
AVR: Augmented Vehicular Reality
Hang Qiu

University of Southern California
hangqiu@usc.edu

Fawad Ahmad
University of Southern California

fawadahm@usc.edu

Fan Bai
General Motors Research

fan.bai@gm.com

Marco Gruteser
Rutgers University

gruteser@winlab.rutgers.edu

Ramesh Govindan
University of Southern California

ramesh@usc.edu

ABSTRACT
Autonomous vehicle prototypes today come with line-of-sight
depth perception sensors like 3D cameras. These 3D sen-
sors are used for improving vehicular safety in autonomous
driving, but have fundamentally limited visibility due to oc-
clusions, sensing range, and extreme weather and lighting
conditions. To improve visibility and performance, not just
for autonomous vehicles but for other Advanced Driving
Assistance Systems (ADAS), we explore a capability called
Augmented Vehicular Reality (AVR). AVR broadens the
vehicle’s visual horizon by enabling it to wirelessly share
visual information with other nearby vehicles, but requires
the design of novel relative positioning techniques, new per-
spective transformation methods, approaches to isolate and
predict the motion of dynamic objects in order to hide latency,
and adaptive transmission strategies to cope with wireless
bandwidth variability. We show that AVR is feasible using
off-the-shelf wireless technologies, and it can qualitatively
change the decisions made by autonomous vehicle path plan-
ning algorithms. Our AVR prototype achieves positioning
accuracies that are within a few percent of car lengths and
lane widths, and is optimized to process frames at 30fps.

CCS CONCEPTS
• Networks → Cyber-physical networks;

KEYWORDS
Autonomous Cars, Collaborative Sensing, Extended Vision

ACM Reference Format:
Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh
Govindan. 2018. AVR: Augmented Vehicular Reality. In MobiSys
’18: The 16th Annual International Conference on Mobile Systems,
Applications, and Services, June 10–15, 2018, Munich, Germany.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3210240.3210319

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210319

1 INTRODUCTION
Autonomous cars are becoming a reality, but have to demon-
strate reliability in the face of environmental uncertainty. A
human driver in the United States can achieve, on average,
nearly 100 million miles in between fatalities [40], and users
will expect autonomous cars, and other advanced driving
assistance systems (ADAS), to significantly outperform hu-
mans in terms of reliability. To achieve high reliability, these
technologies use advanced sensors for depth perception, such
as radar, lidar and stereo cameras. These 3D sensors permit
vehicles to precisely position themselves with respect to the
surrounding environment, and to recognize objects and other
hazards in the environment.

These 3D sensors periodically capture, at rates of several
3D frames per second, representations of the environment
called point clouds (§2). A point cloud captures the 3D view,
from the perspective of the vehicle, of static (e.g., buildings)
and dynamic (e.g., other vehicles, pedestrians) objects in the
environment. Because points in a point cloud are associated
with three dimensional position information, vehicles can use
pre-computed 3D maps of the environment, together with the
outputs of these 3D sensors, to precisely position themselves.

However, all of these 3D sensors suffer from two significant
limitations. They have limited range which can further be
impaired by extreme weather conditions, lighting conditions,
sensor failures, etc. They primarily1 have line-of-sight visibil-
ity, so cannot perceive occluded objects. These limitations
can impact the reliability of autonomous driving or ADAS
systems in several situations: a car waiting to turn left at
an unprotected left turn has limited visibility due to a truck
waiting to turn left in the opposite direction; or, a car is forced
to react quickly when the car ahead brakes suddenly due
to an obstruction on the road that is not visible to vehicles
behind it.

In these situations, vehicles can benefit from wirelessly
sharing visual information with each other, effectively ex-
tending the visual horizon of the vehicle and circumventing
line-of-sight limitations. This would augment vehicular visibil-
ity into hazards, and enable autonomous vehicles to improve
perception under challenging scenarios (Figure 1), or ADAS
technologies to guide human users in making proper driving
decisions. This capability, which we call Augmented Vehicular
Reality (AVR), aims to combine emerging vision technologies

1Some radar sensors can shoot signals under a vehicle to detect one
more car ahead, but with limited accuracy.

https://doi.org/10.1145/3210240.3210319
https://doi.org/10.1145/3210240.3210319
https://doi.org/10.1145/3210240.3210319

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

Leader Point Cloud

Follower Point Cloud Merged Point Cloud

Blind Spot

Out of

Range

Extended

Range

No Blind Spot

(a) Stereo Camera Point Cloud

Leader Point Cloud

Follower Point Cloud Merged Point Cloud

Blind

Spot

(b) LiDAR Point Cloud

Car Detected

by Leader

Figure 1—AVR allows a follower vehicle to see objects that it cannot
otherwise see because it is obstructed by a leader vehicle. The pictures
show a bird-eye view of a leader, a follower and a merged point cloud
with different sensing modalities. The top (a) is generated by stereo
cameras, while the one on the bottom (b) is obtained from LiDARs.

that are being developed specifically for vehicles [41], together
with off-the-shelf communication technologies.

In AVR2, vehicles exchange raw 3D sensor outputs (point
clouds). To achieve this, however, AVR must solve several
challenging problems: how to find a common coordinate
frame of reference between two cars; how to resolve perspec-
tive differences between the communicating cars; and how
to minimize the communication bandwidth and latency for
transferring 3D views.
Contributions. To address these challenges, this paper makes
three contributions (§3). First, AVR devises a novel relative
positioning technique where the recipient of a point cloud can
position itself with respect to the sender. This positioning
technique adapts a recent feature-based SLAM technique
developed for stereo vision, which extracts sparse features
of the environment. Using a sparse 3D map containing only
these features, a receiver can position itself with respect to the
sender by learning the sender’s position relative to the shared
sparse 3D map. Then, a receiver can re-orient received point
clouds with respect to its own position using a perspective
transformation.

Second, because transferring full 3D point clouds of the
environment can exceed the capacity of even future wire-
less technologies, AVR incorporates techniques to reduce
bandwidth requirements. It isolates dynamic objects in the

2AVR Video Demo: https://youtu.be/9rOtH3hDcw8

environment using a homography transformation, so it need
only transmit point clouds of these objects. It uses off-the-
shelf lossless compression on these point clouds, and also
extracts motion vectors that enable reconstruction by dead-
reckoning at the receiver. It uses an adaptive transmission
strategy that sends motion vectors instead of point clouds to
cope with channel variability. Finally, it permits cooperative
sharing: two cars with overlapping perspectives can cooperate
to eliminate redundancy in the set of objects shared with a
third car.

Third, AVR’s algorithms can incur significant processing
latency, which can impact the throughput of the system (the
rate at which 3D frames are processed) and the freshness of
information at the receiver. Our AVR prototype incorporates
careful pipelining to increase the frame rate, and leverages
motion prediction to hide latency.

Our AVR prototype (§5), when used with a 60GHz radio,
can transmit visual information within 150-200 ms. This delay
is significantly lower than the maximum permissible delay for
AVR to help improve safety while overtaking or stopping due
to obstructions. It also adapts gracefully to channel variability.
AVR’s extended vision, when used as input to path planning
algorithms, can avoid dangerous overtake attempts resulting
from limited visibility. Using extensive traces of stereo camera
data, we show that AVR can achieve 20-30 cm positioning
accuracy, which corresponds to 2-10% of lane widths or vehicle
lengths. AVR’s processing pipeline is optimized to process
frames at 30fps. Its major source of error, speed estimation,
can be dramatically improved by the use of LiDAR; we are
currently working on incorporating LiDAR into AVR.

2 BACKGROUND AND MOTIVATION
3D Sensors in Cars. Today, a few high-end vehicles have a 3D
sensing capability that provides depth perception of the car’s
surroundings. This capability is likely to become pervasive
in future vehicles and can be achieved using 3D sensors
such as advanced multi-beam LiDAR, RADAR, long-range
ultrasonic and forward-facing or surrounding-view camera
sensors. These 3D sensors can be used to detect and track
moving objects, and to produce a high-definition (HD) map
for localization [55, 59]. This HD map makes the car aware
of its surroundings: i.e., where is the curb, what is the height
of the traffic light, etc., and is able to provide meter-level
mapping and absolute positioning accuracy. Recent research
in autonomous driving [19, 53, 24] has leveraged some of
these advanced sensors to improve perception.

All of these 3D sensors have one common feature: they
generate periodic 3D frames, where each frame represents
the instantaneous 3D view of the environment. A 2D image
frame is represented by an array of pixels, but a 3D frame
is represented by a point cloud. Each point in the point
cloud frame contains the three-dimensional position (which
enables depth perception) and (optionally) the color of the
point. These 3D sensors can differ in the rate at which they
generate point clouds, and their field of view. For example,
the 64-beam Velodyne LiDAR [64] can collect point clouds

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

Figure 2—Mockup of a heads-up display with AVR’s extended vision.

at 10 Hz containing a total of 2.2 million points each second
encompassing a 360° view with an effective sensing range of
120 m. In this paper, we use stereo cameras, which can collect
point clouds at 60 Hz with over 55 million points per second,
but with a limited field of view (110°) and an effective sensing
range of 20 m [68].
The Problem. These 3D sensors only provide line-of-sight
perception and obstacles can often block a vehicle’s sensing
range. Moreover, the effective sensing range of these sensors
is often limited by weather conditions (e.g., fog, rain, snow,
etc.) or lighting conditions [51, 16]. These limitations can
impact the efficacy of autonomous driving or advanced driver
assistance systems (ADAS).

