when required. They suggest that every
car should sign messages with a key certified by a trusted au-
thority. Using strong authentication has several advantages:
(1) it prevents Sybil [3, 4] attacks and spoofs, (2) ”outsiders”
(i.e. cars using uncertified keys) can only cause limited harm
(they can still launch a DoS attack), (3) a message can be
linked to the sender’s identity to be used as evidence when
required. Privacy is ensured by providing multiple keys to
each car and changing them periodically. A tamper-proof
device is used to securely store the car’s private keys and
to carry out secure operations such as signing and times-
tamping. Digital signatures, however, are large, typically
in the order of tens (using Elliptic Curve Cryptography) to
hundreds of bytes (RSA). This adds a significant overhead,
especially if records are small. In a wireless environment,
bandwidth is a limited resource, so decreasing the record
size increases the number of records that can be transmit-
ted within the acceptable time frame, i.e., before the records
become useless. In addition, the challenging radio propaga-
tion environment in vehicular networks motivates protocol
designs with small message sizes.

One way to use available bandwidth more efficiently is to
aggregate the information of several cars into a single record,
as in the case of a V2V traffic information system [8] where
cars share information about each other. Aggregation, how-
ever, aggravates the security problem. A malicious aggre-
gator may send aggregated records that do not correspond
to real data. For instance, it may falsely report a congested
road by pretending to have aggregated more records than it
has actually received from cars ahead of it.

In this paper, we present a way to probabilistically detect
malicious cars that generate false aggregated information.
In particular, we focus on validating speed and location in-
formation, which is common to most vehicular applications.
We consider the case where cars lie about other cars in or-
der to generate false traffic scenarios by launching spoofs
and bogus information attacks. As part of problem defi-
nition, we seek to minimize data overhead (i.e bandwidth
requirement) and maximize security.

We assume that every car has a tamper-proof service that

carries out certain secure operations, such as signing of records,

timestamp generation and random-number generation (con-
struction of such a tamper-proof service is described in Sec-
tion 3.2). We try to keep the number of secure operations
to a minimum, in accordance with the principle of economy
of mechanism [18].

The main idea is to challenge the aggregator to provide
a proof that can be used to probabilistically validate the
aggregated record. An aggregated record is created by com-
bining and compressing information contained inside several
individual records. To validate the aggregated record, the
aggregator is asked to provide a randomly-chosen original
signed record (whose information is contained in the aggre-
gated record), after the aggregated record has been sent. If
the corresponding record was made up, then it will not be
possible for the aggregator to produce the original signed
record, and he will be caught. The random check therefore

acts as a deterrent.

Our validation mechanism does not require correlating
data from different aggregators. The data from each ag-
gregator is verified individually. Also, the overhead of our
approach is minimal in terms of data and communication
costs. Rest of the paper is organized as follows. Section 2
describes our model and assumptions. We present our so-
lution in Section 3. Preliminary evaluation is presented in
Section 4. Section 5 discusses related work. We conclude in
Section 6 with a note on future work.

2. MODEL AND ASSUMPTIONS

We assume that each car is equipped with a tamper-proof
service for carrying out data signing, timestamp generation
and random-number generation (as suggested in [14]). Fur-
thermore, we assume that this service signs all records with
the same private key within a given time interval, after which
it switches to a new key without any user intervention. This
prevents a car from creating spoofs by signing messages with
different keys. Changing keys periodically ensures privacy.
Also, we assume that the tamper-proof service provides a
transmit-buffer. Data once put in this buffer will be trans-
mitted.

By having a few trusted operations in every car, secu-
rity can be provided without compromising on flexibility.
The applications themselves do not have to be trusted and
can implement their own aggregation modules and commu-
nication protocols. Our design rationale is inspired by the
principle of economy of mechanism which states that ”the
protection system’s design should be as simple and small
as possible” [18]. In Section 3.2, we describe how such a
tamper-proof service can be practically implemented using
currently existing technology.

We assume that each car periodically creates and trans-
mits a small record containing some application-specific data.
Records contain information observed by the car, although
not necessarily about the car itself. This could also be infor-
mation about the car’s environment (other cars, road seg-
ment being repaired, accident, road-size facilities and stores,
etc.). The scope of this paper is limited to information about
cars. We expect records to be propagated through the ad-
hoc network by a diffusion protocol, although this is not a
requirement for our validation mechanism.

