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ABSTRACT

This paper utilizes smartphone sensing of vehicle dynamics to de-
termine driver phone use, which can facilitate many traffic safety
applications. Our system uses embedded sensors in smartphones,
i.e., accelerometers and gyroscopes, to capture differences in cen-
tripetal acceleration due to vehicle dynamics. These differences
combined with angular speed can determine whether the phone is
on the left or right side of the vehicle. Our low infrastructure ap-
proach is flexible with different turn sizes and driving speeds. Ex-
tensive experiments conducted with two vehicles in two different
cities demonstrate that our system is robust to real driving envi-
ronments. Despite noisy sensor readings from smartphones, our
approach can achieve a classification accuracy of over 90% with a
false positive rate of a few percent. We also find that by combining
sensing results in a few turns, we can achieve better accuracy (e.g.,
95%) with a lower false positive rate.

Categories and Subject Descriptors

H.4 [Information Systems]: Miscellaneous

Keywords

Driving Safety, Driver Phone Detection, Smartphone, Accelerom-
eter, Gyroscope

1. INTRODUCTION
Distracted driving due to mobile devices contributes to nearly

one thousand fatalities per year [4] and is now receiving attention
not only from government regulators but also within the highest
executive levels of the mobile industry [2]. Indeed, the National
Transportation Safety Board has called for a nationwide ban on
mobile devices behind the wheel [11], while the mobile industry
has adopted a subtler approach with apps that seek to manage dis-
traction. The AT&T DriveSafe app [3], for example, silences the
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phone for incoming text messages while in driving mode as dis-
cussed in [26, 36].

Such approaches depend on the phone being able to sense when
the user is driving, since experience with a phone’s silent mode and
instant message status has shown that users are not very reliable
at setting the status manually. Several known approaches exist for
detecting whether a phone user is in a vehicle. More difficult, how-
ever, is determining whether a user is actually driving or is simply
a passenger in the vehicle. In our prior work, we addressed this
problem by exploiting built-in Bluetooth handsfree systems in ve-
hicles for audio localization of the phone. While it is expected that
the fraction of Bluetooth handsfree equipped vehicle will rise sig-
nificantly over the coming years, there is also considerable interest
in techniques that are less dependent on such infrastructure, so that
they can be more easily retrofitted into existing vehicles without
Bluetooth.

In this paper, we explore a low-infrastructure approach that senses
acceleration due to vehicle dynamics to decide a phone’s position.
As in prior work, we seek to determine the in-vehicle location of
the phone and use that as a heuristic to determine whether the phone
is used by the driver or passenger. It uses a fundamentally differ-
ent sensing approach, however, to determine this location. The key
insight is that the centripetal acceleration varies depending on the
position in the car. By comparing the measured acceleration from
the phone with the acceleration measured at a reference point inside
the car, the phone can decide whether it is located left or right of
the reference (i.e. on the driver or passenger side). This technique
can operate in conjunction with our bump sensing technique for
determining front or rear location [37]. We refer to this approach
as low-infrastructure since it can more easily be retrofitted in exist-
ing cars by plugging in a small OBD-II or cigarette light adapter.
It does not require having a handsfree bluetooth kit wired into the
existing car audio system.

While the idea of utilizing centripetal acceleration differentials
between the target phone and the reference point seems simple,
many challenges arise in practice. First, the embedded sensors are
noisy and affected by unpredictable driving environments. A sec-
ond challenge is minimizing the additional infrastructure needed
beyond the phone. Third, the sensor readings in smartphones are
pose dependent, thus cannot be directly used to represent the vehi-
cle’s dynamics. To address these issues, we propose a centripetal
acceleration based driver phone use sensing algorithm that miti-
gates the noise of the sensor readings and unpredictable geometries,



such as different size of turns, driving speed, and driving styles. Ex-
tensive experimental results in both parking lots and roads confirm
the effectiveness and efficiency of our proposed algorithm which
requires no built-in infrastructure. Specifically, we make the fol-
lowing contributions:

• Proposing a method for distinguishing driver and passenger
phone use that is less dependent on built-in vehicle infras-
tructure than the audio-ranging approach. It determines the
in-vehicle position of a phone by using its sensors to moni-
tor position dependent differences in acceleration forces and
comparing them with a vehicle reference reading.

• Describing and evaluating multiple possible designs for pro-
viding a vehicle reference reading, including a cigarette lighter
adapter with accelerometer sensor, an OBD-II port adapter
that provides vehicle speed reference readings to the phone
over Bluetooth, and opportunistically using other phones as
a reference.

• Designing algorithms that can use these various reference in-
puts and can compensate for bias in the reference measure-
ments by taking into account data from both left and right
turns of a vehicle.

• Demonstrating through extensive experiments in a parking
lot and through real-world driving in two cities with differ-
ent phone models and vehicles that it is feasible to deter-
mine phone position with high accuracy after the vehicle has
passed through a few curves.

The experimental results show that by relying only on the plug-in
adapters, our proposed algorithm can achieve high detection rates
and low false positive rate in both parking lot and real driving envi-
ronments. By making use of a few turns, a more reliable result can
be obtained. Our results show that position can often be determined
after the vehicle drives out of a parking lot or before it reaches a
main road. We therefore believe that the detection latency is ac-
ceptable. Our prototype implementation also shows that current
Android smartphones have adequate computational capabilities to
perform the signal processing needed in a standard programming
environment.

The rest of the paper is organized as follows. In Section 2, we
place our work in the broader context of reducing driver distraction
and using sensors on smartphones to facilitate driving safety and
vehicle monitoring applications. We provide the system overview
and core detection algorithm in Section 3. We then present our
system implementation by leveraging different infrastructures in
Section 4. In Section 5, we perform extensive evaluation of our
system in real-road driving environments involving two types of
phones and two vehicles in two cities. We discuss about a possi-
ble infrastructure-free approach of determining driver phone use by
adding a phone’s GPS in Section 6. Finally, we conclude our work
in Section 7.

2. RELATED WORK
There has been active research work in detecting dangerous be-

havior while operating an automobile [18,20,24], especially for the
driver distraction problem caused by hand-held devices. Some re-
cent work dedicated to mitigate driver phone distraction includes
Quiet Calls [31], Blind Sight [25], Negotiator [35], and Lindqvist’s
systems [26]. Furthermore, some apps are developed to block in-
coming or outgoing calls and texts for the phones inside a mov-
ing vehicle [5, 12, 14]. Apps such as [9] require special devices

Figure 1: Illustration of centripetal acceleration, tangential

speed, angular speed, and the radius of the circular movement.

installed inside the vehicle to enable blocking cellular communica-
tions of a specific phone based on the readings from the vehicle’s
speedometer, or even rely on a radio jammer [7]. These studies ei-
ther require prior knowledge of the phone use by the driver (e.g.,
user activates the system indicating himself as the driver) or blindly
block calls/text of all the cellphones inside the vehicle. These so-
lutions, however, cannot automatically distinguish a driver’s cell
phone from a passenger’s.