Consider the following examples. A car is following a slow-
moving truck on a single-lane highway. The car would like to
overtake the truck, but its 3D sensor is obstructed by the truck
so it cannot see oncoming cars in the opposite lane. Similarly,
two cars, waiting to turn left at an unprotected intersection,
can each be “blinded” by the other. As a third example,
consider a platoon of two cars, a leader and a follower. The
leader’s driver, distracted, brakes suddenly upon noticing a
pedestrian entering a crosswalk. The follower, unable to see
the pedestrian, cannot brake in time to prevent rear-ending
the leader. In each of these scenarios, even if the 3D sensors
are not obstructed, they may not have sufficient range to
view oncoming vehicles or pedestrians.
Augmented Vehicular Reality. In this paper, we explore the
feasibility of a simple idea: extending the visual range of vehi-
cles by wirelessly communicating visual information between
vehicles. We use the term Augmented Vehicular Reality (AVR)
to denote the capability that embodies this idea. Specifically,
in the one-lane highway scenario, if the truck were to com-
municate visual information from its 3D sensors to the car,
using some form of V2V technology, the latter’s autonomous
driving or ADAS software could determine the safest time
and the speed at which to overtake the truck. Similarly, in
the left-turn or the platoon scenarios, the transmission of
visual information, can help cars turn, or stop, safely. In each
of these cases, transmission of visual information can either
compensate for the line-of-sight limitations of 3D sensors, or
their limited range.

AVR can also extend vehicular vision over larger spatial
regions, or over time. It can be used to detect and warn
users of hazards such as parked cars on the shoulder, police
vehicles, or objects on the road. It can also be used to augment
HD maps to include transients in the environment like lane
closures or construction activity.

What Visual Information to Transmit. Instead of transmit-
ting point clouds, AVR could choose to transmit object labels
and associated metadata (e.g., the label “car” together with
the car’s position). This is similar to the labels exchanged
over DSRC except that, in current DSRC protocols, vehi-
cles only share their own position but not the position of
other vehicles observed from sensors. Labels lack contextual
information present in point clouds, such as lane markers,
traffic regulators, and unexpected objects not defined in the
label dictionary. Such contextual information can improve
the quality of driving decisions.

However, point cloud transmission is necessary in some
cases. The first is when the extended view is displayed using
a heads-up display. Figure 2 shows a mock-up of a heads-up
display where a car can visualize a vehicle in the opposite lane.
The second is when the sender and receiver have different
autonomous driving algorithms and processing capabilities.
Autonomous driving algorithms use images and point clouds
to map, localize, detect and control. Some of those algorithms,
such as object detection [46], path planning and steering con-
trol [5], are composed of deep and wide neural networks that
require substantial computing resources, such as expensive
GPUs. In general, the accuracy and speed of autonomous
driving algorithms is proportional to the computing resources
available to them. Higher-end (e.g., luxury) vehicles are likely
to have more computing resources, and would be able to make
more accurate control decisions if they were to receive raw
point clouds from other cars, than if they were to receive
labels generated by cars with fewer computing resources.

3 AVR DESIGN
AVR consists of two logically distinct sets of components
(Figure 3). One runs on a sender and contains the 3D frame
processing algorithms that generate visual descriptions to be
sent to one or more receivers. Receivers can either feed the
received visual descriptions to a heads-up display, or recon-
struct an extended view containing the visual descriptions
received from the sender with their own 3D sensor outputs3.
This extended view can be fed into ADAS or autonomous
driving software.

AVR poses several challenges. First, for AVR, each vehicle
needs to transform the received visual information into its
own view. To do this, AVR must estimate its position and
orientation with respect to the sender of the raw sensor data,
and then perform a perspective transformation that re-orients
the received point cloud.

To address this challenge, both the sender and the receiver
share a sparse 3D map of the road and the road-side struc-
tures. This map is analogous to the 3D maps that autonomous
driving systems use to position themselves with respect to
the environment, but with one important difference: it is
sparse, in that it only contains features (the green squares in
Figure 4) extracted from the denser 3D maps used by these

3Each vehicle includes both sender-side and receiver-side processing
capabilities. We describe them separately for ease of exposition.

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

Sparse HD Map

Sparse HD MapSparse HD Map

Sender

Receiver

Feature

Extraction

Dynamic Object

Extraction

Point Cloud

Compression

Motion Vector

Estimation

Relative

Localization

Relative

Localization

Feature

Extraction

Perspective

Transformation

Reconstruction
Autonomous

Driving or ADAS

3D Frames

3D Frames

Camera

Coordinates

Object

Point Clouds

Motion

Vectors

Figure 3—AVR sender and receiver side components.

systems. For AVR, such a sparse map suffices for relative
positioning. As we describe later, the sparse 3D map can
be constructed offline, and potentially crowd-sourced. With
this sparse map, the sender processes 3D frames from its
camera and extracts features within the 3D frames, then uses
some of these features to position its own camera relative
to the sparse 3D map. The sender sends its position and a
compressed (see below) representation of the 3D frame to the
receiver. The receiver uses the sender’s camera coordinates,
features extracted from its own 3D sensor, and its own copy
of the sparse 3D map to estimate its position relative to
the sender. After decompressing the received point clouds
of dynamic objects, the receiver applies a perspective trans-
formation to these objects to position them within its own
coordinate frame of reference.

Second, if AVR were to transmit 3D frames at full frame
rates, the bandwidth requirement could overwhelm current
and future wireless technologies. Fortunately, successive 3D
frames contain significant redundancy: static objects in the
environment may, in most cases, not need to be communicated
between vehicles, because they may already be available in
precomputed HD maps. For this reason, an AVR sender can
also, instead of sending full frames, transmit point clouds
representing dynamic objects (e.g., cars, pedestrians) within
its field of view, and also the motion vector of these dynamic
objects. The receiver uses the object’s motion vectors to
reconstruct the object position, and superimposes the received
object’s point cloud onto its own 3D frame.

Third, many of the 3D sensor processing algorithms are
resource-intensive, and this impacts AVR in two ways. It can
limit the rate at which frames are processed (the throughput),
and lower frame rates can impact the accuracy of algorithms
that detect and track objects or that estimate position. It
can also increase the latency between when a 3D frame is
captured and when the corresponding point cloud is received
at another vehicle. AVR selects, where possible, lightweight
sensor processing algorithms, and also optimizes the process-
ing pipelines to permit high throughput and low end-to-end
latency. Its motion vectors permit receivers to hide latency,
as described later.

A complete realization of AVR must include mechanisms
that prevent or detect sensor tampering and protect the

Figure 4—The green dots represent static features that are used to
construct the sparse HD map, while features from the moving vehicle
are filtered out.

privacy of participants who share sensor data (§7). We have
left such mechanisms to future work.

Our initial design of AVR is based on relatively inexpensive
(2 orders of magnitude cheaper than high-end LiDARs) off-
the-shelf stereo cameras, but we also present some evaluations
with a LiDAR device.

3.1 Relative Localization
In AVR, a receiver needs to be able to estimate its position
relative to the sender. Absolute positions from GPS would suf-
fice for this, but GPS is known to exhibit high error especially
in urban environments, even with positioning enhancements
[28]. Specialized ranging hardware can estimate distance and
relative orientation between the vehicles, but this would add
to the overall cost of the vehicle. The depth perception from
the 3D sensors can estimate relative position between the
sender and receiver, but, in AVR, the sender and receiver
need not necessarily be within line-of-sight.
Key idea. Instead, AVR uses prior work in stereo-vision based
simultaneous localization and mapping (SLAM, [38]). This
work generates sparse 3D features of the environment (called
ORB features [38]), where each feature is associated with a
precise position relative to a well-defined coordinate frame
of reference. AVR uses this capability as follows. Suppose
car A drives through a street, and computes the 3D features
of the environment using its stereo vision camera. These 3D
features contribute to a sparse 3D map of the environment
and each feature has a position relative to the position of
A’s camera at the beginning of A’s scan of the street (we call
this A’s coordinate frame).

Another car, B, if it has this static map, can use this
idea in reverse: it can determine 3D features using its stereo
camera, then position those features in car A’s coordinate
frame by matching the features, thereby enabling it to track
its own camera’s position. A third car, C, which also shares
A’s map, can position itself also in A’s coordinate frame
of reference. Thus, B and C can each position themselves
in a consistent frame of reference, so that B can correctly
determine its position relative to C, and correctly overlay C ’s
shared view over its own. To our knowledge, this is a novel
use of stereo-vision based SLAM.
Generating the sparse 3D map. As a car traverses a street, all
stable features on the street, from the buildings, the traffic
signs, the sidewalks, etc., are recorded, together with their
coordinates, as if the camera were doing a 3D scan of the

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

street. A feature is considered stable only when its absolute
world 3D coordinates remain at the same position (within a
noise threshold) across a series of consecutive frames. Figure 4
shows the features detected in an example frame. Each green
dot represents a stable feature. Features from moving objects,
such as the passing car on the left in Figure 4, are not matched
or recorded.

Each car can then crowd-source its collected map. Map
crowd-sourcing is a more scalable way of collecting 3D maps
than today’s 3D map collection mechanisms which use ded-
icated fleets of vehicles that require significant capital in-
vestment. We have developed a technique to stitch together
crowd-sourced sparse 3D maps. Suppose car A traverses one
segment of street X. If car B traverses even a small part of
that same segment of X, and then traverses a perpendicular
street Y, then B can upload its sparse map to a cloud service.
As long as B’s traversal overlaps even a little with A’s sparse
map, the cloud service can combine the two sparse 3D maps
by translating B’s map into A’s coordinate frame of reference,
generating a composite sparse 3D map. This can be extended
to multiple participants, and we have used this technique
to generate a static map of our campus. The details of map
stitching are described in a companion paper [2].

In practice, we have found that AVR needs only one tra-
versal of a road segment to collect features sufficient for a
map since these features represent static objects in the envi-
ronment. The amount of data needed for each road segment
depends on the complexity of the environment. As an ex-
ample, AVR creates a 97MB sparse HD map for a 0.1 mile
stretch of a road on our campus. If necessary, this can be
compressed using standard compression techniques [50].
Using the sparse 3D map for relative positioning. The sender
processes each 3D frame, and extracts the ORB features,
then matches these with the sparse 3D map. AVR uses the
ORB-SLAM2 software [38] which matches up to 2000 features
and uses these to triangulate the sender’s camera position
at that frame. This process runs continuously, to compute,
at each frame, the sender’s camera position relative to the
sparse 3D map’s coordinate frame. The sender continuously
transmits these position estimates to the receiver.