As an example, we will consider a distributed traffic infor-
mation system [8]. Each car maintains a database of records
containing speed and/or location information about itself
and other cars. The records in the database are periodi-
cally broadcasted. Every time a new record is received, it
is merged with the database. When no aggregation is being
carried out, the merge operation could result in either inser-
tion of the received record (if it is about a car whose record is
not in the database), or replacement of an old record about
a car with the one just received. The records do not un-
dergo any modification and therefore the original signatures
and timestamps are retained. In the presence of aggrega-
tion, the merge operation is much more complicated. Since
records need to be aggregated, information from records has
to retrieved and put in a new aggregated record. Each aggre-
gated record is constructed from a number of non-aggregated
records and is supposed to contain information about multi-
ple cars. The aggregated records are signed by the receiver
before they are sent out. A malicious receiver can easily put
bogus information in an aggregated record.
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Each car generates a
regular record containing
its location and speed
values.

After the first broadcast period,
each car receives the regular
records of the cars located
within broadcast range.

After the second broadcast period, each car gets

records generated by cars two hops away. Car 4

decides to aggregate regular records from car 1
and car 2 into one aggregated record.

Figure 1: Speed and location information exchange in a V2V traffic information system
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Figure 2: Structure of a regular record

Figure 1 exemplifies communication and aggregation in
a typical traffic information system. Since drivers are only
interested in the state of the road ahead, a car only process
messages sent by cars located ahead of it. This produces
a flow of records in the direction opposite to traffic. Every
traffic information system could have its own policy regard-
ing when and by whom data is aggregated. For instance,
one policy could be to aggregate all records corresponding
to cars in a road segment. Another policy could be to per-
form aggregation when a certain bandwidth threshold is ex-
ceeded (e.g more than k bytes transmitted by a car). For
more details on data aggregation policies, refer to [9].

2.1 Aggregation

Figure 2 shows the structure of a regular (non-aggregated)
record containing speed and location information. To con-
struct a regular record, the application sends data to the
tamper-proof service, which adds a timestamp and signs
the record with the car’s current private key. The record
also contains a certificate from the trusted authority which
is used by other cars to verify the validity of the public key
used for the signature. If the certificate is missing or invalid,
the record is dropped.

Figure 3 shows the structure of an aggregated record con-
structed by extracting application data and car id from sev-
eral properly signed regular records, putting it in a single
record and getting it signed by the tamper-proof service.
Note that the new aggregated record may not have the ap-
plication data in the same format as in the original record.
For example, the application could approximate the value of
location or speed by rounding off real numbers to integers
(e.g 65.00023 — 65), in order to save bandwidth. Similarly,
the application could only extract and store a subset of the
information present in the original records (as shown in Fig-
ure 3(b)). The car id is a small hash (e.g., 16 bits) of the
certified key used for signing the record. Using 16-bit hashes
keeps message overhead low while achieving an acceptable
collision probability (0.07% when aggregating 10 records,
and less than 2% for 50 records).

While syntactic aggregation compresses data to some ex-
tent, it mainly reduces header overhead. Reducing header
overhead is valuable for low-bandwidth streams of sensor in-
formation, where message content is limited and therefore
packet headers are dominant.

Figure 4 shows the structure of an aggregated record that
contains only aggregated location information of multiple
cars. Note that the information has been semantically ag-
gregated. Instead of listing coordinates of individual cars,
the number of cars on a road segment is reported. In Fig-
ure 4(b), the car identities are retained in the application
data. Semantic aggregation saves more bandwidth than syn-
tactic aggregation at the cost of loss of information (exact
coordinates in this case). Also semantic aggregation is ap-
plicable to only certain information types (e.g location or
speed) and is information specific.

In both syntactic and semantic aggregation, there is no
authenticity of the data in the aggregated record. The rea-
son is that the certificates corresponding to the individual
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records are not retained. A malicious aggregator could cre-
ate the impression of a congested road by creating an aggre-
gated record with car positions very close to each other, and
low speed values. In this paper, we focus on syntactic aggre-
gation which is more generally applicable. Our solution is
also applicable to certain cases of semantic aggregation, in
particular those where the resulting aggregate is the number
of the elements in a set (as the example in Figure 4).