Since diverse sensors have been integrated in smartphones, they
are endowed with powerful capabilities that can be used to sense
vehicle dynamics and facilitate a broad array of applications re-
lated to driving safety and road monitoring. The moving vehicle
can be detected based on the embedded smartphone sensors and
the cellular signal, for example, accelerations and cellular signal
strength [15, 23, 30, 33]. Other studies use smartphone embedded
sensors to alert dangerous driving, monitor road conditions, and de-
tect traffic accidents [17,24,29,34]. Dai et.al. [17] propose a system
to detect and alert dangerous vehicle maneuvers by utilizing the ac-
celerometer and the orientation sensor. WreckWatch [34] detects
traffic accidents using the accelerometer and microphone. Johnson
et.al. [24] present a system using Dynamic Time Warping (DTW)
and smartphone based sensor-fusion to detect and recognize vehic-
ular motions. Furthermore, smartphone sensors are also used to
monitor the road conditions [19, 28, 29], e.g., the accelerometer in
a smartphone is able to detect a large acceleration perpendicular to
the road surface when the vehicle passes bumps or potholes on the
road. These studies confirm the feasibility of utilizing sensors on
smartphones to sense the vehicle dynamics, which may be further
used to automatically determine the driver phone use.

Towards the most related work in detecting driver phone use,
Chu et.al. [16] present a driver detection system (DDS) by utilizing
multiple sensors (including accelerometer, gyroscope, and micro-
phone) in smartphones to capture the features of driver’s move-
ment. However, this approach is sensitive to the behavior of each
individual, and highly depends on the position where drivers carry
the phone, which is less practical. Yang et.al. [36, 37] introduce an
acoustic relative-ranging system that classifies on which car seat a
phone is being used leveraging the car’s audio infrastructure. This
approach relies on the vehicle’s audio system. Different from the
above work, in this project we explore a low-infrastructure ap-
proach that senses acceleration forces from vehicle dynamics to
determine the phone’s position inside the car.

3. SYSTEM DESIGN
To build a low-infrastructure solution leveraging embedded sen-

sors on smartphones, we devise an approach that senses position-
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Figure 2: Illustration of different centripetal accelerations at

different in-vehicle positions.

dependent acceleration forces when a vehicle turns. In this section,
we provide background information, system challenges, overview
of our system design, and a driver phone use sensing algorithm.

3.1 Background
When a vehicle makes a turn, it experiences a centripetal force,

which has its direction orthogonal to the direction of movement
of the vehicle and toward the center of the turn. This centripetal
force generates a centripetal acceleration a also pointing toward
the center of the curve. Assuming a turn following a perfect circle,
the centripetal acceleration (a) can be obtained by using the angu-
lar speed (ω), the tangential velocity (v) and the radius (r) of the
turn [32]:

a = ωv = ω2r =
v2

r
. (1)

The relationship of these parameters are illustrated in Figure 1.
Phones located on passenger- and driver-side positions inside the
vehicle will have the same angular speed but follow circles of dif-
ferent radii. Based on Equation (1), it can be seen that different
radii at constant angular speed will lead to differences in centripetal
acceleration on these positions.

Inspired by this simple yet useful physics observation, we seek
to measure such centripetal acceleration differences with smart-
phone sensors to design a low-infrastructure solution for determin-
ing driver phone use.

3.2 Challenges and Goals
Building such a system involves a number of challenges in both

design and implementation:
Robustness to Real-Road Driving Environments. The cen-

tripetal acceleration is affected by a number of factors including
the different size of turns, driving speed, and driving style. Fur-
thermore, vibrations from the vehicle (e.g., a running engine) and
environment (e.g., wind) all contribute to noisy sensor readings.
Thus, the algorithm to obtain the centripetal acceleration has to be
robust to deal with real road driving environments.

Achieving Single Phone Sensing. The approach should work
even when only a single phone is present in the vehicle, since it is
not always clear that this phone belongs to the driver.

Determining the Pose of the Phone. The measured sensor read-
ings from smartphones can not be directly applied to produce ve-
hicle dynamics (e.g., centripetal acceleration) without knowing the
pose of the phone inside the vehicle. An effective re-orientation
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Figure 3: Overview of system flow.

mechanism is needed to align the phone’s pose with the vehicle’s
coordinate system.

Computational Feasibility on Smartphones. The driver phone
sensing process should complete in a short time on standard smart-
phone platforms.

3.3 System Overview
The basic idea of our system is to examine the centripetal accel-

eration (sensed by the smartphones during a turn) at different posi-
tions inside the vehicle. Figure 2 shows when a vehicle making a
left turn, the driver side has smaller centripetal acceleration (aLD)
than that at the vehicle’s center (aLM ), which in turn has smaller
centripetal acceleration than that at the passenger side (aLP ). In
general, compared to the center of the vehicle the driver phone al-
ways has a smaller radius (and thus experiences smaller centripetal
acceleration) when the vehicle makes a left turn and a larger radius
(corresponding to larger centripetal acceleration) when the vehicle
makes a right turn. Therefore, if the phone’s centripetal accelera-
tion is smaller than that at the center in a left turn, or larger in the
case of a right turn, then the phone is on the left side of the vehi-
cle. Our system can thus utilize the difference of the centripetal
acceleration experienced at different positions within the vehicle to
distinguish the driver phone use from passengers’.

A vehicle usually undergoes multiple turns at the beginning of
a trip (e.g., pulling out of a parking lot or driving in local streets
before getting onto main roads). The difference of the phone’s cen-
tripetal acceleration obtained by comparing left and right turns can
help to determine whether the phone is at the driver side or passen-
ger side. However, this approach requires turns made by the vehicle
have the same radii, which is not practical in real-road driving en-
vironments. Our system seeks to find a solution that can exploit the
difference of centripetal acceleration from the same turn to sense
the driver phone use. The advantage of this solution is that our sys-
tem can work under real-world driving scenarios with various turn
sizes and driving speeds.