The receiver uses the same technique to estimate the po-
sition of its own camera every 3D frame, with respect to
the sparse 3D map’s coordinate frame. The sender and re-
ceiver can be synchronized to within inter-frame granularity
using network time synchronization methods [37, 35], and
the receiver can then use the sender’s position estimates to
determine its position relative to the sender.

3.2 Extending Vehicular Vision
With the help of the sparse 3D map’s coordinate frame,
vehicles are able to precisely localize themselves (more pre-
cisely, their cameras), both in 3D position and orientation,
with respect to other vehicles easily. However, vehicles can
have very different perspectives of the world depending on
the location and orientation of their sensors. So, if car A
(the sender) wants to share its 3D frame with car B (the
receiver), AVR needs to transform the frame’s point cloud in

the sender’s local view to that of the receiver. This perspective
transformation is performed at the receiver (Figure 3).
Key Idea. The receiver knows the pose (position and orienta-
tion) of the sender’s camera, as well as its own camera, in the
sparse map’s coordinate frame. Using these, it can compute a
transformation matrix 𝑇𝑐𝑤, as shown in Equation (1), which
contains a 3x3 rotation matrix and a 3-element translation
vector. This transformation matrix describes how to trans-
form a position from one camera’s coordinate frame to the
sparse 3D map’s coordinate frame. Specifically, to transform
a point 𝑉 in the camera (c) domain (𝑉 = [𝑥, 𝑦, 𝑧, 1]𝑇) to a
point in the world (w) domain (𝑉 ′ = [𝑥′, 𝑦′, 𝑧′, 1]𝑇), we use
[𝑥, 𝑦, 𝑧, 1]𝑇 = 𝑇𝑐𝑤 * [𝑥, 𝑦, 𝑧, 1]𝑇 , where

𝑇𝑐𝑤 =

⎡⎢⎣𝑅𝑜𝑡𝑋.𝑥 𝑅𝑜𝑡𝑌.𝑥 𝑅𝑜𝑡𝑍.𝑥 𝑇 𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛.𝑥

𝑅𝑜𝑡𝑋.𝑦 𝑅𝑜𝑡𝑌.𝑦 𝑅𝑜𝑡𝑍.𝑦 𝑇 𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛.𝑦
𝑅𝑜𝑡𝑋.𝑧 𝑅𝑜𝑡𝑌.𝑧 𝑅𝑜𝑡𝑍.𝑧 𝑇 𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛.𝑧

0 0 0 1

⎤⎥⎦ (1)

The perspective transformation. Now, suppose that the
sender’s transformation matrix is 𝑇𝑎𝑤 and the receiver’s
is 𝑇𝑏𝑤, then, the receiver can compute the perspective
transformation of a point 𝑉𝑎 in the sender’s view to a point
𝑉𝑏 in the receiver’s view as follows: 𝑉𝑏 = 𝑇 −1

𝑏𝑤 * 𝑇𝑎𝑤 * 𝑉𝑎.

3.3 Detecting and Isolating Dynamic Objects
Transferring full 3D frames between a sender and a receiver
stresses the capabilities of today’s wireless technologies: VGA
3D frames at 10fps require 400 Mbps, while 1080p frames need
4 Gbps. So, AVR will require several techniques to reduce
the raw sensor data to be transmitted between vehicles.
Key idea. AVR extracts and transmits point clouds, at the
sender, only for dynamic objects (moving vehicles, pedestri-
ans etc.). To identify a moving object, AVR can analyze the
motion of each point in successive frames. Unfortunately, it
is a non-trivial task to match two points among consecutive
frames. Prior point cloud matching techniques [25, 33] in-
volve heavy computation unsuitable for real-time applications.
AVR exploits the fact that its cameras capture video, and
matches pixels between successive frames instead of points.
It can do this because, for stereo vision cameras, a pixel and
its corresponding point share the same 2D coordinate.
The homography transformation. AVR uses the ORB features
extracted in every frame to find the homography transfor-
mation matrix between two successive frames. This matrix
determines the position of the current frame in the last
frame. Because vehicles usually move forward, the last frame
often captures more of the scene than the current frame
(Figure 5). AVR matches ORB features between successive
frames to compute the homography matrix 𝐻, a 2D matrix
that can transform one pixel (𝑃 = [𝑥, 𝑦]𝑇) to the same pixel
(𝑃 ′ = [𝑥′𝑦′]𝑇) in the previous frame with a different location
(𝑃 ′ = 𝐻 * 𝑃). AVR’s sender computes this transformation
continuously for every successive pair of frames.
Detecting dynamic objects. Once pixels can be matched be-
tween frames, AVR can match the corresponding points be-
cause of the correspondence between the two. It computes

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

Figure 5—An illustration of a homography transformation. The frame
on the right is taken immediately before the frame on the left and the
green box represents the part of the left frame visible on the right.
The line match features in the two frames.

Figure 6—Estimating the motion of a vehicle. The lines show the motion
of features (represented by circles) across two successive frames.

the Euclidean distance between matching points from con-
secutive frames. Before calculating this point displacement,
AVR transforms the matching points into a common co-
ordinate frame (e.g., the current frame, using perspective
transformation, discussed above). It then applies a threshold
to determine the points belonging to dynamic objects. This
threshold is necessary because sensor noise can result in small
displacements even for points belonging to static objects: with
a vehicle cruising at 20mph, and a stereo camera recording
at 30fps, the average displacement of the stationary points is
< 5𝑐𝑚 per frame.
Compression. To further reduce bandwidth requirements,
AVR uses point cloud compression techniques [50].

3.4 Extracting Object Motion and
Reconstruction

Even after extracting dynamic objects and compressing them,
the bandwidth requirements for AVR can be significant.
Key idea. To further reduce bandwidth requirements, AVR
estimates, at the sender-side, the motion vector of dynamic
objects detected in the previous step. Then, it transmits the
compressed point cloud for a dynamic object from a frame,
and only the motion vector for, e.g., 𝑘 frames following that
frame (AVR adapts 𝑘 dynamically, as discussed below). Since
the motion vector can be compactly represented, this provides
an additional bandwidth savings of nearly a factor of 𝑘.
Estimating the motion vector. AVR leverages computations
performed in previous step to estimate the motion vector. It
determines which ORB features belong to dynamic objects
using the homography matrix (§3.3), then computes the
average motion vector of those feature points as an estimate
of the total motion (Figure 6). When there are multiple
moving objects, AVR uses optical flow segmentation [65] to
separate the objects and compute separate motion vectors.
Finally, based on the frame timestamps, AVR converts motion

vector into speed and direction estimates (velocity vectors)
and transmits these to the receiver.

To get smoother velocity vector estimates, AVR tracks
the same set of features over 𝑚 frames, and computes the
motion vector for the current frame using features from 𝑚
frames in the past, rather than the immediately previous
frame. Features may not persist after a few frames, and new
features can appear in a frame, so AVR must use a consistent
set of features while permitting feature entry and removal;
we omit the details for brevity.
Reconstruction. On the receiver, AVR uses the point cloud
and subsequent velocity vectors to “dead-reckon” the position
of the sender and thereby reconstruct the received object at
the correct position. The AVR receiver applies perspective
transformation on the received object point cloud, then ap-
plies each received velocity vector to each point in the point
cloud to obtain an estimated position of the point cloud.
AVR can then superimpose this point cloud into its own 3D
frame and feed the resulting composite frame into an ADAS
or autonomous driving algorithm.
Latency hiding. In practice, as we discuss below, AVR’s pro-
cessing pipeline can incur some delay. Thus, an object in a
frame captured at the sender at time 𝑇 might arrive at the
receiver at 𝑇 + 𝛿, after processing and transmission delays.
AVR can use this dead-reckoning to hide this latency: dead-
reckoning can calculate the expected position of the sender
at 𝑇 + 𝛿 using the last known velocity vector for the object.
Thus, object motion estimation serves two purposes: it can
reduce bandwidth usage and hide the processing latency.

3.5 Adaptive Frame Transmission
In AVR, we consider situations where a leading car may
transmit point clouds to a follower. The sender has a choice
of transmitting full frames, only dynamic objects, or motion
vectors. Dynamics in the environment can cause fluctuations
in channel capacity, or in the number of dynamic objects in
the scene. To adapt to these variations, AVR uses an adaptive
strategy to decide which of these to transmit. If a previous
transmission of a full frame completes before the next frame
has been generated, AVR transmits the next frame in its
entirety. If not, AVR transmits only the dynamic objects in
the next frame. When channel capacity is insufficient event
to transmit dynamic objects, AVR reverts to transmitting
only velocity vectors4. This technique, inspired by adaptive
bitrate techniques for video, naturally adapts to capacity and
scene changes, and we demonstrate this experimentally (§5).

3.6 Cooperative AVR
A final technique to reduce bandwidth requirements, and one
that is easy to realize in our AVR design, is cooperative AVR.
Consider two vehicles A and B which are traveling in the
same direction on adjacent lanes, followed by another car
C. Cars A and B have overlapping views, and can eliminate
redundancy in transmitting objects to each other and to C :
4Velocity vectors need to be transmitted with full frames and dynamic
objects since they are needed for latency hiding.

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

B can avoid transmitting objects in its view that are also in
A’s view (which B can determine when it receives the camera
coordinates and pose from A).