3. SECURE AGGREGATION

A naive solution is to implement a secure aggregation
module inside the tamper-proof service and export it as an
API to the applications. This implies standardization of
aggregation and imposes restrictions on the data format,
thereby compromising the flexibility of applications. Our
design is motivated by the need to strike a balance between
security, network overhead and application flexibility. In
our design, applications can implement their own aggrega-
tion module, which creates the opportunity to save network
bandwidth without compromising on flexibility.

In this section, we describe our solution for validating syn-
tactically aggregated data. We also briefly outline how prob-
abilistic validation can be applied to semantic aggregation
of location information, if the identities of cars are retained
in the application data (Figure 4(b)).

The basic idea behind our solution is to challenge the ag-
gregator to provide a probabilistic proof of the integrity of
the aggregated record, after the aggregated record has been

sent. This proof consists of a randomly chosen subset of
records among the ones that were aggregated, for which
the aggregator must submit the original cerificates. Ide-
ally, probabilistic aggregation validation should be trivial
to implement as an end-to-end two-phase protocol over a
reliable transport layer. However, reliable communication
in extremely dynamic vehicular networks is hard if not im-
possible to achieve. Besides, a two-phase protocol would
introduce additional forwarding latency in the network, as
the receiver would have to wait for the proof to arrive before
the aggregated record can be forwarded. In order to obviate
the need for a two-phase protocol, we use the tamper-proof
service in the car as a proxy for the receiver. As a proxy,
the tamper-proof service plays two rolls. First, it provides a
transmit buffer— data put on this buffer cannot be tampered
with and will be transmitted. Second, it challenges the appli-
cation to provide a randomly chosen original signed record
to be sent with the aggregated data.

The aggregated record sent out using the tamper-proof
service is required to contain two sub-records R; and R
(as shown in Figure 6). R1 contains aggregated application
data, where the aggregation is carried out by the applica-
tion, as described in the previous section. Figure 5 shows
the different steps involved in secure aggregation. The ap-
plication passes Ri1 on to the tamper-proof service. The
tamper-proof service appends a timestamp and a random
number to R; and puts the resulting R; in the transmit
buffer. The random number is used for the construction of
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Figure 6: Structure of a secure aggregated record

R2. The timestamp contains the current time value. Once
R; is put in the transmit buffer, the application is commit-
ted to the aggregated record. (Recall that transmit buffer
is a tamper-proof queue; data once put in this buffer will be
transmitted).

R is supposed to contain one of the original n records
used for aggregation. This record is selected based on the
random number r contained in R;. The record with id
r mod n (where r € [0,99]) is selected and passed on to the
tamper-proof service. The tamper-proof service attaches it
to R; and signs Ri + R2. The resulting record is broad-
casted.

An aggregated record is considered to be valid only if it
contains a valid Rz. A valid Rz must contain a valid signa-
ture, a timestamp value not older than a certain threshold
value, and data in Rz must match the data at index jin R;
(where 7 = r mod n). The idea is that if the application
has constructed R; with bogus values, it will, with a certain
probability, be unable to provide a valid original record Ra.
If the application does not send an R2 to the tamper-proof
service, the transmit buffer will eventually time out and R
will be signed and transmitted. An R; without Rz would

be considered invalid and the malicious car would be de-
tected. Also, since R; has already been put on the tamper-
proof transmit buffer, it is not possible for the application
to modify it or prevent it from being sent out.

3.1 Probabilistic Validation

Figure 7 shows the different steps involved in probabilistic
validation. When a car receives an aggregated record, it
first verifies the signature and certificate and then checks
for the presence of Rs. If Rs is absent, it concludes that the
sender is malicious. If R is present, it validates Re. For
validating Ro, first the signature and certificate of R are
verified. Then, application data at index ¢ = r mod n in R
is compared with the application data in R2. Optionally,
the application data inside R; is cross-validated to check for
the presence of anomalous values. Only if all the checks are
successful, the aggregated record is accepted.