In particular, our system can obtain the difference of the cen-
tripetal acceleration within a turn by employing a reference cen-
tripetal acceleration, such as that at the vehicle’s center or from a
second phone. There are three ways of utilizing a reference cen-
tripetal acceleration that we implement in our system: 1) A low-
cost cigarette lighter adapter containing an accelerometer acting as
a reference point. Our system can directly compare the centripetal
acceleration of the phone in the vehicle to that obtained from the



cigarette lighter adapter to determine the driver phone use. 2) The
speed of the vehicle obtained from the OBD-II port adapter can be
used to calculate the centripetal acceleration at the vehicle’s center,
which is compared to the centripetal acceleration of the smartphone
to detect the driver phone use. The OBD-II interface has been made
mandatory for all vehicles sold in the United States since 1996. 3)
When there are multiple occupants in the car, a passenger phone
in the same vehicle can be employed. Our system can compare
the centripetal acceleration of the passenger phone and that of the
driver phone. This approach, however, relies on the presence of
(and communicating to) a second phone in the vehicle. In this
work, we focus on solutions (i.e., solutions 1 and 2) that a sin-
gle phone can perform self-determination of the driver phone use
through sensing. The plug-in adapters could share the reference
readings with the phone over Bluetooth.

Realizing our approach requires three sub-tasks: Coordinate Ali-

gnment, Data Calibration, and Position Detection. The flow of our
system is illustrated in Figure 3. When the target phone detects the
Bluetooth connection (e.g. from the cigarette lighter adapter when
the driver enters the car), it starts collecting readings from its ac-
celerometer and gyroscope, which are used to derive the phone’s
acceleration and angular speed. Our system performs Coordinate

Alignment so that the centripetal acceleration and angular speed de-
rived from the phone sensors are aligned with the vehicle’s. The
coordinate alignment is only performed when our system starts
or when the system detects the gyroscope readings crossing cer-
tain thresholds, which is caused by the change of phone’s position.
Once the vehicle is detected to start making a turn, the target phone
collects the information from the reference point (e.g., accelera-
tion from cigarette lighter adapter or speed from the OBD-II port
adapter). The phone further conducts calibration on the data col-
lected by itself as well as the data reported by the reference point.
Our data calibration process includes three steps: Data Interpola-

tion, Trace Synchronization, and Acceleration Adjustment, which
aims to synchronize the traces from different sources and reduce
the hardware bias caused by different phone models. Finally, Po-

sition Detection determines the phone’s position in car leveraging
the cumulative difference of centripetal acceleration (e.g., k sam-
ples around the maximum angular speed) and combining the turn
direction determined from the sign of the angular speed. We next
describe how to sense vehicle dynamics using smartphones and
present the core component, Detection Algorithm, in our system.
We leave the detailed presentation of Coordinate Alignment and
Data Calibration to the next section (Section 4).

3.4 Sensing Vehicle Dynamics
Phone and Vehicle Alignment. We utilize the 3-axis accelerom-

eter and 3-axis gyroscope embedded in the smartphone to obtain
the centripetal acceleration while the vehicle makes a turn. There
are two coordinate systems, one for the smartphone ({Xp, Yp, Zp})
and the other for the vehicle ({Xc, Yc, Zc}), as illustrated in Fig-
ure 4. To simplify the description of our approach, we assume the
smartphone’s coordinate system is already aligned with the vehi-
cle’s (i.e., aligned). We will describe how to align the phone’s co-
ordinate system in Section 4.2.

Deriving Centripetal Acceleration via Accelerometers. As il-
lustrated in Figure 4, Xc points to the passenger side of the vehicle
(i.e., opposite side of the driver). The X-axis acceleration reading
on the phone reflects the centripetal acceleration (i.e., a) when the
vehicle makes a turn. As illustrated in Figure 5, the X-axis reading
is zero when the vehicle is driving along a straight line and reaches
its positive or negative peak when the vehicle goes into the middle
of a turn. The sign of the acceleration on the X-axis is determined

Figure 4: Coordinate systems of a smartphone and a vehicle.

by the turn direction due to that the centripetal acceleration is al-
ways pointing to the center of a turn. Thus, the X-axis acceleration
is negative when the vehicle is making a left turn, and vice versa.
Additionally, the Yc points to the head of the vehicle. Thus, the
Y -axis acceleration reading of the phone indicates the acceleration
of the tangential speed (i.e., v) of the vehicle in a turn.

Determining Turn Directions using the Gyroscope. To com-
pare the centripetal acceleration at different positions inside the ve-
hicle, we need to determine the turn direction, i.e., whether the
vehicle is making a right turn or a left turn. The Z-axis gyroscope
reading on the phone can be utilized to represent the vehicle angular
speed of the turn. Figure 5 illustrates the rotation rate on Z-axis of a
gyroscope on the phone during a left and right turn respectively. A
counter clockwise rotation around Z-axis generates positive read-
ing, which indicates the vehicle is making a left turn; otherwise,
the gyroscope generates negative reading, indicating the vehicle is
making a right turn. We note that the power consumption is only
1.5mW [8] for a accelerometer sensor and 10mW [8,21] for a gy-
roscope sensor. Whereas the power consumption of a smartphone is
significantly higher (for example, the average power of HTC EVO
is about 450mW [27]).

3.5 Algorithm for Sensing Driver Phone Use
It is essential to understand what are the important factors affect-

ing the difference of the centripetal acceleration between two dif-
ferent positions inside the vehicle. We have the following lemma
to capture such factors:

LEMMA 1. The difference of centripetal acceleration between

two in-vehicle positions is determined by the angular speed and

relative distance between these two positions.

PROOF. Assume there are two positions in the vehicle, one is
the target position which is unknown, and the other is a known
reference position, e.g., the center of the vehicle. When the vehicle
is making a left turn, assume the radius of the target phone is rL,
and the radius of the reference position is thus rLM = rL + ∆r,
where ∆r is the relative distance between the target position and
the reference position. The difference of centripetal acceleration
between these two positions can then be represented as

∆aL = aL − aLM = ω2

LrL − ω2

L(rL +∆r) = −ω2

L∆r. (2)

Similarly, when the vehicle is making a right turn, the difference of
centripetal acceleration between the target phone and the reference
position is ∆aR = ω2

R∆r. Based on the equations above, it is
clear that the difference of the centripetal acceleration between two
positions inside the vehicle is determined by the angular speed of
the vehicle and the distance between these two positions.