To do this, B would first need to perform a reverse per-
spective transformation on each dynamic object it detects,
to determine if this object falls in the field of view (FOV) of
A. Specifically, assume the angle of the horizontal FOV is 𝛼,
and the angle of the vertical FOV 𝛽, and assume 𝑥 axis is
horizontal, 𝑦 is vertical, 𝑧 is the depth. Then, the 3D coordi-
nates (𝑥, 𝑦, 𝑧) of the transformed object should satisfy both
−𝑧 * tan 𝛼

2 ≤ 𝑥 ≤ 𝑧 * tan 𝛼
2 and −𝑧 * tan 𝛽

2 ≤ 𝑦 ≤ 𝑧 * tan 𝛽
2

to be within the FOV of A. In other words, B only transmits
objects that are outside the rectangular pyramid defined by
A’s FOV. For those objects that are in the FOV of A, B
double-checks the coordinates of the dynamic objects sent
by A to verify the redundancy before removing them from
its own transmission queue. For the cooperation to work, B
must determine that C can also receive the objects sent by A,
which can be achieved by exchanging neighbor sets between
neighboring nodes.

4 AVR OPTIMIZATIONS
Implementation. Our AVR implementation builds upon a pub-
licly available implementation of ORB-SLAM2 [43] which is
designed for stereo vision and is currently the highest ranked
open source visual odometry algorithm on the popular vehicle
vision KITTI benchmark [15]. We use ORB-SLAM2 for rela-
tive localization, the PCL library [48] for lossless point cloud
compression, OpenCV for homography transformations and
feature tracking, but have built other modules from scratch,
including perspective transformation, dynamic object isola-
tion, motion vector estimation, real-time bandwidth adaptive
streaming and 3D frame reconstruction. Our AVR prototype
is 11,786 lines of C++ code.

Our current implementation uses the ZED stereo vision
cameras [67] which have a built-in GPU pipeline designed to
synthesize 3D frames.
Optimizations. Many of our modules perform complex pro-
cessing on large 3D frames, and can incur significant process-
ing latency. Our initial, unoptimized prototype could only
process 1 frame every 3 seconds on a relatively powerful
desktop machine, so we implemented several optimizations
to increase the frame rate and reduce the end-to-end delay.

The primary bottleneck in AVR is the underlying SLAM
algorithm. From each 3D frame, SLAM computes the 3D
position of each feature, and uses a non-linear pose optimiza-
tion algorithm for each feature. The complexity of this step is
a linear function of the number of features that ORB-SLAM2
computes. The software, by default, detects up to 2000 fea-
tures, but we have been able to re-configure ORB-SLAM to
detect up to 500 features without noticeable loss of accuracy
while reducing processing latency by nearly 4x.

Several AVR algorithms, including optical flow, homog-
raphy transformation and SLAM, use features, and feature
extraction can increase processing latency. AVR computes

GPU -> CPU

Download

Computing

3D Position

& Tracking

Camera

Orientation

Estimation

ORB Feature

Detection

& Matching

Motion

Analysis &

Compression

Feature

Detection &

Optical Flow

Feature

Detection &

Homography

Feature

Detection &

Processing

GPU -> CPU

Download

Motion

Analysis &

Compression

Stage 1: Preprocess Stage 2: Localization Stage 3: Postprocess

Camera

Orientation

Estimation

ORB Feature

Detection

& Matching

Computing

3D Position

& Tracking

Figure 7—Pipelining the different components carefully enables compo-
nents to be executed in parallel, resulting in higher frame rates.

ORB features once, and uses these for localization, dynamic
object isolation, and motion vector estimation (Figure 7).

Loading a 3D frame from GPU memory to CPU memory
incurs latency. To interleave I/O and computation, and to
leverage parallelism where possible, we employ pipelining.
While pipelining does not affect the end-to-end latency experi-
enced by a frame, it can significantly improve the throughput
of AVR (in terms of frame rate). We carefully designed AVR’s
3-stage pipeline (Figure 7) so that each stage has compara-
ble latency. The pre-processing stage transfers the 3D frame
from the GPU and performs ORB feature extraction and
feature pose optimization. When the pre-processing stage
processes frame 𝑘 + 1, the localization stage processes frame
𝑘, computing 3D positions and matching features. In parallel,
the post-processing stage processes the 𝑘 − 1-th frame to first
finish camera pose estimation, then extract dynamic objects,
estimate their motion vectors, and compress the point cloud.

5 AVR EVALUATION
Methodology. Our evaluation uses end-to-end experiments
as well as traces of stereo camera data collected on our
campus. Our end-to-end experiments involve using two Alien-
ware laptops each with an Intel 7th generation quad-core
i7 CPU clocked at 4.4 GHz, 16 GB of DDR4 RAM and an
nVidia 1080p GPU equipped with 2560 CUDA cores. We
place one laptop in a leader vehicle, and the other laptop
in a follower vehicle. Each laptop is connected to a ZED
[67] camera and to a TP-Link Talon AD7200 802.11ad wire-
less router [56] on each vehicle. The routers communicate
using the wireless distribution system (WDS) mode in the
60 GHz band. While 802.11ad has several drawbacks with
respect to vehicle-to-vehicle communication, including the
fact that it requires line-of-sight communication, we use it
to demonstrate proof-of-concept. We are not aware of any
off-the-shelf high bandwidth wireless radios designed specifi-
cally for vehicle-to-vehicle communication. One possibility is
to incorporate AVR into future versions of DSRC technology.
The US FCC has reserved 75 MHz for DSRC over seven 10
MHz channels. Some of these channels have been reserved
(e.g., for Basic Safety Messages that announce a vehicle’s
position and trajectory), but the usage of several service
channels is still under discussion.

In our setup, ZED can create a real-time point cloud at a
frame rate of up to 60fps with a resolution of 720p (1280 x
720), and up to 100 fps with VGA (640 x 480). Our traces
record at 30fps, which is the rate AVR’s pipeline is able to

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

achieve. We evaluate AVR on traces of stereo camera data,
while driving these vehicles around campus. Our traces span
123,000 stereo frames, or about 0.5 TB of point cloud data. In
addition, we have generated a sparse 3D map of our campus
by driving a vehicle with a ZED camera around the campus.
We use this sparse 3D map for relative localization in our
trace driven evaluations.

In one of our evaluations, we use an HDL-32E LiDAR
sensor with a range of 80-100m to demonstrate improvements
to AVR that might be possible with LiDAR. We have left
a complete integration of LiDAR (which can, in general,
perform better than stereo cameras under poor visibility e.g.,
at night) into the AVR pipeline, and the evaluation of AVR
performance under those conditions for future work (§6).
Metrics. In our end-to-end experiments, we investigate end-
to-end delay, bandwidth requirements, and the performance
of adaptive transmission. To measure end-to-end delay, we
synchronize the clocks on the laptops before the experiment.
For our trace-driven studies, our primary metric is accuracy
of the position of the reconstructed object in the receiver’s
view. This accuracy is a function of the bandwidth used to
transmit the dynamic objects. Contributing to this accuracy
is the error induced by relative localization, and by using
motion vectors to predict position; we also quantify these.
We also evaluate two other metrics, throughput and latency
of the AVR pipeline. Lower throughput can impact accuracy,
as can high latency.

5.1 The Benefits of AVR for ADAS and
Autonomous Driving

Autonomous driving and ADAS systems use several building
blocks including localization, object detection, drivable space
detection, path planning, and so on. Many of these could ben-
efit from AVR. We have implemented two of these algorithms,
road surface detection and path planning, to demonstrate the
benefits of AVR for the overtaking scenario, in which a fol-
lower would like to overtake a leader car, but its view is
obstructed by the leader.

Our road surface detection algorithm uses the point cloud
library (PCL), and applies several optimizations to extract
the points on the road plane from our stereo camera data.
Next, we convert the point cloud into an occupancy grid,
where each grid (0.5m × 0.5m) is either drivable, occupied,
or undefined. Finally, we use the A* search algorithm to find
a viable path that can permit a box corresponding to the
vehicle’s dimensions to pass through, without hitting any
occupied or undefined grid.

We then collected a trace with two vehicles, a leader and
a follower, driving along a road and a third oncoming vehicle
in the opposite lane. The follower would like to overtake the
leader. We then fed this trace into our path planner. Figure 8
shows the result of both road detection and path planning
with and without AVR, where the point cloud of the detected
road is marked in blue, and the planned path is marked
in connected green crosses. In the first case without AVR,
the follower could only see the leader’s trunk and detect

a) Without AVR b) With AVR

Figure 8—Path Planning and Road Detection in Action: with extended
vision, the oncoming vehicle and more road surface area is detected,
and the path planner decides to not attempt overtaking.

350 400 450

Frame ID

0

50

100

150

200

R
o

a
d

 A
re

a
 D

e
te

c
te

d
 (

m
2
)

w/o AVR

w/ AVR

Figure 9—AVR helps the fol-
lower detect twice the road than
it might have otherwise.

350 400 450

Frame ID

-20

-10

0

10

20

P
la

n
n
e
d
 P

a
th

 A
n
g
le

 (
d
e
g
)

w/o AVR

w/ AVR

Figure 10—With AVR, the fol-
lower would avoid the overtake
maneuver.

road surface upto the sensing range limit with occlusion.
The planner could find a clear path to overtake the leader
switching to the left lane. With AVR, the follower can not
only detect more of the road surface, but also the oncoming
vehicle, so the path planning algorithm does not attempt the
overtaking maneuver, instead choosing to follow the leader.
This example demonstrates that extended vision can help
autonomous driving algorithms avoid potential hazards.

Figure 9 shows that with AVR, the follower is able to
detect twice as much visible road surface as without AVR,
thanks to the extended vision. Figure 10 shows the planned
path angle over the entire trace. Without AVR, the planner
switches to the left lane to overtake the leader until it can
sense the oncoming vehicle, whereas with AVR, the planner
decides to not switch lanes but to follow the leader.

5.2 AVR End-to-End Performance
In this experiment, we quantify the performance of our adap-
tive transmission strategy by running our AVR prototype live
on two moving vehicles (driven within our campus) connected
by a 60 GHz 802.11ad link. Specifically, we demonstrate two
adaptive transmission strategies: one in which full frames
are transmitted, else motion vectors, and another in which
dynamic objects are transmitted, else motion vectors.