In the case of semantic aggregation of location information
(Figure 4(b)), only the Ry validation step differs. The car
identity at index ¢ = r mod n in R; is compared with the car
identity of Ra. If they match and if the location of the car
in R lies in the interval [(x1,y1), (x2, y2)], the aggregated
record is accepted.

An aggregated record may have both real and bogus in-
formation. Since only a single original record is used to
validate the aggregated record, if the random number cor-
responds to a record whose information is present in the
aggregated record, the aggregator will be able to provide
the corresponding record for Rs, and the attack will not
be detected. Conversely, if the random number corresponds
to a made up record or a record whose data has been dis-
torted, the aggregator will be unable to provide a valid Rz,
and the attack will be detected. Our validation method is
therefore probabilistic in nature. The probability of a ma-
licious aggregator getting caught is directly proportional to
the amount of bogus information present in the aggregated
record. The probability of catching the malicious car can be
increased by generating multiple random numbers instead of
just one, and asking the application to provide multiple orig-
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inal records in Ro. This would come at the cost of increased
data overhead. We discuss this in Section 4.

Probabilistic validation of syntactically aggregated records
could also be carried out by the tamper-proof service itself,
before transmitting the aggregated record. This would fur-
ther save network bandwidth. However, it would require
applications to format application data in a specific way. In
order to compare the application data in R; with that in
R2, the validation module needs to know the format, data
type, organization and semantics of the application data (a
bit-wise comparison is not possible as application data can
be modified by the application during aggregation as shown
in Figure 3). Only the application is assumed to have this
knowledge, unless organization of application data is stan-
dardized. Also, cross-validation of application data in Ri
requires knowledge of the semantics of the data. The val-
idation module should therefore be part of the application
in accordance with the corresponding aggregation module.
This is important for keeping the application design flexible.

For our solution to be effective, the penalty of getting
caught should be high. Once an attack is discovered, cars
should discard any further messages signed by the same at-
tacker. They should also share the information about the
attack with other cars, so as to isolate and paralyze the at-
tacker. In order to be able to convince other cars that a
particular aggregator is malicious, an honest car should also
provide a proof of the attack. This is necessary in order to
prevent cars from lying about other cars. In our scheme, the
proof is the aggregated record itself. When a car announces
an attack, it also forwards the aggregated record which was
found to be bogus. In order to verify the announcement,
other cars can carry out validation of the aggregated record
themselves.

Since cars switch private keys at regular intervals of time
to preserve privacy, an attacker who has been discovered
may start sending false aggregated information as soon as
its key changes. In order to counter this, we need to devise
a scheme where a central server intermediates once a car has
been identified as malicious. A brute-force solution would
be to send a signal to the tamper-proof box so that it stops
changing private keys. Note that the hardware in high-end
cars is capable of receiving update/tuning signals from the
car manufacturer over satellite. Another solution is to as-
sume that the list of public keys built into the tamper-proof
service of every car, is maintained by a trusted server (e.g
the one that generated the public/private key pairs for all
the cars). When a car is identified as malicious, the trusted

server is contacted, and the list of all the public keys of that
car are broadcasted to everyone, so that cars can ignore
messages containing any of the blacklisted public keys.

3.2 Tamper-Proof Service

Signing, timestamp generation and random number gen-
eration are carried out by the tamper-proof service. It also
provides a transmit buffer for the purpose of committing an
application to an aggregated record. In this section, we de-
scribe how a tamper-proof service can be implemented using
BIND [19], an enhancement of trusted computing.

Trusted Computing [2] is a hardware-based solution for
security. The goal is to provide a mechanism for secure
boot. At the heart of trusted computing is the idea of attes-
tation. Attestation builds a certificate chain from a trusted
firmware component all the way up to the operating system
and the applications, in order to identify each component of
the software stack. In the active version of trusted comput-
ing, the lower layer (e.g bootloader) allows the upper layer
(e.g OS) to be loaded only if the hash of its binary matches
the set of known hashes stored in a tamper-proof storage.
In other words, trusted computing only allows well-known
software (including applications) to execute. This leads to
inflexibility not suitable for many computing scenarios such
as the one being considered in the paper.