The above analysis shows that the difference of centripetal ac-
celeration only depends on the relative distance between two posi-
tions inside the vehicle and angular speed during the turn. Thus,
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Figure 5: Accelerometer and Gyroscope readings when a smartphone is aligned with the vehicle who undergoes a left and a right

turn respectively.

our approach of using the difference of centripetal acceleration is
scalable to handle any turns with different radii. The larger the an-
gular speed is, the more powerful the discrimination becomes in
the centripetal acceleration when sensing driver phone use. More-
over, when undergoing left turns, the centripetal acceleration of the
driver phone is smaller than that at the reference point (such as
the cigarette lighter adapter and OBD-II port adapter), whereas it
is larger than that of the reference point when going through right
turns. Therefore, given the difference of the centripetal acceleration
and the turning direction, our system is able to determine whether
the phone is a driver phone or passenger one. Specifically, our al-
gorithm determines the driver phone use within a single turn using
the following hypothesis test:

{

(a− aM )ω > 0,H0 : passenger phone

(a− aM )ω < 0,H1 : driver phone,
(3)

where a is the centripetal acceleration of the smartphone measured
from its X-axis accelerometer, aM is the centripetal acceleration of
the reference position, and ω denotes the angular speed measured
from smartphone’s Z-axis gyroscope sensor. The sign of ω reflects
the turn direction, e.g., ω is positive when the vehicle is making a
left turn.

Cumulative Difference Comparison. Finally, the differences
of centripetal acceleration within the turning period are accumu-
lated in our algorithm so that to improve the detection robustness.
Particularly, our algorithm utilizes 21 samples of acceleration read-
ings at the time when the angular speed reaches its maximum value.
The cumulative difference of centripetal acceleration is then com-
bined together with the turning direction to decide whether the tar-
get phone is on the driver side or the passenger side.

Feasibility Study. Figure 6 depicts the difference of centripetal

acceleration between driver’s phone and passenger’s when our ve-
hicle went through 57 left turns and 60 right turns respectively.
The results are categorized in three ways: angular speed, car speed

and turn radius. It is encouraging that there is an obvious trend
that increasing angular speed results in a larger value of difference
of centripetal acceleration (as observed in Figure 6 (a)). Whereas
the difference does not change much when increasing the vehicular
driving speed and turn radius as shown in Figure 6 (b) and (c).

Utilizing Multiple Turns. Our algorithm can further improve
the detection performance by combining multiple single turn re-
sults (e.g., N turns) through a simple majority voting process:















∑N

i=1

(ai − ai
M )ωi

|(ai − ai
M )ωi|

> 0,H0 : passenger phone

∑N

i=1

(ai − ai
M )ωi

|(ai − ai
M )ωi|

< 0,H1 : driver phone,

(4)

where ai, ai
M , and ωi are the smartphone’s centripetal acceleration,

reference centripetal acceleration, and smartphone’s angular speed
in ith turn.

3.6 Detection Using Mixed Turns
The accuracy of the reference point affects the performance of

our sensing algorithm. We find that observations from the refer-
ence point can be biased. For example, the vehicle speed provided
by OBD-II is an overestimation possibly due to worn tires. Such
a bias affects the algorithm accuracy when using the difference
of centripetal acceleration within the same turn. Since a vehicle
usually undergoes multiple turns during a trip, we exploit the cen-
tripetal acceleration obtained from mixed turns, i.e., comparing the
normalized centripetal acceleration of the phone under a left turn
to that of a right turn. The normalized centripetal acceleration
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Figure 6: Difference of centripetal acceleration between driver’s phone and passenger’s categorized in three ways (angular speed,

car speed, and turn radius) when the vehicle undergoes 57 left turns and 60 right turns in the parking lot.

is defined as the ratio of the measured centripetal acceleration of
the phone to the centripetal acceleration derived from the reference
point. Using normalized centripetal acceleration enables our algo-
rithm to work with mixed turns with different turn sizes and driving
speeds encountered under real-road driving environments. The sys-
tem can automatically launch this detection once a left turn and a
right turn are identified based on gyroscope readings, irrespective
of the sequence of these turns.

Impact of Bias. The reference centripetal acceleration a′

LM (for
example under the left turn) can be expressed as:

a′

LM = aLMβ (5)

where aLM is unbiased centripetal acceleration of the reference
point and β is the bias. When the OBD-II port adapter is used as
the reference point, β comes from the biased estimate of the vehicle
speed. Then the difference in centripetal acceleration becomes:

∆aL = aL − a′

LM = (1− β)aL − βω2

L∆r. (6)

When there is no bias (i.e., β = 1), the above expression becomes
Equation (2). However, the existence of bias (β 6= 1) can arbitrarily
change the sign of the difference in centripetal acceleration, making
the detection result inaccurate.

Working with Mixed Turns. Our algorithm compares the nor-
malized centripetal acceleration of the phone under a left turn to
that of a right turn to eliminate the impact of bias coming from
the reference point. We denote the normalized centripetal accel-
eration of the phone under a left and right turn as âL = aL

a′

LM

and âR = aR

a′

RM

, respectively. The difference of the normalized

centripetal acceleration under the left and right turn can then be
expressed as:

∆âr = âL − âR =
aL

a′

LM

−
aR

a′

RM

=
aL

aLMβ
−

aR

aRMβ

=
1

β
(
aL

aLM

−
aR

aRM

). (7)

If the phone is at the driver side, aLM is always larger than aL

(i.e., aL

aLM
< 1), whereas aRM is always smaller than aR (i.e.,

aR

aRM
> 1). Thus, we always have ∆âr < 0. Similarly, if the

phone is at the passenger side, we always have ∆âr > 0. Thus, the

sign of ∆âr becomes independent of the bias, turn size and driving
speed. Our driver phone sensing with mixed turns can be further
formulated as the following hypothesis test:

{

âL − âR > 0,H0 : passenger phone

âL − âR < 0,H1 : driver phone.
(8)

We envision that our system can intelligently perform driver phone
detection based on the availability of turns. This means that when
a single turn is available, our system applies the algorithm involves
the single turn. When multiple/mixed turns are available, our sys-
tem performs more accurate driver phone detection using the accu-
mulative multiple/mixed turns.

4. SYSTEM IMPLEMENTATION
In this section, we present the Data Calibration and Coordinate

Alignment sub-tasks in our system. We then describe two sys-
tem approaches, one using the cigarette lighter adapter with an ac-
celerometer sensor and the other using the OBD-II port adapter as
the reference points.

4.1 Data Calibration for Enhanced Reliability
In real-road driving environments, many factors (such as run-

ning engines and wind) affect the readings from the accelerometers
and gyroscopes on smartphones. The sensor readings obtained can
be noisy and unreliable. To address this issue, we develop several
steps in our system to perform data calibration for robust detec-
tion. Our data calibration sub-task has the following capability: fil-
ter noise from sensor readings, ensure the synchronization between
sensor readings from different sources, and reduce bias caused by
hardware difference in smartphones.