We are interested in three different aspects of performance:
the average bandwidth achieved over these radios, the end-
to-end delay between when a frame was generated at the
transmitter and when they were received, the transmission
delay between received frame and the receiver’s own frame at
reception, the fraction of frames for which motion vectors are
transmitted, and the average run-length of motion vectors.

Figure 11 shows the mean of these quantities averaged over
3 mins for the two scenarios: full and dynamic. In the full
frame case, AVR transmits on average 1.17 velocity vectors
per frame to adapt to the bandwidth, achieving an effective
throughput of 367.02 Mbps. For comparison the maximum
throughput we have been able to achieve between these two

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

Figure 11—End-to-End results demonstrating AVR over a 60Ghz wire-
less link between two cars in motion.

Safe following
distance

2v

Safe stopping distance

D (v)

A B

L

Sensor range

R

A B

C

vA = vB = v

vA = vB = vc = v

Obstruction
Scenario

Overtaking
Scenario

Sensor range

R

Safe following
distance

2v

Figure 12—Two AVR use cases with different delay requirements: a
stationary obstruction, and the overtaking scenario.

radios is 700-900 Mbps in the lab. The frequency of the ve-
locity vectors indicates that the radios do not have enough
capacity to sustain transmission of full point clouds every
frame. Transmitting only the dynamic point clouds signifi-
cantly reduces the bandwidth requirement by one order of
magnitude, improving both end-to-end delay and transmis-
sion delay by 41% and 34% respectively. One interesting
quantity is the velocity vector streak (the average number of
consecutive velocity vectors), to which the accuracy is very
sensitive. The longer velocity streak is, the longer AVR per-
forms dead reckoning with only velocity estimates. In the full
frame scenario, AVR’s bandwidth adaptive scheme transmits
an average of 2.8 velocity vectors continuously, whereas in the
dynamic case, a velocity vector is almost always followed by
a dynamic object, and velocity vectors are very rare (about
3 in 1000 frames).
How much delay is enough. Our current end-to-end delays
are about 220ms for transmitting full frames, and about
130ms when dynamic objects are transmitted. To understand
if these delays are sufficient, we consider simple models of
two AVR use cases (Figure 12): the obstruction use case, and
the overtaking use case. In both of these cases, we assume
that a human is making driving decisions.

For the obstruction example (Figure 12, top), consider car
A following car B, while a stationary object L (e.g., a parked
car) is in the same lane ahead of B. Assume for simplicity
that all cars are traveling at the same speed 𝑣. Assume also
that car A follows the two second rule [57] for safe following
distances between cars. Car B sees L when the latter is within
sensing range of B. For this information to be useful to A,
it must reach A ahead of the safe stopping distance for a
car. Most drivers can decelerate at about 6m/𝑠2, and have
a reaction time of 1s [63]. Then, the maximum permissible
delay for AVR to be useful in this scenario is 0.84 + 𝑅

𝑣 .
In the overtaking case (Figure 12, bottom), consider a

car A following car B, while car C is an oncoming car in
the opposite lane. Assume for simplicity that all cars are
traveling at the same speed 𝑣. Assume also that car A follows

20 30 40 50 60 70 80

Speed (mph)

0

2

4

6

8

10

12

14

P
e

rm
is

s
iv

e
 D

e
la

y
 (

s
e

c
)

Obstruction, Stereo

Obstruction, Lidar

Overtake, Stereo

Overtake, Lidar

Figure 13—The maximum permissible end-to-end delay for the two use
cases, for two different sensor types, as a function of speed.

the two second rule [57] for safe following distances between
cars. Now car B sees car C when the latter is within sensor
(stereo camera or LiDAR) range of B. For this information
to be useful to A, it must reach A before A itself can see C.
Then, the maximum permissible delay for AVR to be useful
in this setting is 𝑅

2𝑣 .
Figure 13 plots the delay as a function of vehicle speed

for the two scenarios using these equations, and assuming
nominal ranges for stereo cameras (20m) and LiDARs (100m).
From Figure 11, the end-to-end delay for AVR is about
200ms. As the figure shows, AVR can use either sensor for the
obstruction scenario: even at high speeds, a stereo camera is
sufficient to be useful. Interestingly, however, the overtaking
scenario is much more stringent: at higher speeds, AVR
latencies start to approach the maximum permissible delay,
suggesting that AVR will need LiDAR for this scenario.

5.3 Accuracy Results
In this section, we evaluate the accuracy of the extended
vision, namely the position of the reconstructed point cloud.
We first evaluate the end-to-end reconstruction accuracy
of both static objects and dynamic objects with different
relative speed. Next, we conduct a detailed analysis of the
tradeoff between bandwidth and reconstruction accuracy and
the sensitivity to processing and transmission delay. Finally,
we investigate whether using a LiDAR device could improve
speed estimation accuracy.
Reconstruction. The primary measure of accuracy is the posi-
tional error of AVR reconstruction. That is, if p is the known
position of the object in the sender’s view, and p’ is the
derived position at the receiver, the position error is given
by |𝑝 − 𝑝′|. More precisely, we estimate the position error for
a given ORB feature corresponding to the object, and aver-
age these position errors across multiple ORB features. The
positioning accuracy of ORB-SLAM2 has been benchmarked
on the KITTI visual odometry dataset [30], so we do not
evaluate it in this paper.
Setup. For this experiment (Figure 14) we mounted cameras
A and B on two moving vehicles, one in front of the other,
with a third vehicle C moving in the opposite direction. L
is stationary object on the side of the road. We measure the
relative positional error of L and C as viewed from A without
extended vision, and their reconstructed view with extended
vision at A, using visual information received from B.

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

C

A

L

B

Figure 14—Experiment setup for evaluating end-to-end reconstruction
accuracy.

Figure 15—End-to-End reconstruction error, and its main components:
camera pose estimation, motion compensation, and camera calibration.

For this experiment, we collect stereo camera traces from
the two cameras A and B while varying their speeds with
respect to the third moving vehicle C. The leading vehicle
B transmits the full point cloud it observes along with the
velocity estimate of C at every frame. At the following ve-
hicle A, AVR reconstructs the received point cloud from B
using perspective transformation. To evaluate the positional
accuracy of L, A compares the estimated position of L in its
own point cloud with the estimated position in the recon-
structed point cloud it received from B. Similarly, A predicts
the positional accuracy of C by compensating the delay with
respect to its current frame for the reconstructed point cloud
from B, and compares it with the position of C in its current
point cloud. For this, A uses the velocity vectors received
from B while receiving the last full object point cloud.

We collected traces of different relative speeds between ob-
jects and cameras of 10, 20, 30 mph, while keeping A, B, C at
the same speed. When evaluating the accuracy, we assume an
average transmission delay of 60 ms (Figure 11), and compare
the reconstructed dynamic point cloud versus the receiver’s
own point cloud frame by frame. For static objects, since
there are no motion estimates, we randomly sample frames
from the two footages and compute the reconstruction error.
Intuitively, the only sources of error during the reconstruction
of static objects, are the camera pose estimation and camera
calibration, while the major source of error for the dynamic
object is motion compensation. To understand the impact of
camera calibration, we also run two AVR instances using one
footage from the same camera, not only for static objects,
but also dynamics, which emulates perfect calibration.
Results. Figure 15 shows the reconstruction error for both the
static object L and dynamic object C for different speeds of
the vehicles A and B. At low speeds, with perfect calibration,
static objects can be localized to within 1.6 cm at the median.
At 30 mph, the errors are still low, about 7 cm in the 90th

percentile. These errors are entirely due to camera pose
estimation, and accuracy decreases at higher speeds for static
objects because of the noise in camera pose due to car motion.

The more challenging case for reconstruction accuracy is
when the object is also moving (Figure 15). In this case, with
perfect calibration, 90th percentile reconstruction errors are
within 20 cm for speeds up to 20 mph, going up to 40 cm
for the 30 mph case. The difference in accuracy between
static and dynamic objects is entirely attributable to errors
in speed estimation: these errors add about 15 cm to the
reconstruction error. Below, we explore if using LiDAR can
enable more accurate speed estimation.

To put these numbers in perspective, the lane width in
the US highway system is about 3.7 m, while the average
car length is 4.3 m [62]. Thus, the reconstruction error for
a static object is about 1% of these quantities, and for a
dynamic object is 5-10%. Because many autonomous driving
algorithms make decisions at the scales of cars or lane widths,
we believe these reconstruction accuracies will be acceptable
for future ADAS and autonomous driving systems.

The errors described are intrinsic to our system. There
is an extrinsic source of error, camera calibration. Realistic
calibration add 5-30 cm error to reconstruction likely due
to the relatively cheap stereo camera we use. Production
vehicles are likely to have more finely calibrated cameras.
The Bandwidth / Accuracy Tradeoff. Reconstruction error
can depend on bandwidth, so in this set of experiments, we
throttle the wireless link bandwidth to evaluate the trade-
off between bandwidth and accuracy while using adaptive
transmissions. AVR sends a full point cloud, the key cloud,
followed by a series of velocity vectors when the streaming
rate is larger than the link capacity. The data size of the
velocity vectors is negligible compared to the volume of the
point cloud. Thus, throttling the bandwidth directly triggers
AVR to send fewer full point clouds and more motion esti-
mates, which impacts the reconstruction accuracy. In this
experiment, we throttle the bandwidth with different thresh-
olds, and evaluate the reconstruction accuracy degradation,
as well as the ratio between the number of velocity estimates
sent versus a full point cloud.
Results. Figure 16 shows that average reconstruction error
degradation increases significantly up to nearly half a meter
once bandwidth is throttled below 20 Mbps. In this regime,
AVR transmits, on average, 6-8 motion vectors per full frame.
Speed estimation using motion vectors obtained from stereo
cameras can be error prone, and can impact reconstruction
accuracy. We show below that, when we use LiDAR, speed
estimation is significantly more accurate.
The impact of delays. Between when a frame is captured at a
sender, and when an object is reconstructed at the receiver,
there can be two sources of delay: the AVR pipeline’s process-
ing latency and the vehicle-to-vehicle transmission latency.
AVR can hide these latencies by dead-reckoning, using motion
vectors, the current position of the dynamic object. In this
section, we quantify the reconstruction accuracy degradation
due to the impact of dead reckoning of various delays.