Recently, Perrig et al proposed BIND [19]. BIND is a
software service that runs on a TPM enabled machine and
provides fine-grained attestation. BIND offers two key prop-
erties: (1) partial attestation, and (2) data isolation. Using
BIND, a piece of code can be selectively attested without
having to attest all the applications. BIND attests the piece
of code immediately before it is executed and uses a sand-
boxing mechanism to protect the execution of the attested
code. This provides for tamper-proof execution of critical
applications/services without affecting other applications.
For more details, refer to [19].

BIND can be used for implementing the tamper-proof ser-
vice as required by our solution. The tamper-proof service is
responsible for carrying out the following operations: sign-
ing, time-stamping, generation of random numbers and pro-
viding a transmit buffer. These operations can be easily
implemented in software as one single service and protected
using BIND. The other applications do not have to be at-
tested providing for greater flexibility.

The main component of the tamper-proof service is the
transmit buffer. The transmit buffer is responsible for re-
ceiving and buffering a sub-record R; until one of two things
occurs: the application provides the second sub-record Ra,
or a timer T expires. In either case, a message is broadcasted
to the network. In the first case, a signed record contain-
ing R1 + R is transmitted. If the timer expires and the
application has not provided Rz, a record containing only
R, is signed and broadcasted. The use of a secure transmit
buffer is necessary to guarantee that a malicious application
cannot modify or hold back R; once the random number is
generated. Otherwise, it would chose to not broadcast R:
if a valid R2 cannot be constructed and will therefore never
be caught.

The tamper-proof service exports an API to the applica-
tions, consisting of the following functions: void sign(data),
int sendbuffer(data, timeout), void appendbuffer(data, id)
and int readbuffer(id). Function sign(data) accepts appli-
cation data, timestamps it and signs it. It is used for gener-
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k = 16 bytes), (right: n = 4, d = 4 bytes, k = 16 bytes)

ation of regular records. Function sendbuffer(data,timer) ac-
cepts application data, appends a timestamp and a random
number to it, and securely buffers it until either the func-
tion appendbuffer(data, id) is called, or the timer expires. If
the timer expires, the data is signed and broadcasted to the
network. This function is used for buffering R, and returns
an integer as a unique identity for the buffered data entity
(i.e R1). Function appendbuffer(data, id) appends data (i.e
R>) to the data entity (i.e R:) identified by id, signs it, and
broadcasts it. Function readbuffer(id) returns the random
number associated with the buffered data entity identified
by id. It allows applications to examine the transmit buffer
contents to determine the random number and construct Rs
accordingly.

BIND provides secure storage to the tamper-proof service
for storing keys and buffering data. Since the networking
stack is part of the operating system, which is attested at
boot-up time, sendbuffer and appendbuffer can safely use the
networking stack for transmitting data.

4. PRELIMINARY EVALUATION

In this section, we define a metric for evaluating our solu-
tion and carry out an analytical evaluation.

4.1 Security vs. Bandwidth

One solution for security is to attach a timestamp, signa-
ture and certificate to every record and not carry out any
aggregation. This is the highest security solution, which
incurs high data overhead. The other extreme is to send
unsigned semantically aggregated information (e.g average
speed or number of cars in a segment). This saves band-
width but provides no security. Our solution lies between
these two extreme cases, both in terms of security guaran-
tees and bandwidth requirements. A good security solution
for vehicular ad-hoc networks should provide security with
minimal data overhead. We identify security/bandwidth, or
sec/bw (i.e security normalized by bandwidth requirement),
as the correct metric for evaluating our solution.

We define the bandwidth requirement of our solution as
the size of one secure aggregated record. Let d be the size
of application data of a regular record. In the case of lo-
cation and speed, d is equal to 4 bytes (2 bytes each for
location and speed). The size of an unsigned regular record

is therefore d bytes. We assume that timestamp size is 4
bytes, random number is 2 bytes, the signature is 28 bytes
(using ECDSA [14]), and the certificate is 56 bytes (28 for
the car’s public key and 28 for the authority’s signature).
The size of a signed regular record is d + 88 bytes. A se-
cure aggregated record is composed of Ri, R, signature
and certificate (Figure 6). If R; contains information about
m cars, and we assume syntactic aggregation (which is the
more general case) size of Ry is given by m*d+6 bytes. Size
of Ry is d 4 88 bytes. Signature and certificate together are
84 bytes. The size of a secure aggregated record is therefore
(m xd+ d + 178) bytes. The probability of catching the
malicious car can be increased by generating multiple ran-
dom numbers instead of one, and including multiple original
records in Rs. If we assume that there are n records in Ra
(and hence n random numbers in R1), the size of a secure
aggregated record would be (m * d + n x (d + 90) + 88).