4.1.1 Data Interpolation

To reduce the noise in readings obtained from the accelerome-
ters, we apply a moving average filter to the sensor readings. How-
ever, we observe that although a fixed sampling rate is used, the real
sampling interval has a small variation. Therefore, before applying
the moving average filter, we interpolate to estimate the samples at
evenly spaced time series points, i.e. [t0, t0+δ, t0+2δ, . . .], where
δ is the interpolation step and t0 is the starting time stamps for the
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Figure 7: Illustration of trace synchronization mechanism via

tangential acceleration.

readings. Similarly, we also apply interpolation to readings from
the gyroscope to obtain a uniform time interval between consecu-
tive samples for comparison. In our experiments, we observe that a
small time window of 5 samples for the moving average filter and
a δ of 0.05s for the interpolation step are good enough to produce
reliable sensing results.

4.1.2 Trace Synchronization

This procedure is used to synchronize the sensor readings from
the phone and the readings at the reference point (e.g., the cigarette
lighter adapter or OBD-II port adapter) since these readings come
from two sources with different clocks. In our approach, two types
of reference data are involved, one is the centripetal acceleration of
the vehicle (reference acceleration from the cigarette lighter adapter),
and the other is the speed of the vehicle (reference speed from
OBD-II port adapter). To synchronize the phone’s centripetal ac-
celeration readings with the ones from the reference acceleration
we calculate the cross correlation between these two sequence of
readings in time series. When the cross correlation reaches the
maximum, these two sequence of readings are synchronized be-
cause both sequences reflect vehicle’s movement.

However, when the speed obtained from the OBD-II port adapter
is used as the reference point, synchronization becomes more chal-
lenging. We develop a synchronization mechanism utilizing ve-
hicle’s acceleration, leveraging the change point in the tangential
acceleration during normal driving, to synchronize the trace of ref-
erence speed from OBD-II with the acceleration reading trace from

Figure 8: Illustration of how the phone’s coordinate system is

aligned to the vehicle’s coordinate system.

smartphone in time series. The rationale behind this mechanism
is that the time point that the vehicle changes from acceleration
to deceleration during normal driving is the point that the vehicle
reaches its maximum speed. Figure 7 illustrates how the tangen-
tial acceleration value change facilitates the synchronization with
the reference speed trace. The time (t2) that the reference speed
from OBD-II reaches its local maximum should match the time
(t1) that the vehicle’s tangential acceleration (i.e. the acceleration
on the Y axis) changes from positive to negative. Thus, for the ref-
erence speed trace (from OBD-II), we can perform synchronization
by subtracting the time difference (t2−t1) from all its time stamps.

4.1.3 Acceleration Adjustment

Acceleration adjustment is used to reduce the bias caused by
hardware differences in smartphones through adjusting the cen-
tripetal acceleration of the phone. Because the centripetal accel-
eration only exists during a turn, the readings on the X-axis ac-
celerometer of the phone should be zero when the vehicle is mov-
ing along a straight line. Nevertheless, the acceleration on the X-
axis may have a constant value different from zero due to different
hardware characteristics in different phone models. To reduce such
a bias, our system performs the following adjustment: 1) use the
phone’s gyroscope to determine the time period that the vehicle is
driving along a straight line, i.e., the time period with no rotation
rate on the Z-axis gyroscope; 2) calculate the mean value of the
X-axis acceleration during this time period; and (3) subtract the
calculated mean value from all the X-axis acceleration readings to
remove the constant bias.

4.2 Coordinate Alignment
Our system cannot derive meaningful vehicle dynamics from

sensor readings on the smartphone unless the phone’s coordinate
system is aligned with the vehicle’s. The Coordinate Alignment

sub-task aligns the phone’s coordinate system with the vehicle’s by
utilizing the accelerometers and gyroscopes on smartphones. As il-
lustrated in Figure 8, the phone’s coordinate system ({Xp, Yp, Zp})
is determined by the pose of the phone inside the vehicle. Our co-
ordinate alignment aims to find a rotation matrix R to rotate the
phone’s coordinate system to match with the vehicle’s ({Xc, Yc, Zc}).
We define three unit coordinate vectors under the vehicle’s coordi-
nate system as î, ĵ and k̂ for Xc, Yc and Zc axis respectively (i.e.,
î = [1, 0, 0]T in vehicle’s coordinate system). We denote the cor-
responding coordinates of these three unit vectors in the phone’s
coordinate system as:

q̂ = [xq, yq, zq]
T , (9)
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where q ∈ i, j, k, and the rotation matrix is given by [22]:

R =







xi xj xk

yi yj yk
zi zj zk







(10)

Our coordinate alignment sub-task utilizing smartphone’s accelerom-
eter and gyroscope readings to obtain each element in the rotation
matrix R consists of three steps:

Deriving k̂. We can apply a low pass filter (e.g., exponential
smoothing) on the three axes accelerometer readings on the phone
to obtain the constant components from these three accelerations
and derive the gravity acceleration [1], which is then be normalized

to generate the unit vector k̂ = [xk, yk, zk]
T .

Deriving ĵ. To obtain ĵ, we utilize the fact that the three-axes
accelerometer readings of the phone are caused by vehicle’s ac-
celeration or deceleration when driving straight. For example, we
can obtain ĵ = [xj , yj , zj ]

T through extracting the accelerome-
ter readings when the vehicle decelerates (e.g., the vehicle usually
decelerates before making turns or encountering traffic lights and
stop sign). The gyroscope is used to determine whether the vehi-
cle is driving straight (i.e., with zero rotation rate). We note the
gravity component needs to be excluded because it distributes on
all three axes of the phone when the phone’s coordinate system is
not aligned with the vehicle’s.

Obtaining î. Since the coordinate system follows the right hand

rule, we can determine the unit vector î = ĵ × k̂ = [xi, yi, zi]
T .

After obtaining the rotation matrix R, given the sensor reading
vector in the phone’s coordinate system s, we can obtain the rotated
sensor reading vector s′ aligned with vehicle’s coordinate system
by applying a rotation matrix R as: s

′ = s × R. We note that
there are existing studies utilizing the sensors embedded in smart-
phones to calibrate the coordinate systems between the phone and
the vehicle [29]. Different from the previous study, our coordinate
alignment mechanism does not require working with the GPS on
the phone, and thus is more accurate and energy efficient.

4.3 Reference Using a Cigarette Lighter Ad-
apter

We next show how a low-cost cigarette lighter adapter contain-
ing an accelerometer can be employed as a reference point in our
system. The location of the cigarette lighter charger is ideal for the
reference point since it is located at the center of the front seats.
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Figure 10: Centripetal acceleration at different positions inside

the vehicle under 20 left and 20 right turns in parking lot.