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

0 20 40 60

Bandwidth Throttle (Mbps)

0

0.5

1

1.5

A
c
c
u

ra
c
y
 D

e
g

ra
d

a
ti
o

n
 (

m
)

0

2

4

6

8

10

V
e

lo
c
it
y
 E

s
ti
m

a
te

s
 /

 P
o

in
t

C
lo

u
d

Figure 16—At lower bandwidths, reconstruction
accuracy can increase by half a meter because
of errors in speed estimation.

100 200 300 400 500

Delay (ms)

0

0.5

1

1.5

2

2.5

3

A
c
c
u

ra
c
y
 D

e
g

ra
d

a
ti
o

n
 (

m
) W/ Dead Reckoning

W/O Dead Reckoning

Figure 17—At higher delays, dead reckoning can
help contain reconstruction errors significantly,
motivating our use of velocity vectors.

Stereo Camera Lidar
0

5

10

15

20

S
p

e
e

d
 E

s
ti
m

a
ti
o

n
 E

rr
o

r
(%

) 20mph

25mph

30mph

35mph

Figure 18—LiDAR can improve speed estimates
by an order of magnitude.

Results. Reconstruction error increases by 30-40 cm when
the delay increases from 100 ms to 500 ms (Figure 17). The
figure also quantifies the accuracy degradation without la-
tency hiding: if AVR simply used the last key cloud as an
estimate for the current position of the vehicle, its error can
be nearly 2 m at high latencies. Such a high error would
significantly reduce the usefulness of AVR for safety-based
driving assistance, and motivates the use of dead-reckoning
using speed estimates.
Better Speed Estimation. The main source of reconstruction
errors comes from motion estimation among consecutive
frames. To understand whether speed estimation would be
significantly better with LiDAR, we obtained a Velodyne
32-beam LiDAR5. We mounted both a stereo camera and
the LiDAR on the side of the road, and drove a car at 4
different fixed6 speeds (20, 25, 30, and 35 mph). For the
stereo camera, we use AVR to estimate the motion vector,
then derive speed estimates from the motion vector. For
LiDAR, we measure the front and rear positions of the car
in each frame and calculate the speed estimates. All speed
estimates are averaged over a sliding time window.

As Figure 18 shows, LiDAR is several times more accu-
rate than a stereo camera at estimating speed. While stereo
cameras can estimate speeds to within 10-15% error, LiDAR
speed estimates are in the 1-2% range across all the speeds,
almost an order of magnitude lower.
Cooperative AVR. We collected traces from two cars, driven
side by side in adjacent lanes, on city main streets with normal
traffic. Over 12,000 frames, on average 61.63% (standard
deviation 24.9%) of the objects appeared in both cars’ views,
reducing the total bandwidth of transmitting the combined
view of the two vehicles by almost another 30%.

5.4 Throughput and Latency
Throughput and latency of the processing pipeline also signif-
icantly impact the performance of AVR. These are a function
of (a) our algorithms, (b) our performance optimizations, and
(c) the hardware platforms on which we have evaluated AVR.

5We have been unable to incorporate LiDAR into AVR because we
have not found a suitable off-the-shelf SLAM implementation. This is
left to future work.
6Cruise control does not work reliably at lower speeds, hence this
choice of speed.

P
re

p
ro

c
e

s
s

2
1

.2
9

1
 m

s

Feature

Processing

10.922 ms

GPU

-> CPU

8.764 ms

P
re

p
ro

c
e

s
s

2
1

.2
9

1
 m

s

GPU

-> CPU

8.764 ms

L
o

c
a

li
z

a
ti

o
n

3
3

.3
4

4
 m

s

P
o

s
tp

ro
c

e
s
s

2
9

.7
9

4
 m

s Motion

Analysis &

Compression

23.309 ms

Camera

Pose

5.350 ms

P
o

s
tp

ro
c

e
s
s

2
9

.7
9

4
 m

s Motion

Analysis &

Compression

23.309 ms

Camera

Pose

5.350 ms

P
o

s
tp

ro
c

e
s
s

2
9

.7
9

4
 m

s Motion

Analysis &

Compression

23.309 ms

Camera

Pose

5.350 ms

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h

re
a

d
 3

Time (ms)
0 15 30 45 60 75 90

ORB Feature

Detection

& Matching

21.349 ms

Computing

3D Position

& Tracking

10.320 ms L
o

c
a

li
z

a
ti

o
n

3
3

.3
4

4
 m

s ORB Feature

Detection

& Matching

21.349 ms

Computing

3D Position

& Tracking

10.320 ms L
o

c
a

li
z

a
ti

o
n

3
3

.3
4

4
 m

s ORB Feature

Detection

& Matching

21.349 ms

Computing

3D Position

& Tracking

10.320 ms

P
re

p
ro

c
e

s
s

2
1

.2
9

1
 m

s

GPU

-> CPU

8.764 ms

Feature

Processing

10.922 ms

Feature

Processing

10.922 ms

Figure 19—Pipelining enables AVR to process 30fps with an end-to-end
delay of under 100ms.

The compute capabilities of on-board platforms have evolved
significantly in the past couple of years: the current NVidia
Drive PX 2 platform has 2 Denver 2.0 CPUs, four ARM Cor-
tex A57 CPUs, and a 256-core Pascal GPU [17]. We do not
have access to this device, so our evaluations are conducted
on a desktop machine with Intel(R) Core(TM) i7-4770 CPU
@ 3.40GHz, 12GB DDR3 RAM @ 1.6GHz, 144-core GeForce
GTX 635M GPU with a memory of 1GB.
Results. Figure 19 shows the average processing latency of
each module in the pipeline. With all the optimizations (§4),
AVR finishes the whole pipeline in 33 ms, enabling it to
have a throughput of 30 frames per second while finishing
all the computations described above. The pipeline is well-
balanced: the localization stage (thread 2) takes 33 ms, while
the preprocessing stage requires 22 ms. Post-processing is at
30 ms. Within each stage, the boxes indicate the primary
processing bottlenecks: GPU to CPU data transfer, feature
detection and matching, and point cloud compression. In the
future, we plan to focus on these bottlenecks.

The end-to-end processing latency for a given frame
(e.g. the blue frame) through the three stages of the pipeline
is below 100 ms. This is about twice the network transmission
latency for dynamic objects (Figure 11). Processing latency
can even be further reduced through careful engineering of
the pipeline and choice of platform. Moreover, higher-end
vehicles are likely to have lower processing latency since they
can afford more on-board compute power than lower-end
vehicles. These numbers explain why latency hiding is an
important component of AVR.

Finally, AVR consumes on average 1.4GB RAM and 537
MB GPU memory, well within the capabilities of today’s

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

platforms. Since on-board power sources are plentiful, we
have not optimized for, and do not quantify, energy usage.

6 LIMITATION AND FUTURE WORK
AVR currently uses ZED [67], a short range stereo camera,
which limits the system in two ways. First, we have experi-
mentally observed that a shorter range depth sensor may be
able to detect fewer 3D features in some environments, such
as open roads with few roadside features (trees, buildings
etc.). Since ORB-SLAM2’s accuracy increases with the num-
ber of matched features, positioning accuracy can be low in
these environments. Second, inclement weather and changing
lighting conditions might result in a different set of features
than those present in the 3D map. Fortunately, AVR does not
need to match every feature in the map in order to localize
a vehicle. It performs quite well in our experiments where
our traces were gathered under different lighting conditions.
Future work can improve localization accuracy when fewer
features are visible. Also, these shortcomings of the stereo
camera can be addressed by incorporating LiDAR into AVR
and we plan to do so by incorporating a newly proposed
LiDAR SLAM [34] algorithm.

One motivation for communicating point clouds in AVR is
the use of a heads-up display. Heads-up displays can reduce
distraction and improve safety [22]. While beyond the scope of
this paper, it would be important for future work to perform
user studies to determine if AVR-based displays like Figure 2
can improve driving decisions.

Cooperative AVR (§3.6) is a step towards scaling AVR
out to clusters of vehicles, but future work can explore point
cloud stream compression [29], as well as intermediate repre-
sentations such as 3D features.

Finally, future work can explore lightweight representations
of the 3D map. Currently, AVR stores all the stationary
features and metadata for localization in the sparse 3D map,
which is storage and communication-intensive. In future work,
we plan to investigate lightweight representations and their
impact on localization accuracy.