As mentioned before, one extreme case is to sign and cer-
tify every record and not carry out any aggregation. This
provides high security at the cost of high bandwidth. We
call this ”Base Case 1”. The bandwidth requirement of Base
Case 1 is given by m * (d + 88). The other extreme case is
to send unsigned semantically aggregated data. We call this
”Base Case 2”. The bandwidth requirement of Base Case 2
is d+k where kis a small constant (e.g 10 bytes). The band-
width requirement of our solution is (m*d+mnx*(d+90)+88)
in the case of syntactic aggregation which is the more gen-
eral case. In cases where our solution could be applied to
semantic aggregation, the bandwidth requirement would fall
to (d+k+nx*(d+90)+88). Figures 8 shows how our solution
compares with the two base cases in terms of bandwidth re-
quirement. It is clear from the graphs that, for higher values
of m, the bandwidth requirement of our solution is way less
than that of Base Case 1 (even when the number of records
in Ry is increased to 4). Note that required bandwidth for
syntactic and semantic aggregation is comparable.

We assume that security ranges between 0 and 1, with 0
standing for no security and 1 for the highest security. The
security of Base Case 1 is 1, and that of Base Case 2 is 0.
The security of our solution is defined as the probability of
detecting a malicious car, and is given by 1 — (1 — f/m)",
where f is the number of false or made up values in R;.
Figure 9 compares the security of our solution with that
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Figure 9: Security of our solution compared with
the two base cases (f/m = 0.5)

of the two base cases for f/m = 0.5. When n > 4 the
probability of detecting a malicious car is more than 90%.
However, as evident from Figure 8(right), the bandwidth
requirement of our solution when n = 4 is less than that of
Base Case 1 for m > 5.

The value of sec/bw for Base Case 1 is 1/m  (d+ 88) and
for Base Case 2 is 0. The value of sec/bw for our solution is
given by (1—(1—f/m)™)/(mxd+n=*(d+90)+88). Figure 10
compares sec/bw for the three solutions (with f/m = 0.5).
For m > 5 a certain value of n always yields higher sec/bw
value for our solution than the two base cases.

4.2 Computation time

Our aggregation mechanism also helps reduce the com-
putation time required to verify received data. When no
aggregation is used, each car must verify the signature of
every individual record it receives from the cars ahead. For
instance, if n records are forwarded across a road segment
containing m cars, then the total number of signature ver-
ifications performed in that road segment would be n * m.
If aggregation is used, the total number of signature ver-
ifications would be much smaller. Assuming that no new
records are generated in that segment, only the aggregator
must verify the signatures of the n records received from the
segment ahead of it. The remaining m — 1 cars in the seg-
ment will only carry out two verifications each, one for the
aggregated record, and one for the randomly chosen verifier
record contained in it. This implies that only n+ (m —1)*2
verifications, instead of n * m, must be carried out. For
example, when n = 10 and m = 10, the number of verifica-
tions drops from 100 to 28. Reduction of record verification
time implies lower message forwarding latency and increased
processor availability for other applications.

4.3 Limitations and Extensions

Currently our solution can be used for validating infor-
mation about cars (e.g speed, location, etc) but not about
road-side events (e.g accidents). Our solution handles mod-
ification of records or inclusion of fake ones; it does not
handle omission of records (e.g. a malicious car aggregates
or forwards only a subset of the records it receives). We
rely on path redundancy and multiple aggregators to detect
records dropped by an attacker. Also, reaggregation is not
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Figure 10: Security/bandwidth of our solution com-
pared with the two base cases (d = 4 bytes, f/m =
0.5)

addressed. We believe that the idea of random checks can
be further extended to handle reaggregation. This is left for
future work. It is worth mentioning though, that the band-
width savings due to reaggregation are not very significant.