Our system can thus distinguish driver phone use from passenger’s
by comparing the centripetal acceleration of the phone to that of the
reference point. The centripetal acceleration of the reference point
can be obtained from the cigarette lighter adapter’s accelerome-
ter. The measured centripetal acceleration from the cigarette lighter
adapter is then transmitted to the target phone via Bluetooth for
comparison.

Since at the beginning of a trip, a vehicle usually makes mul-
tiple turns to pull out of a parking lot or drive on local streets
before getting onto main roads, we demonstrate the feasibility of
the cigarette-lighter-adapter-based approach by driving a car in the
parking lot of Babbio Center at Stevens Institute of Technology for
over a one month time period. During our experiments, we utilize
a smartphone (the adapter phone) and place it at the location of
the cigarette lighter charger to simulate the cigarette lighter adapter
containing an accelerometer. To distinguish the driver phone use
from the passenger’s, we place two iPhone4s at driver and passen-
ger side respectively. We have 65 turns in total including both left
and right turns at the parking lot. Each turn has about 90 degrees
and lasts for about 20 seconds (which includes the time period
when driving straight and turning). The radii of the turns are ap-
proximately 10 meters and the speed of the turns is around 10mph.
Note that without notice, the sensor readings we are referring to are
after coordinate alignment.

Figure 9 presents the detection rate versus false positive rate
when applying driver phone sensing algorithm within the same
turn. The detection rate indicates how many cases of driver phone
use are correctly detected, whereas the false positive rate shows
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Figure 11: ROC curve when using multiple turns and OBD-II speed in parking lot.

how many cases of passenger phone use are mistakenly classified
as driver phone use. It is encouraging that our system can achieve
above a 90% detection rate with about a 6% false positive rate using
a single turn. Once the algorithm is applied when the vehicle un-
dergoes multiple turns, the performance has a substantial improve-
ment. For example, with 3 turns, the detection rate can be improved
to 99.7% with much less false positive (3%), whereas with 5 turns,
our system can reach 100% detection rate with less than 1% false
positive (0.4% to be exact). These results confirms the feasibility
of sensing vehicle dynamics to determine driver phone use.

4.4 Reference Using an OBD-II Port Adapter
The OBD-II interface has been made mandatory for all vehicles

sold in the United States after 1996, and inexpensive OBD-II port
adapters with Bluetooth connection are readily available in the mar-
ket. We can forward the speed of the vehicle from the OBD-II port
adapter to the smartphone via a Bluetooth connection. In our sys-
tem implementation, we utilize a low cost OBD-II port adapter,
which allows us to collect the vehicle’s speed from the OBD-II
port adapter via a USB connection, to use the speed of the vehicle
as the reference point. The centripetal acceleration of the car’s cen-
ter (i.e., reference point) is the product of the OBD-II speed and the
angular speed measured by the target phone. The driver phone use
can be detected by comparing the phone’s centripetal acceleration
to that of the vehicle’s center.

4.4.1 OBD-II Speed

We use the ElmScan 5 compact OBD-II scan toolkit (about 30
dollars) to obtain the OBD-II speed, which has a sampling rate of
about 20 samples/s. The OBD-II speed represents the speed of the
car’s center since it is calculated based on the averaged distance
traversed by four tires. Thus, the calculated centripetal accelera-
tion based on the OBD-II speed and the angular speed is for the
center of the vehicle. However, the OBD-II speed estimation is a
conservative overestimation to allow for changes in tires’ circum-
ferences. We assume the reported speed is proportional to the true
speed: v′M = vM×β, where v′M and vM are the estimated and true
speed respectively. We also assume that the value of β is constant
per vehicle, even though there is a slight variation in practice due
to the change of tire pressure. We study the impact of the bias (β)
on the performance of our algorithm in our experiments.

4.4.2 Evaluation

We use the same experiment setup as we had in the parking lot
in Section 4.3. Figure 10 shows the scatter plot on the centripetal
accelerations from three sources: smartphone at driver seat, smart-

phone at passenger seat, and the calculated one for the vehicle’s
center based on the OBD-II speed, under 20 left turns and 20 right
turns respectively. Note that we did the OBD-II speed adjustment
by setting the speed adjustment coefficient β = 1.1. We observe
that the centripetal acceleration calculated based on OBD-II speed
is in between the centripetal acceleration of the driver phone and
passenger phone. This indicates that employing the centripetal ac-
celeration derived from the OBD-II speed is an effective reference
point for determining driver phone use.

Figure 11 depicts the detection rate versus false positive rate by
applying our algorithm when using multiple turns under different
bias β. With a small bias β = 1.1, we can achieve 91% detection
rate with 5% false positive rate under two turns. By increasing the
number of turns, the performance can be significantly improved.
For example, with 3 and 5 turns, the detection rate is improved
to 93% with 5% false positive rate and 97% detection rate with
only 3% false positive rate, respectively. We find that the bias β is
critical to the detection performance when only data for few turns
is available, but the sensitivity to β decreases with the increasing
number of turns, as shown in Figure 11. When data for multiple
turns is available, our approach does not rely on a careful calibra-
tion of β, rather, a simple approximation is sufficient. Note that
the bias can be learned offline. Alternatively, our algorithm based
on mixed turns (Section 3.6) can eliminate the impact of the biased
OBD-II speed. We present the results from using mixed turns tested
from real-road driving environments in the next section.

5. EVALUATION IN REAL-ROAD DRIVING

ENVIRONMENTS
In this section, we evaluate our proposed driver phone use sens-

ing system in real road driving environments using two types of
phones in two different cities.

5.1 Experimental Setup

5.1.1 Phones and Vehicles

We conduct our experiments with two types of phones: iphone4
and HTC 3D. Both phones have a Bluetooth radio, 3-axis accelerom-
eter and gyroscope. The iphone4 is equipped with a 1GHz ARM
Cortex-A8 CPU and 512M RAM running with iOS5.2, whereas the
HTC 3D has a Qualcomm MSM8660 1.2GHz CPU and 1G RAM
running with Android 2.4. Both the accelerometer and gyroscope
sampling rate are 20 samples/s. There are two vehicles used in our
experiments: a Honda Accord (Car A) and an Acura sedan (Car B).



(a) Driving trajectory in Hoboken, NJ

(b) Driving trajectory in Pontiac, MI

Figure 12: Daily commute routes used for real-road driving

evaluation in Hoboken, NJ and Pontiac, MI.