7 RELATED WORK
Connected Vehicles. Work on connected vehicles [47] explored
technical challenges in inter-vehicle communications and laid
out a research agenda for future efforts in this space [10].
Other research has studied content-centric [32] or cloud-
mediated [31] inter-vehicle communication methods for ex-
changing sensor information between vehicles. Prior research
has explored using connected vehicle capabilities for Collabo-
rative Adaptive Cruise Control (CACC) [3]. This paper is an
extension of our earlier work [45] and introduces methods to
isolate and track dynamic objects, designs cooperative AVR,
analyzes the redundancy to save bandwidth, and conducts an
extensive evaluation aimed at exploring feasibility. Prior work
on streaming video from leader to a follower for enhanced
visibility [18, 42] does not use 3D sensors, so lacks the depth
perception that is crucial for automated safety applications in
autonomous driving or ADAS systems. Finally, automakers

have started to deploy V2V/V2X communication in their
upcoming high-end models e.g., Mercedes E-class [1] and
Cadillac [61]. A large connected vehicle testbed in the US
aims to explore the feasibility and applications of inter-vehicle
communication at scale [7, 60], while pilot projects in Europe
(simTD [26] and C2X [52]) are evaluating these technologies.
AVR depends upon these technologies, and is a compelling
use of this technology.
Vehicle Sensor Processing. Prior work on sensor information
processing has ranged from detection and tracking of vehi-
cles using 360 degree cameras mounted on vehicles [14], to
recognizing roadside landmarks [49], to using OBD sensors
[28, 44] and phone sensors [6, 44] to detect dangerous driving
behaviour, to systems that monitor blind spots using a stereo
panoramic camera [36] and pre-crash vehicle detection sys-
tems [13]. Other work has proposed infrastructures to collect
and exfiltrate vehicle sensor data to the cloud for analytics
[27]. AVR is qualitatively different, focusing on sharing raw
3D sensor information between vehicles.
Localization. Localization of vehicles is crucial for autonomous
driving [55, 8, 58] and this line of research has explored two
avenues. GPS enhancements focus on improving the accuracy
of absolute GPS-based positioning using differential GPS
[20], inertial sensors on a smartphone [4, 21], onboard vehicle
sensors, digital maps and crowd-sourcing [28], and WiFi
and cellular signals [54]. These enhancements increase the
accuracy to a meter. AVR builds upon a line of work in
the robotics community on simultaneous localization and
mapping [11]. Visual SLAM techniques have used monocular
cameras [9], stereo camera [12, 66], and LiDAR [23]. Kinect
[39] can also produce high-quality 3D scan of an indoor
environment using infrared. AVR adds a relative localization
capability to ORB-SLAM2 [38], using the observation that
its sparse 3D feature map can be used to localize one vehicle’s
camera with respect to another.

8 CONCLUSIONS
In this paper, we have discussed the design and implemen-
tation of an AVR system which extends vehicular vision by
enabling vehicles to communicate raw 3D sensor informa-
tion. AVR can be used as input to driving assistance and
autonomous driving systems. The design of AVR uses a novel
relative localization technique, careful perspective transforma-
tion, dynamic object isolation, latency hiding using velocity
vectors and adaptive frame transmission. Our AVR prototype
is flexible enough to transmit full frames or dynamic objects,
achieves 200ms end-to-end delay, can reconstruct objects to
within 2-10% of car lengths and lane widths, and achieve 30
fps throughput.
Acknowledgements. The authors would like to thank our shep-
herd Dr. Junehwa Song and the anonymous reviewers for
their valuable comments and helpful suggestions. This work
is supported by the National Science Foundation under Grant
No. 1330118 and a grant from General Motors.

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

BIBLIOGRAPHY
[1] 18 Awesome Innovations in the New Mercedes E-Class.

http://www.businessinsider.com/mercedes-e-class-
2017-features-2016-6/ (Cited on page 12).

[2] F. Ahmad et al. “QuickSketch: Building 3D Representa-
tions in Unknown Environments using Crowdsourcing”.
In: 2018 21st International Conference on Information
Fusion (Fusion). 2018, pp. 1–8 (Cited on page 5).

[3] Mani Amoozadeh et al. “Platoon Management with
Cooperative Adaptive Cruise Control Enabled by
VANET”. In: Vehicular Communications 2.2 () (Cited
on page 12).

[4] Cheng Bo et al. “SmartLoc: Push the Limit of the
Inertial Sensor Based Metropolitan Localization Us-
ing Smartphone”. In: Proceedings of the 19th Annual
International Conference on Mobile Computing and
Networking. MobiCom ’13. 2013 (Cited on page 12).

[5] C. Chen et al. “DeepDriving: Learning Affordance for
Direct Perception in Autonomous Driving”. In: 2015
IEEE International Conference on Computer Vision
(ICCV). 2015, pp. 2722–2730. doi: 10.1109/ICCV.2015.
312 (Cited on page 3).

[6] Dongyao Chen et al. “Invisible Sensing of Vehicle Steer-
ing with Smartphones”. In: Proceedings of the 13th
Annual International Conference on Mobile Systems,
Applications, and Services. MobiSys ’15. 2015 (Cited
on page 12).

[7] Connected Ann Arbor. http://www.mtc.umich.edu/
deployments/connected-ann-arbor (Cited on page 12).

[8] DARPA Grand Challenge 2007. http://archive.darpa.
mil/grandchallenge/ (Cited on page 12).

[9] Andrew J. Davison et al. “MonoSLAM: Real-Time
Single Camera SLAM”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 29.6 (June 2007) (Cited on page 12).

[10] Falko Dressler et al. “Inter-vehicle Communication:
Quo Vadis”. In: IEEE Communications Magazine 52.6
(2014), pp. 170–177 (Cited on page 12).

[11] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous
Localization and Mapping: Part I”. In: IEEE robotics
& automation magazine 13.2 (2006), pp. 99–110 (Cited
on page 12).

[12] J. Engel, J. Stueckler, and D. Cremers. “Large-Scale
Direct SLAM with Stereo Cameras”. In: iros. 2015
(Cited on page 12).

[13] Tarak Gandhi and Mohan Trivedi. “Parametric Ego-
motion Estimation for Vehicle Surround Analysis using
an Omnidirectional Camera”. In: Machine Vision and
Applications 16.2 (2005), pp. 85–95 (Cited on page 12).

[14] Tarak Gandhi and Mohan M Trivedi. “Motion Based
Vehicle Surround Analysis using an Omni-Directional
Camera”. In: Intelligent Vehicles Symposium, 2004
IEEE. IEEE. 2004, pp. 560–565 (Cited on page 12).

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2012 (Cited on page
7).

[16] A. Gern, R. Moebus, and U. Franke. “Vision-based
Lane Recognition Under Adverse Weather Conditions
using Optical Flow”. In: Intelligent Vehicle Symposium,
2002. IEEE. Vol. 2. 2002, 652–657 vol.2 (Cited on page
3).

[17] Get Under the Hood of Parker, Our Newest SOC for
Autonomous Vehicles. https://blogs.nvidia.com/blog/
2016/08/22/parker-for-self-driving-cars/ (Cited on
page 11).

[18] P. Gomes, F. Vieira, and M. Ferreira. “The
See-Through System: From Implementation to
Test-drive”. In: 2012 IEEE Vehicular Network-
ing Conference (VNC). 2012, pp. 40–47. doi:
10.1109/VNC.2012.6407443 (Cited on page 12).

[19] Google Self-Driving Car Project Monthly Report Sep-
tember 2016. https://static.googleusercontent.com/
media/www.google . com/en//selfdrivingcar/files/
reports/report-0916.pdf (Cited on page 2).

[20] Mahanth Gowda et al. “Tracking Drone Orientation
with Multiple GPS Receivers”. In: Proceedings of the
22nd Annual International Conference on Mobile Com-
puting and Networking. MobiCom ’16. 2016 (Cited on
page 12).

[21] Santanu Guha et al. “AutoWitness: Locating and Track-
ing Stolen Property While Tolerating GPS and Radio
Outages”. In: Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems. SenSys ’10.
2010 (Cited on page 12).

[22] Heads Up Display. http://continental-head-up-display.
com/ (Cited on page 12).

[23] Wolfgang Hess et al. “Real-Time Loop Closure in 2D
LIDAR SLAM”. In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). 2016,
pp. 1271–1278 (Cited on page 12).

[24] How Uber’s First Self-Driving Car Works. http://www.
businessinsider.com/how-ubers-driverless-cars-work-
2016-9 (Cited on page 2).

[25] Jing Huang and Suya You. “Point Cloud Matching
based on 3D Self-similarity”. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on. IEEE. 2012, pp. 41–
48 (Cited on page 5).

[26] Dirk Hübner and G Riegelhuth. “A New System Ar-
chitecture for Cooperative Traffic Centres-the Simtd
Field Trial”. In: ITS World Congress. 2012 (Cited on
page 12).

[27] Bret Hull et al. “CarTel: a Distributed Mobile Sensor
Computing System”. In: Proceedings of the 4th in-
ternational conference on Embedded networked sensor
systems. SenSys ’06. ACM. 2006, pp. 125–138 (Cited
on page 12).

[28] Yurong Jiang et al. “CARLOC: Precise Positioning
of Automobiles”. In: Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems.
SenSys ’15. 2015 (Cited on pages 4 and 12).

http://www.businessinsider.com/mercedes-e-class-2017-features-2016-6/
http://www.businessinsider.com/mercedes-e-class-2017-features-2016-6/
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/ICCV.2015.312
http://www.mtc.umich.edu/deployments/connected-ann-arbor
http://www.mtc.umich.edu/deployments/connected-ann-arbor
http://archive.darpa.mil/grandchallenge/
http://archive.darpa.mil/grandchallenge/
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/
http://dx.doi.org/10.1109/VNC.2012.6407443
https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0916.pdf
https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0916.pdf
https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0916.pdf
http://continental-head-up-display.com/
http://continental-head-up-display.com/
http://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
http://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
http://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9

MobiSys ’18, June 10–15, 2018, Munich, Germany H. Qiu et al.

[29] J. Kammerl et al. “Real-time Compression of Point
Cloud Streams”. In: 2012 IEEE International Confer-
ence on Robotics and Automation. 2012, pp. 778–785.
doi: 10.1109/ICRA.2012.6224647 (Cited on page 12).

[30] KITTI Visual Odometry Benchmark. http ://www.
cvlibs.net/datasets/kitti/eval_odometry.php (Cited
on page 9).

[31] Swarun Kumar, Shyamnath Gollakota, and Dina
Katabi. “A Cloud-assisted Design for Autonomous
Driving”. In: Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing. MCC
’12. 2012 (Cited on page 12).

[32] Swarun Kumar et al. “CarSpeak: A Content-centric
Network for Autonomous Driving”. In: SIGCOMM
Comput. Commun. Rev. 42.4 (Aug. 2012) (Cited on
page 12).

[33] Mathieu Labbé and François Michaud. “Online Global
Loop Closure Detection for Large-scale Multi-session
Graph-based Slam”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE.
2014, pp. 2661–2666 (Cited on page 5).