Another limitation of our solution is that it does not
provide a generic scheme to validate semantically aggre-
gated data. Although Figure 8 shows that the required
bandwidth for syntactic and semantic aggregation is com-
parable, it would be interesting to come up with a generic
scheme for validating semantically aggregated data. Przy-
datek et al. [12] suggest using Probabilistically Checkable
Proofs (PCPs) to validate semantic aggregation in sensor
networks. However, their solution requires an interactive
protocol between the aggregator and the verifier. This full-
duplex communication does not seem feasible in a vehicular
ad-hoc network. That said, it would be interesting to ex-
plore the use of simple random sampling [13], performed at
the aggregator using secure random numbers, to validate the
result of common aggregation functions, such as min, max,
average, count, etc.

Finally, our solution relies on the presence of a tamper-
proof service in each car. While this does not compromise
flexibility significantly, it implies additional hardware cost.

5. RELATED WORK

Parno et al [10] suggest a set of security primitives for
vehicular networks, such as message origin authentication,
anonymization, and secure aggregation. Though insightful,
the paper does not lay out a solution for securing aggregated
data in vehicular networks.

Kuhn [11] suggests using non-uniform hash functions to
probabilistically prove a lower bound on the number of unique
valid signatures of a record. The scheme, however, pro-
vides only order-of-magnitude resolution, making it unsuit-
able when the number of signatures is small. Capkun et
al. [15] present a mechanism based on distance bounding [16]
to securely determine the position of a node. Since it re-
quires well-known reference points, the mechanism is useful
for sensor networks, but difficult to apply in VANETSs.

Golle et al [5] describe how cross-validating data from dif-
ferent cars can be used to detect false information, provided
only a small number of cars are malicious. If the number of



malicious cars in a region outnumber the number of honest
cars, their solution would be insufficient. Also, the paper
does not address validation of aggregated data.

Raya et al [14] argue that unauthenticated communication
is too weak for vehicular networks. They suggest that every
car should sign messages with a key certified by a trusted
authority. They use a tamper-proof device to securely store
the car’s private keys, and sign messages. While this ap-
proach is generically applicable, if applied as such, it would
incur high data overhead.

Several aggregation protocols have been proposed for sen-
sor and vehicular ad-hoc networks. Aggregation is usually
associated with functions that compute the min, max, aver-
age, median, and other basic functions on a set. In these pro-
tocols, the aggregated data is just the result of one or more of
these functions. Most of these protocols assume that nodes
are honest [8, 7] and do not employ any security mechanisms.
Hu and Evans [6] propose a secure aggregation mechanism
for sensor networks. However, being a sensor network de-
sign, it assumes a tree topology with a base station at the
root. Also, several rounds of communication between nodes
are required, making this protocol difficult to apply to ve-
hicular networks. Przydatek et al [12] suggest using PCPs
between a base station (the verifier) and an aggregator (the
prover) in a sensor network environment. Although their
protocol supports aggregation primitives such as min, max,
median, and count-elements, it also requires several rounds
of communication between the aggregator and the verifier.

In contrast, our approach minimizes data overhead while
providing reasonable security guarantees, which was possible
by the understanding of the communication protocol used
in V2V traffic information systems.

6. CONCLUSIONS

In this paper, we have looked at the problem of validat-
ing aggregated data in V2V traffic information systems. We
proposed a solution for this problem that incurs minimal
data overhead and does not impose any additional commu-
nication steps between the sender and the receiver. The
main idea is to use random checks to probabilistically catch
the attacker. By making the penalty of getting caught high,
our solution discourages spoofing and bogus information at-
tacks. Our solution relies on PKI based authentication and
assumes a tamper-proof service in every car to carry out
certain secure operations, such as signing, timestamping and
random number generation. We showed how such a tamper-
proof service can be constructed using BIND [19] which is
an enhancement of trusted computing. The applications and
aggregation modules themselves do not have to be trusted
providing for greater flexibility. We defined a new metric for
evaluating our solution: security normalized by bandwidth,
and showed that our solution scores high on the metric. We
are in the process of implementing this solution and integrat-
ing it with our traffic information system (TrafficView [8]).
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