5.1.2 Real Road Driving Scenarios

To evaluate our proposed system, we conduct experiments using
the iphone4 for over one month when Car A is used as the daily
commute vehicle in Hoboken, NJ. Hoboken has a typical urban
setting. To test the generality of our system, we further experiment
with the HTC 3D using Car B to commute to work in Pontiac, MI
for over one week. Pontiac presents a suburban environment. The
driving routes are depicted in Figure 12. The phones are placed
in either the driver or passenger seat/door during the experiments.
Each of the traces contains 10 to 20-minute of driving. Table 1
summarizes the details on the traces collected in these two cities.
In total, we have 292 left turns and 278 right turns in Hoboken, NJ,
and 211 left turns and 219 right turns in Pontiac, MI.

5.1.3 Prototype

We implement our sensing driver phone use system using the An-
droid platform. The prototype runs as an Android App and collects
readings from the accelerometer and gyroscope in the smartphone.
It then runs through the detection algorithm using either single or
multiple turns to determine whether the phone is at the driver or
passenger side. Our prototype also works with the OBD-II port
adapter via Bluetooth. We also present the results using iPhone 4
by applying trace driven off-line analysis.

5.1.4 Metrics

Location Left turns Right turns Car Phone

Hoboken,NJ 292 278 Car A iphone4

Pontiac,MI 211 219 Car B HTC 3D

Table 1: Traces collected in Hoboken, NJ and Pontiac, MI.
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Figure 13: ROC curve when using the adapter phone as the

reference point.

To evaluate the performance of our system, we define the follow-
ing metrics:

Accuracy. Accuracy is defined as the percentage of the trials that
were correctly classified as driver phone use or passenger phone
use.

Detection Rate (DR) and False Positive Rate (FPR). Detection
rate is defined as the percentage of driver phone use that are cor-
rectly identified by our system, whereas the False positive rate is
defined as the percentage of passenger phone use that are classified
as driver phone use.

Detection Latency. We define the detection delay as the time
needed to make a decision on whether it’s a driver phone use or
passenger use starting from driving a vehicle.

5.2 Evaluation Using a Cigarette Lighter Ad-
apter

We evaluate the effectiveness of using the adapter phone placed
at the cigarette lighter charger as the reference when driving Car
A in Hoboken, NJ and Car B in Pontiac, MI. Figure 13 presents
the detection rate versus false positive rate when applying our al-
gorithm to determine the driver phone use. We observe that within
one turn, our system achieves over a 80% detection rate with less
than a 10% false positive rate for both traces in Hoboken and Pon-
tiac. By utilizing multiple turns for detection, the performance is
further improved. Specifically, for the experiments in Hoboken,
the detection rate goes up to 97% with a 3% false positive rate
with 3 turns. And with 5 turns, our system can achieve a 99.1%
detection rate with less than a 1% false positive rate (0.3% to be
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exact) in Hoboken. Similarly, for the experiments in Pontiac, we
can achieve a 91.4% detection rate with a 2.4% false positive rate
by using 3 turns, and a 98.42% detection rate with a 0.92% false
positive rate by using 5 turns. This indicates that our system can
achieve very high detection accuracy when the vehicle undergoes
only a few turns. We note that the best performance in the ROC
curves is achieved when the threshold (for the hypothesis testing as
described in Equation (8)) is about 10cm away from the center of
the car to the passenger side.

5.3 Evaluation Using an OBD-II Port Adapter
We further evaluate using the OBD-II speed as reference by ap-

plying mixed turns detection, which eliminates the dependence on
the bias caused by using the OBD-II.

Filtering Turns with Angular Speed. The noise in the sensing
data affects the results of the hypothesis test. Our system adopts a
strategy to select turns with a large angular speed so that to get a
larger difference of acceleration, thus making our algorithm more
robust to noisy sensor readings. As shown in Equation (2), the
larger the angular speed is, the more powerful the discrimination
becomes in the centripetal acceleration. Given the certain noise
level presented in the sensing data, we can thus filter out the turns
with small angular speed to improve the detection performance.
Our strategy is to choose the turns based on the maximum angular
speed and filter out those with the maximum angular speed below
a threshold. Figure 14 shows that through our study with 570 turns
collected from real-road driving in Hoboken, NJ over one month
time period, over 80% of the turns have maximum angular speed
larger than 0.5 rad/s. This suggests that applying our turn selection
strategy to cope with the noisy sensing data will only sacrifice a
small portion of the data. We thus choose 0.5 rad/s as the threshold
in our study.

Results. Figure 15 presents the system performance when us-
ing mixed turns with and without turn selection based on driving
traces in Hoboken, NJ. We observe that the performance under turn
selection is 20% better than that without turn selection. In particu-
lar, with the turn selection strategy, the detection rate is about 80%
with a false positive rate of 20% under only 1 set of mixed turns,
whereas the detection rate goes up to 91% with only a 5% false
positive rate based on 3 sets of mixed turns.

5.4 Evaluation Using Dual Phones
When there are passengers in the vehicle, our system can lever-

age a second phone instead of an adapter on the car to determine
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Figure 15: ROC curve when using OBD-II port adapter as

the reference point under mixed turns using iPhone4, Car A

in Hoboken NJ.

the driver phone. While we have not found any detailed statistics
on driver versus passenger cell phone use in vehicles, a federal ac-
cident database (FARS) [10] reveals that about 38% of automobile
trips include passengers. Basically, our system can directly com-
pare the centripetal acceleration of these two phones to determine
the one on the left side is the driver’s phone. These two phones can
exchange their centripetal acceleration via Bluetooth. To evaluate
such an approach, we carry out a series of experiments by putting
one phone at two driver’s locations: driver’s left pocket (position

A), driver’s right pocket (position B), and the other phone at two
passenger’s locations: passenger’s left pocket (position C), and pas-
senger’s right pocket (position D).

Figure 16 shows the detection accuracy of employing the second
phone as reference when driving in two cities when undergoing
1, 2, and 3 turns. We observe that when undergoing one turn the
scenario A-D achieves the best detection accuracy, which is over
95% because the two phones have the largest distance between
each other in the vehicle, while the scenario B-C with two phones
located in the closest positions achieves about 70% accuracy un-
der one turn. This is because the significance of the difference of
centripetal acceleration between two phones is only affected by the
relative distance between them. We find that the accuracy for B-C
scenario can go up to 90% when undergoing 3 turns. We observe
similar detection accuracy in Pontiac, for instance, the scenario A-
D can achieve the detection accuracy over 95.6% and 99.8% for
1 and 3 turns respectively. These results show that using the ac-
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the vehicle as the reference.

celeration from the second phone as the reference generally has
good performance in real-world driving tests. Moreover, by using
multiple turns, the detection accuracy can be further improved, es-
pecially for the phones that are placed very close to each other (i.e.
the B-C scenario).