[34] Lidar-Monocular Visual Odometry. https ://github.
com/johannes-graeter/limo (Cited on page 12).

[35] Sathiya Kumaran Mani et al. “MNTP: Enhancing Time
Synchronization for Mobile Devices”. In: Proceedings
of the 2016 Internet Measurement Conference. IMC
’16. 2016 (Cited on page 5).

[36] Leanne Matuszyk et al. “Stereo Panoramic Vision for
Monitoring Vehicle Blind-spots”. In: Intelligent Vehi-
cles Symposium, 2004 IEEE. IEEE. 2004, pp. 31–36
(Cited on page 12).

[37] D. L. Mills. “Internet Time Synchronization: the Net-
work Time Protocol”. In: IEEE Transactions on Com-
munications 39.10 (1991), pp. 1482–1493 (Cited on
page 5).

[38] Raul MurArtal, J. M. M. Montiel, and Juan D. Tar-
dos. “ORB-SLAM: a Versatile and Accurate Monocular
SLAM System”. In: IEEE Transactions on Robotics
(2015) (Cited on pages 4, 5, and 12).

[39] Richard A. Newcombe et al. “KinectFusion: Real-time
Dense Surface Mapping and Tracking”. In: Proceedings
of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality. ISMAR ’11. 2011 (Cited
on page 12).

[40] NHTSA Federal Accident Reporting System. https://
www-fars.nhtsa.dot.gov/Main/index.aspx (Cited on
page 1).

[41] NVidia Drive PX 2. http://www.nvidia.com/object/
drive-px.html (Cited on page 2).

[42] C. Olaverri-Monreal et al. “The See-Through System: A
VANET-enabled Assistant for Overtaking Maneuvers”.
In: 2010 IEEE Intelligent Vehicles Symposium. 2010,
pp. 123–128. doi: 10.1109/IVS.2010.5548020 (Cited on
page 12).

[43] ORB-SLAM Code. http://webdiis.unizar.es/~raulmur/
orbslam/ (Cited on page 7).

[44] H. Qiu et al. “Towards Robust Vehicular Context Sens-
ing”. In: IEEE Transactions on Vehicular Technol-
ogy 67.3 (2018), pp. 1909–1922. issn: 0018-9545. doi:
10.1109/TVT.2017.2771623 (Cited on page 12).

[45] Hang Qiu et al. “Augmented Vehicular Reality: En-
abling Extended Vision for Future Vehicles”. In: Pro-
ceedings of the 18th International Workshop on Mo-
bile Computing Systems and Applications. ACM. 2017,
pp. 67–72 (Cited on page 12).

[46] Joseph Redmon et al. “You Only Look Once:
Unified, Real-Time Object Detection”. In: CoRR
abs/1506.02640 (2015). url: http://arxiv.org/abs/
1506.02640 (Cited on page 3).

[47] Dirk Reichardt et al. “CarTALK 2000: Safe and
Comfortable Driving based upon Inter-vehicle-
communication”. In: Intelligent Vehicle Symposium,
2002. IEEE. Vol. 2. IEEE. 2002, pp. 545–550 (Cited
on page 12).

[48] Radu Bogdan Rusu and Steve Cousins. “3D is here:
Point Cloud Library (PCL)”. In: IEEE International
Conference on Robotics and Automation (ICRA).
Shanghai, China, 2011 (Cited on page 7).

[49] Andrzej Ruta et al. “In-vehicle Camera Traffic Sign
Detection and Recognition”. In: Machine Vision and
Applications 22.2 (2011), pp. 359–375 (Cited on page
12).

[50] Ruwen Schnabel and Reinhard Klein. “Octree-based
Point-Cloud Compression.” In: Spbg. 2006, pp. 111–120
(Cited on pages 5 and 6).

[51] Miguel Angel Sotelo et al. “A Color Vision-Based Lane
Tracking System for Autonomous Driving on Unmarked
Roads”. In: Auton. Robots 16.1 (Jan. 2004), pp. 95–116.
issn: 0929-5593 (Cited on page 3).

[52] R Stahlmann et al. “Starting European Field Tests
for Car-2-X Communication: the DRIVE C2X Frame-
work”. In: 18th ITS World Congress and Exhibition.
2011 (Cited on page 12).

[53] Tesla Autopilot. http://www.businessinsider.com/how-
teslas-autopilot-works-2016-7 (Cited on page 2).

[54] Arvind Thiagarajan et al. “VTrack: Accurate, Energy-
aware Road Traffic Delay Estimation Using Mobile
Phones”. In: Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems. SenSys ’09.
2009 (Cited on page 12).

[55] Sebastian Thrun et al. “Stanley: The Robot That Won
the DARPA Grand Challenge: Research Articles”. In:
J. Robot. Syst. 23.9 (Sept. 2006), pp. 661–692. issn:
0741-2223 (Cited on pages 2 and 12).

[56] TP-Link Talon AD7200 Multi-Band WiFi Router.
https://www.tp-link.com/us/products/details/cat-
9_AD7200.html (Cited on page 7).

[57] Two Second Rule. https://en.wikipedia.org/wiki/Two-
second_rule (Cited on page 9).

[58] C. Urmson and W. ". Whittaker. “Self-Driving Cars and
the Urban Challenge”. In: IEEE Intelligent Systems
23.2 (2008), pp. 66–68 (Cited on page 12).

http://dx.doi.org/10.1109/ICRA.2012.6224647
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://github.com/johannes-graeter/limo
https://github.com/johannes-graeter/limo
https://www-fars.nhtsa.dot.gov/Main/index.aspx
https://www-fars.nhtsa.dot.gov/Main/index.aspx
http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html
http://dx.doi.org/10.1109/IVS.2010.5548020
http://webdiis.unizar.es/~raulmur/orbslam/
http://webdiis.unizar.es/~raulmur/orbslam/
http://dx.doi.org/10.1109/TVT.2017.2771623
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://www.businessinsider.com/how-teslas-autopilot-works-2016-7
http://www.businessinsider.com/how-teslas-autopilot-works-2016-7
https://www.tp-link.com/us/products/details/cat-9_AD7200.html
https://www.tp-link.com/us/products/details/cat-9_AD7200.html
https://en.wikipedia.org/wiki/Two-second_rule
https://en.wikipedia.org/wiki/Two-second_rule

AVR: Augmented Vehicular Reality MobiSys ’18, June 10–15, 2018, Munich, Germany

[59] Chris Urmson et al. “Autonomous Driving in Urban
Environments: Boss and the Urban Challenge”. In:
J. Field Robot. 25.8 (Aug. 2008), pp. 425–466. issn:
1556-4959 (Cited on page 2).

[60] U.S. Details Plans for Car-to-car Safety Communica-
tions. http://www.autonews.com/article/20140818/
OEM11/140819888/u.s.-details-plans-for-car-to-car-
safety-communications (Cited on page 12).

[61] V2V Safety Technology Now Standard on Cadillac CTS
Sedans. http://media.cadillac.com/media/us/en/
cadillac/news.detail.html/content/Pages/news/us/
en/2017/mar/0309-v2v.html (Cited on page 12).

[62] Vehicle Average Length. https://www.reference.com/
vehicles/average-length-car-2e853812726d079d (Cited
on page 10).

[63] Vehicle Stopping Distance and Time. https://nacto.
org/docs/usdg/vehicle_stopping_distance_and_
time_upenn.pdf (Cited on page 9).

[64] Velodyne LiDAR HDL-64E Datasheet. http : / /
velodynelidar.com/docs/datasheet/63-9194%20Rev-
E_HDL-64E_S3_Spec%20Sheet_Web.pdf (Cited on
page 2).

[65] Christoph Vogel, Konrad Schindler, and Stefan Roth.
“3D Scene Flow Estimation with a Piecewise Rigid
Scene Model”. In: Int. J. Comput. Vision 115.1 (Oct.
2015) (Cited on page 6).

[66] Y. Xu et al. “3D Point Cloud Map Based Vehicle
Localization using Stereo Camera”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). 2017, pp. 487–
492. doi: 10.1109/IVS.2017.7995765 (Cited on page
12).

[67] ZED Stereo Camera. https://www.stereolabs.com/
(Cited on pages 7 and 12).

[68] ZED Stereo Camera Datasheet. https : / / www .
stereolabs.com/zed/specs/ (Cited on page 3).

http://www.autonews.com/article/20140818/OEM11/140819888/u.s.-details-plans-for-car-to-car-safety-communications
http://www.autonews.com/article/20140818/OEM11/140819888/u.s.-details-plans-for-car-to-car-safety-communications
http://www.autonews.com/article/20140818/OEM11/140819888/u.s.-details-plans-for-car-to-car-safety-communications
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://www.reference.com/vehicles/average-length-car-2e853812726d079d
https://www.reference.com/vehicles/average-length-car-2e853812726d079d
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
http://velodynelidar.com/docs/datasheet/63-9194%20Rev-E_HDL-64E_S3_Spec%20Sheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194%20Rev-E_HDL-64E_S3_Spec%20Sheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194%20Rev-E_HDL-64E_S3_Spec%20Sheet_Web.pdf
http://dx.doi.org/10.1109/IVS.2017.7995765
https://www.stereolabs.com/
https://www.stereolabs.com/zed/specs/
https://www.stereolabs.com/zed/specs/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 AVR Design
	3.1 Relative Localization
	3.2 Extending Vehicular Vision
	3.3 Detecting and Isolating Dynamic Objects
	3.4 Extracting Object Motion and Reconstruction
	3.5 Adaptive Frame Transmission
	3.6 Cooperative AVR

	4 AVR Optimizations
	5 AVR Evaluation
	5.1 The Benefits of AVR for ADAS and Autonomous Driving
	5.2 AVR End-to-End Performance
	5.3 Accuracy Results
	5.4 Throughput and Latency

	6 Limitation and Future Work
	7 Related Work
	8 Conclusions