5.5 Detection Latency
In reality, it is common that a vehicle experiences more turns

at the beginning of a trip before getting onto main roads, such as
driving the vehicle out of the parking lot and then driving on local
streets. These turns make our system able to determine whether
the phone is driver’s or passenger’s. When sensing driver phone
use is conducted using a single turn, the detection latency con-
sists of the algorithm execution time and the turning time (which
includes time for sensing data collection). In our system proto-
type, we find that the algorithm execution time is at the level of
sub-millisecond. Thus, the detection latency is determined by the
turning time. Based on our experiments summarized in Table 1, the
average turning time is about 10s in both Hoboken, NJ and Pontiac,
MI.

When multiple turns are employed in our detection algorithm,
the time interval between two turns, measured between two max-
imum angular speeds, dominates the total detection latency. We
observe that the average time interval between two turns in Hobo-
ken, NJ is about 28s, while it is 18s in Pontiac, MI. Therefore, the
latency of our algorithm is the sum of turning times and the time be-
tween turns. For instance, when we use two turns with the cigarette
lighter adapter, the latency is about 48s and 38s in Hoboken and
Pontiac respectively. This indicates that our driver phone sensing
algorithm has an acceptable detection latency in environments in-
cluding both urban and suburban. The time delay in Hoboken city
is longer than that in Pontiac. This is because Hoboken has the
urban city setting and the driving routes involve more traffic lights
and stop signs. Therefore, vehicles experience longer waiting time
before making turns.

6. DISCUSSION
In this section, we first discuss how this technique can be ex-

tended with front-rear detection based on acceleration forces cre-
ated when the vehicle passes over bumps. We then discuss our
initial attempts and results towards a completely phone-based solu-
tion, that is a solution that also eliminates the requirement for the
plugin adapter. Finally, we speculate about other vehicle sensors
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Figure 17: Histogram of differential speed between the phone’s

position on left/right door and at the center of the vehicle.

that could be used as a reference point, when vehicles become a
more open platform.

6.1 Extended System with Front-Rear Detec-
tion

While left-right classification is able to disambiguate the major-
ity of in-vehicle phone use situations, a complete system for driver
phone detection involves both left-right and front-rear classifica-
tions of phone position. The left-right classification approach pro-
posed in this study can be integrated with the front-rear accelerom-
eter classification described in our previous work [37]. The basic
idea of this front-rear classification is that the acceleration forces
on a vehicle when passing over speed bumps, potholes, or other
uneven surfaces are also position dependent. Consider that the
front wheels will hit the bump first, followed by the rear wheels a
short time later. Since the front seats are closer to the front wheels,
phones at this position will observe a stronger effect from this bump
than phones on the rear seats. Our prior experiment show that it
could achieve as high as 90% accuracy when passing two bumps
and 94% when passing three bumps.

6.2 Towards Infrastructure-Free Driver Phone
Use Detection

One possible infrastructure-free approach is to use the smart-
phone’s GPS speed measurement as a reference. At the first glance,
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Figure 18: ROC of driver phone use sensing in Hoboken with

mixed turns algorithm and GPS speed.

using a speed measurement at the phone position does not seem
suitable as a reference. This is less clear however when taking, for
example, the GPS chip’s internal processing and smoothing into
account. Consider a phone on one side and a vehicle moving in a
straight line with a constant velocity. In this case, both the instanta-
neous and smoothed velocities will be the same. When the vehicle
turns, the value of the smoothed velocity will lag closer to the cen-
ter velocity. Assuming the phone’s gyroscopes and accelerometers
are closer to the instantaneous values, the difference could be used
to discriminate the side of the vehicle.

The filters used on GPS chipsets are often proprietary, so we
perform experiments to test this hypothesis. We place two iPhone4s
on two front doors, and also employ a third iPhone4 in a center cup
holder to collect the tangential speed of the center of the vehicle.
We then compare the GPS speed from the center phone to those
obtained from the front doors. Figure 17 presents the histogram of
the differences between the GPS speed of the center phone and the
two phones on two front doors. We observe that both histogram of
the difference centered at around 0m/s, which indicates that the
GPS speed is not sensitive to the in-vehicle position, thus making
using the smartphone’s GPS speed tractable as a replacement of the
OBD-II speed.

We further use real road driving experiments to validate the use
of phone’s GPS. The results presented in Figure 18 and Figure 19
show that for both traces in Hoboken, NJ and Pontiac, MI, our al-
gorithm can achieve over 80% detection rate with 3 sets of mixed
turns without turn selection. Based on turns with ω > 0.5rad/s,
our algorithm can achieve much better detection rate, that is 90%
and 95% in Hoboken and Pontiac respectively. These results show
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Figure 19: ROC of driver phone use sensing in Pontiac with

mixed turns algorithm and GPS speed.

some promise in using the GPS speed measured by the phone to
derive the vehicle reference and possible achieve completely infra-
structure-free driver detection. While cannot fully explain these
observations, we believe these results warrant further study.

6.3 Integration with Additional Vehicle Sen-
sors

Our work also points to a more intriguing possibility of vehicular
smartphone applications where all the vehicle’s sensors are avail-
able to an authorized smartphone. While ODB-II to Bluetooth is
a first step in this direction, much richer interfaces with additional
information are possible and have been realized in select vehicles.
For example, the Open-XC interfaces [13] provides additional ve-
hicle parameters to Android phones. Of particular interest, is the
steering wheel angle measured by a steering wheel position sen-
sor [6] (this sensor normal provides information for electronic sta-
bility control). Having such information available would provide
additional and potentially more accurate means for determining the
turn radius of the vehicle and estimating acceleration forces at a
vehicle reference point.

7. CONCLUSION
In this paper we demonstrate a low-infrastructure approach for

discriminating between a phone in the driver or passenger position
of a moving vehicle by sensing vehicle dynamics. It does not rely
on a built-in handsfree Bluetooth system in the car but only on the
phone’s embedded sensors and a simple plug-in reference module
for the cigarette lighter or OBD-II port. The insight that the cen-



tripetal acceleration varies depending on the position in the car en-
ables us to build a system that exploits the difference of centripetal
acceleration at different positions inside the vehicle to determine
the driver phone when turning. Our system accomplishes the task
by comparing the measured centripetal acceleration at the phone
with that from a reference point in the vehicle. Instead of such a
reference point, the system could also leverage a second phone in
the car to perform detection when available.

We demonstrate the generality of our approach through exten-
sive experiments with two different phone types and two different
cars in two cities over a month-long time period. Our findings show
that our approach yields close to 100% accuracy using only a few
turns with less than 3% false positive rate. While the system has
to wait until the vehicle has passed through one or more turns, our
experiments show that detection is often possible by the time a ve-
hicle leaves a parking lot or before it reaches a main road, so the
determination is available for the vast majority of trips.
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